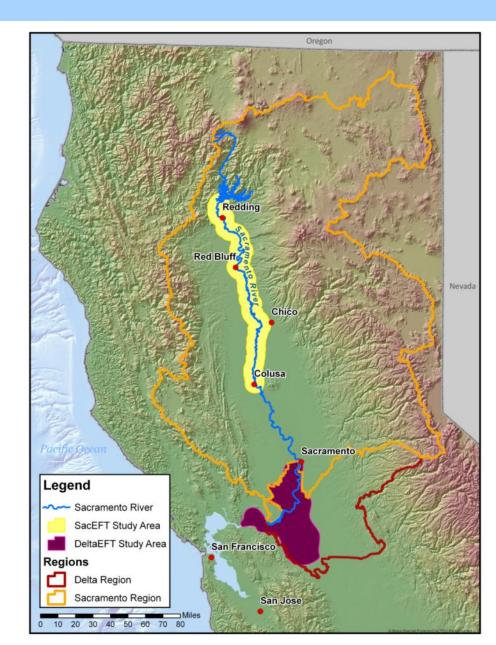
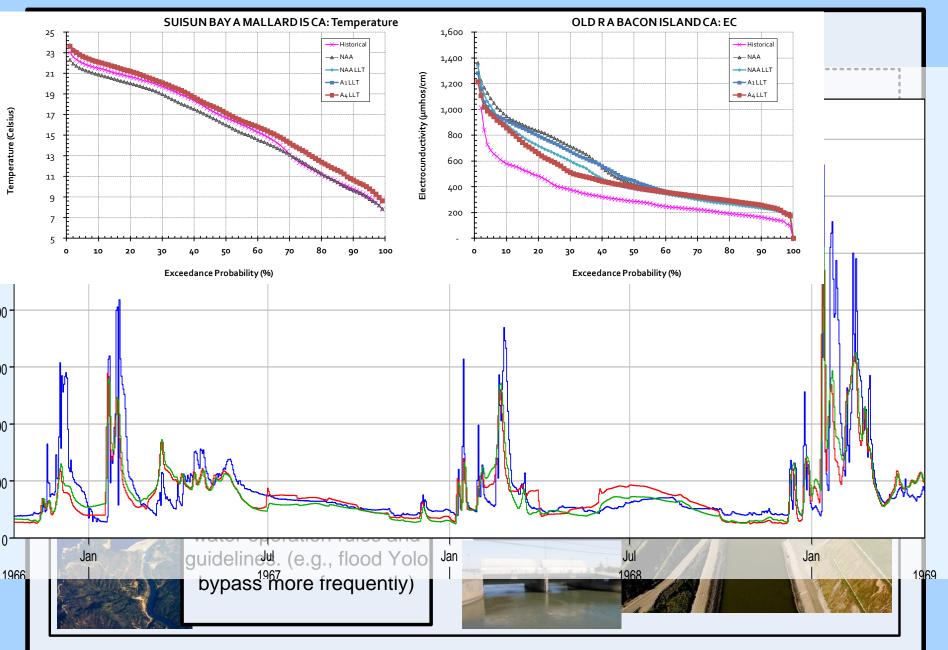
Multi-species ecosystem effects analysis & flow criteria evaluation

State Water Resources Control Board

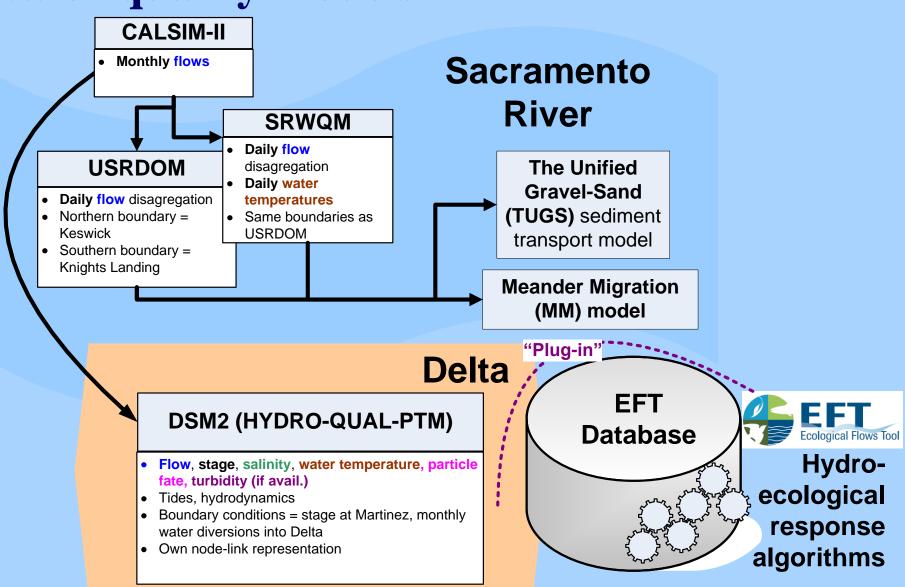
-Leo Winternitz - Clint Alexander

November 13 2012

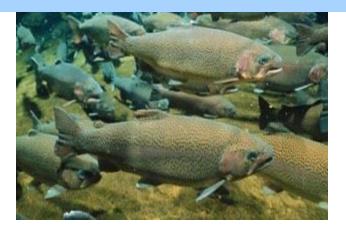

EFT's Geographical Scope


Sacramento EFT Keswick Dam to Colusa

Delta EFT


Delta region including Suisun Marsh

Multiple management questions



EFT: plug-in to preferred hydrologic & water quality models

SacEFT focal species & habitats

Steelhead (Oncorhynchus mykiss)

Chinook Salmon (Oncorhynchus tshawytscha)

Green Sturgeon (Acipenser medirostris)

Bank Swallow (*Riparia riparia*)

Western Pond Turtle (Clemmys marmorata) Proxy: Large Woody Debris Recruitment

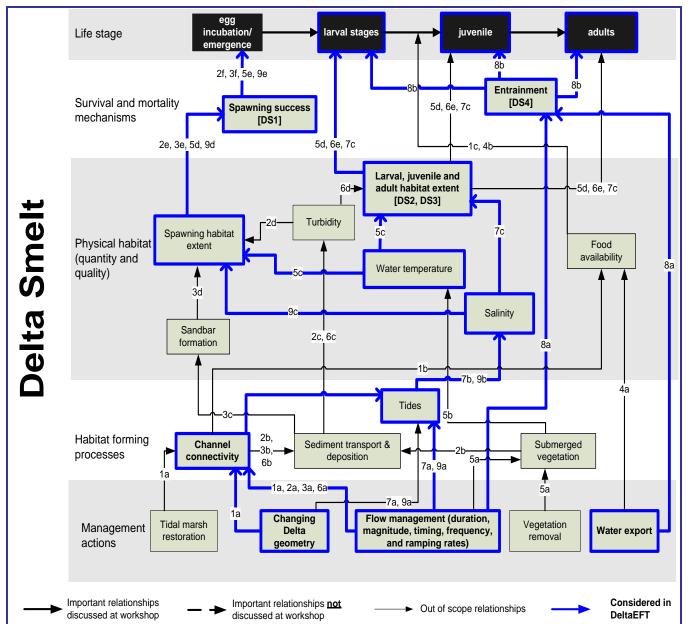
Fremont Cottonwood (Populus fremontii)

DeltaEFT focal species & habitats

Steelhead (Oncorhynchus mykiss)

Chinook Salmon (Oncorhynchus tshawytscha)

Delta Smelt (Hypomesus transpacificus)


Splittail (Pogonichthys macrolepidotus)

Tidal Wetlands

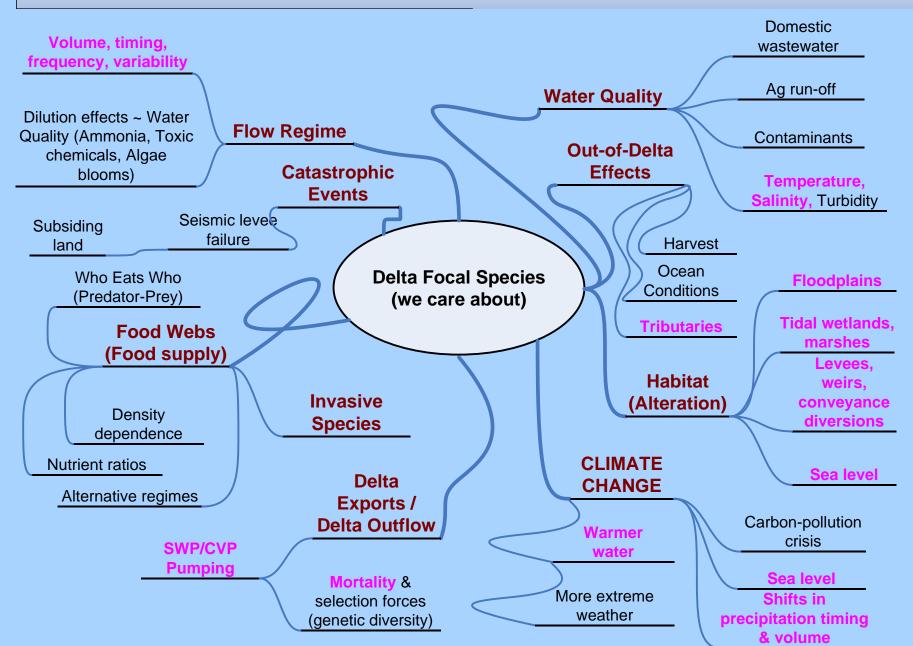
Invasive deterrence (*E. Densa, Corbicula, Corbula*)

Performance indicators based on causally Delta EFT reasoned, functional relationships

SacEFT indicators

	Focal Species & Habitats	Performance Measures				
	Fremont cottonwood (FC)	FC1 – Successful Fremont cottonwood initiation				
		FC2 – Cottonwood seedling scour.				
<u>ب</u>	Bank swallow (BASW)	BASW1 – Habitat potential/suitability				
River		BASW2 – Risk of nest inundation and bank sloughing during nesting				
Sacramento I	Western pond turtle	LWD1 – Index of old vegetation recruited to the Sacramento River mainstem.				
Je	Green sturgeon (GS)	GS1 – Egg-to-larvae survival				
an	Chinook salmon,	CS1 – Area of suitable spawning habitat (ft2)				
CC	Steelhead trout (CS)	CS3 – Egg-to-fry survival (proportion)				
0 0		CS5 – Redd scour risk				
0)		CS6 – Redd dewatering (proportion)				
		CS2 – Area of suitable rearing habitat (ft2)				
		CS4 – Juvenile stranding (index)				

DeltaEFT indicators


Focal Species & Habitats	Performance Measures
Chinook & Steelhead	CS7 – Smolt weight gain in alt. migration corridors
(CS)	CS9 – smolt mortality index as a function of passage time (negatively correlated with CS7)
	CS10 – smolt temperature preference index (departures from optimum v. weight gain)
Delta	DS1 – spawning success index
smelt (DS)	DS2 – index of habitat suitability
	DS4 – entrainment risk (index)
Splittail (SS)	SS1 – proportion of maximum potential spawning habitat (index)
Fresh / brackish	TW1 – brackish wetland area
tidal wetlands (TW)	TW2 – freshwater wetland area
Invasive species	ID1 – Brazilian waterweed suppression
deterrence (ID)	ID2 (Corbula), ID3 (Corbicula) – invasive clam larvae and recruit suppression

EFT: Not developed in a vacuum

Core Team	SacEFT Workshop Participants	Delta EFT Workshop Participants & DeltaEFT Design contributors			
Ryan Luster, TNC	Tricia Brachter, DFG	Peter Klimley, UC	Lori Chamurro, DFG		
Mike Roberts, (formerly TNC)	Ron Schlorff, DFG	Eric Larsen, UC Davis	Dan Kratville, DFG		
Greg Golet, TNC	Dave Zezulak DFG	Richard Corwin, USBR	Neil Clipperton, DFG		
Maurice Hall, TNC	George Edwards, DFG	Ron Ganzfried, USBR	Tara Smith, DWR		
Campbell Ingram, Delta Conservancy (formerly TNC)	Barry Garrison, DFG	John Hannon, USBR	Jim Long, DWR		
Anthony Saracino, (formerly TNC)	Stacy Cepello, DWR	Buford Holt, USBR	Bill Harrell, DWR		
Leo Winternitz, TNC	Dan Easton, DWR	David Lewis, USBR	Eric Reyes, DWR		
Clint Alexander, ESSA	Jim Wieking, DWR	Tom Morstein-Marx, USBR	Sushil Arora, DWR		
Don Robinson, ESSA	Adam Henderson, DWR	Mike Tansey, USBR	Nazrul Islam, DWR		
Frank Poulsen, ESSA	Aric Lester, DWR	Don Ashton, USFS	Lars Anderson, USDA		
Alex Embrey, ESSA	Bruce Ross, DWR	Ed Ballard, USFWS	Rosalie del Rosario, NMFS		
Katherine Wieckowski, ESSA	Koll Buer, DWR	Matt Brown, USFWS	Bill Fleenor, UC Davis		
Marc Nelitz, ESSA	Jason Kindopp, DWR	Dan Cox, USFWS	Patrick Crain, UC Davis		
David Marmorek, ESSA	Ryon Kurtis, DWR	Mark Gard, USFWS	Tom Kimball, SWRCB		
Katy Bryan, ESSA	Sean Sou, DWR	Andrew Hamilton, USFWS	Chandra Chimalkuri, CH2M Hill		
David Carr, ESSA	Howard Brown, NMFS	Derek Hilts, USFWS	Michael Tansey, USBR		
	Steve Lindley, NMFS	Brenda Olson, USFWS	Allison Willy, USFWS		
	Bruce Oppenheim, NMFS	Bill Poytress, USFWS	Jon Rosenfield , The Bay Institute		
	Naseem Alston, NMFS	Joe Silveira, USFWS	Lisa Lucas, USGS		
	Brian Ellrott, NMFS	Jim Smith, USFWS	Larry Brown, USGS		
	Tag Engstrom, CSU Chico	Joseph Terry, USFWS	Brett Kawakami, CCWD		
	Dave Germano, CSU	Bruce Bury, USGS	John DeGeorge, RMA		
	Josh Israel, UC Davis	Larry Brown, USGS	Dave Harlow, SWS		
	Steve Greco, UC Davis	John Bair, McBain and Trush	Dave Fullerton, MWD		
	Joe Heubler, UC Davis	Brad Cavallo, Cramer Fish Sciences	Michael Williams, consultant		
	Michael Singer, UCSB	Nadav Nur, PRBO	Matt Nobriga, USFWS		
	Ken Kirby	Nat Seavy, PRBO	Frederick Feyrer, USBR		
	Tom Smith, Ayres Associates	Chrissy Howell, PRBO	Wim Kimmerer, SFSU		
	Dave Vogel	Joel Van Eenennaam, UC Davis	Ted Sommer, DWR		

Cumulative Effects & Multiple Mechanisms (DeltaEFT)

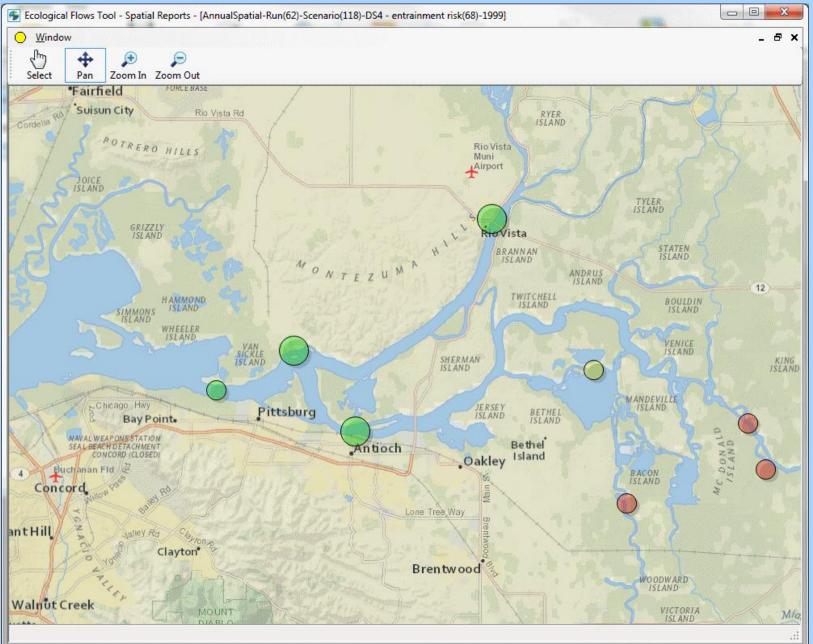
2060s	Strong beneficial impact owing to projec	t alternative and/or climate	e & demand state							
+5% to +9%	Small beneficial impact owing to pro	ject alternative and/or clim	nate & demand state		Baseline Reference Case NAA-Current vs. Alternative					
-3% to +4%	Negligible impact owing to project altern	ative and/or climate & der		Scenarios						
-4%	Slight negative impact owing to project a	alternative and/or climate &	& demand state	ce measure	.T 225)	Г 226)	Г 228)			
-5% to -9%	Small negative impact owing to project a	alternative and/or climate &	& demand state		NAA-LLT (Scenario 225)	A1-LLT (Scenario 226)	A4-LLT (Scenario 228)			
≤ –10%	Strong negative impact owing to project	alternative and/or climate	& demand state							
		Delta Smelt	Spawning success (DS	1)	0	0	0			
High	-level		Habitat suitability (DS2)		0	0	0			
<u>i ngn</u>	-10/01		Entrainment risk (DS4)		0	6	11			
01140040		Splittail	Splittail habitat (Yolo) (S	SS1)	2	82	82			
<u>sumn</u>	<u>nary:</u>	Tidal Wetlands	Tidal wetland area (brackish) (TW1)		-35	-35	-35			
	•		Tidal wetland area (freshwater) (TW2)		-29	-29	-29			
% change in number of simulation		Invasive deterrence	Egeria suppression (ID1)		-6	3	-3			
			Corbula suppression (ID2)		0	-3	-3			
			Corbicula suppression (ID3)		0	0	0			
		Fall Chinook	Yolo Bypass rearing (CS	S7)	-29	-29	-29			
			Smolt temperature stress (CS10)		-12	-12	-12			
		Late Fall Chinook	Smolt predation risk (CS9)		0	-6	-6			
	1 •		Yolo Bypass rearing (CS7)		-12	13	13			
<i>years</i> having a			Smolt temperature stress (CS10)		-6	-6	-6			
	-		Smolt predation risk (CS9)		-6	-6	-6			
favorable rating		Spring Chinook	Yolo Bypass rearing (CS7)		-6	0	0			
			Smolt temperature stress (CS10)		-12	-12	-12			
			Smolt predation risk (CS9)		-7	-7	-7			
		Winter Chinook	Yolo Bypass rearing (CS7)		-19	6	12			
			Smolt temperature stress (CS10)		-31	-31	-31			
			Smolt predation risk (CS9)		0	0	0			
		Steelhead	Yolo Bypass rearing (CS7)		-13	-13	-13			
			Smolt temperature stres		-6	-6	-6			
			Smolt predation risk (CS9)		-6	-6	-6			

Key Message

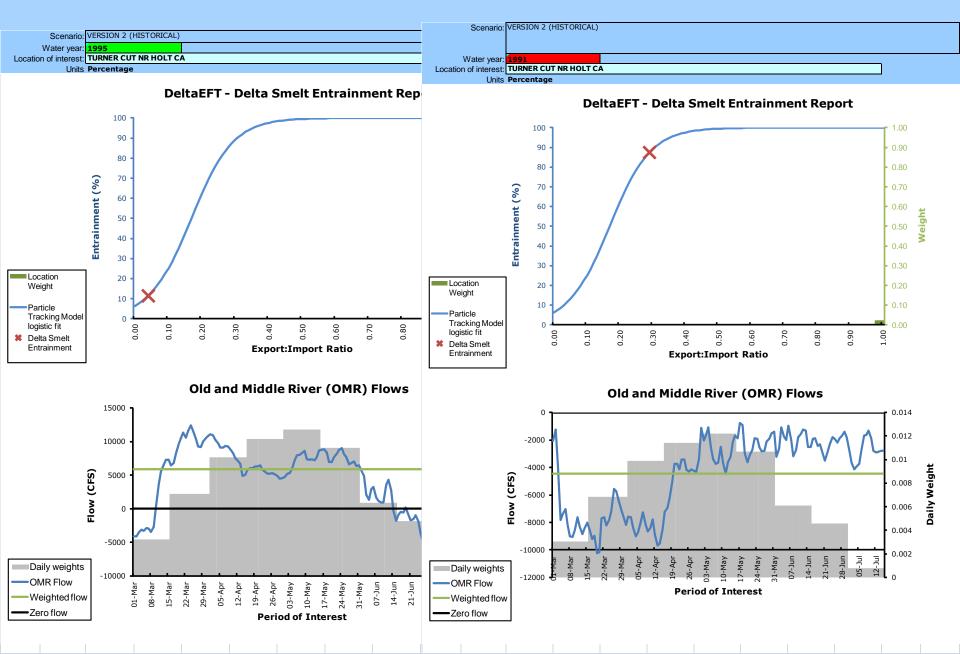
The climate of 2060s (and its associated sea level) + increased human water demands = strong downward impacts on most DeltaEFT performance measures

> Exceptions: 1) Yolo Bypass habitats, which benefit from notching of the Fremont Weir under the A1 and A4 alts and 2) Delta smelt entrainment which is reduced by lessening of frequency of reverse flows in Old and Middle Rivers under A1/A4 operations.

Multi-year "roll-up"


🗲 Eco	logical Flows Tool - D:	\Users\Clint\Documents\Project\EFT	(EN1695)\Tasks	s\Task 2.9b De	eltaEFT and SacEFT	Tradeoff Analysis\E	FT_Files\DeltaEFT Del	ta Smelt - 5		_			
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>M</u> oo	lels <u>R</u> eports <u>W</u> indow <u>H</u> elp											
				V	<u> </u>			1			1ê		
	In the second second						Chan Dall Lin		Consta Demosta	Einishad Danasta			
; I	New Viewer Set	Open Viewer Set Save Vi	ewer Set	Add Viewer	Show Criteria	Show Annual	Show Roll-Up	Select Reports	Create Reports	Finished Reports	Meander Visualiza	tion	
Delta	EFT Delta Smelt - Roll	-Up											[
h	ndicator Name	Indicator Description	Create Repor	t			Multi-Yea	r Rollup			% Poor	% Worris	% Good
	BDCP - A1-LL	[SacDelta											
		Habitat quality index (Delta Smelt)									81	7	12
	S4 - entrainment risk	Entrainment risk (Delta Smelt)									0	75	25
	BDCP - A4-LL	[SacDelta											
		Habitat quality index (Delta Smelt)									62	26	12
	S4 - entrainment risk	Entrainment risk (Delta Smelt)									0	69	31
	BDCP - NAA S	acDelta											
		Habitat quality index (Delta Smelt)									75	13	12
	S4 - entrainment risk	Entrainment risk (Delta Smelt)									0	81	19
	BDCP - NAA-L	LT SacDelta											
		Habitat quality index (Delta Smelt)									62	26	12
	S4 - entrainment risk	Entrainment risk (Delta Smelt)									0	81	19
Delta	EFT Delta Smelt (Histo	rical) - Roll-Up											E
l	ndicator Name	Indicator Description	Create Repor	t			Multi-Yea	ar Rollup			% Poor	% Worris	% Good
	VERSION 2		DRICAL)										
-	DS2 - habitat quality	Habitat quality index (Delta Smelt)									75	25	0
	S4 - entrainment risk	Entrainment risk (Delta Smelt)									30	50	20

Annual "roll-up"



🗲 Ecological Flows Tool - D:\Users\Clint\Documents\Project\EFT (EN1695)\Tasks\Task 2.9b DeltaEFT and SacEFT Tradeoff Analysis\
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>M</u> odels <u>R</u> eports <u>W</u> indow <u>H</u> elp
New Viewer Set Open Viewer Set Save Viewer Set Add Viewer Show Criteria Show Annual
DeltaEFT Delta Smelt - Annual
Indicator Name Indicator Description 1919 975 777 978 81 1919 82 23 10 10 10 10 10 10 10 10 10 10 10 10 10
BDCP - A1-LLT SacDelta
DS2 - habitat quality Habitat quality index (Delta Smelt)
DS2 mabiliti quality index (Delta Smelt) DS4 - entrainment risk Entrainment risk
BDCP - A4-LLT SacDelta
DS2 - habitat quality Habitat quality index (Delta Smelt)
DS4 - entrainment risk Entrainment risk (Delta Smelt)
BDCP - NAA SacDelta
DS2 - habitat quality Habitat quality index (Delta Smelt)
DS4 - entrainment risk Entrainment risk (Delta Smelt)
BDCP - NAA-LLT SacDelta
DS2 - habitat quality Habitat quality index (Delta Smelt)
DS4 - entrainment risk Entrainment risk (Delta Smelt)
DeltaEFT Delta Smelt (Historical) - Annual
Indicator Name Indicator Description 1999999999999999999999999999999999999
VERSION 2 (HISTORICAL)
DS2 - habitat quality Habitat quality index (Delta Smelt)
DS4 - entrainment risk (Delta Smelt)

Spatial data visualizations (e.g. entrainment risk)

Delta Smelt Entrainment (DS4): Annual details

Question 1: What types of analyses should be completed?

- Determine priorities for ecological needs & develop alternative ecological flow regimes x water year class
 - Include both flow and non-flow actions
- 2. Test alternative eFlow regimes (& paired non-flow actions) vs. other beneficial uses.
 - What would these guidelines do to ability to meet established rights & standards? Which ones have least impact on water deliveries, power production, water temperatures, etc.?

Question 1: What types of analyses should be completed?

- Effects on major linked eco-regions (Sacramento, San Joaquin).
- 4. Develop more specific statements of frequency
 different targets needed & characterize within year
 trade-offs (e.g., "species *x* over species *y* if...").
- Resilience of strategies vs. future climate change effects on water supplies, demand and sea level.

Question 2: What tools should be used? Advantages & limitations?

Tool DeltaEFT, SacEFT

Advantages

- More representative: multiple focal species & habitats.
- **Rapid scenario comparison** trade-offs in one framework.
- Eco-regions linked: Sacramento & Delta.
- Broad synthesis of science & advice of experts.
- Evaluate **multiple actions** (gravel, channel migration, floodplain activation, conveyance, operations).
- Intuitive outputs simplify communication.
- **Speed / agility** EFT effects analyses can be run in "days" and "weeks" (rather than months/years).
- **Plug-in** to <u>any</u> hydrodynamic / water quality model.
- Extensible. Improve/add performance indicators as science evolves. Design anticipates being refined over time.
- "Goldilocks" level of detail. Not as data hungry & assumption rich as life-cycle models.

Limitations

• Does not permit a definitive assessment of population level benefits (not a life-cycle tool).

• As with other tools, criteria & thresholds identified by EFT need to be accompanied by monitoring & adaptive management.

• Does not consider effects on other beneficial uses (water deliveries, power, etc.)

• Not applicable to realtime decision making.

Question 2: What tools should be used? Advantages & limitations?

Tools

WEAP, CALVIN, CALSIM-USRWQM/USRDOM, DSM2, etc. & related hydro-power, water temperature models

Advantages

- Numerous. These tools have multiple applications & are *essential* to planning.
- Physical hydrosystem effects on water deliveries, storage, exports, water temperature, power generation, flood control for SWP and CVP.
- Scenario evaluation tradeoffs.

Limitations / Challenges

• Options for integrating and <u>accurately representing</u> ecological criteria / guidelines into operations.

• Ability to "unwind" and "re-constrain" hydrosystem to rapidly evaluate ecological flow regime criteria (rather than simply cumulatively add ever more lowpriority constraints).

• Economic evaluations not always included. (Including economic benefits of fish/wildlife/recreation).

• Future climate / sea level / demand and resilience of boundary conditions & calibration assumptions?