

CENTRAL DELTA WATER AGENCY

March 29, 2013

235 East Weber Avenue • P.O. Box 1461 • Stockton, CA 95201 Phone 209/465-5883 • Fax 209/465-3956 Deadline: 3/29/13 by 12 noon DIRECTORS George Biagi, Jr. Rudy Mussi Edward Zuckerman

Public Hearing (3/20/13) Bay-Delta Plan SED

> COUNSEL Dante John Nomettini Dante John Nomettini, Jr

RECEIVE 3-29-13 SWRCB Clerk

Via Email to commentletters@waterboards.ca.gov

Jeanine Townsend Clerk to the Board State Water Resources Control Board P.O. Box 100 Sacramento, CA 95814-0100

Dear SWRCB:

The Central Delta Water Agency (CDWA) has previously submitted numerous comments on this matter and because those comments continue to be directly relevant and applicable to the adequacy of the instant Bay-Delta Plan SED, copies of those comments are enclosed herewith.¹

The CDWA also hereby joins in all of the comments the South Delta Water Agency

¹Those comments consist of the following:

- "Comments on PUBLIC STAFF WORKSHOP re Consideration of Potential Amendments to the WQCP for the Bay-Delta Relating to Southern Delta Salinity and San Joaquin River Flow Objectives," dated April 6, 2009 (which themselves incorporate and include its prior comments dated March 19, 2009 and October 1, 2008);
- (2) "Comments on PROPOSED MODELING ALTERNATIVES re Consideration of Potential Amendments to the WQCP for the Bay-Delta Relating to Southern Delta Salinity and San Joaquin River Flow Objectives," dated May 14, 2009;
- (3) "San Joaquin River Technical Report Comments," dated December 6, 2010; and
- (4) "Comments on the SWRCB's April 1, 2011 Revised Notice of Preparation and Notice of Additional Scoping Meeting re Update to the WQCP for the Bay-Delta Relating to Southern Delta Salinity and San Joaquin River Flow Objectives," dated May 23, 2011.

Re: Comment Letter – Bay-Delta Plan Draft SED re San Joaquin River Flows and Southern Delta Water Quality.

(SDWA) has previously submitted on this matter orally and in writing and joins in the comments the SDWA will be submitting to the SWRCB in response to the instant request for comments on the Draft Bay-Delta Plan SED. The CDWA hereby supplements those comments with the following.

1. The Draft SED's Impact Analysis on Water Quality in the Southern Delta is Significantly Flawed in Numerous Respects.

a. **The LSJR Flow Alternatives.**

In chapter 5 of the Draft SED, the SWRCB purports to examine the significance of the LSJR Flow Alternatives' impacts on the southern Delta water quality objectives. That examination is deeply flawed for numerous reasons.

i. The "Baseline" is Erroneous.

Having a meaningful baseline is essential to a meaningful assessment of the impacts of a project. Here, the Draft SED uses a baseline that is completely erroneous and, hence, undermines the entirety of the impact analysis.

For the baseline, the Draft SED apparently runs its models over the hydrology of an 82 year period (from 1922-2003) and calculates how many times the 1.0 and .7 southern Delta EC objectives would be exceeded. The glaring deficiency, however, is that the model apparently **makes no effort whatsoever to meet and maintain those objectives.** Thus, unsurprisingly, the baseline comes up with extensive violations of those objectives.

There is no basis to assume that no effort will be made to meet those objectives under the baseline or "existing conditions." Instead, since those objective under the actual baseline/existing conditions are legal conditions imposed on the Projects' water rights, the baseline must assume those objectives will be fully met.

While it would be inappropriate (and unlawful) to assume the baseline/existing conditions will consist of extensive violations of the existing legal objectives, to the extent the SWRCB nevertheless insists on assuming violations will occur and that the SWRCB will tolerate and do nothing to enforce those violations, then the assumed violations cannot be anywhere near the extensive violations which the Draft SED assumes will occur. Instead, as the Draft SED notes elsewhere,

"Figure F.2-13 shows the historical patterns of Vernalis flow and Vernalis EC as well as the southern Delta EC data for 1985–2010. The measured monthly EC at Vernalis has never exceeded EC objectives, and the southern Delta EC values have been higher than EC objectives <u>in only a few months</u> during the past 15 years (since 1995 when WQCP specified the 700/1000 EC objective)." (Appendix F.2, p. F.2-92 & 93.)

Thus again, while the baseline, should assume 100% compliance with the existing objectives, if an unwarranted deviation from that is made, then such a deviation must not deviate far from 100% compliance since historically there has only been noncompliance "in only a few months."

ii. The Assumptions in the LSJR Alternatives are Erroneous.

Making matters worse, the Draft SED further apparently assumes that under each of the LSJR Flow Alternatives, <u>there will be no effort whatsoever to meet and maintain the</u> <u>southern Delta objectives</u>. Those alternatives are simply modeled as if those objectives did not even exist.

Thus, in the end, the so-called impact analysis of the LSJR Flow Alternatives on the southern Delta EC objectives (1) assumes there will be no effort to meet those objectives in the base case; (2) assumes there will be no effort to meet those objectives under the LSJR Flow Alternatives; and (3) then compares the two.

While the foregoing analysis could be interesting and perhaps informative, and the more analysis the merrier, that analysis is plainly inappropriate to determine the significance of the LSJR Flow Alternatives on southern Delta EC objectives under CEQA (or the functional equivalent SED).

Instead, the baseline should assume 100% compliance with the standards and the flow alternatives should obviously be designed to 100% comply with those standards. However, if the flow alternatives will not be designed to 100% comply with those standards, then the Draft SED's impact analysis must duly acknowledge and reflect such noncompliance. Thus, instead of the SED concluding, for example, that there is no significant impact from LSJR Flow Alternatives 3 and 4 on the southern Delta EC objectives because they are modeled to show slightly less violations of those objectives than the base case, which contains an enormous amount of violations, the SED must conclude that when compared to a fair and meaningful base case (i.e., which assumes 100% compliance), all of the LSJR Flow Alternatives, including 3 and 4 show very significant impacts to those objectives.

b. The SDWQ Alternatives.

When it comes to the Draft SED's analysis of the SDWQ Alternatives, the impropriety of the impact analysis is even worse. That analysis is once again deeply flawed because it assumes under baseline conditions there will be egregious violations of the existing southern Delta EC objectives. Thus, when compared to a situation where there is no effort whatsoever to meet the southern Delta EC objectives, the Draft SED concludes relaxing those objectives under the SDWQ alternatives will not have any significant impacts on water quality because by relaxing them it will be similar to the situation where there is no effort whatsoever to meet the existing objectives.

It should strike everyone, especially the preparers of the Draft SED, as glaringly odd that

relaxing the southern Delta EC objectives will not have any negative impact on EC. The only way that could be the case is if it is assumed the existing objectives are not actually legal objectives and will not be enforced. Please correct this analysis because this is completely erroneous and completely unfair.²

2. Reliance on the Hoffman Report to Support a Relaxation of the Southern Delta EC Objectives is Misplaced.

The SDWA's comments will address this in depth and the CDWA joins and defers to those comments. Suffice it to say, that as with the above deficiencies in the impact analysis on water quality, the shortcomings in the Hoffman report are equally glaring and it is respectfully requested that SWRCB recognize and meaningfully address those shortcomings.

3. The Description of the "Regulatory Setting" in the Draft SED Leaves out Numerous Key Regulations.

a. Federal Regulatory Setting.

With respect to the "federal" regulatory setting in the Draft SED which purports to list "[r]elevant federal programs, policies, plans, or regulations related to water supply, surface hydrology, and water quality" (Chapter 5, p. 5-50), it is difficult to imagine how United States Public Law 108-361 (HR 2828 [October 25, 2004]) could be left out of the short list of such matters. HR 2828 provides:

"[The Secretary of Interior] shall acquire water from willing sellers and undertake other actions designed to decrease releases from the New Melones Reservoir for meeting water quality standards and flow objectives for which the Central Valley Project has responsibility to assist in meeting allocations to Central Valley Project contractors from the New Melones Project." (PL 108-361, Section 103(f)(1)(F); 118 Stat 1681, pp. 1694-1695, emphasis added.)

Not only is HR 2828 not mentioned in the "regulatory setting" section of the Draft SED, but it appears it is not mentioned or discussed <u>at all</u> in the entirety of the Draft SED (except in the summary of public comments requested that it be so mentioned and discussed). Please revise the Draft SED to mention and meaningfully discuss HR 2828. It is obviously directly relevant to matters such as the assumptions in the modeling and the topic of implementation, etc.

² Also, please explain why the month of "September" was added to Table 5-29, whereas in the tables prior to that table emphasized April thru <u>August</u> period (since that is the period where the more stringent .7 EC standard currently applies), rather than April through <u>September</u>.

b. State Regulatory Setting.

It is likewise difficult to imagine how policies such as those set forth in the Delta Protection Acts of 1959 and 1992, and the Watershed Protection Act (Wat. Code, § 11460 et seq.) could be left out of the relevant "state" regulatory setting. Please also revise the Draft SED to mention and meaningfully discuss these acts in the context of the regulatory setting and elsewhere. The importance of these acts is further discussed in CDWA's prior comments on this matter enclosed herewith.

3. Farming Operations in the Southern Delta Act as a Salt Reservoir and Improve Delta Water <u>Quality</u>.

While the Draft SED appears to at times recognize this phenomenon, it was disappointing to not find any discussion or reference to DWR's 1956 report on this phenomenon. That report is entitled, "Investigation of the Sacramento-San Joaquin Delta, Report No. 4, Quantity and Quality of Waters Applied to and Drained from the Delta Lowlands." The ultimate conclusion of that report is as follows:

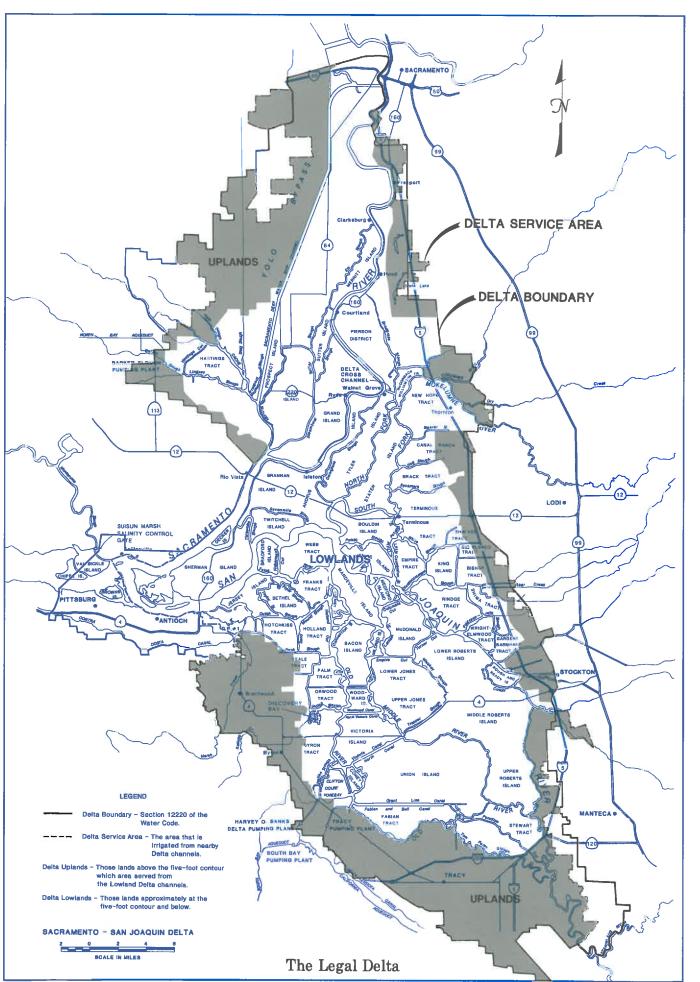
The Delta lowlands [which includes a large portion of the South Delta and all the lands adjacent to the southern Delta EC monitoring stations—see attached Delta Atlas map] act as a salt reservoir, storing salts obtained largely from the channels during the summer, when water quality in such channels is most critical and returning such accumulated salts to the channels during the winter when water quality there is least important. Therefore agricultural practices in that area <u>enhanced</u> rather than degraded the good quality Sacramento River water en route to the Tracy Pumping Plant."

(Report, p. 30, emphasis added.)

This is obviously a very important phenomenon to understanding the southern Delta farmers' drainage effects on EC and should be forthrightly discussed and this report should be referenced in numerous places throughout the Draft SED.

///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///
///

4. Conclusion.


The CDWA will defer to the additional discussion of the above and other matters in the enclosed comments and those of the SDWA.

Thank you for considering these comments and concerns.

Very truly

Dante John Nomellini, Jr. Attorney for the CDWA

Enclosures-Map from Delta Altas showing Delta "Lowlands"; and prior comments on this matter.

Sacramento-San Joaquin Delta Atlas

Department of Water Resources

]

DIRECTORS George Biagi, Jr. Rudy Mussi Edward Zuckerman

COUNSEL Dante John Nomellini Dante John Nomellini, Jr.

CENTRAL DELTA WATER AGENCY

235 East Weber Avenue • P.O. Box 1461 • Stockton, CA 95201 Phone 209/465-5883 • Fax 209/465-3956

April 6, 2009

Via email: Bay-Delta@waterboards.ca.gov and First Class U.S. Mail (15 Copies) to:

Chris Carr State Water Resources Control Board Division of Water Rights P.O. Box 2000 Sacramento, CA 95812-2000

> Re: Comments on PUBLIC STAFF WORKSHOP re Consideration of Potential Amendments to the WQCP for the Bay-Delta Relating to Southern Delta Salinity and San Joaquin River Flow Objectives.

Dear SWRCB:

The Central Delta Water Agency (CDWA) has previously submitted comments on various matters that are directly relevant to the above-referenced workshop. Enclosed herewith are copies of some of such comments pertaining to the following topics that should be considered in the context of said workshop.

- 1. The Notice of Preparation Pursuant to the California Environmental Quality Act for Any Potential Amendments to the Above-referenced Objectives Was Prematurely Issued.
- 2. Farming Operations in the Southern Delta Act as a Salt Reservoir and <u>Improve</u> Delta Water Quality.
- 3. Farming Operations in the Southern Delta Also <u>Improve</u> Delta Water <u>Quantity</u>.
- 4. This Process Must Discuss and Consider All Applicable Laws and Policies Related to Protecting and Promoting Southern Delta Farming Operations.

(The above topics 1 through 4 are discussed in the enclosed CDWA comments, dated March 19, 2009, entitled, "Comments on the Notice of Preparation for Environmental Documentation for the Update and Implementation of the 2006 Bay-Delta Water Quality Control Plan re Southern Delta Salinity and San Joaquin River Flows.")

- 5. The Implementation Plan for the Southern Delta Salinity and San Joaquin River Flow Objectives Needs to Be Modified to Forthrightly Address Term 91.
- 6. As a Threshold Matter, the Implementation Plan Needs to Consider and Define the Project's Legal Responsibilities With Regard to Providing Salinity Control for the Southern Delta and San Joaquin River Flows Before Any Consideration is Given to Imposing Salinity Control or Flow Burdens on any other Water Right Holder.

(The above topics 5 and 6 are discussed in the enclosed CDWA comments, dated October 1, 2008, entitled, "Periodic Review Workshop for the 2006 Bay-Delta Water Quality Control Plan," at pages 2-5.)

Thank you for considering these comments and concerns.

Very truly yours,

Dante John Nomellini, Jr. Attorney for the CDWA

DJR/djr Enclosures

DIRECTORS George Biagi, Jr. Rudy Mussi Edward Zuckerman

COUNSEL Dante John Nomellini Dante John Nomellini, Jr.

CENTRAL DELTA WATER AGENCY

235 East Weber Avenue . P.O. Box 1461 . Stockton, CA 95201 Phone 209/465-5883 . Fax 209/465-3956

March 19, 2009

Via email: Bay-Delta@waterboards.ca.gov and First Class U.S. Mail (15 Copies) to:

Anne Short State Water Resources Control Board Division of Water Rights P.O. Box 2000 Sacramento, CA 95812-2000

Re: Comments on the Notice of Preparation for Environmental Documentation for the Update and Implementation of the 2006 Bay-Delta Water Quality Control Plan re Southern Delta Salinity and San Joaquin River Flows.

1. The NOP is Glaringly Premature.

From a review of the NOP it is readily apparent that the NOP is premature and should be set aside. As the title and text of the NOP indicate, the NOP is directed to the Southern Delta salinity and San Joaquin River flow objectives in the SWRCB's 2006 Bay-Delta Plan. The NOP describes the proposed Project as follows:

The proposed Project includes both: 1) the review and update of water quality objectives [i.e., Southern Delta salinity and San Joaquin River flow objectives] and the program of implementation [of those objectives] in the Bay-Delta Plan and 2) changes to water rights and water quality regulation consistent with the program of implementation [of those objectives].

(NOP, p. 3.)

However, the problem is that the project is so broad that there is in essence no project that can be meaningfully subjected to the CEQA process (or to the SWRCB's functional equivalent, "Certified State Regulatory Program" [which is presumably applicable to the "basin planning" component of the project). The NOP readily admits as much:

Accordingly, the environmental documentation will identify and evaluate the significant environmental impacts associated with <u>potential</u> changes to the

Bay-Delta Plan and <u>potential</u> changes to water rights and other measures implementing the plan that may be needed to ensure the reasonable protection of beneficial uses in the Bay-Delta watershed.

(NOP, p. 3.)

The sky is the limit as far as what may conceivably fall within the scope of such "potential" changes to the objectives and measures to implement them and, hence, the so-called "project" is not yet sufficiently defined to warrant the issuance of a NOP. As CEQA Guidelines section 15082, subdivision (a)(1) provides:

The notice of preparation shall provide . . . <u>sufficient information</u> describing the project and the potential environmental effects to enable the responsible agencies to make a meaningful response.

(Emphasis added.) The language of the NOP in fact expressly confirms that the NOP lacks the requisite "sufficient information":

At present, <u>sufficient information is not available</u> to enable the State Water Board to determine the detailed scope and significance of the effects related to this Project.

(NOP, p. 10, emphasis added.)

Moreover, CEQA Guidelines section 15082, subdivision (b), provides:

"[E]ach responsible and trustee agency and the Office of Planning and Research shall provide the lead agency with specific detail about the scope and content of the environmental information related to the responsible or trustee agency's area of statutory responsibility that must be included in the draft EIR. [¶] (1) The response at a minimum shall identify: [¶] (A) The significant environmental issues and reasonable alternatives and mitigation measures that the responsible or trustee agency, or the Office of Planning and Research will need to have explored in the draft EIR"

Without any information whatsoever about what the "potential" changes to the Southern Delta salinity and San Joaquin River flow objectives, or to their implementation measures, will entail, it is not possible to meaningfully provide "specific detail" as to "[t]he significant environmental issues and reasonable alternatives and mitigation measures that . . . will need to [be] explored in the draft EIR" For example, reasonable alternatives to what? Similarly, reasonable mitigation measures to what impacts?

For these reasons the NOP is clearly premature and must be set aside until the proposed project is sufficiently developed and capable of being meaningfully described in a future NOP.

2. Farming Operations in the Southern Delta Act as a Salt Reservoir and <u>Improve</u> Delta Water Quality.

In the event the NOP is properly re-issued, any proposed environmental documentation should fully acknowledge and discuss DWR's analysis and findings in its July 1956 Investigation, entitled, "Investigation of the Sacramento-San Joaquin Delta, Report No. 4, Quantity and Quality of Waters Applied to and Drained from the Delta Lowlands." This particular investigation report "deals with some of the hydrographic and salinic aspects of water supply and water disposal in the Delta." (Report, p. 3.)

The "Delta Lowlands," which were the subject of the investigation, include the lands in the Southern Delta that the current Southern Delta salinity objectives are intended to protect and include the lands immediately adjacent to the current monitoring stations for those objectives. (See Report, Plate No. 1.) (See also Report, p. 4 ["The Delta Lowlands refer to those areas in the Sacramento-San Joaquin Delta consisting generally of the lands lying below an elevation of plus five, mean seal-level datum"].)

The "Summary and Conclusion" portion of the Report begins on page 28, and provides very significant conclusions that are particularly relevant to investigations into the causes of salinity degradation in the Southern Delta and actions which *improve* salinity conditions in the Southern Delta (as well as in other portions of the Delta). Such investigations would arise in the "implementation" component of the periodic review of the Southern Delta objectives as well as other components.

The ultimate conclusion of the Report is as follows:

The Delta lowlands act as a salt reservoir, storing salts obtained largely from the channels during the summer, when water quality in such channels is most critical and returning such accumulated salts to the channels during the winter when water quality there is least important. Therefore agricultural practices in that area <u>enhanced</u> rather than degraded the good quality Sacramento River water en route to the Tracy Pumping Plant.

(Report, p. 30, emphasis added.)

Thus, while there are undoubtedly those that would like to see Delta farming operations shut down so that they could have more water to foster their own farming operations (largely in the desert areas of the State, as well as grow houses, swimming pools and golf courses in such areas), this Report demonstrates that Delta farming operations actually <u>improve</u> the water quality in the Delta and, thus, not only improve the water quality for exporters, but, also, increase the

<u>quantity</u> of the exporters' water supply since the water quality improvement means less dilution water is needed from upstream areas to meet Delta water quality objectives.

3. Farming Operations in the Southern Delta Also <u>Improve</u> Delta Water <u>Quantity</u>.

In addition to indirectly improving water <u>quantity</u> by improving water <u>quality</u> as discussed immediately above, largely on account of the fact that the groundwater underling the farmlands in the Southern Delta (as well as the other Delta Lowlands) is very high, wild vegetation tends to flourish if farming operations are shut down and the wild vegetation consumes more water than farming operations.

This phenomenon is no secret and the SWRCB recognized this early on in it's 1961 Decision-990, where it states at page 46:

The reclamation of the lands in the Delta has eliminated a large area of aquatic vegetation such as cat-tails and tules which consume three to four times as much water as the crops which are grown on these reclaimed lands. As a result, it appears probable that the consumption of water within the Delta has been decreased by reclamation development, and that a greater proportion of the stream flow entering the Delta now reaches the lower end of the Delta to repel saline invasion than before reclamation.

More recently, in its Water Right Order 2009-0003, the SWRCB discusses the Department of Water Resources's (DWR's) comments on this phenomenon in the context of a proposed fallowing of land within the Central Delta (i.e., land within the "Delta Wetlands Project") for purposes of transferring water to the Metropolitan Water District of Southern California. As the SWRCB explains:

"[DWR] submitted comments to Delta Wetlands regarding the proposed temporary urgency change. DWR did not object to the proposed temporary urgency changes, but DWR stated that conditions were necessary to prevent injury to the State Water Project (SWP) resulting from the change. DWR noted that the elevation of the fields on both Bouldin Island and Webb Tract is about 15 feet below sea level. DWR stated that there is the potential for significant lateral movement of groundwater through the levees surrounding Bouldin Island and Webb Tract resulting in relatively high groundwater table. During previous similar fallowing transfers, DWR found that the high groundwater table supports weed growth on idled fields. In some cases, DWR found that the weed growth resulted in higher ETAW than the crops that were fallowed. Additionally, DWR noted that recent studies show that significant evaporation may occur from bare ground. DWR stated that water consumed during weed growth on idled fields (or evaporation from bare fields) will reduce the amount of water conserved by fallowing. DWR also noted that DFG has previously expressed concerns that plowing idled fields during the growing season may impact ground-nesting birds. Restrictions in plowing may result in increased weed growth, reducing the amount of water conserved through fallowing (and available for transfer)."

(WR 2009-0003, p. 3, emphasis added.)

. . .

The forgoing phenomenon should be thoroughly taken into consideration in the context of the instant periodic review. Among other things, it demonstrates the water quantity <u>benefits</u> of continued farming operations in the Southern Delta, and should not be forgotten by any grand scheme by the enemies of the Delta (who, hopefully, the SWRCB is not one) to degrade the Southern Delta water quality objectives in this process and thereby impair if not destroy Southern Delta farming operations.

4. This Process Must Discuss and Consider All Applicable Laws and Policies Related to Protecting and Promoting Southern Delta Farming Operations.

In the event the NOP is properly re-issued in the future, any proposed environmental documentation should also fully acknowledge and discuss the various laws and policies which are applicable to the topics of Southern Delta salinity and San Joaquin River flows objectives, and the measures that should be taken to implement those objectives. Some of those laws and policies include the following.

a. **Delta Protection Act of 1992** (Pub. Resources Code, § 29700 et seq.).

"The Legislature finds and declares that the Sacramento-San Joaquin Delta is a natural resource of statewide, national, and international significance, containing irreplaceable resources, and it is the policy of the state *to recognize*, *preserve*, *and protect those resources* of the delta for the use and enjoyment of current and future generations." (Pub. Resources Code, § 29701, emphasis added.)

"The Legislature further finds and declares that the basic goals of the state for the delta are the following:

- (a) *Protect, maintain, and, where possible, enhance and restore* the overall quality of the delta environment, including, but not limited to, *agriculture, wildlife habitat, and recreational activities*.
- (c) Improve flood protection by structural and nonstructural means to ensure an increased level of public health and safety." (Pub. Resources Code, § 29702, emphasis added.)

"The Legislature further finds and declares as follows:

- (a) The delta is an agricultural region of great value to the state and nation and *the retention and continued cultivation and production of fertile peatlands and prime soils are of significant value.*
- (b) The agricultural land of the delta, while adding greatly to the economy of the state, also provides a significant value as open space and habitat for water fowl using the Pacific Flyway, as well as other wildlife, and the *continued dedication and retention of that delta land in agricultural production contributes to the preservation and enhancement of open space and habitat values.*
- (c) Agricultural lands located within the primary zone should be protected from the intrusion of nonagricultural uses." (Pub. Resources Code, § 29703, emphasis added.)

b. The Delta Protection Commission's regional plan entitled, "Land Use and Resource Management Plan for the Primary Zone of the Delta" (Plan).

"(a) Commercial agriculture in the Delta shall be supported and encouraged as a key element in the State's economy and in providing the food supply needed to sustain the increasing population of the State, the Nation, and the world.

(f) Each local government shall continue to implement the necessary plans and ordinances to: maximize agricultural parcel size; reduce subdivision of agricultural lands; protect ordinary agricultural activities; protect agricultural land from conversion to other uses; and clearly define areas in that jurisdiction where urban land uses are appropriate and where agricultural land uses are appropriate." (Cal. Code Regs., tit. 14, § 20070.)

c. **Delta Protection Act of 1959** (Wat. Code, § 12200 et seq.).

. . .

"The Legislature finds that the maintenance of an adequate water supply in the Delta <u>sufficient to maintain and expand agriculture</u>, industry, urban, and recreational development in the Delta area as set forth in Section 12220, Chapter 2, of this part, . . . is necessary to the peace, health, safety and welfare of the people of the State" (Wat. Code, § 12201, emphasis added.) "Among the functions to be provided by [the Projects] shall be the provision of salinity control and an adequate water supply for the users of water in the [Delta]. (Wat. Code, § 12202)

"It is the policy of the State that the operation and management of releases from storage into the Sacramento-San Joaquin Delta of water for use outside the area in which such water originates *shall be integrated to the maximum extent possible in order to permit the fulfillment of the objectives of this part.*" (Wat. Code, § 12205, emphasis added.)

"It is hereby declared to be the policy of the State that no person, corporation or public or private agency or the State or the United States should divert water from the channels of the Sacramento-San Joaquin Delta to which the users within said Delta are entitled." (Wat. Code, § 12203, emphasis added.)

In determining the availability of water for export from the Sacramento-San Joaquin Delta no water shall be exported which is necessary to meet the requirements of Sections 12202 and 12203 of this chapter." (Wat. Code, § 12204, emphasis added.)

d. **Watershed Protection Act** (Wat. Code, § 11460 et seq.).

"In the construction and operation by the department of any project under the provisions of this part a watershed or area wherein water originates, or an area immediately adjacent thereto which can conveniently be supplied with water therefrom, *shall not be deprived by the department directly or indirectly of the prior right to all of the water reasonably required to adequately supply the beneficial needs of the watershed, area, or any of the inhabitants or property owners therein.*" (Wat. Code, § 11460, emphasis added.)

e. United States Public Law 108-361 (HR 2828 [October 25, 2004]).

"[The Secretary of Interior] <u>shall</u> acquire water from willing sellers and undertake other actions designed to decrease releases from the New Melones Reservoir for meeting water quality standards and flow objectives for which the Central Valley Project has responsibility to assist in meeting allocations to Central Valley Project contractors from the New Melones Project." (PL 108-361, Section 103(f)(1)(F); 118 Stat 1681, pp. 1694-1695, emphasis added.)

f. State and Federal Anti-degradation Laws.

The Federal Environmental Protection Agency ("EPA") requires all states to adopt an "antidegradation policy" similar to the SWRCB's Resolution 68-16. (40 C.F.R. 131.12.) Resolution 68-16 provides in pertinent part:

"Whenever the existing quality of water is better than the quality established in policies as of the date on which such policies become effective, such existing high quality will be maintained until it has been demonstrated to the State that any change will be consistent with maximum benefit to the people of the State, will not unreasonably affect present and anticipated beneficial use of such water and will not result in water quality less than that prescribed in the policies."

5. **Potential Environmental Effects.**

"Growth inducing" effects/impacts as well as "cumulative impacts" should be included in the NOP's list of potential environmental effects on page 10.

Thank you for considering these comments and concerns.

Very trub yours,

Dante John Nomellini, Jr. Attorney for the CDWA

DJR/djr Enclosure STATE OF CALIFORNIA DEPARTMENT OF WATER RESOURCES GOODWIN J. KNIGHT, Governor HARVEY O. BANKS, Director of Water Resources

INVESTIGATION OF THE SACRAMENTO-SAN JOAQUIN DELTA

Report No. 4

QUANTITY AND QUALITY OF WATERS APPLIED TO AND DRAINED FROM THE DELTA LOWLANDS

JULY 1956

TABLE OF CONTENTS

Pa	ıge
ACKNOWLEDGMENT,	v
ORGANIZATION	i
PART I - INTRODUCTION	l
Purpose of This Investigation	3
Area Under Investigation	4
Related Investigations and Reports	5
Scope of This Investigation and Report	5
PART II - WATER APPLIED TO IRRIGATED CROPS OF THE DELTA LOWLANDS	7
	7
Irrigation Practices	
Soil Types	8
Land Use	9
Crops Investigated	9
Unit Application of Water	9
Major Crops on North Mineral Soils 1	.1
Major Crops on Middle Organic Soils 1	.2
Major Crops on South Mineral Soils 1	.2
Minor Crops	.3
Total Applied Water	.3
Waters Applied for Leaching Purposes 1	-4
Precipitation	-5
PART III - WATERS DRAINED FROM THE DELTA LOWLANDS	.6
Drainage Practices	.6
Quantity of Drainage Water Pumped	.7

Table of Contents - Continued

	Page
PART IV - WATER SUPPLY AND DISPOSAL	19
Consumptive Use	19
Subsurface Inflow	20
PART V - QUALITY OF WATER	22
Quality of Applied Water	22
Quality of Drainage Waters	24
Channel-Water Degradation by Drainage Water .	26
PART VI - SUMMARY AND CONCLUSION	28
Summary	28
Conclusion	30

TABLES

(Following Text)

Table No.

l	Land Use - Delta Lowlands, 1955
2	Irrigated Crops - Delta Lowlands, 1955
3	Water Applied to Certain Irrigated Crops During 1954, Delta Lowlands - North Mineral Soil
4	Water Applied to Certain Irrigated Crops During 1954, Delta Lowlands - Middle Organic Soil
5	Water Applied to Certain Irrigated Crops During 1954, Delta Lowlands - South Mineral Soil
6	Seasonal Use of Applied Water - Delta Lowlands, 1954
7	Monthly Distribution of Applied Water to Irrigated Crops, Delta Lowlands, 1954
8	Average Precipitation in Sacramento-San Joaquin Delta
9	Precipitation on Delta Lowlands

-111-

Table No.

10	Drainage From Delta Lowlands
11	Consumptive Use Requirements, Delta Lowlands, 1955
12	Water Supply and Disposal, Delta Lowlands
13	Weight of Salts in Applied Irrigation Water, Delta Lowlands
14	Average Quality of Applied Water, Delta Lowlands
15	Weight of Salts in Drainage Water, Delta Lowlands
16	Average Quality of Drainage Water, Delta Lowlands

PLATES

(Following Tables)

Plate No.

1	Lowlands of the Sacramento-San Joaquin Delta
2	Subdivision Units of the Sacramento-San Joaquin Delta
3	Lowlands Drainage Rates - May through October, 1954
4	Lowlands Drainage Rates - November, 1954, through February, 1955
5	Lowlands Drainage Rates - March, 1955, through October, 1955
6	Comparison of Water Supply and Disposal - Delta Lowlands
7	Lowlands Drained Salt Rates - May through October, 1954
8	Lowlands Drained Salt:Rates - November, 1954, through February, 1955
9	Lowlands Drained Salt Rates - March, 1955, through October, 1955

ACKNOWLEDGMENT

Valuable assistance and data used in this investigation were contributed by many individuals and by public and private agencies. Their cooperation is gratefully acknowledged; it greatly facilitated the collection and compilation of data contained in this report.

ORGANIZATION

Water Project Authority

of the

State of California

Frank B. Durkee, Director of Public Works Chairman

Edmund G. Brown Attorney General Charles G. Johnson State Treasurer

John M. Peirce Director of Finance Robert C. Kirkwood State Controller

Harvey O. Banks, State Engineer Executive Officer

> Isabel C. Nessler Acting Secretary

> > -----

Effective July 5, 1956, the Water Project Authority was abolished and its functions, duties and responsibilities assigned to the Department of Water Resources by Chapter 52, Statutes of 1956.

Harvey O. BanksDirector of Water ResourcesW. J. SheltonDeputy Director of Water ResourcesWilliam L. BerryChief, Division of Water Resources Planning

Activities covered by this report were conducted by the staff of the Water Project Authority under the direction of

Irvin M. Ingerson Principal Hydraulic Engineer

assisted by

Wayne MacRostie

Supervising Hydraulic Engineer

The field and office work for this investigation were supervised by and this report was prepared by

Sam Kabakov

Senior Hydraulic Engineer

Field and Office Assistants

William G. Brigance	Assistant Ci	vil Engineer
George W. Deatherage	Assistant Hy	draulic Engineer
Walter Fisher	Assistant Hy	draulic Engineer
Roger R. Lindholm	Assistant Hy	draulic Engineer

INVESTIGATION

of the

SACRAMENTO-SAN JOAQUIN DELTA

Report No. 4

QUANTITY AND QUALITY OF WATERS APPLIED TO AND DRAINED FROM THE DELTA LOWLANDS

* * *

PART I - INTRODUCTION

This series of five reports is designed to furnish new and additional factual data collected during the past three years, with analyses thereof, that are germane to those hydrologic problems in the State's water development programs which involve the use of Delta channels as conveyance conduits and as sources of diversion.

The Sacramento-San Joaquin Delta lies in the Central Valley of California and embraces the confluent channels and tributaries of the Sacramento River entering from the north, the Mokelumne and Calaveras Rivers entering from the east, and of the San Joaquin River entering from the south. The Delta is comprised of a block of nearly 400,000 acres of irrigated agricultural land interlaced by more than 600 miles of tidal channels which in turn surround more than 50 islands lying at or below sea-level and which are protected by levees.

-1-

The strategic geographic location of the Delta makes it the pivotal conveyance link across which the surplus water supplies of the northern portion of the State must be transported to the water-deficient areas of the central and southern portion to permit the continued agricultural, industrial, and municipal growth of those areas. The Central Valley Project has been designed, constructed, and put into operation to take advantage of the Delta channels to convey some 5,000 second-feet of the surplus Sacramento Valley waters to the south into the San Joaquin Valley. The plans of the Feather River Project call for the transfer and conveyance of an additional 11,000 second-feet through these same tidal Delta channels.

Despite the recognized importance of the pivotal position the Delta plays, or will play, in major programs of water development in California, there has been a dearth of geologic, hydraulic, hydrologic, and salinic information of the physical phenomena present. Such information is essential for intelligent planning of water transfer across the Delta area. On the other hand, the fruition of such water transfer plans must include solutions to problems of flood control, water utilization, and water disposal within the Delta area itself. The solutions will involve plans for optimum fresh-water distribution, saline-water drainage disposal, and degrees of channel salinity control to satisfy agricultural and industrial needs. The data and their analyses as presented in this series of reports are germane and essential to solutions of these Delta problems.

-2-

An investigation so comprehensive as to cover and report upon all of the facets of pertinent knowledge concerning the Delta area would be prohibitive in cost at this time. This series of reports perforce is limited to some of these facets, namely, ground water geology, water source and water utilization phenomena on two of the Delta islands, quantities and qualities of applied water and of drainage water in the Delta, and the extent of seawater incursion in Delta channels.

This report is the fourth in this series and deals with some of the hydrographic and salinic aspects of water supply and water disposal in the Delta.

Purpose of This Investigation

One purpose of this investigation was to determine the monthly and seasonal quantities of water applied to the irrigated crops in the Delta Lowlands. This investigation was initiated in 1954 prior to, but in anticipation of, the "Sacramento River and Delta Trial Water Distribution Agreement for 1955" in which the State agreed to undertake "studies to ascertain the quantity of water required by water users diverting in and from the Delta".

Another purpose of this investigation was to determine the extent and sources of degradation in quality of the channel waters as they move from the Sacramento River to the Tracy Pumping Plant.

-3-

Area Under Investigation

限制

For purposes of this report, the area under investigation, as delineated on Plate 1, will be called the "Delta Lowlands" and includes lands bordering the Sacramento and San Joaquin Rivers and their distributaries within the Delta area. The Delta Lowlands refer to those areas in the Sacramento-San Joaquin Delta consisting generally of the lands lying below an elevation of plus five, mean sea-level datum, and which, for the most part, consume water not susceptible to direct measurement since such water is largely derived from Delta channels by percolation or by numerous unratable siphons.

The Delta Lowlands comprise a land and water area of approximately 469,000 acres of which about 374,000 acres are developed for agricultural purposes and of which approximately 292,000 acres were irrigated in 1955.

The surface soils in the area embrace a large number of soil classes. The sedimentary mineral soil classes range from loamy sand to clay while the organic soil classes range from mucky loam to peat. Generally the organic soils are concentrated in the central part of the Delta. The purest organic soils (peats) vary in thickness from zero to over 30 feet and overlie mineral soils. Sedimentary soils generally lie along the Delta channels and cover the island areas lying above sea level.

-4-

Related Investigations and Reports

The following investigations and reports covering the Sacramento-San Joaquin Delta and adjacent areas were reviewed in connection with the current investigation:

- California State Department of Public Works, Division of Water Resources. "Variation and Control of Salinity in Sacramento-San Joaquin Delta and Upper San Francisco Bay", Bulletin No. 27, 1931.
- - "Putah Creek Cone Investigation", December 1955.
- - -"Sacramento River and Sacramento-San Joaquin Delta, Trial Water Distribution 1955, Summary Report of Data", January 1956.
- - -Water Quality Investigations, Report No. 7 "Quality of Ground Water in the Stockton Area, San Joaquin County", March 1955.
- California State Water Resources Board. "San Joaquin County Investigation" Bulletin No. 11, June 1955.
- United States Department of Agriculture, Bureau of Plant Industry. "Soil Survey, Dixon Area, California".
- - "Soil Survey, Tracy Area, California".
- - "Soil Survey, Sacramento-San Joaquin Delta Area California".

University of California, College of Agriculture. "Soils of Sacramento County". Weir, Walter W., April 1950.

Scope of This Investigation and Report

The period of field investigation covered by this report extended from May, 1954, through October, 1955.

Field observations covered the following activities: (1) determining the amount of water applied on sample fields for

-5-

the six major irrigated crops of the Delta Lowlands; (2) collecting surface water samples from drains and from Delta channels for mineral analyses; and (3) observing specific conductance of surface waters in drains and in Delta channels. Office studies included: (1) determining the quantity of waters applied to the Delta Lowlands; (2) determining from specific conductance observations the concentration of dissolved minerals in surface waters in drains and in Delta channels; and (4) the quantitative net degradation of water in Delta channels by saline drainage water from the Delta lands was determined from observed data giving both the quality and the quantity of water applied to and drained from those lands.

This report is divided into six parts: (1) Introduction, (2) Water Applied to Irrigated Crops of the Delta Lowlands, (3) Water Drained from the Delta Lowlands, (4) Water Supply and Disposal, (5) Quality of Water, and (6) Summary and Conclusions,

-6-

PART II - WATER APPLIED TO IRRIGATED CROPS OF THE DELTA LOWLANDS

This section deals with the determination of the amounts of water applied on the six major irrigated crops of the Delta Lowlands. The term "applied water" as used in this report refers only to that water which is diverted from channels by pumps or siphons and generally delivered for irrigation use in the immediate vicinity.

Irrigation Practices

Irrigation practices throughout the Delta Lowlands vary with the crop, soil type, depth to water table, quality of channel water available, and the irrigator's past experience and judgment.

In the areas of highly organic soil, subirrigation is used extensively. In this method temporary ditches, spaced about 30 feet apart and approximately 6 inches wide and 12 to 18 inches deep, are used to distribute the water through the fields. Raising the water level in the ditches by means of control structures causes horizontal movement of water through the soil resulting in subirrigation of the crops.

In the moderately organic and in the mineral soils, row crops are generally irrigated by the use of furrow-type irrigation. Alfalfa and pasture are generally irrigated by the use of stripcheck irrigation. Sprinkler irrigation is used on many higherelevation mineral and organic soil areas in the Delta both for its beneficial leaching effects as well as for the better control over the water than can be achieved in furrow irrigation.

-7-

Most irrigation takes place in the late Spring and Summer. However, some irrigators apply a large quantity of water in the early Spring before planting to increase the moisture content of the soil in the expectation of early seed germination.

The increase in salinity of the channel waters during the summer period causes some farm operators in the western portion of the Delta to cease irrigation during that period because of the deleterious effects of applying highly-saline water to crops. Waters are applied in the fall and winter seasons primarily to leach accumulated salts from the soils.

Some irrigators divert waters to their lands during the summer in excess of their requirements because ample water is available at practically no additional cost to them. Water conservation would be enhanced if more careful use of water were practiced.

Soil Types

A division of the Delta by soil types was estimated from data on soil maps embracing the Delta area compiled jointly by the United States Department of Agriculture and University of California. For purposes of this investigation the agricultural lands in the Delta area were divided, as shown on Plate 1, into three soil types: (1) north mineral, (2) middle organic, and (3) south mineral. These types cover approximately 121,000 acres, 192,000 acres, and 61,000 acres respectively. These acreages comprise,

-8-

respectively, about 33 per cent, 51 per cent, and 16 per cent of the total Delta Lowlands area developed for agricultural purposes.

Land Use

A comprehensive land-use survey was made in 1955 by the State Division of Water Resources, the results of which are detailed in that Division's report titled "Sacramento River and Sacramento-San Joaquin Delta, Trial Water Distribution 1955, Summary Report of Data". A summary from that report is shown in Table 1. For purposes of this investigation the areas of the exterior water surface and of the islands in the channels were excluded, leaving an area of 419,439 acres considered as the "Delta Lowlands".

Crops Investigated

As shown in Table 1 the seven major crops grown in 1955 on the Delta Lowlands were: (1) asparagus, (2) field corn, (3) alfalfa, '(4) sugar beets, (5) tomatoes, (6) pasture, and (7) milo. Table 2 herein shows the irrigated acreages and the percentage of total irrigated area for each of the seven major crops and for all other crops as a single value.

Unit Application of Water

Quantities of water applied were estimated by measurements on six of the seven irrigated major crops in the Delta area in 38 sample fields totaling 3,369 acres. Locations of these

-9-

fields are shown on Plate 1. Each of these 38 sample fields was investigated separately and records of applied-water quantities were obtained. The fields were selected as typifying the soil, irrigation practices, and crops grown on each of the three soil types in the Delta Lowlands. As expected, irrigation practices, soil types in the Delta, and varying amounts of seepage, resulted in varying amounts of water applied to the irrigated crops. The length of the irrigation season also varied, for different crops, from one to eight months.

Although this investigation started in May, 1954, quantities of water applied to the sample fields earlier in the year were estimated from data on power consumption and/or from water users' records.

The unit applied-water factor for the seventh major crop, milo, was estimated from other available data. The estimated applied water during the irrigation season for milo, as determined from experiments by the University of California at Davis, is 1.0 acre-foot per acre. Data in the Division of Water Resources report "San Joaquin County Investigation" indicates that 0.7 acre-foot per acre was applied to an 80-acre test plot of milo. For purposes of this present report, 1.0 acre-foot per acre was used as the applied-water factor for milo for the entire Delta area. No measurements were made for certain major crops in each of the three soil-type areas because of (1) lack of cooperation by farmers in granting permission to make the measurements or in keeping the necessary records and (2) inability to

-10-

find an area encompassing only the one crop and containing a distribution system that would permit determination of the quantity of water applied to that crop. Therefore, values for such major crops were assumed to approximate the values for those crops in comparable areas for which actual applied water measurements were made.

The subdivision unit numbers referred to in tables described subsequently in this report designate subdivisions of the Sacramento-San Joaquin Delta of which the Delta Lowlands encompass all or part of all of the units except numbers 1, 4 and 5. The locations of the units are shown on Plate 2.

<u>Major Crops on North Mineral Soils.</u> Monthly and seasonal applications of water to crops of the north mineral soils area are shown in Table 3. The depths of applied-water during the irrigation season for five of the major crops were: field corn, 1.5 feet; alfalfa, 2.3 feet; sugar beets, 1.9 feet; tomatoes, 2.5 feet; and pasture, 2.2 feet.

The Division of Water Resources in its report "Putah Creek Cone Investigation, December 1955", determined certain applied-water factors on areas at the northern edge of the Delta. The weighted mean value of applied water for pasture reported therein was 3.9 acre-feet per acre, based upon a 430-acre area. This value was considered a reasonable applied-water factor for pasture and it was used in this report because the sample field for pasture in the present investigation, due to its small size of only five acres, was not considered representative of that crop

-11-

Ĩ.

A value of 0.7 acre-foot per acre for asparagus as determined for the south mineral soils area, was also used for the north mineral soils area.

<u>Major Crops on Middle Organic Soils.</u> Monthly and seasonal applications of water to crops of the middle organic soils area are shown in Table 4. The depths of applied-water during the irrigation season for four of the major crops were: asparagus, 1.4 feet; field corn, 3.6 feet; sugar beets, 3.3 feet; and tomatoes, 3.4 feet.

A value of 2.3 acre-feet per acre for alfalfa, as determined for the north mineral soils area, was assumed to approximate the unit quantity of water applied to alfalfa in the middle organic soils area.

A value of 3.9 acre-feet per acre for pasture, as determined for the north mineral soils area, was assumed as the unit quantity of water applied to pasture in the middle organic soils area.

<u>Major Crops on South Mineral Soils.</u> Monthly and seasonal applications of water to crops of the south mineral soils area are shown in Table 5. The depths of applied-water during the irrigation season for the six major crops were: asparagus, 0.7 foot; field corn, 1.5 feet; alfalfa, 4.2 feet; sugar beets, 3.7 feet; tomatoes, 2.6 feet; and pasture, 8.2 feet.

-12-

The applied-water values for two sample plots for pasture indicated an excessive annual use of water (over 10 acrefeet per acre) as compared to the other two plots. The Division of Water Resources in its report "San Joaquin County Investigation, June 1955", determined the weighted mean applied-water value for pasture on areas at the southeast edge of the Delta to be 4.5 acre-feet per acre as based upon a 240-acre area. However, for purposes of this report, the weighted average of 4.8 acre-feet per acre for the remaining two sample plots of pasture in Unit 27, as shown in Table 5, was used as the applied-water factor for pasture in the south mineral soils area.

<u>Minor Crops</u>. To determine the total quantity of irrigation water applied to the Delta Lowlands during the irrigation season, it was necessary to estimate unit applied-water values for the minor irrigated crops. This was done by calculating the weighted average unit depth of water applied to the major irrigated crops in each of the soil-type areas. These values for the north mineral, middle organic, and south mineral soils areas are 2.1, 2.3 and 2.4 acre-feet per acre, respectively. These weighted averages were multiplied by their respective soil-type areas; these quantities were then used as the estimated amount of water applied to the minor crops for inclusion in the evaluation of total water applied to the Lowlands.

Total Applied Water

The total seasonal amounts of applied water on irrigated crops of the Delta Lowlands were determined from the 1955 land-use survey data and the unit applied-water values described heretofore.

-13-

The total seasonal applications by soil type and by crop and the totals for the Delta Lowlands are shown in Table 6. The total irrigation seasonal use of applied water for the Delta Lowlands amounted to about 656,000 acre-feet or an average of 2.25 acre-feet per irrigated acre.

The monthly distribution of applied irrigation water was calculated for each of the aforesaid subdivisions from its crop pattern and applicable monthly applied-water values. Table 7 shows the monthly distribution of applied irrigation water by units, monthly percentages of seasonal totals, and monthly average unit applied-water values in acre-feet per acre. The monthly distribution of seasonal applied-water values varied from one per cent each in March and October to a maximum of 33 per cent (about 216,000 acre-feet) in July.

Waters Applied for Leaching Purposes

Water is applied to the Delta Lowlands for leaching excess salts from the soil, thereby lowering the salinity of the soil solution in the root zone. As will be shown hereinafter, evidence indicates that the concentration of salts in the soil increases during the summer season. These salts must subsequently be removed from the soils, otherwise the increasing saline concentration would accumulate and adversely affect plant growth.

Leaching waters are usually applied during the fall and winter months. No attempt was made during this investigation to determine the quantity of water applied for leaching purposes

-14-

because of the wide variations in leaching practices and because of the relative unimportance on channel demands of leaching water requirements since ample water of good quality is usually available during the late fall and winter seasons.

Precipitation

Precipitation, although not part of the "applied water" as considered in this report, does affect month by month the irrigation and leaching practices, and the quantities and qualities of drainage water as will be discussed later.

Data shown in Table 8 from the United States Weather Bureau Reports titled "Climatological Data, California" for the seven weather stations in and near the Delta, are considered representative of precipitation on the Delta. The average rainfall for the Delta Lowlands is assumed to be the arithmetic average of precipitation at those seven stations. Table 8 also shows the monthly rainfall at these stations for the period May, 1954, through October, 1955, and the monthly average for the Delta.

Monthly total quantities of precipitation on the Delta Lowlands, estimated by multiplying the aforesaid average depths of precipitation by the 419,439 acres of the Delta Lowlands are given in Table 9. The total precipitation for the March through October irrigation season in 1955 amounted to about 150,000 acre-feet.

-15-

PART III - WATERS DRAINED FROM THE DELTA LOWLANDS

Concurrent with the observations of water applied for irrigation in the Delta Lowlands, observations were made to determine the quantities of waters drained from those lands. Permission was secured from property owners to test and rate their drainage pumping plants and to secure their power consumption records. These data were used to calculate the water quantities pumped from the interior drain canals into the tidal channels.

Drainage Practices

In general, each island or tract in the Delta Lowlands has one or more drainage systems wherein the drainage waters first enter small drainage ditches leading to larger main drains and then terminate at the pumping plants. These plants, usually float-actuated between predetermined water levels in the main drains, pump water intermittently from the main drains into the contiguous channels.

Drinage pumps used in the Delta vary in combinations of the following types and sizes: 3- to 50-inch discharge pipe, 3- to 500-horsepower motor, horizontally or vertically mounted, double or single suction centrifugal type, mixed-flow or axialflow propeller type, direct or belt connected to gasoline or diesel internal combustion engine or to an electric motor. The most common drainage-pump installation in the Delta area is a 30 to 75 horsepower, direct connected, electric-motor driven, axialflow propeller-type pump.

-16-

Quantity of Drainage Water Pumped

The quantity of drainage water pumped from 82 per cent of the area in the Delta Lowlands for the period May, 1954, through October, 1955, by means of 162 pumping plants involving 255 pumps, was determined from pump test data and power consumption records. For the same period, drainage pumped by 64 pumps at 44 pumping plants servicing 16 per cent of the Delta Lowlands, was estimated by assuming that the plant rating factors were similar to comparable measured installations or by correlation with drainage-per-acre values in adjacent areas. The remaining 2 per cent of the area covers lands either drained by gravity or urbanized, and their drainage contributions were estimated by correlation with drainage-per-acre values in adjacent areas.

Table 10 shows the combined measured and estimated monthly total drainage from each subdivision unit within the Delta Lowlands and the monthly average unit drainage in acre-feet per acre. During the period of investigation the monthly total drainage varied from a low of about 30,000 acre-feet in October, 1955, to a maximum of approximately 96,000 acre-feet in January, 1955.

The average monthly unit drainage values in acre-feet per acre are shown graphically on Plates 3, 4 and 5 for three periods: May through October, 1954; November, 1954, through February, 1955; and March through October, 1955. A comparison of these three plates indicates that the average monthly drainage in

-17-

the Delta during the winter is greater than during the other seasons as indicated by the small area during the winter from which drainage was between zero and 0.10 acre-feet per acre per month. This increase is due to a combination of greater precipitation and lower consumptive use demands at that time. Also during the winter a noticeable increase occurred in the area from which drainage was between 0.31 and 0.60 acre-foot per acre per month. It may also be noted that certain areas in the northern and southern parts of the Delta show the results of high irrigation efficiency and minor seepage problems since the drainage from those areas remained in the zero to 0.10 acre-foot per acre per month category throughout the entire period of investigation. The higher elevation of those lands compared to lands in the central portion of the Delta probably accounts for the lesser seepage.

PART IV - WATER SUPPLY AND DISPOSAL

The water supply to islands of the Delta Lowlands consists of (1) applied irrigation water, (2) subsurface inflow, and (3) precipitation. Water disposal consists of (1) drainage water, and (2) consumptive use. Ground water storage changes account for any imbalance between supply and disposal. Of the foregoing items, applied irrigation water, precipitation, and drainage have been discussed and evaluated heretofore. This chapter presents an evaluation of consumptive use and a derivation of subsurface inflow under assumptions as to ground water storage changes.

Consumptive Use

The monthly total quantities of consumptive use of water were taken from the Division of Water Resources report titled "Sacramento River and Sacramento-San Joaquin Delta Trial Water Distribution 1955, Summary Report of Data". These quantities were derived by multiplying 1955 crop acreages by appropriate unit consumptive use values. Monthly consumptive use quantities within the Delta Lowlands are shown in Table 11 of this report. It will be noted that these values varied from about 22,000 acre-feet in January, 1955, to about 211,000 acre-feet in August, 1955. Of the annual consumptive use requirements of 1,160,000 acre-feet, about 1,036,000 acre-feet were consumed during the March through October irrigation season.

-19-

Subsurface Inflow

Subsurface inflow to islands of the Delta Lowlands was derived by means of the hydrologic equation. This equation provides that inflow to an area must equal disposal therefrom plus or minus changes in ground water storage. The measurable and estimable sources of water supply are the applied irrigation water and precipitation. The measurable and estimable water disposal consists of return drainage water and consumptive use. The unknown and practically unmeasurable terms in the hydrologic equations pertaining to Delta islands are (1) ground water storage changes, (2) contribution to the islands by seepage from contiguous channels, and/or (3) rising water from deep-seated and remote sources. Items 2 and 3 are discussed together herein as subsurface inflow.

The measurable and estimable values of water supply and disposal in the Delta Lowlands are presented in Table 12, which summarizes data presented heretofore. As shown, the partial water supply during the March through October, 1955, period consisted of about 805,000 acre-feet of applied irrigation water and of precipitation. During that period, water disposal consisted of approximately 1,453,000 acre-feet of drainage and of consumptive use. Therefore, during this period the excess of water disposal over the measurable water supply was approximately 648,000 acre-feet. Because of the irrigation and drainage practices in the Delta area, it properly may be assumed that the ground-water storage change during the March through October

-20-

period is comparatively insignificant. Therefore, it is concluded that the 648,000 acre-feet is indicative, during that period, of the magnitude of subsurface inflow.

The data presented in Table 12 are shown graphically on Plate 6. In this plate, for each month, the total measurable water supply is shown on the right side of the double column and the water disposal on the left side of the double column. It is to be noted that no applied irrigation water values were determined for the months of November, 1954, through February, 1955. In spite of this omission, an inspection of the plate shows that, except for the month of December, 1954, the water disposal exceeded the measurable and estimable water supply in every month during the 18-month period from May, 1954, through October, 1955, indicating subsurface inflow.

PART V - QUALITY OF WATER

An inspection of water analyses from the files of the Division of Water Resources shows that generally the quality of Delta channel water becomes progressively poorer as the water moves from the northern to the southern part of the Delta, that is, from the Sacramento River toward the Tracy Pumping Plant of the Central Valley Project. One possible cause of this degradation is the effect of sea-water intrusion, which effect is discussed in Report No. 5 in this series of reports on the Sacramento-San Joaquin Delta.

Another possible source of the degradation is the salt contributed to the channels by the drainage waters from the Delta islands. To evaluate this possibility the salt contribution to the Delta channels was determined from observations and computations involving the qualities and quantities of waters applied to and drained from the Delta Lowlands. The quantities of those waters have been discussed and presented heretofore.

Quality of Applied Water

The quality of applied water was determined in the field from specific-conductance data collected at random tide phases at 62 sampling points in the Delta channels at approximately sixweek intervals during 18 continuous months of 1954 and 1955. At 22 of these sampling points, water samples were also collected at 3-month intervals, and subjected to complete mineral analyses. Correlations were determined between specific conductance of the

-22-

water and the sum of concentrations of mineral constituents in parts per million (ppm). By interpolation; a monthly average concentration was determined for the water at each sampling point. These monthly concentrations and the monthly appliedwater quantities for each subdivision unit were used to determine the monthly tons of salt in the irrigation water applied to each unit of the Delta Lowlands. These monthly quantities, as well as values for tons-per-irrigated acre, are shown in Table 13. The monthly total salts in applied irrigation water varied from a minimum of about 2,100 tons in March, 1955, to a maximum of approximately 70,000 tons during August, 1954. Since no appliedwater values were determined for the period November, 1954, " through February, 1955, no salt tonnages are shown for those months. However, it is to be noted that water applied for leaching during this period of winter runoff from the Central Valley, would have been of generally good quality.

The monthly average quality of applied irrigation water within each subdivision unit was determined as an arithmetical average of the monthly water qualities at all of the sampling points within that unit. Table 14 shows that these values ranged from 70 ppm in Unit 27 during May, 1954, to about 1,800 ppm in Unit 14 during August, 1955. Also shown in this table are the weighted monthly averages for the entire Delta as computed from data in Table 13. These averages ranged from 86 ppm in May,1954, to 300 ppm in August, 1954. Since applied-water values were not determined for the period November, 1954, through February, 1955, no weighted averages for that period could be calculated.

-23-

The data in Tables 13 and 14 involve only the salt content of applied surface water. They do not concern the salt in water entering the islands by seepage from channels or from other sources. Although the quality of such additional supplies is uncertain, it is indicated in Reports No. 2 and 3 that the ground water inflow to Medford and McDonald Islands was largely channel water. Available data are not sufficient at this time to indicate whether or not this is true for the Delta Lowlands as a whole. However, if for purposes of a rough approximation, it is hypothesized that the rate of ground water inflow to the islands of the Delta Lowlands is constant, and that the quality of such inflow equals the approximate Delta-wide average annual quality of channel waters of about 260 ppm, about 33,000 tons of salt per month in addition to those amounts shown in Table 13 would enter such islands.

An inspection of the average concentrations of applied water in Table 14 indicates that peak concentrations of salts in the channels occur in the late summer months. Evidence presented in Report No. 5 shows that this condition is due largely to seawater incursion caused by a combination of high consumptive use, including high water-surface evaporation losses, and by the relatively low fresh-water inflow to the Delta at that time.

Quality of Drainage Waters

The quality of water drained from the Delta Lowlands was determined in a manner similar to that described in preceding section under the heading, "Quality of Applied Water". Specific

-24-

conductance field measurements at approximately six-week intervals were made of the drainage water at 196 sampling points. Water samples were also collected at 24 of these points at approximately three-month intervals and subjected to complete mineral analyses. The estimated quantities of drainage water, presented heretofore, and the drainage-water qualities were used to determine the amount of salt discharged at pumping plants in each unit. Table 15 shows the estimated monthly salt tonnage discharged to the channels within each unit and the monthly total discharge in tons-per-acre for the Delta Lowlands as a whole. The total salt tonnage discharged in the drainage water during the 18-month period varied from a minimum of about 19,000 tons in October, 1955, to a maximum of approximately 113,000 tons in January, 1955.

The data in Table 15 were converted to show, in Table 16, the weighted average concentration of drainage water in each subdivision unit and for the entire Delta Lowlands area. Total dissolved solids in drainage water varied from about 120 ppm in June, 1955, in Unit 3 to about 1,600 ppm in February, 1955, in Unit 17. The Delta average ranged between about 300 ppm in June, 1954, to 865 ppm in January, 1955. An inspection of Table 16 indicates that the average concentration of the drainage water remains comparatively constant between May and October. During this period in each year, the concentration increased from about 300 to approximately 475 ppm.

Values of average monthly salt discharge in tons-peracre from the Delta Lowlands are shown graphically on Plates 7, 8,

-25-

and 9 for three periods: May through October, 1954; November, 1954, through February, 1955; and March through October, 1955. An inspection of these plates indicates that there was a larger area contributing high tonnages of salt per-acre-per-month during the winter than during other seasons. This is shown by the large areas in the categories of 0.21 to 0.50, and 0.51 to 0.80 tonsper-acre-per-month of salt removed during the winter months.

Channel-Water Degradation by Drainage Water. An inspection of the data shown in Tables 13 and 15 reveals that during summer months salt inflow to Delta Lowlands islands exceeds salt drainage therefrom. This is true even without taking into account the relatively large amounts of salt carried by subsurface inflow to the islands mentioned heretofore, and salts introduced by fertilization and other agricultural practices. In other months of the year, salt removal exceeds salt inflow. Thus the Delta lands act as a salt reservoir by first storing some of the salts that enter the islands during the summer and then by releasing those salts during the winter through leaching and/or drainage of precipitation. This indicates that agricultural practices within the Delta Lowlands during the summer, when the problem of water quality there is most critical, do not degrade good quality Sacramento River water as it moves through the Delta to the Tracy Pumping Plant but rather enhances its quality by removing a portion of its salt content. In the winter months, when the accumulated surplus salts are discharged to the channels, there is usually sufficient surplus flow through the Delta to dilute and to carry out to the ocean the leached salts. However, it should

-26-

be noted that the preceding statement applied to conditions as of 1954-55. Any additional upstream regulation or a "dry" year, such as 1924 or 1931, will decrease the winter flows through the Delta to the extent that leached salts may not be completely removed from the area. These findings are important and are the first available demonstrated conclusions relating to Delta channel water degradation by drainage waters.

PART VI - SUMMARY AND CONCLUSION

As a result of field investigation and analysis of other available data and on the basis of the estimates and assumptions discussed hereinbefore, the following summary and conclusion are presented:

Summary

1. The Delta Lowlands comprises the major portion of the Sacramento-San Joaquin Delta. The area, as shown on Plate 1, covers about 469,000 acres of which about 374,000 acres are developed for agricultural purposes and of which about 292,000 acres were irrigated in 1955.

2. Approximately 62 per cent of the Delta Lowlands was irrigated during the period of investigation, May, 1954, through October, 1955. The March through October seasonal demand for water applied to irrigated crops was approximately 656,000 acrefeet, with the maximum monthly demand of about 216,000 acre-feet occurring in July. These quantities were determined (a) from detailed investigations for the six irrigated major crops on 38 sample fields totalling 3,369 acres, and (b) from estimates for the other crops.

3. Monthly precipitation on the Delta Lowlands during the period of investigation varied from zero in summer months to about 128,000 acre-feet in December, 1954. The total precipitation during the period March through October, 1955, amounted to approximately 150,000 acre-feet.

-28-

4. Drainage water, returned monthly to the channels from the Delta Lowlands during the period of investigation, varied between approximately 30,000 acre-feet in October, 1955, and 96,000 acre-feet in January, 1955. During the irrigation season the maximum drainage pumping occurred during July, 1954, and amounted to about \$1,000 acre-feet. During the period of March through October, 1955, the drainage amounted to approximately 417,000 acre-feet.

5. The estimated consumptive use in the Delta Lowlands during the period of investigation, based on the 1955 crop pattern, varied from approximately 22,000 acre-feet in January to about 211,000 acre-feet in August. On that basis the annual consumptiveuse requirements are approximately 1,160,000 acre-feet, of which 1,036,000 acre-feet are consumed during the March through October irrigation season.

6. During the March through October, 1955, irrigation season, the difference between the approximately 805,000 acre-feet of water supply and the 1,453,000 acre-feet of water disposal, amounting to about 648,000 acre-feet of water must come from a combination of ground water storage changes (considered herein to be comparatively insignificant because of irrigation and drainage practices in the Delta) and from subsurface inflow comprising seepage. from contiguous channels and/or rising water from deep-seated and remote sources.

7. The estimated quantity of salt in the irrigation water applied to the Delta Lowlands during the irrigation season

-29-

varied from approximately 2,100 tons in March, 1955, to about 70,000 tons in August, 1954, with a total of about 187,000 tons for the March-through-October season. The average concentration of total dissolved solids in applied irrigation water varied from about 100 to 300 ppm during that period.

8. Under the hypothesis that subsurface inflow to the Delta Lowlands is constant and that the quality of such inflow equals the average annual quality of channel waters, roughly 33,000 tons of salt per month would be introduced by subsurface inflow.

9. The estimated amount of salt discharged in the drainage waters from the Delta Lowlands during the period of investigation varied from approximately 19,000 tons in October to about 113,000 tons in January, 1955, with a total of about 248,000 tons for the March-through-October period. The average concentration of total dissolved solids in the drainage water varied from about 300 ppm in June, 1954, to 865 ppm in January,1955

Conclusion

The Delta Lowlands act as a salt reservoir, storing salts obtained largely from the channels during the summer, when water quality in such channels is most critical and returning such accumulated salts to the channels during the winter when water quality there is least important. Therefore agricultural practices in that area enhanced rather than degraded the good quality Sacramento River water enroute to the Tracy Pumping Plant.

-30-

LAND USE - DELTA LOWLANDS - 1955

In acres

Crop

Crop

Pasture

Sudan	
Miscellaneous 22,475	
Alfalfa 34,481	
Rice 2,103	
Field Crops	
Beans	
Field Corn 47,557	
Milo	
Grain & Hay 79,709	
Peas	
Safflower 770	
Sunflower 2,204	
Sugar Beets 30,181	
Truck Crops	
Asparagus 80,325	
Celery 1,083	
Onions 1,193	
Potatoes 8,539	
Tomatoes • • • • • 30,099	
Seed & Miscellaneous • 3,192	

Fruit &	Nu	ts	•	•	•	٠	•	•		•	•	5,141
Grapes	•	•	•	٠	•	•	•	•	•	•	•	. 110
Native	Veg	eta	ati	Lor	ı							
Luch	٠	•	•	•	٠	•	•	•	•	۱	٠	. 897
Mediu	n.		•	•	•	•	•	٠	٠	•	•	.7,891
Dry .	٠	•	•	٠	٠	•	•	•	٠	•	٠	.3,116
Fallow	& E	lar	e	•	•		•	•	•	٠	•	.1,360
Idle Cr	op	La	nd	•	٠	٠	•	•	٠	•	٠	. 1,103
Duck Po	nds	l –	•	•		•	•	٠	•	٠	٠	. 203
Urban	٠	•	•	•	•	•	•	•	•	٠	٠	. 6,914
Tule &	Swa	mp	ł	٠	٠		•	•	•	•	٠	. 4,581
Levee &	Be	rm	Ļ	٠	•	•	,	•	٠	٠	٠	16,616
Interio	r W	lat	er	S	ur	fa	¢e	٠	•	٠	٠	5,585
	Sut	oto	ta	1	•	•	•	٠	•	•	٠	419,439
Exterio	r W	lat	er	S	ur	fa	ce	÷	•	•	٠	42,168
Islands	ir	2 C	ha	nn	el	8	٠	٠	٠	•	•	7,027
	Te	ota	1	•	•	•	•	•	٠	٠	٠	468,634

IRRIGATED CROPS DELTA LOWLANDS, 1955

Crop										-	Area in irrigated acres area
Asparagus	•	•	•	•	•	•	•	•	•	٠	80,325
Field Corn .	•	•	•	•	•	•			•	•	47,557 16
Alfalfa	•	٠	•	•	٠	•	•	•	•	٠	34,481
Sugar Beets .	•	•	•	•	•	•	٠	•	.•	•	30,181 10
Tomatoes	•	•	•	•	•	٠	•	•	•	•	30,099 10
Pasture	•		•	•	•	•	•	٠	•	,	22,997 8
Milo	•	٠	•	•	•	•	٠	•	٠		20,972 7
All others .	•	•	•	•	•		•		•		25,0559
Total	•	•	•	•		•	•	٠	٠	•	291,667

WATER APPLIED TO CERTAIN IRRIGATED CROPS DURING 1954 DELTA LOWLANDS - NORTH MINERAL SOIL

47.6 10.7 22.9 25.9 17.6 21.6 42.3 14.2 32.4 19.4 13.1 September | October | Total 0.6 10.0 - in inches 1-4 9-4 2.0 25.9n (2.2¹) 29.4" (2.51) 22.6" (1.91) 17.6" (1.5') 28.2" (2.31) Depth per month August 3.0°0.4°0.0° 3.8 5.8 36.5 2.2 Weighted mean depth: Weighted mean depth: Weighted mean depth: Meighted mean depth: Weighted mean depth: П.8 July 15.5 8.8 8.8 3.5 7.0 5.3 8.1 2.4 10.7 June 5.0 7.5 3.8 8.4 3.7 19.0 1.5 1 4.7 3.9 Мау April **1.**9 11.8 Sample field acreage 관국 법업 र्म्रह्म 26 X 4 Z ħ ŝ Unit 690 300 19 300 6T Sugar Beets Field corn Total Total Total Tomatoes Alfalfa Pasture Crop

TABLE 3

WATER APPLIED TO CERTAIN IRRIGATED CROPS DURING 1954 DELTA LOMLANDS - MIDDLE ORGANIC SOIL

		Sample field			Depth	Depth per month -	in inches	
Crop	Unit	acreage	May	June	July	August	September	Total
Asparagus	25 16	7714 728	4.7	4-7 0-7	5.8 0.9	6.4 1.1	2.7 5.7	24.3 8.4
Total		1,502		Weighted	Weighted mean depth:	h: 16.6" (1.4')	1.41)	
Field Corn	\$ \$	85 75			16.9 30.9	30.9		16.9 61.8
r - [5°5	८ क्ष		10.5	34.7 6.2	29-3	6 . 0	30.3 30.3
Total		328		Weighted	Weighted mean depth:	h: 43.31 (3.61)	3.61)	
Sugar Beets	ম্ন ম	115.5 35.3	5.2	10.2	12.6	8.7 7.9	3.9	40.6 33.6
Total		150.8		Weighted	Weighted mean depth:	h: 39.0n (3.31)	3.31)	
Tomatoes	20 78 78	54-5 102.0		1.2 25.9	4.1 19.8	14.2		5•3 59•9
Total		156.5		Weighted	Weighted mean depth:	h: 40.9" (3.4 ¹)	3.41)	

۰

and the second s

WATER APPLIED TO CERTAIN IRRIGATED CROPS DURING 1954 DELTA LOWLANDS - SOUTH MINERAL SOIL

		Samole fièld				Depth	h per	per month	- 'n	inches			
Crop	Unit		Jan.	Feb.	Mar.	Apr.	Kay	June	July	Aug.	Sept.	Oct.	Total
Asparagus	57	. 68			Weig	Weighted mean	ean de	pth:7	depth: 7.9" (0.7')	6°L (1L.			6•2
Field Gum	র	75			 Weighted		mean de	4.2 depth:	7.0 17.6"	4.6 (1.51)	1.8		17.6
Alfalfa	おおおお	22°0 23°0 38°2				10.1	0.11.0 4.0	5.8 9.7 1.4	18.6 14.5 10.4	6.3 6.1 2,4-7	6.0 6.4 0.3 22.0		46.8 47.7 20.8 722.8
	322222	2.5 0 0 8 2 0 0 0 8 2 0 0 0 8 2		0.1	5.0	17 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.8 11.4	9.0 9.0 9.2	1000 1000 1000 1000	5.7 10.2 10.2		8.8 6.3 0.4	52.7 51.9 64.2
Total		322.8			Weig	Weighted mean	ean de		and a second sec	(4.21)	Ì		
Sugar Beets	24	76			Weig	4.4 4.4 7.7 Weighted mean depth:	4.4 ean de	7.7 spth:	10 . 6 45 . 0"	13.2 (3.7 ¹	4.7		45.0
Tomatoes Total	れた	ଽଽଞ୍ଚାମ୍ବ	n er efninden er friger i Galifiansk (n. er efninger). Here efninger		Weig	Weighted mean depth:	ean de		11.8 16.8 4.3 7.2 31.0" (2.6')	16.8 7.2 (2.61)	2.5 11.1		33.4 29.0
Pasture	52 52 52 52	40•0 62.3 32.8	5.6	1.0	5.1	18.5	21.2 11.4 5.6	28.8 17.0 9.2 8.0	34-2 13-0 13-3	26.1 12.6 12.3 12.3	33.0 116.5 22.5	4-3 0-4	122.1 127.4 64.2 49.8
Iotal		0 • JOT			Weig	Weighted mean depth:	ean de		98 . 7 ⁿ	(8.21)			***************************************

Lowlands 71,320 20,970 54,410 93,400 84,850 95,850 655,910 135,050 45.870 100,060 for Delta 2.25 lotal 5,300 300,350 129,160 4,050 32,850 14,250 2,590 6,270 17,980 Mineral South Soils 2.35 Seasonal Applied Water Acre-feet 74,330 21,800 33,660 11,260 11,590 Organic 28,290 10,190 Middle 109,230 Soils 2.32 Mineral North Soils 4,,820 20,520 32,390 38,980 33,210 51,740 8,190 36,550 226,400 2.11 Mineral Soils South Seasonal Applied Water 4.2 2.4 0.7 7.2 3.7 2.6 4.8 1.0 Acre-feet/acre Organic Widdle Soils 7-4 3.6 2.3 3.9 3.4 3.9 0 2.3 Mineral North Scils 6.1 2.5 3.9 0 0.7 J.5 2.3 2.1 22,997 20,972 30,099 25,055 80,325 47,557 34,481 30,181 291,667 Tctal 3,534 Mineral Soils 10,922 6,916 South 20,351. 1,094 6,844 2,589 2,611 54,861 Irrigated Area in Acres Middle Organic 53,096 Soils 30,342 9,478 8,573 9,899 2,887 10,194 5,041 107,296 129,510 6,878 13,681 Soils 20,514 13,266 8,189 17,403 14,081 13,284 Mineral North Sugar Beets Asparagus Total acre-feet All other crops Tomatoes Weighted average Alfalfa Pasture Crop Corn MILO

per acre

IRRIGATION SEASONAL USE OF APPLIED WATER - DELTA LOWLANDS - 1954

TABLE 6

MONTHLY DISTRIBUTION OF APPLIED WATER TO IRRIGATED CROPS DELTA LOWLANDS 1954 In acre-feet

.

Unit	Irri- gated acre- age	March	April.	May	June	July	Aug.	Sept.	Oct.	Season- al Total
2 36 7 8 9 10 112 13 14 15 6 17 8 9 20 112 13 14 15 6 17 8 9 20 12 23 24 5 26 27	5394 4074 24900 6025 16518 7779 8447 11142 12916 10413 4319 13445 13598 6130 12792 12943 16534 106666 14465 19812 24156 25912 6536	110 80 510 130 360 190 150 280 320 290 90 400 330 110 350 330 400 210 270 350 530 20 250	460 320 2040 500 1450 760 600 1110 1290 1150 370 1580 1340 430 1410 1300 1610 820 1080 1410 2010 2120 90 990	790 560 3570 870 2550 1330 1060 1940 2260 2010 650 2770 2330 760 2480 280 2480 2810 1440 1890 2460 3520 3700 150 1730	2040 1430 9180 2240 6540 3430 2710 5000 5810 5160 1670 7130 6370 5860 7230 3690 4860 6330 9060 9530 400 4440	3730 2630 16820 4090 11990 6290 4980 9170 10660 9460 3070 10000 10000 10000000000	$\begin{array}{c} 2940\\ 2070\\ 13250\\ 3230\\ 9450\\ 4960\\ 3920\\ 7220\\ 8400\\ 7450\\ 2420\\ 10300\\ 8660\\ 2820\\ 9200\\ 8660\\ 2820\\ 9200\\ 8470\\ 10440\\ 5340\\ 7020\\ 9150\\ 13080\\ 13760\\ 570\\ 6420\end{array}$	1130 790 5100 1240 3640 1910 1510 2780 3230 2870 930 3960 3330 1080 3540 3250 4020 2050 2050 2700 3520 5030 5290 220 2470	110 80 510 130 360 190 150 280 320 290 400 330 110 350 330 400 210 270 350 530 20 250	11310 7960 50980 12430 36340 19060 15080 27780 32290 28680 9290 39610 33320 10840 35380 32560 40170 20530 27000 35180 50300 52920 2200 24700
Total	291667	6560	26240			216450	170540	65590	6560	655910
Per cent season total Avera, acre- feet per	of nal	1.0	4.0	7,0	18.0	33.0	26.0	10.0	1.0	100
acre		0.02	0.09	0.16	0.41	0.74	0.58	0.23	0.02	2.25

AVERAGE PRECIPITATION IN SACRAMENTO-SAN JOAQUIN DELTA

In inches

				1051.														
				+//+											1955			
Station May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug	Sept.	Oct.
Antioch 0.39 0.05 0	0.39	0.05	0	0	Q	0.02	1. 53	3.44	0.02 1.53 3.44 2.59 1.26 0.92 1.40 0.74 0	1.26	0.92	1.40	0.74	0	0	0	0.03 0.15	0.15
Bensons Ferry 0.446 0.01 0	0.46	10.01	0	0.02 0	0	10.0	2.43	3.92	0.01 2.43 3.92 2.28 1.14 0.40 2.24 0.47 0	1.14	0**0	2.24	0.47	0	0	0	0.44 0.33	0.33
Davis	0.16	0 91.0 91.0	0	0*08 0	0	0	2.98	3.91	2.98 3.91 2.68 1.24 0.40 2.17 0.64 0	1.24	0*/*0	2.17	0.64	0	0	0	0.92 0.44	0-114
Lodi	0.26	0.26 0.08 0	0	0.04 0	0	10°0	2.34	4.32	0.01 2.34 4.32 3.40 1.39 0.17 3.09 0.51 0	I. 39	0.17	3.09	0.51	0	0	0	1.10	0.13
Sacra- mento 0.21 0	0.21	0	0	0.35 0	0	0.02	3.35	4-93	0.02 3.35 4.93 3.14 1.33 0.37 2.75 0.67 0.01 0	1-33	0.37	2.75	0.67	0.0		0	0.95	0.57
Stock- ton	0.28	0.28 0.40 0	0	0	0	0	2.23	3.19	2.23 3.19 3.84 1.03 0.57 2.38 1.02 0	1.03	0.57	2.38	1.02	0	0	0	10.0	0.12
Tracy	0•37	0.37 0.42 0	0	0	0	0	1-45	1.85	1-45 1.85 2.94 0.77 1.91 1.12 0.83 0	0.77	1.91	1.12	0.83	0	0	0	0	0.03
AVERAGE 0.30 0.16 0	0.30	0.16		0.07 0	0	0.01	2.33	3.65	0.01 2.33 3.65 2.98 1.17 0.68 2.16 0.70 0	1.17 I	0.68	2.16	0.70	0	0	0	0 0 0.49 0.25	0.25

PRECIPITATION ON DELTA LOWLANDS

In acre-feet

1954

1955

May	•	•	٠	•	•	•	•	10486
June	Э	•	•	٠	•	٠	٠	5593
July	r	•	•	•	٠	•	٠	0
Augi	ıst	5	•	•	٠	•	•	2447
Sept	ter	nb	er	•	•	•	٠	0
Octo	obe	эr		,	•	•	٠	350
Nove	əml	be	r	•	•	•	•	81441
Deco	əm	be	r	•	•	٠	•	127579

January ,	٠	•			•	104161
February	•	•		•	•	40895
March .		٠	•	٠	•	23768
April ,	٠	•		•	•	75499
May	٠	٩	•	٠	•	24467
June	٠	•	•	٠	•	0
July	٠	•		•	•	0
August .	٠	٠	٠	•	•	0
September	۰.	•	•	•	•	17127
October.	٠	٠	٠	٠	٠	8738

DRAINAGE FROM DELTA LOWLANDS

In acre-feet

. '

	0ct.	134	43	320	59	1577	110	450	274	170	477	168	2021	1511	603	2884	C)T	5035	4/17		TOLT	T7 (4	2 6		+	21008	0.07
	Sept. (0	299	227	122	2411	1067	624	165	7/.6	6thOT	545	2079	1811	1153	3432	CO/T	8521	2455	2110	COOT	6700	20002		00	80606 72170 4J154 30017	01.0
	Aug.												_													72170	0.17
	July			-					1433											_						80606	610
1955	June	0	104	235	189	3267	1301	757	1349	3921	1575	1773	2425	24.57	1613	5603	3160	10456	5340	16862	1812	5402		<u>}</u>	1200	95668 41960 32419 37628 49813 71084	7L.0
19	May	0	541	293	259	2354	742	535	792	2171	406	1614	1801	1707	1585	3509	2618	6521	3873	10734	2018	2355	2222		191	49813	0.12
	Apr.	90	5	401	229	2018	1057	443	889	2582	1081	2307	2544	1854	1823	1439	1301	3533	2350	3949	1843	2135	0462	552	77].	37628	0°0
	Mar.	0	475	777	52	1752	104	245	637	1690	767	1983	2782	THOT	1291	1942	826	2016	1935	5127	2103	2053	864T	22	311	32419	0.08
	Feb.	90	558	2159	367	1086	252	352	865	1689	LLL	1645	2871	1470	1039	2425	1221	3840	2765	7385	3229	3410	2185	DCT	127	09614	0 . 10
	Jan.	582	594	2944	699	1046	1748	637	1516	3105	133	1961	5721	1,008	3198	4836	24,54	14637	7472	12773	11828	6316	3678	214	264	95668	0.23
	Dec.	672	387	2541	379	1917	679	1,86	1383	2916	1288	2166	4851	2804	3597	5759	2753	10209	7388	10635	9306	8907	3812	399	195	85731	0.20
	Nov.	0	225	14,80	1 <u>8</u>	2867	696	313	753	1481	22	1483	3425	1076	1185	4025	1268	5639	3792	8637	3514	2795	116	077	8	46537	0.11
	Oct.	179	HT I	358	4	3932	952	261	530	1029	459	1227	2957	1521	1159	6694	1516	4582	2692	3306	3790	2103	892	88	8	46817	0.11
14	Sept.	0	234	359	64	2997	2495	350	770	1450	357	6448	2055	2147	739	6748	2688	4627	2698	8629	1974	1849	1237	66	343	44557	11.0
1954	Aug.	0	526	299	60	2935	2081	975	1350	2971	1602	926	2879	3181	TOT	8210	4307	OTHOT	4705	27/621	3259	2839	2289	577	676	70857	0.17
	July	0	662	339	TOL	2227	2074	1057	1337	3559	2022	2053	3005	2321	1379	11051	4636	10223	5245	L5252	3917	2964	3773		1231	80575	6T-0
	June	ර	552	388	117	2984	1628	865	169T	3144	1529	2131	2463	24.34	955	8676	3570	616	000 1	L5756	3032	2500	2197	131	627	70573	LL.O
	May	45	639	617	510	1126	1238	395	1620	24,08	886	1730	2583	2114	992	4710	2507	54.56	31.54	12368	2396	2125	2335	96	699	55719	0.13
	Acreage	11202	54465	33027	7510	22103	16085	11067	14,365	16877	11991	TT671	264.24	1834.3	TOTOT	18504	17917	21302	14846	19357	567772	32879	33212	2810	10148	667677	
	Unit	2	e	2	2	- 00	6	, ot	H	27	ភ	77	15	16	17	18	5T	8	ನ	ន	ନ୍ଦ	77	25	56	52	To- tal	Leet Der acre

CONSUMPTIVE USE REQUIREMENTS, DELTA LOWLANDS

1955

In acre-feet

January	Ť	•	٠	•	۰	٠	22,371
Februar	ry	•	•	•	•	•	26,108
March	•	•	•	•	•		35,001
April	•	•	•	•	•	•	84,015
May .	•	•	•	•	•	•	129,609
June .	•	•	•	•		•	136,679

July	•	٠	•	٠	, 191,744
August	•		•	•	. 211,339
September	•	•	٠	•	. 156,805
October .	•	•	•	•	. 91,609
November.	•	•	•	٠	. 42,593
December.	•	٠	•	٠	. 32,915
Total	•	•	•	٠	1,160,323

WATER SUPPLY AND DISPOSAL DELTA LOWLANDS In acre-feet

				1954				
	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Water Supply Applied Water Precipitation	45910 10486	118060 5593	216450 0	170540 2447	65590 0	6560 350	ני <i>וי</i> ונא -	- 127579
Total Water Supply	56396	123653	2164,50	172987	65590	0169	1	I
Water Disposal Drainage Consumptive Use	55719 129609	6 <i>1</i> 99£1 £17073	80575 191744	70857 211339	44557 156805	49TT6 71834	46537 42573	85731 32915
Total Water Disposal 185328	185328	207252	272319	282196	201362	137981	\$9110	9†98LL

				1955						
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.
Water Supply Applied Water Precipitation	1911/01 -	-	6560 23768	26240 75499	45910 24467	0908LL	216450 0	0 0	65590 17127	6560 8738
Total Water Supply	t	T	30328	101739	70377	118060	216450	170540	82717	15298
Water Disposal Drainage Consumptive Use	95668 22371	41960 26108	32419 35001	37628 84,015	49813 129609	71084 136679	80606 191744	72170 211339	43116 156805	30017 91164
Total Water Disposal 118039	118039	68068	67420	121643	179422	207763	272350	283509	199921	121181

Napper

WEIGHT OF SALTS IN APPLIED IRRIGATION WATER DELTA LOWLANDS

In tons

	Irri-	-		195	4						1955				
Unit	gated acreage	May	June	July	Aug.	Sept.	Oct.	Mar.	Apr.	∿ау	June	July	Aug.	Sept.	Oct.
2	5394	97	433	721	628	275	16	14	43	118	311	650	616	268	15
3	4074	64	292	501	456	184	12	10	33	81	214	440	394	176	12
66	24900	408	1824	3044	2956	1180	82	67	241	466	1324	2700	2380	985	94
7	6025	91	439	718	721	275	22	17	62	110	323	645	554	272	26
8	16518	250	1032	2219	1851	797	71	48	195	375	819	1860	1710	718	60
9	7779	166	957	1292	1134	499	39	57	185	284	443	1061	918	439	39
10	8447	133	553	840	896	427	34	49	158	212	391	820	725	333	33
11	11142	243	1041	1634	1611	707	46	42	148	230	721	1447	1248	609	59
12	12916	228	1130	1943	1840	760	52	42	156	283	814	1769	1463	725	58
13	10413	183	885	1725	1804	687	49	40	142	222	737	1647	1500	679	58
14	4319	74	643	6249	4880	553	24	19	150	96	868	3225	6137	1002	42
15	13445	290	1416	5050	7287	2031	121	126	374	471	1057	4143	5115	1864	142
16	13598	488	1069	3981	6527	1817	137	171	352	526	980	3068	4795	1767	141
17	6130	121	329	935	1558	523	61	66	150	249	366	818	1189	494	49
18	12792	256	1049	2320	2666	891	67	70	224	307	936	2225	2015	915	81
19	12943	236	733	2133	1809	641	59	52	168	236	726	1739	1694	690	61
20	16534	291	1426	3067	3096	1116	102	120	381	505	1279	2868	2500	1187	112
21	10666	172	763	1796	1925	742	80	- 88	300	460	884	1363	1482	725	81
22	14465	278	860	2170	2970	973	85	119	332	406	926	1915	2092	860	83
23	19812	328	1257	3001	3797	1480	152	180	574	870	1507	2827	2813	1178	119
24	24156	393	3143	6843	6068	2607	252	244	963	1710	3069	6098	4698	2190	263
25	25912	428	3306	8409	7844	3325	304	224	998	1782	3423	7459	6047	2893	293
26	651	15	184	339	287	131	12	7	37	74	132	298	250	117	14
27	8636	165	2767	6221	5031	2403	248	245	955	1368	3063	6709	4830	2302	251 2186
Total		5398	27531	67151	69642	25024	2127	2117	7321	11441	25313	57794	57165	23388	
Tons/A		0.02	0.09	0.23	0.24	0.09	0.01	0.01	0.03	0.04	0.09	0.20	0.20	0.08	0.01

AVERAGE QUALITY OF APPLIED WATER DELTA LOWLANDS

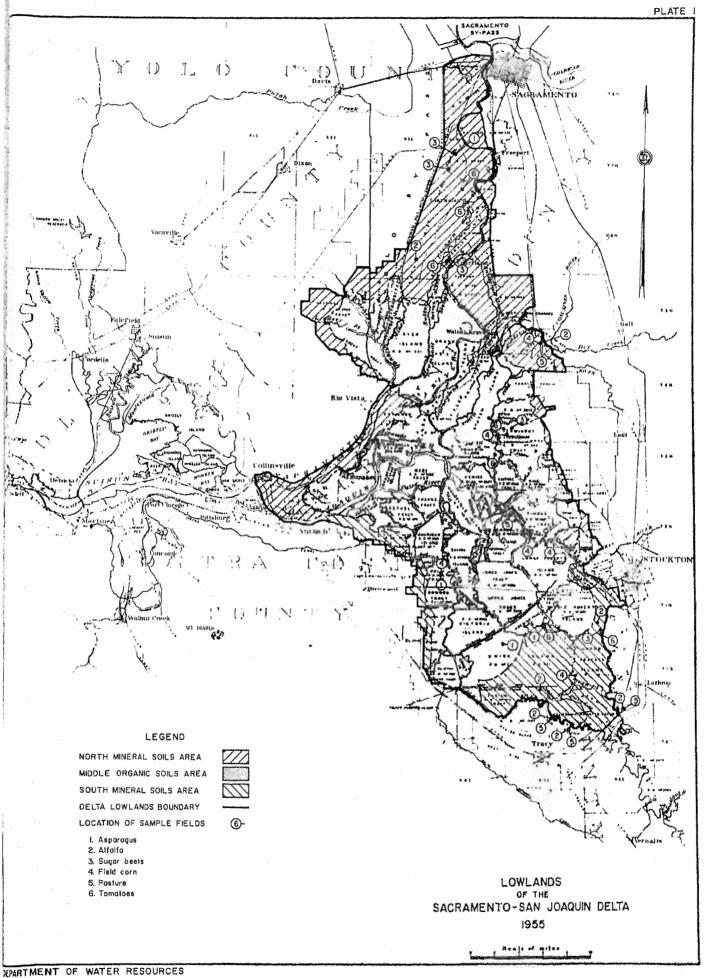
Sum of the mineral constituents in parts per million

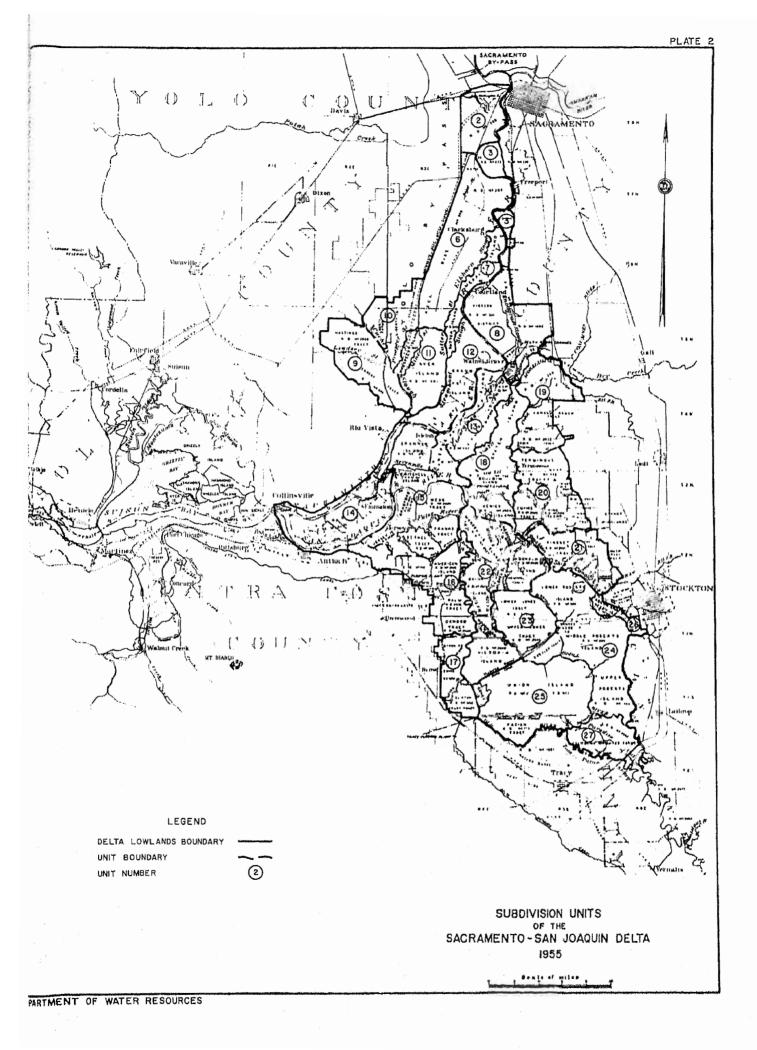
				1954	17										1955				
Unit	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.

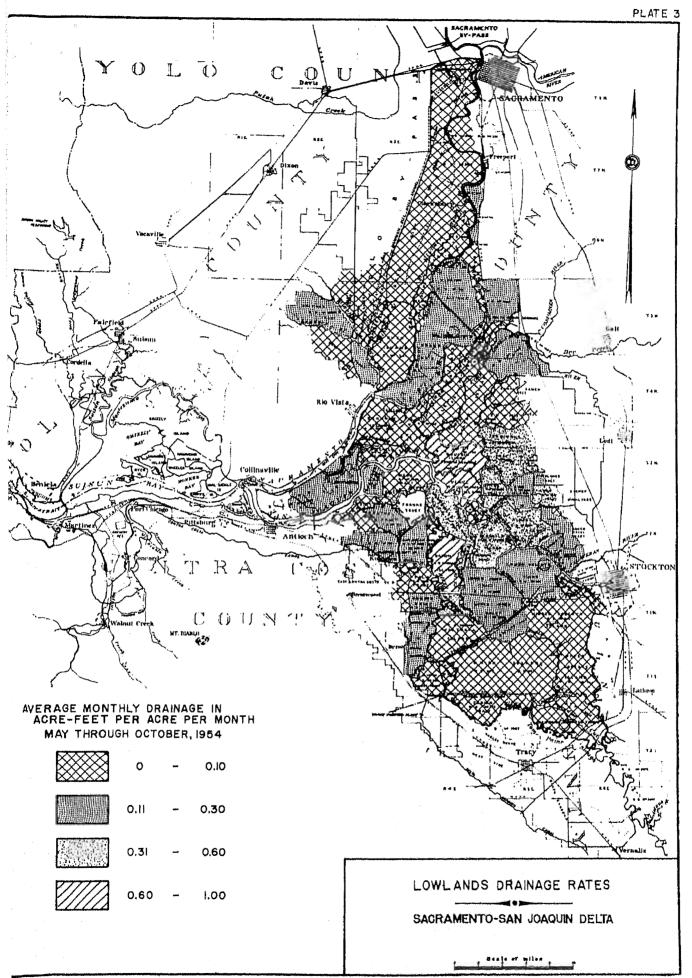
	8	156	242	157	179	105	65	109	66	111	16	68		211	128	154	174	81	611
	84	150	077	162	171	106	83	5	89	E	****	75	106	011	EZ	140	104	106 1	907
	84	346	133	164	170	118	8	5	85	100		87	8	106	118	132	142	136	130
	77	THE	129	164	163	122	T03	86	8	8		16	93	10	9116	126	161	97TE	134
	72	9TT	136	TIT	161	1117	54	8	85	E		66	108	92	זיננ	133	145	123	E
	8	205	151	168	192	677	152	185	202	219		179	157	95	124	136	169	152	160
	92	150	124	168	208	169	176	183	190	216		194	147	106	121	136	162	163	165
	92	153	131	T64	187	122	108	102	95	102		98	87	30T	911	127	161	155	148
	77	143	134	161	173	119	98	83	79	H	****	89	92	13	122	128	1 65	133	22
	55	126	TST	178	176	124	6	TT	132	126		ц	8	105	128	148	174	148	129
	84	283	96TT	1482	437	20	212	124	150	171		298	108	382	772	1864	792	344	343
	1	3116	284	520	377	222	197	247	284	266	····	774	125	109	233	365	346	261	189
	154	T31	266	554	107	306	330	607	432	453		193	166	120	205	407	390	313	367
	117	her	192	40%	356	80 1	504	180	4,58	509		257	1772	138	168	310	336	329	523
	76	121	977	213	185	TH	128	139	168	164	-	11	16	108	140	161	190	170 170	159
	76	8	3116	157	245	132	56	75	77	TOT		95	76	56	119	277	156	136	911
	76	145	170	218	204	187	197	168	158	195		174	132	130	159	176	217	ŝ	53
	88	152	195	265	266	281	341	275	227	83		269	235	176	841	204	260	284	323
	108	130	179	311	265	231	299	299	297	327		226	158	071	158	219	234	225	261
	98	JIL6	190	305	309	319	384	389	399	395		299	260	175	179	226	246	250	255
	8	255	303	THE	381	370	367	3H	265	335		352	357	249	270	264	320	387	439
	85	255	354	614	462	422	391	332	255	307		346	354	264	314	323	402	106	438
	75	339	341	370	436	1449	336	227	10t	228		302	364	242	8	323	392	200	225
27	22	458	561	576	715	730	810	728	613	688		209	581	507	605	553	685	667	21.1
Wtd. Ave.	86	1/1	228	300	280	238					237	205	183	158	196	246	262	245	****
0									and the statement of the statement of the		4	and the second second second	the second se		1				

WEIGHT OF SALTS IN DRAINAGE WATER DELTA LOWLANDS

In tons

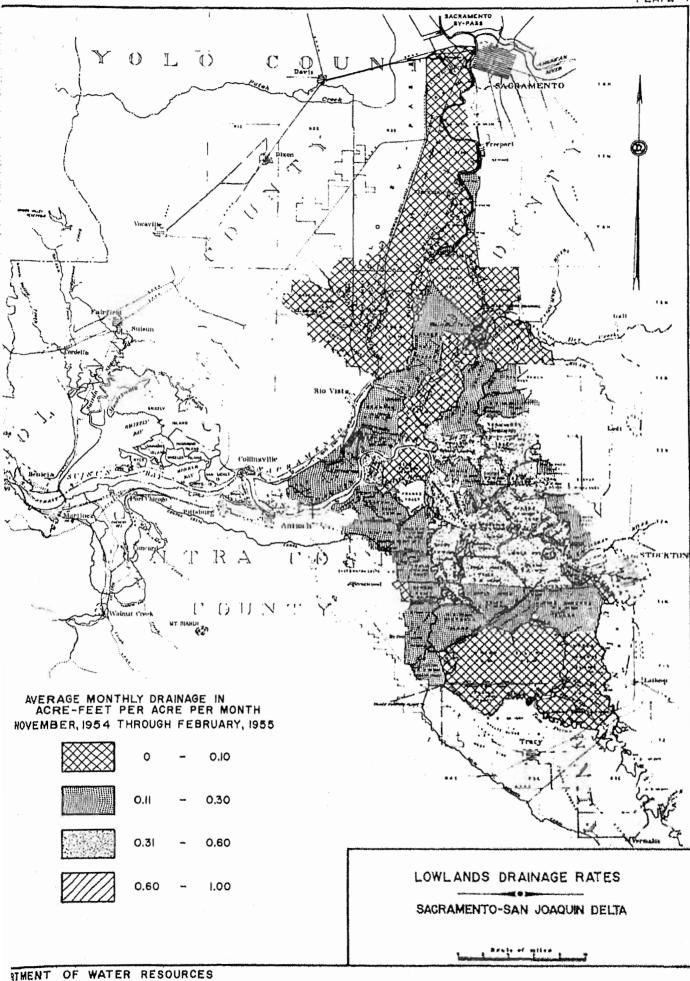

					1954									195	5	1			1
Unit	Acreage	May	June	July	Aug.	Sept	. Oct.	Nov.	Dec	. Jan	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept	. 0ct.
2	11202	47	0	0	0	0	195	0	782	677	96	0	82	0	0	0	0	0	112
3	5465	210	199	201	129	73	59	69	138		183	126	108	95	65	132	125	74	8
6	33027	194	108	60	67	99	143	794	2023	2286	2076	786	301	104	72	50	52	49	116
7	7510	157	52	37	24	26	20	102	248	439	263	170	160	147	83	85	42	46	30
8	22103	1074	842	640	936	921	1097	769	819	409	580	913	926	688	813	916	828	802	559
9	16085	556	731	772	1012	734	482	512	824	724	297	482	992	365	537	498	647	427	340
10	11067	192	411	397	271	011	92	115	241	399	237	170	299	286	410	236	208	153	135
11	14365	381	385	301	377	236	157	367	9 66	1067	578	404	497	269	460	286	357	167	129
12	16877	708	923	900	966	480	346	498	1540	2112	1045	906	1245	864	1565	1275	1135	314	235 214
13	16641	362	798	542	555	155	208	311	1106	1138	585	495 3029	593 2941	408 1514	512	2634	1177	616	1190
14	14671	1124	1656	2590	1435	798	1098	1582	2981	3188 7708	2675	3741	3131	1294	1769	1731	2589	2089	1878
15 16	26424 18343	1645 1121	1489	1748 1406	2610	1999 2129	2844	3737	6457 4408	5800	2510	1966	2026	1243	1574	1503	1555	1433	1203
17	10191	883	814	1162	960	781	1286	1572	6423	5662	2284	2159	3500	2293	1307	1436	1148	1014	615
18	18504	1347	2503	2946	3442	2621	2603	2557	4768		221.8	1710	1026	1217	2182	2676	2526	1362	1206
19	17917	940	1374	2410	2094	1169	979	1146	2774	3263	1515	862	1026	906	1198	1319	1314	852	646
20	21302	3264	4998	4823	6347	3491	3531	5150	12081	19485	5251	2751	4732	5523	8032	6505	7016	7544	3138
21	14846	1288	1596	2070	2233	1657	2028	2778	7489		2750	1362	1651	2235	2343	2195	1801	1566	1320
22	19357	3025	3727	4708	6408	3815	3663	4251	7863	-	6086	3447	2109	3753	5317	5385	4816	2304	2365
23	24493	1144	1192	1647	1730	907	1796	1865	6754		3542	1647	1274	1153	1200	1175	1033	612	846
24	32879	1365	1548	1878	1852	1329	1591		10325	11369	4393	2590	2569	2507	1907	1676	1765	1351	2128 763
25	33212	1501	1451	2337	1602	894	658	691	3789	4086	2234	1758	2295 120	2109	2288 95	2839 83	2525 86	1784 66	(0) 91
26	2810	63	80	96	98	66	73	121	456 138	513 243	192 115	290	826	523	632	935	1342	709	131
27	10148	538	534	1253	1075	383	112	41	<u>ەرب</u>	24)		270	020	1~1		1,,,,		107	
To- tal	419439	23129	28754	34924	39335	24873	26513	83109	85393	112558	45906	31882	34429	29615	36046	36266	84811	25823	19398
Tons/ Ac.		0.06	0.07	0.08	0.09	0.06	0.06	0.08	0.20	0.27	0.11	0.08	0.08	0.07	0.09	0.09	0.08	0.06	0.05

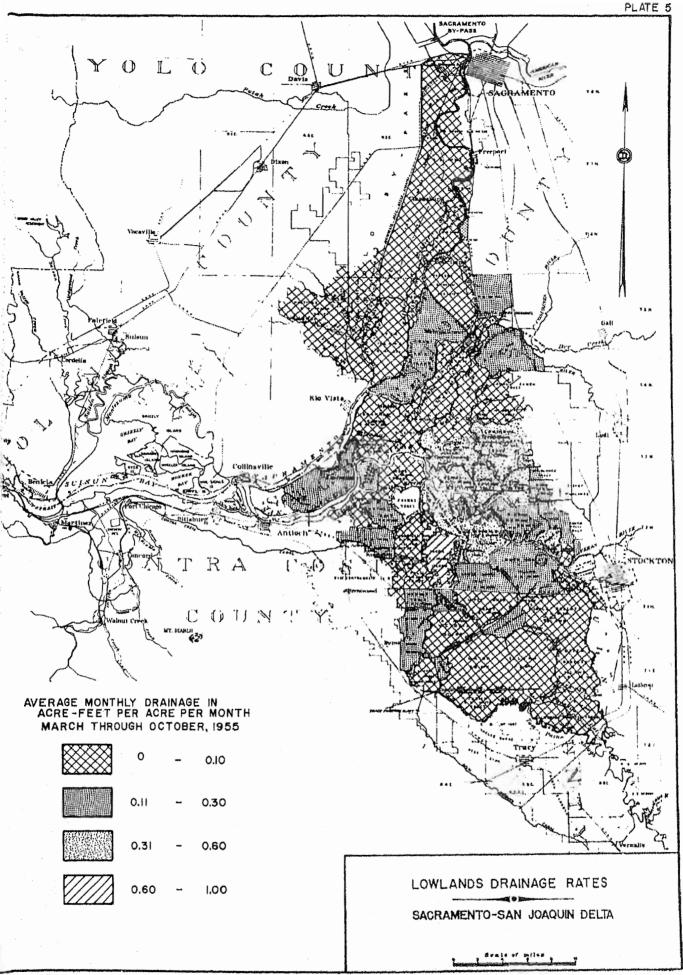

.

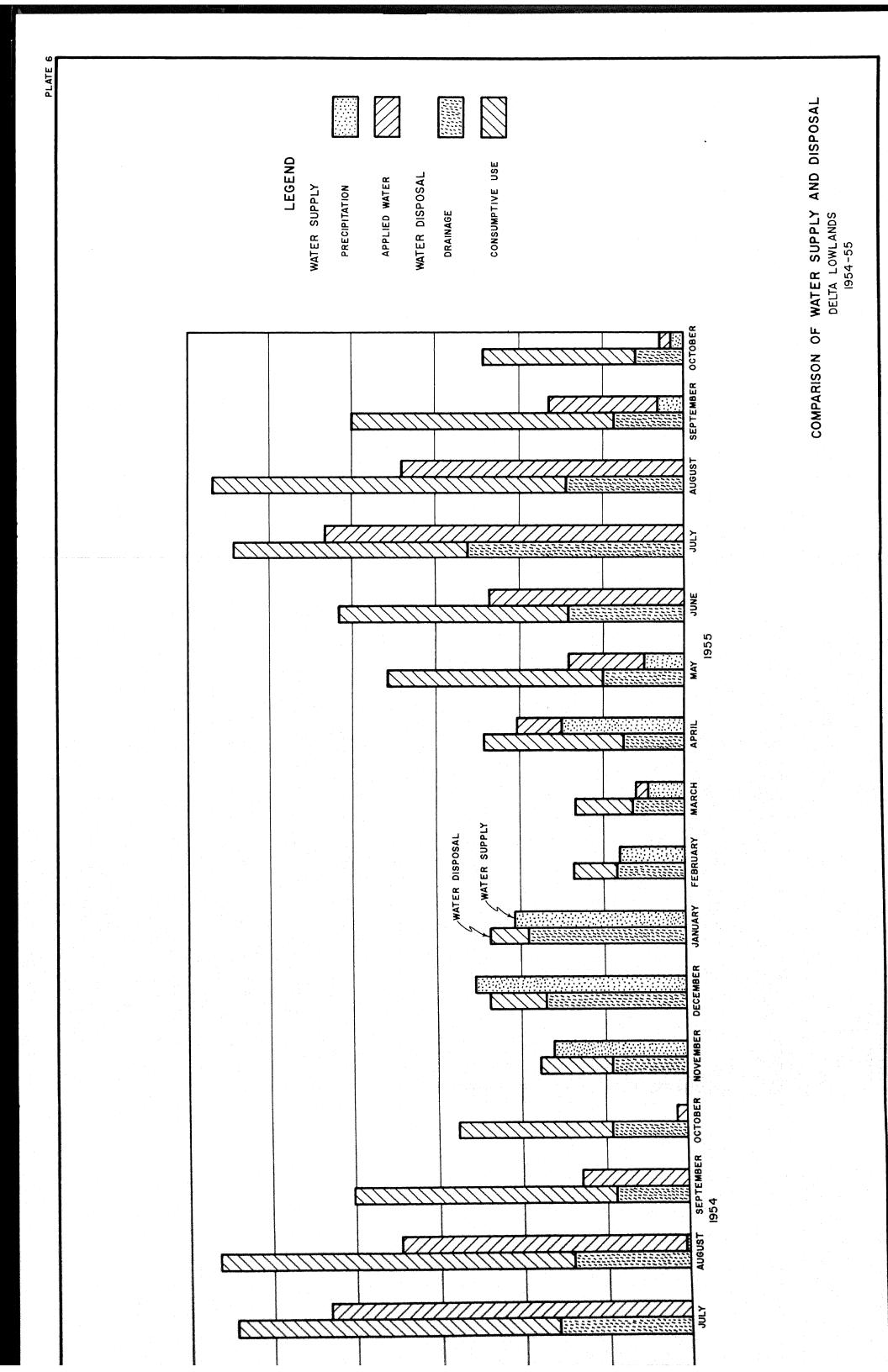

AVERAGE QUALITY OF DRAINAGE WATER DELTA LOWLANDS

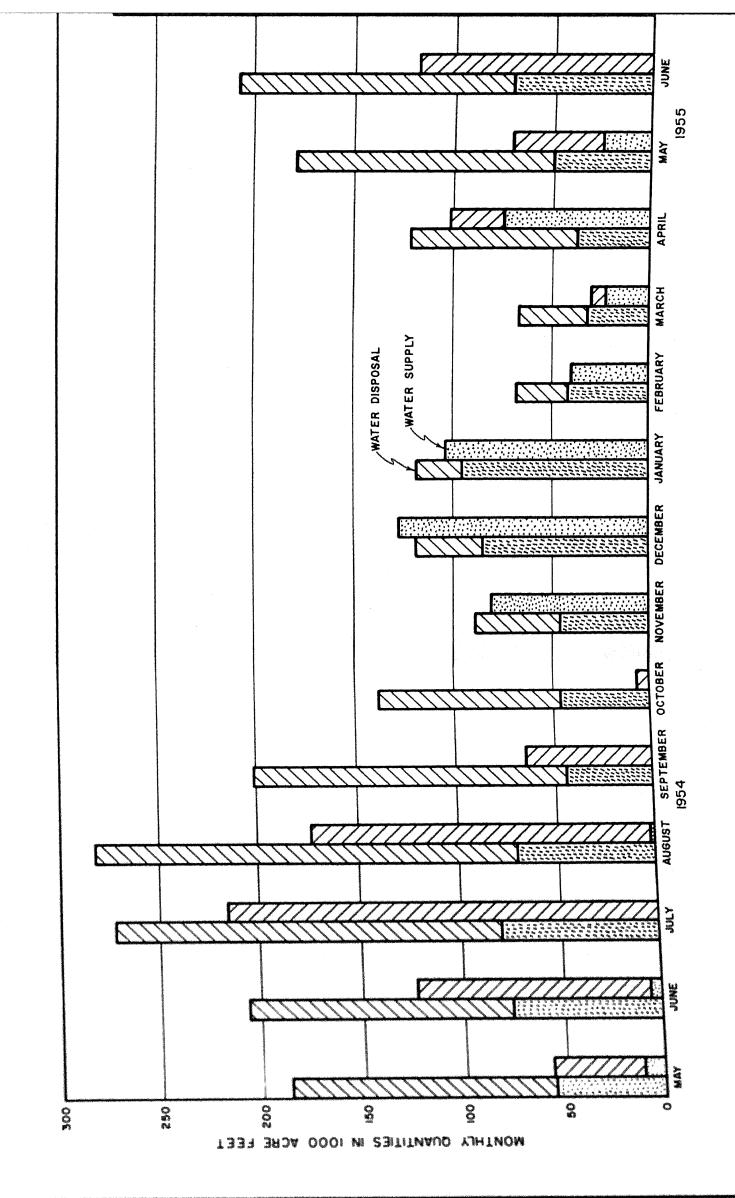
Sum of mineral constituents in parts per million

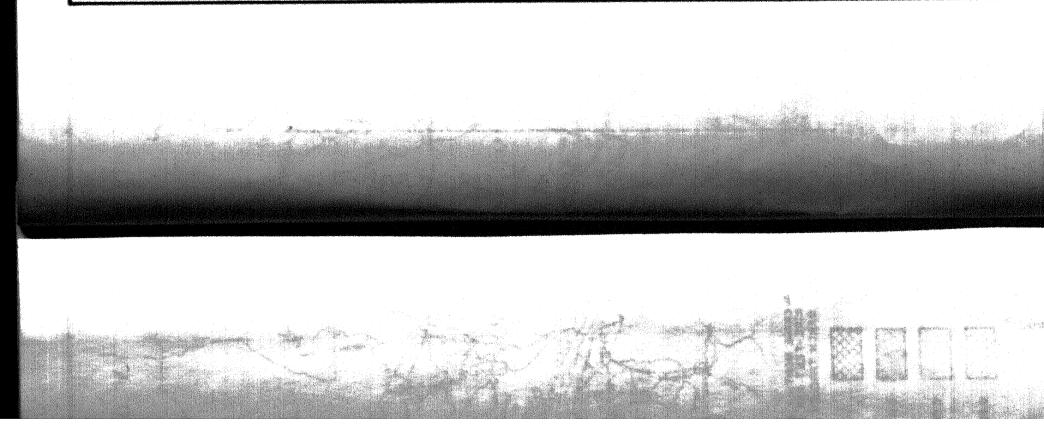
It May June July Mar. Jur. 193. 768 0		······																							****	www.www.www	· .	(Phicelipectrology are
It May June July Lugy Lugy Lugy 768 0		Oct.	4129	137	266	374	261	352	220	227	278	362	982	683	585	750	307	372	658	1446	328	314	792	<u>8</u>	719	8t5		475
It May June July Mar. Jur. 193. 768 0		Sept.	0	182	159	277	244	294	180	208	238	343	<u>8</u> 1	739	582	979	292	319	651	339	276	270	435	25	1,29	886		077
It May June July Lugy Lugy Lugy 1 Kay June July Aure June July June June July		Aug.	0	160	242	257	215	289	178	186	226	263	1023	560	559	563	230	294	434	289	276	269	E #3	577	FT	816	4 	355
		July																					_				e e	331
I by I yr I yr I yr Yr <thyr< th=""> Yr Yr</thyr<>	955	June	0	611	225	323	183	303	398	251	293	239	669	536	477	596	286	279	565	ನ್ನ	232	356	529	659	525	795	**************************************	373
L1994. L1994. 11994. 14 May Junne July Aug. Sept. Oct. Nov. Dec. Jam. Feb. Mar. 212 255 223 180 229 2394 4400 Aug. Feb. Mar. 221 2331 2331 2332 2344 4410 488 557 784 0 231 2331 2331 2335 2344 4410 488 5533 553 553 553 553 553 553 553 553 553 553 553 553 553 553 553 553 553 555 554 440 707 749 440 707 749 440 703 749 440 703 749 440 703 749 440 555 147 440 551 753 441 440 551 753 441 440 703 703 1195 <	F1	May	0	129	261	717	215	362	393	250	293	311	689	528	535	1063	255	254	£23	त्री	257	84	382	769	817	3 89		437
LIPAL LIPAL Oct. Nov. Dec. Jam. Feb. 768 0 0 0 0 0 881 0 331 Feb. Feb. 768 0 0 0 0 881 0 883 784 242 265 223 180 229 234 544 585 774 708 0 0 801 0 872 244 585 771 707 221 237 244 577 372 544 633 865 771 707 707 707 707 881 772 707 885 571 707 707 707 707 882 731 237 541 442 571 707 707 707 882 731 237 541 441 707 707 882 731 707 871 707		Apr.	670	197	552	514	337	690	496	114	354	403	937	905	8 8 8	TLAL	524	58 88	170 7000	516	33	<u>8</u>	88	1700	928	178		629
1954. 1954. 1954. 1954. 14 May Jume July Aug. Sept. Oct. Nov. Dec. Jan. 768 0 0 0 0 801 0 855 855 242 265 223 180 229 295 354 587 571 226 327 261 294 299 334 410 481 482 330 377 349 276 203 294 587 571 377 349 276 204 233 243 341 619 653 173 166 1165 204 233 243 342 631 653 370 349 276 204 233 243 633 654 1164 163 653 1157 1166 1154 1166 1154 1156 1156 1156 1156 1156 1156		Mar.	0	195	749	565	383	<u></u>	510	466	394	474	1123	988	1388	1229	647	767	60	517	494	576	8	3	676	183	\$24 7 10271000	R
1994 1994 14 May Jume July Aug. Sept. Oct. Nov. Dec. 768 0 0 0 0 8 O 0 8 O 0 8 O 0 8 O 0 8 O 0 8 O 0 8 O 0		Feb.	784	241	707	527	393	866	495	164	455	553	1195	1075	1255	J616	672	912	1005	E	Ś	රි	347	220	3	999	3516) (13) 1416)(14)	8
IP34 June July IP34 768 0 0 0 0 0 0 768 0 0 0 0 0 0 0 0 768 0 0 0 0 0 0 0 0 0 748 0		Jan.	855	260	571	482	287	633	091	517	<u>5</u> 0	642	1195	666	1064	1301	627	211	978	370	689	100	\$ 	817	575	629	trid ju terstrig	8
It May June July Aug. Ight Ight Oct. 768 0 0 0 0 0 0 801 242 265 130 146 56pt. 0ct. 0 801 242 265 130 166 165 203 239 294 231 207 211 234 265 233 239 334 1191 207 211 234 259 239 334 337 330 330 274 357 349 276 203 333 1191 207 211 357 349 276 203 334 216 1165 204 234 237 234 234 2166 1165 205 232 234 236 234 2166 1165 204 235 244 274 274 2168 1167 </td <td></td> <td>Dec.</td> <td>855</td> <td>262</td> <td>585</td> <td>181</td> <td>314</td> <td>619</td> <td>364</td> <td>513</td> <td>388</td> <td>631</td> <td>1012</td> <td>978</td> <td>1155</td> <td>1312</td> <td>609</td> <td>דיוג</td> <td>870</td> <td>745</td> <td>243</td> <td>3</td> <td>52</td> <td>R</td> <td>810</td> <td>25</td> <td></td> <td>Ř</td>		Dec.	855	262	585	181	314	619	364	513	388	631	1012	978	1155	1312	609	דיוג	870	745	243	3	52	R	810	25		Ř
Hay June July Aug. Sept. 768 0 0 0 0 0 0 768 0 0 0 0 0 0 0 768 0 0 0 0 0 0 0 0 768 0 0 0 0 0 0 0 0 221 205 1130 1165 205 1230 1265 203 3330 2274 2276 229 239 229 239 1173 1667 1165 205 239 239 239 239 1173 1667 1165 209 239 239 239 239 239 1173 1667 1165 209 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 239 <td< td=""><td></td><td>Nov.</td><td>0</td><td>225</td><td>394</td><td>014</td><td>197</td><td>175</td><td>270</td><td>358</td><td>247</td><td>432</td><td>784</td><td>802</td><td>950</td><td>975</td><td>1467</td><td>1799</td><td>677</td><td>538</td><td>362</td><td>8</td><td>2</td><td>X</td><td>5</td><td>\$ġ</td><td>9998840090000 </td><td>g</td></td<>		Nov.	0	225	394	014	197	175	270	358	247	432	784	802	950	975	1467	1799	677	538	362	8	2	X	5	\$ġ	9998840090000 	g
H May Jume July Aug. 768 0 0 0 0 768 0 0 0 0 242 265 223 130 165 233 205 130 165 234 3330 330 224 256 234 3330 330 226 234 353 3330 330 226 234 353 3330 330 226 234 353 3330 330 226 234 353 3390 444 428 534 353 468 444 428 566 594 478 571 927 235 235 3390 466 165 205 235 3390 466 145 739 576 565 526 136 136 235 576 526 235 235 235 278 526 235 236 336 278 526 236 236 236 379 526 238 236 236 278 526 23		Oct.	108 108	295	294	334	205	372	259	218	247	333	658	707	702	816	274	475	566	554	গ্নি	34.8	225	S	610	8		416
Kit May June 768 56 57 27 80 78 56 56 57 27 10 78 56 56 56 57 27 10 78 56 56 56 57 27 20 11 78 56 56 56 56 57 23 34 34 <	1954	Sept.	0	229	ති	299	226	361	231	225	243	319	905	725	729	777	285	320	555	5	325	338	ζ <u>χ</u>	ES	8	; 8	at land	50
Kit May June July 768 5 5 5 5 78 5 5		Aug.	0	180	165	294	234	357	204	205	239	255	1139	666	719	669	308	357	148	349	36.	8	479	Ĩ	187	3	frænn ₹ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	60
3 5 6																					an a		1949 ,000,000	nas (ang tinang a	interneta	and the second		319
		June									****			****				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	-	-							nij Derits Theimen-
		May	768	242	1231	226	191	330	357	173	216	õ	478	468	3%	654	210	276	011	200	180	35	472	23	83	53		305
一部 とそうやきりひょうないないないないないのもとうとう		Unit																		4744 31 0 0954	 A static for apply 1 	******	e Parlakan ang Parla Parlakan ang Parlakan	ineres in stational	2016-000 1 003	liktropole Sec tors?		N.S.

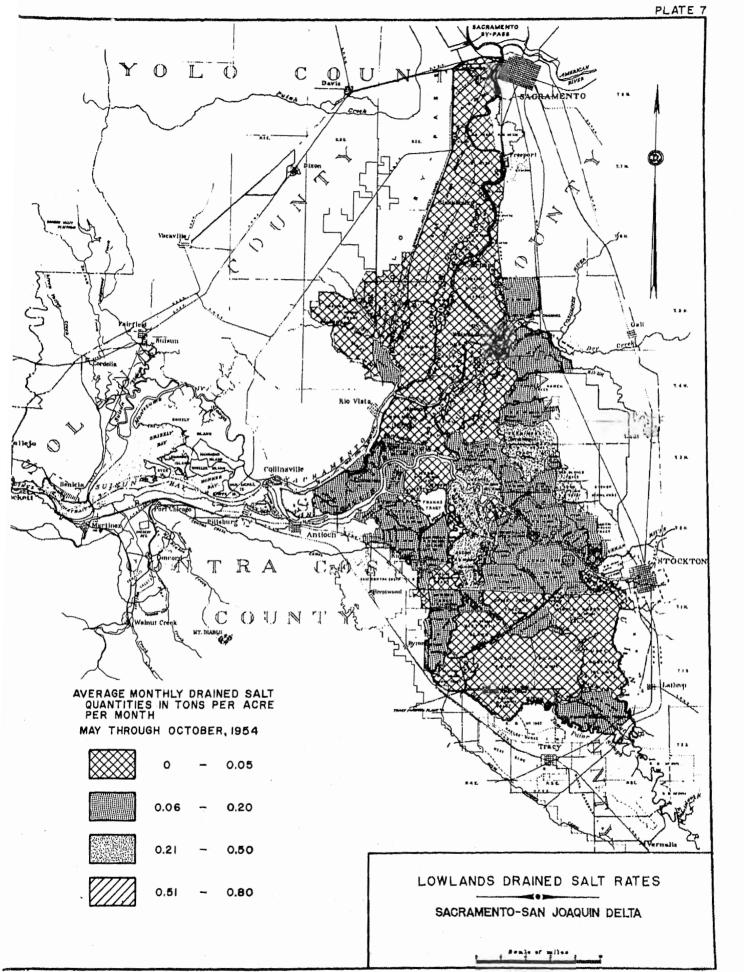




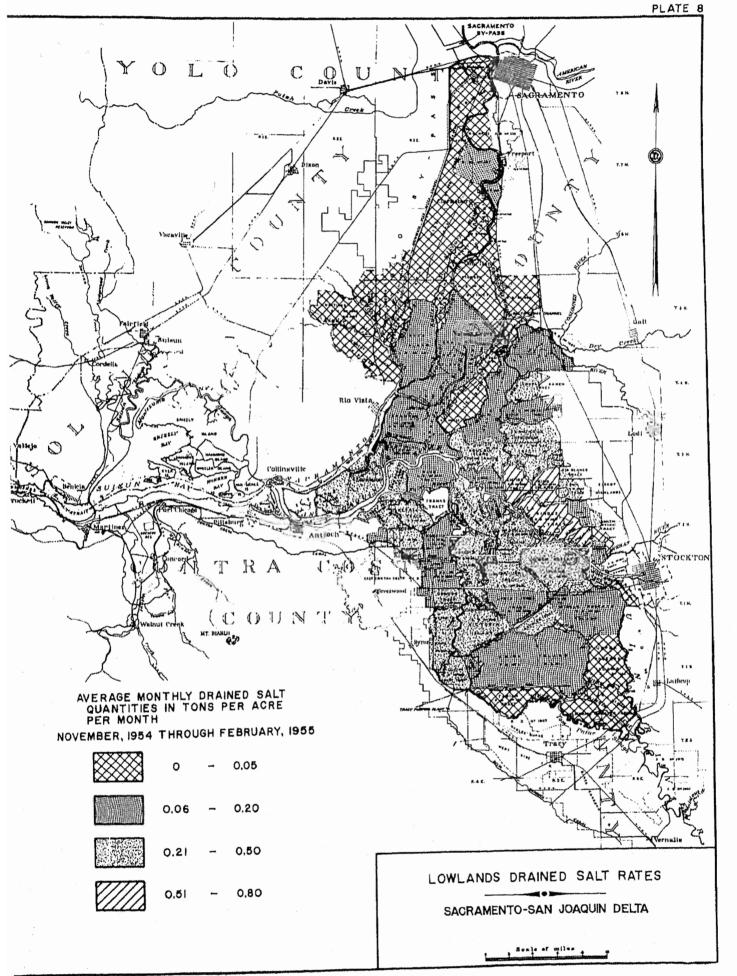

IMENT OF WATER RESOURCES

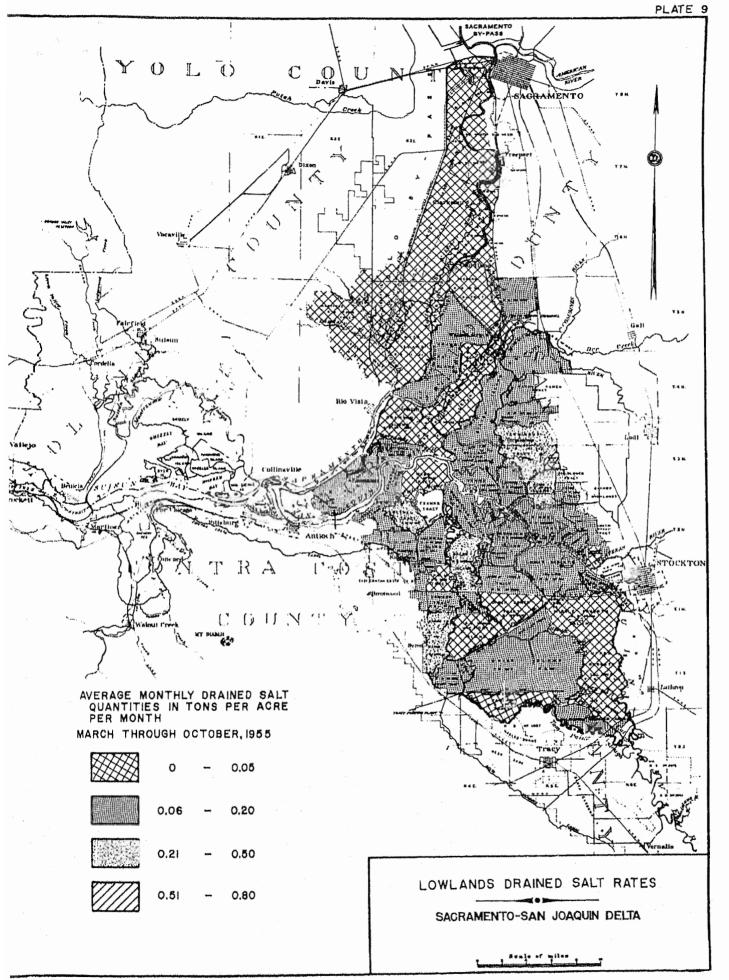






MATMENT OF WATER RESOURCES





PARTMENT OF WATER RESOURCES

DIRECTORS George Biagi, Jr. Rudy Mussi Edward Zuckerman

COUNSEL Dante John Nomellini Dante John Nomellini, Jr.

CENTRAL DELTA WATER AGENCY

235 East Weber Avenue
P.O. Box 1461
Stockton, CA 95201
Phone 209/465-5883
Fax 209/465-3956

October 1, 2008

Via First Class U.S. Mail and Email: commentletters@waterboards.ca.gov

Jeanine Townsend, Clerk to the Board State Water Resources Control Board P.O. Box 100 Sacramento, CA 95812-2000

Re: Periodic Review Workshop for the 2006 Bay-Delta Water Quality Control Plan.

Dear Ms. Townsend:

The Central Delta Water Agency (CDWA) submits the following preliminary comments on matters that should be addressed in the SWRCB's review of the 2006 Plan.

1. The Water Quality Objectives for Fish and Wildlife Beneficial Uses Should be Revisited.

In light of the collapse and/or dire state of numerous fish species, the SWRCB should revisit the 2006 Plan's fishery objectives pertaining to salinity, Delta outflow, river flow, export limits and Delta Cross Channel gate operation.

The 2006 Plan acknowledges that:

"[A]vailable information indicated that a continuum of protection [for fishery resources] exists. Based on that information, higher flows and lower exports provided greater protection for the bulk of estuarine resources up to the limit of unimpaired conditions." (2006 Plan, p. 11.)

With regard to export impacts, the SWRCB has previously acknowledged the following in its 1978 Water Right Decision, D-1485, at page 13:

"To provide full mitigation of project impacts on all fishery species now would require the virtual shutting down of the project export pumps." In light of the fact that the Projects export pumping has not shut down, but, instead, has steadily increased since 1978, and the fact that the SWP has failed to develop various projects on the North Coast Rivers to annually supplement the water supply in the Delta with 5 million acre feet of water by the year 2000, it should be no surprise that the Delta's fishery resources are having a hard time coping with diminished flows and higher exports.

Accordingly, the SWRCB should give major consideration to requiring both higher flows and lower exports for the protection of fishery resources in its updated plan.

2. The Implementation Plan Needs to Be Modified to Forthrightly Address Term 91.

In the recent administrative and legal proceedings over Term 91 in <u>Phelps v. SWRCB</u> (2007) 157 Cal.App.4th 89, it became clear that Term 91 is simply a mechanism to impose responsibility on an appropriative water right holder within the Delta watershed to meet the various Bay-Delta Water Quality Control Plan objectives. As the SWRCB explains in WRO 2004-0004, at pages 5 and 6:

"In effect, Term 91 requires appropriators with this term in their water right permits or licenses to forego diverting natural flow that is needed to meet the flow-dependent water quality objectives. When there is insufficient flow to meet the water quality objectives, diversions by Term 91 appropriators could contribute to increased concentrations of salts in the Delta channels."

A major problem, however, is that the implementation plans set forth in the 1995 as well as 2006 Plans do not even mention Term 91. Instead, both plans state the following:

"The State Water Board will consider, in a <u>future</u> water rights proceeding or proceedings, the nature and extent of water right holders' responsibilities to meet these objectives." (1995 Plan, p. 4; 2006 Plan, p. 3; emphasis added.)

For Phelps, et al., and presumably numerous other water right holders subject to Term 91, Term 91 was imposed on their water rights well *before* the 1995 and 2006 water quality control plans were even adopted, much less implemented. Moreover, the "future" water rights proceeding that was intended to establish the nature and extent of water right holders' responsibilities to meet the 1995 objectives, and which culminated in the SWRCB's Decision 1641, makes no mention of the assignment of responsibility to meet those objectives on Term 91 water right holders.

This practice needs to stop. If the SWRCB is going to impose responsibility on Term 91 water right holders to meet one or more of its water quality plan objectives, then the SWRCB must forthrightly address the propriety of such imposition in its water quality control plan and/or in its subsequent water right proceeding to assign responsibility to meet the plan's objectives. As

it stands, the SWRCB has been wrongfully imposing responsibility on Term 91 water right holders without any mention of such imposition in either its water quality control plans or the subsequent water right proceedings, much less any examination of issues such as the following:

- (1) What specific water quality objective is the Term 91 water right holder being held responsible for?
- (2) Does the Term 91 water right holder's water use actually negatively impact that water quality objective?
- (3) Assuming it does, is it nevertheless legally proper to impose responsibility to meet that objective on that water right holder?

For example, with regard to the second question, it is not at all clear that Term 91 agricultural users in the Delta lowlands negatively impact any salinity objectives. In fact, the available evidence demonstrates that such use may actually *benefit* such objectives. As DWR's "Investigation of the Sacramento-San Joaquin Delta, Report No. 4, Quantity and Quality of Waters Applied to and Drained from the Delta Lowlands," dated July of 1956, explains at page 30:

"The Delta lowlands act as a salt reservoir, storing salts obtained largely from the channels during the summer, when water quality in such channels is most critical and returning such accumulated salts to the channels during the winter when water quality there is least important. Therefore agricultural practices in that area *enhanced* rather than degraded the good quality Sacramento River water en route to the Tracy Pumping Plant." (Emphasis added.)

And similarly, with regard to outflow objectives, the available evidence demonstrates that agricultural water use in the Delta lowlands likely results in a net *benefit* to outflow. For example, as the SWRCB recognized in its Decision-990, at page 46:

"The reclamation of the lands in the Delta has eliminated a large area of aquatic vegetation such as cat-tails and tules which consume three to four times as much water as the crops which are grown on these reclaimed lands. As a result, it appears probable that the consumption of water within the Delta has been decreased by reclamation development, and that a greater proportion of the stream flow entering the Delta now reaches the lower end of the Delta to repel saline invasion than before reclamation."

With regard to the third question set forth above, i.e., whether it is legally proper to impose responsibility to meet a Bay-Delta water quality objective intended to benefit fish and wildlife or any other beneficial use on a Term 91 appropriator, before it imposes any such responsibility, the SWRCB would have to ensure that it has complied with and honored all applicable laws and priorities associated with any such imposition and, in particular, ensure that the SWP and CVP are fully complying with their various legal obligations.

For example, and in general outline form, the SWRCB would have to take into consideration, among other matters, all of the following before it sought to lawfully impose responsibility to meet a water quality objective on a Term 91 appropriator (or on any water right holder within the Bay-Delta watershed for that matter):

- (1) The SWP and CVP must bear full responsibility for full mitigation of their impacts including without limitation the impacts from reverse flows, reduced outflow, the drainage into the San Joaquin River from the westside of the San Joaquin Valley, and damage to spawning areas.
 - (a) Note: the impacts of ship channels are burdens of the State and Federal Government; and the burden of westside drainage is that of the CVP and should fall most heavily upon the San Luis Unit in that the unit was not to go forward without a drain.
- The SWP and CVP must provide adequate salinity control. (See e.g., Wat. Code, §§ 12200 et seq. & 11207; <u>U.S. v. Gerlach Livestock Co.</u> (1950) 339 U.S. 725; <u>Ivanhoe Irr. Dist. v. McCracken</u> (1958) 357 U.S. 275.)
- (3) The CVPIA burdens are those of the CVP.

///

- (4) Preservation of fish and wildlife is the responsibility of SWP and CVP with cost to be paid by users. Where possible enhancement must be incorporated with the cost of enhancement attributed to the State General Fund. (Wat. Code, § 11900 et seq.; <u>Goodman v. County of Riverside</u> (1998) 140 Cal.App.3d 900.)
- (5) The SWP and CVP must to the maximum extent possible operate and manage releases from storage into the Delta to provide salinity control and maintain an adequate water supply in the Delta sufficient to maintain and expand agriculture, industry, urban and recreational development. (Wat. Code, § 12205.)
- (6) In allocating the burden within the CVP and SWP, the uses within the Delta and other areas and watersheds of origin must be accorded priority over exports.
 (Wat. Code, §§ 10505 et seq., 11460 et seq. & 12200 et seq.)
- (7) The remaining burden which would appear to be in the tributaries above the Delta is allocable among the other water users in accordance with water right priorities. The burden for bypass flows and other fish and wildlife requirements applicable under law to the various impoundments should not be shifted to other water users. Exporters other than the CVP and SWP must yield priority to the users within the Delta and other areas and watersheds of origin. (See Wat. Code, § 1215 et seq.; see also Wat. Code, §§ 12203 & 12205.)

(8) To the extent that a water user within the Delta and the other areas and watersheds of origin is required to yield water which can be replaced with CVP or SWP water, then the CVP or SWP water should be burdened provided that if the water is not unregulated flow, bypassed natural stream flow, return flow from upstream use, natural tidal flow or physical solution water, etc., and is truly "stored water," then a requirement of a contract or other mechanism for reasonable payment for the storage benefit may be appropriate. (See Wat. Code, §§ 11460 et seq.)

Up to this point the SWRCB has not even mentioned the assignment of responsibility to meet the Bay-Delta water quality plan objectives on Term 91 water right holders in its 1995 or 2006 water quality control plans or subsequent implementation proceedings, much less properly examined any of the above-listed three questions or any of the forgoing eight legal considerations. Accordingly, CDWA submit that the SWRCB's current imposition of responsibility to meet the existing water quality objectives on Term 91 water rights holders is contrary to law (as well as the express implementation language in the 1995 and 2006 plans) and any future imposition of such responsibility on such holders will continue to be unlawful unless and until the SWRCB forthrightly embraces such imposition, and the propriety thereof, in a future water quality control plan and/or the subsequent water right proceeding to assign responsibility to meet the plan's objectives.

Thank you for considering these comments and concerns.

Very truly yours,

Dante John Nomellini, Jr.

DJR/djr

DIRECTORS George Biagi, Jr. Rudy Mussi Edward Zuckerman

COUNSEL Dante John Nomellini Dante John Nomellini, Jr.

CENTRAL DELTA WATER AGENCY

235 East Weber Avenue • P.O. Box 1461 • Stockton, CA 95201 Phone 209/465-5883 • Fax 209/465-3956

May 14, 2009

Via email: bay-delta@waterboards.ca.gov and First Class U.S. Mail (15 Copies) to:

Chris Carr State Water Resources Control Board Division of Water Rights P.O. Box 2000 Sacramento, CA 95812-2000

Re: Comments on PROPOSED MODELING ALTERNATIVES re Consideration of Potential Amendments to the WQCP for the Bay-Delta Relating to Southern Delta Salinity and San Joaquin River Flow Objectives.

Dear SWRCB:

The Central Delta Water Agency (CDWA) is hereby submitting the following comments on the above-referenced modeling alternatives which are set forth in the SWRCB's April 17, 2009, "Second Revised Notice of Public Staff Workshop"

1. Modeling Alternatives For the Southern Delta Salinity Objectives at this Time is <u>*Premature*</u>.

Prior to initiating any type of modeling, the SWRCB should first focus its efforts on the process that is presently underway of determining whether the existing objectives are adequate to protect agricultural beneficial uses in the southern Delta. Once it is determined that the existing objectives are fine as they are, or perhaps need to be made more (or less) stringent, <u>then</u> and only then, would it be appropriate to examine the implementation of whatever those objectives may be. If, after such examination, the SWRCB determines such program needs revision, <u>then</u> various alternative implementation alternatives could be examined. And finally, if it is determined that such objectives cannot be feasibly implemented, and that is a huge complex and legal "if," then, and only then, would it arguably be appropriate to analyze alternative objectives.

Why go through a process of studying alternative objectives at this stage when no one knows, and the SWRCB has not determined, whether the existing objectives need to be changed or whether the objectives determined to be necessary to protect agricultural beneficial uses cannot be feasibly implemented? In sum, the entire topic of alternative objectives at this time is

highly premature. The SWRCB should, if anything, focus solely on the pending verification of the sufficiency of the existing objectives to protect agricultural beneficial uses and proceed accordingly after that process is completed.

a. If the SWRCB Insists on Proceeding With the Modeling of Alternative Objectives At this Time, the Proposed Modeling is <u>Not</u> Sufficiently Broad.

While it makes no sense to start modeling alternative objectives at this stage, even if it did make sense, the proposed modeling alternatives are <u>not</u> sufficiently broad.

For starters, the alternatives only focus on dilution. There are many ways to meet the standards, with dilution being only one. All the tools available should be considered, and comprehensive alternatives utilizing all available tools should be modeled. Improvements to the south delta barrier program to better improve circulation, eliminate stagnant zones, etc., should be included. Recirculation of water exported from the Delta, which involves dilution but is a different species of dilution, should also be included. If the SWRCB for whatever reason insists on only considering "traditional" dilution in its proposed alternatives, then the description of the proposed alternatives should clearly disclose that limitation.

Second, an objective lower than the current .7/1.0 EC objective, say, .6/.9 EC, should be modeled in the context of the current regime (i.e., the existing objectives are modeled with .6/.9 substituted .7/1.0). There is no reason to assume at this stage that a lower standard may not be necessary to adequately protect agricultural beneficial uses. When non-dilution measures are considered, such as the incorporation of low flow pumps with the south Delta barriers, it appears probable that with meaningful improvements in south Delta circulation, a lower standard could be feasibly attained without much additional effort, if any. Some good faith modeling in that regard should be able to demonstrate whether such is the case.

Third, the <u>existing</u> objectives should be modeled and compared with all other alternatives. If the SWRCB unwisely insists on modeling alternatives at this time, at a minimum, the existing objectives should be among the modeled alternatives to see how meeting them compares with the other alternatives.

Fourth, the existing objectives should be modeled with .7/1.0 EC substituted with .7 EC year round.

Finally, all of the dilution or other alternatives, should be designed to ensure that the full water supply needs of the New Melones area of origin contractors are met in furtherance of United States Public Law 108-361 (HR 2828 [October 25, 2004]), which provides:

"[The Secretary of Interior] <u>shall</u> acquire water from willing sellers and undertake other actions designed to decrease releases from the New Melones Reservoir for meeting water quality standards and flow objectives for which the Central Valley Project has responsibility to assist in meeting allocations to Central Valley Project contractors from the New Melones Project." (PL 108-361, Section 103(f)(1)(F); 118 Stat 1681, pp. 1694-1695, emphasis added.)

2. Modeling Alternatives For the San Joaquin River Flow Objectives is also <u>Premature</u>.

As with the salinity objectives, the San Joaquin River flow objectives should logically begin with a determination of what flows are necessary for fish. Once those flows are necessary, <u>then</u> and only then, would it be appropriate to evaluate the implementation of those flows and any alternatives to such implementation. If there is no feasible way to implement the flows, once again a huge complex and legal "if," then perhaps alternatives containing flows that are less than what the fish need could be considered. But in any case, the focus should logically start with a determination of what flows fish need and then proceed from there.

And on that note, as far as logic goes, it would make the most sense to take a top-down approach and first determine what the fish need in the uppermost reaches of the rivers. After that, an evaluation could be made to determine what, if any, additional flow is needed to protect the fish in the lower reaches.

Such a top-down approach would also make the most sense in terms of the southern Delta salinity standards. It may be that after sufficient flow is provided upstream to protect fish, the current southern Delta standards will be adequately met without the need for additional releases or other measures.

If there is an obvious reason why such a logical top-down approach is not being pursued, the SWRCB should fully disclose and explain that reason. If there is not an obvious or other valid reason, the SWRCB should begin focusing its efforts on such an approach.

Thank you for considering these comments and concerns.

Very truly yours,

Dante John Nomellini, Jr. Attorney for the CDWA

DJR/djr

1/6-7/11 Bd. Wrkshop SJR Technical Report Deadline: 12/6/10 by 12 noon

CENTRAL DELTA WATER AGENCY

235 East Weber Avenue • P.O. Box 1461 • Stockton, CA 95201 Phone 209/465-5863 • Fax 209/465-3956

December 6, 2010

Via email commentletters@waterboards.ca.gov

Jeanine Townsend, Clerk to the Board State Water Resources Control Board P. O. Box 100 Sacramento, California 95812-2000

C E E DEC 6 2010 SWRCB EXECUTIVE

Re: San Joaquin River Technical Report Comments

Dear Ms. Townsend:

We join in the comments submitted by the South Delta Water Agency. It is particularly disturbing to see an effort directed at reducing water quality standards on the long-neglected San Joaquin River. Improvement of water quality for all beneficial uses should be the goal. Export of water from the Delta to the portions of the west side of the San Joaquin Valley which contribute to the degradation of the San Joaquin River has long been recognized as the source of the problem, yet exports have been allowed to continue. Salts which have not yet reached the river have been accumulating in the groundwater and soil and will result in degrading accretions for the foreseeable future. It is important to remember that in the San Luis Act of 1960 Congress required the San Luis Unit of the CVP not to go forward without a valley drain with an outlet to the bay or ocean. While a valley drain was and is particularly critical to the sustainability of agriculture along the west side, the adherence to the law would have significantly reduced the degradation to the San Joaquin River. The CVP deliveries assisted by the SWP coordinated operations and joint point of diversions are the cause of the problem. The CVP and SWP should be required to mitigate their impacts on the San Joaquin River before others are required to suffer a burden. A portion of the water exported from the Delta by the projects should be required to restore the San Joaquin River water quality. The exported water can be directly discharged to the San Joaquin River or exchanged to provide the needed flow. Improved San Joaquin River water quality will significantly improve the usability of the exported water thereby offsetting the loss of water or perhaps even providing a net benefit.

The argument over the water quality needs for agriculture has always hinged on the degree of leaching of salts from the root zone that can be reasonably achieved with the application of irrigation. The variability of soil types, proximity of the water table to the surface and economically sustainable practices must be recognized.

DIRECTORS George Biegl, str. Rudy Mussi Edward Zuckermen

COUNSEL Danie John Nomellini Danie John Nomellini, Jr. Jeanine Townsend, Clerk to the Board State Water Resources Control Board

December 6, 2010

Beneficial water use along the river results in some degradation and the assimilative capacity of the river must be allocated for correlative use by the diverters in the watersheds and not solely to reduce the mitigation responsibility of the CVP and SWP.

Yours very truly,

DANTE JOHN NOMELLINI Manager and Co-Counsel

DJN:ju

DIRECTORS George Biagi, Jr. Rudy Mussi Edward Zuckerman

COUNSEL Dante John Nomellini Dante John Nomellini, Jr.

May 23, 2011

Via email to commentletters@waterboards.ca.gov and U.S. First Class Mail (Ten Copies)

Jeanine Townsend, Clerk to the Board State Water Resources Control Board 1001 I Street, 24th Floor Sacramento, CA 95814

> Re: Comments on the SWRCB's April 1, 2011 Revised Notice of Preparation and Notice of Additional Scoping Meeting re Update to the WQCP for the Bay-Delta Relating to Southern Delta Salinity and San Joaquin River Flow Objectives.

Dear SWRCB:

The Central Delta Water Agency (CDWA) has previously submitted numerous comments on this matter and hereby incorporates its prior comments dated April 6, 2009, entitled, "Comments on PUBLIC STAFF WORKSHOP re Consideration of Potential Amendments to the WQCP for the Bay-Delta Relating to Southern Delta Salinity and San Joaquin River Flow Objectives (which themselves incorporate its prior comments dated March 19, 2009 and October 1, 2008). The CDWA also hereby incorporates its December 6, 2010 comments on this matter entitled, "San Joaquin River Technical Report Comments."¹

The CDWA joins in the comments the South Delta Water Agency is providing on the instant Revised Notice of Preparation (NOP) and supplements those comments with the following.

1. Actions to Assure San Joaquin River Flows are Not Rediverted by Water Users Downstream of Vernalis.

On page 4 of Attachment 2 to the Revised NOP, it states:

¹ All of said comments can be found on the SWRCB's website at: http://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/bay_delta_plan/wat er_quality_control_planning/index.shtml

Although the most downstream compliance location for the San Joaquin River flow objective is at Vernalis, the objective is intended to protect migratory fish in a larger area, including areas within the Delta where fish that migrate to or from the San Joaquin River watershed depend on adequate flows from the San Joaquin River and its tributaries. <u>To assure that flows required to meet the San</u> Joaquin River narrative flow objective are not rediverted downstream for other purposes, the State Water Board may take water right and other actions to assure that those flows are used for their intended purpose. In addition, the State Water Board may take actions to assure that provision of flows to meet the narrative San Joaquin River flow objective do not result in redirected impacts to groundwater resources, potentially including requiring groundwater management plans, conducting a reasonable use proceeding, or other appropriate actions.

(Emphasis added.)

The emphasized sentence in the above paragraph is quite a mouthful. At the outset, the NOP does not provide sufficient information regarding such "water right and other actions" for public agencies or other interested persons to meaningfully provide "specific detail" as to "[t]he significant environmental issues and reasonable alternatives and mitigation measures that . . . will need to [be] explored in the draft EIR . . ." regarding those actions. (CEQA Guidelines, § 15082, subd. (b).) For example, reasonable alternatives to what? Similarly, reasonable mitigation measures to what impacts? And what precisely is the "intended purpose" of those San Joaquin River flows once they pass Vernalis, and where is the evidence and analysis to support that purpose?

To the extent the SWRCB is contemplating the restriction of any in-Delta water users from diverting water in order to assure the San Joaquin River flows "are used for their intended purpose [whatever that may be]," the SWRCB must ensure that it has fully complied with and honored all applicable laws and priorities associated with any such imposition of restrictions and, in particular, ensure that the SWP and CVP are fully complying with their various legal obligations.

For example, and in general outline form, among other matters, the SWRCB would have to fully take into consideration, and fully discuss and analyze in its EIR, all of the following before it sought to lawfully impose responsibility to meet a flow (or water quality) objective on any such in-Delta water user:

- (1) The SWP and CVP must bear full responsibility for full mitigation of their impacts including without limitation the impacts from reverse flows, reduced outflow, the drainage into the San Joaquin River from the westside of the San Joaquin Valley, and damage to spawning areas.
 - (a) Note: the impacts of ship channels are burdens of the State and Federal Government; and the burden of westside drainage is that of the CVP and

should fall most heavily upon the San Luis Unit in that the unit was not to go forward without a drain.

- (2) The SWP and CVP must provide adequate salinity control. (See e.g., Wat. Code, §§ 12200 et seq. & 11207; <u>U.S. v. Gerlach Livestock Co.</u> (1950) 339 U.S. 725; <u>Ivanhoe Irr. Dist. v. McCracken</u> (1958) 357 U.S. 275.)
- (3) The CVPIA burdens are those of the CVP.
- (4) Preservation of fish and wildlife is the responsibility of SWP and CVP with cost to be paid by users. Where possible enhancement must be incorporated with the cost of enhancement attributed to the State General Fund. (Wat. Code, § 11900 et seq.; <u>Goodman v. County of Riverside</u> (1998) 140 Cal.App.3d 900.)
- (5) The SWP and CVP must to the maximum extent possible operate and manage releases from storage into the Delta to provide salinity control and maintain an adequate water supply in the Delta sufficient to maintain and expand agriculture, industry, urban and recreational development. (Wat. Code, § 12205.)
- In allocating the burden within the CVP and SWP, the uses within the Delta and other areas and watersheds of origin must be accorded priority over exports. (Wat. Code, §§ 10505 et seq., 11460 et seq. & 12200 et seq.)
- (7) The remaining burden which would appear to be in the tributaries above the Delta is allocable among the other water users in accordance with water right priorities. The burden for bypass flows and other fish and wildlife requirements applicable under law to the various impoundments should not be shifted to other water users. Exporters other than the CVP and SWP must yield priority to the users within the Delta and other areas and watersheds of origin. (See Wat. Code, § 1215 et seq.; see also Wat. Code, §§ 12203 & 12205.)
- (8) To the extent that a water user within the Delta and the other areas and watersheds of origin is required to yield water which can be replaced with CVP or SWP water, then the CVP or SWP water should be burdened provided that if the water is not unregulated flow, bypassed natural stream flow, return flow from upstream use, natural tidal flow or physical solution water, etc., and is truly "stored water," then a requirement of a contract or other mechanism for reasonable payment for the storage benefit may be appropriate. (See Wat. Code, §§ 11460 et seq.)

///

///

2. Any Implementation Plan Needs to Forthrightly Address Term 91.

In the administrative and legal proceedings over Term 91 in <u>Phelps v. SWRCB</u> (2007) 157 Cal.App.4th 89, it became clear that Term 91 is simply a mechanism to impose responsibility on appropriative water right holders within the Delta watershed to meet the various Bay-Delta Water Quality Control Plan objectives. As the SWRCB explains in WRO 2004-0004, at pages 5 and 6:

"In effect, Term 91 requires appropriators with this term in their water right permits or licenses to forego diverting natural flow that is needed to meet the flow-dependent water quality objectives. When there is insufficient flow to meet the water quality objectives, diversions by Term 91 appropriators could contribute to increased concentrations of salts in the Delta channels."

A major problem, however, is that the implementation plans set forth in the 1995 as well as 2006 Plans do not even mention Term 91. Instead, both plans state the following:

"The State Water Board will consider, in a <u>future</u> water rights proceeding or proceedings, the nature and extent of water right holders' responsibilities to meet these objectives." (1995 Plan, p. 4; 2006 Plan, p. 3; emphasis added.)

For Phelps, et al., and presumably numerous other water right holders subject to Term 91, Term 91 was imposed on their water rights well *before* the 1995 and 2006 water quality control plans were even adopted, much less implemented. Moreover, the "future" water rights proceeding that was intended to establish the nature and extent of water right holders' responsibilities to meet the 1995 objectives, and which culminated in the SWRCB's Decision 1641, makes no mention of the assignment of responsibility to meet those objectives on Term 91 water right holders.

This practice needs to stop. If the SWRCB is going to continue imposing responsibility on Term 91 water right holders to meet one or more of its water quality plan objectives, including any of the objectives at issue herein, then the SWRCB must forthrightly address the propriety of such imposition in its water quality control plan and in its subsequent water right proceeding to assign responsibility to meet the plan's objectives, and discuss and analysis such imposition in its EIR for the plan and water right proceeding. As it stands, the SWRCB has been wrongfully imposing responsibility on Term 91 water right holders without any mention of such imposition in either its water quality control plans or the subsequent water right proceedings, much less any examination of issues such as the following:

- (1) What specific water quality objective or objectives is the Term 91 water right holder being held responsible for?
- (2) Does the Term 91 water right holder's water use actually negatively impact those water quality objectives?

(3) Assuming it does, is it nevertheless legally proper to impose responsibility to meet those objectives on that water right holder?

For example, with regard to the second question, it is not at all clear that Term 91 agricultural users in the Delta lowlands negatively impact any salinity objectives. In fact, the available evidence demonstrates that such use may actually *benefit* such objectives. As DWR's "Investigation of the Sacramento-San Joaquin Delta, Report No. 4, Quantity and Quality of Waters Applied to and Drained from the Delta Lowlands," dated July of 1956, explains at page 30:

"The Delta lowlands act as a salt reservoir, storing salts obtained largely from the channels during the summer, when water quality in such channels is most critical and returning such accumulated salts to the channels during the winter when water quality there is least important. Therefore agricultural practices in that area *enhanced* rather than degraded the good quality Sacramento River water en route to the Tracy Pumping Plant." (Emphasis added.)

And similarly, with regard to outflow objectives, the available evidence demonstrates that agricultural water use in the Delta lowlands likely results in a net *benefit* to outflow. For example, as the SWRCB recognized in its Decision-990, at page 46:

"The reclamation of the lands in the Delta has eliminated a large area of aquatic vegetation such as cat-tails and tules which consume three to four times as much water as the crops which are grown on these reclaimed lands. As a result, it appears probable that the consumption of water within the Delta has been decreased by reclamation development, and that a greater proportion of the stream flow entering the Delta now reaches the lower end of the Delta to repel saline invasion than before reclamation."

With regard to the third question set forth above, i.e., whether it is legally proper to impose responsibility to meet a Bay-Delta water quality objective intended to benefit fish and wildlife or any other beneficial use on a Term 91 appropriator, before it imposes any such responsibility, the SWRCB would have to ensure that it has complied with and honored all of the above-referenced applicable laws and priorities associated with any such imposition.

Up to this point the SWRCB has not mentioned the assignment of responsibility to meet the Bay-Delta water quality plan objectives on Term 91 water right holders in its 1995 or 2006 water quality control plans or subsequent implementation proceedings, much less properly examined any of the above-listed three questions or any of the above-referenced eight legal considerations. Accordingly, CDWA submits that the SWRCB's current imposition of responsibility to meet the existing water quality objectives on Term 91 water rights holders is contrary to law (as well as the express implementation language in the 1995 and 2006 plans) and any future imposition of such responsibility with respect to the instant San Joaquin River flows or southern Delta salinity requirements on such holders will continue to be unlawful unless and until the SWRCB forthrightly embraces such imposition, and the propriety thereof, in a future water quality control plan and/or the subsequent water right proceeding to assign responsibility to meet the plan's objectives.

Thank you for considering these comments and concerns.

Very

Dante John Nomellini, Jr. Attorney for the CDWA

DJR/djr