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Executive Summary:

An evaluation of four Sacramento-San Joaquin River Delta juvenile
salmon survival studies

Background.

The US Fish and Wildlife Service, Stockton Fish and Wildlife Office, has since the mid-1980s

conducted several multi-year release-recovery experiments with coded-wire-tagged juvenile

Chinook salmon. The objectives of the studies were (1) to estimate survival through the

lower portions of the Sacramento and San Joaquin river systems, the California Delta, and

(2) to quantify the factors affecting survival. Four of these studies, listed more or less by

their historical start dates, are the Delta Cross Channel, Interior, Delta Action 8, and VAMP

experiments.

Delta Cross Channel: These studies focused on how the position of the Delta cross-

channel (DCC) gate affected survival of out-migrating juvenile salmon. When the

gate(s) is open, water flow from the Sacramento river into the central Delta increases.

The a priori hypothesis for these studies was that survival would be lowered with the

gate open since the probability of entering the interior Delta would increase and the

fish would thereby be more vulnerable to the water export pumps at the state water

project (SWP) and at the federal Central Valley project (CVP). Temporally paired

releases were made above the DCC (near Courtland) and below the DCC (at Ryde)

and recoveries were made at Chipps Island and in the ocean fisheries.

Interior: These studies were somewhat of a follow-up to the Delta Cross Channel

studies that aimed to more directly compare the survival of fish already in the interior

Delta to the survival of fish remaining in the Sacramento River. Temporally paired

releases were made, one in the interior Delta (in Georgiana Slough) and one in the

Sacramento River (at Ryde), and recoveries were made at Chipps Island and in the

ocean fisheries.

Delta Action 8: These studies were essentially an alternative analysis of the Interior

studies in that the relative survival of interior Delta releases (compared to Sacramento

River releases) was to be modeled as a function of water exports. However, with Delta

Action 8 objectives in mind, export levels were deliberately manipulated to increase

the scope of inference.

VAMP: In contrast to the other three studies which examined survival for fish out-

migrating from the Sacramento River, VAMP focused on the survival of salmon

out-migrating from the San Joaquin River. The primary factors of interest were
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water export and flow levels. Of additional interest was the effect on survival of

placing a barrier at the head of Old River (HORB). When the HORB is in place the

chance that a fish will enter Old River from the San Joaquin River is decreased, and

presumably the influence of the CVP and SWP, which are located adjacent to Old

River, is lessened. Temporally paired releases were made at two or three locations,

though a total of five release locations were at one time or another used, and recoveries

were made at Chipps Island and in the ocean fisheries, and in more recent years at

Antioch.

A positive design feature of all four release-recovery studies was the temporal pairing of

releases made at different locations in the river system, i.e., for each upstream release (or

releases), a concurrent release was made downstream. The temporal pairing aimed to control

for the effect of potentially confounding factors and thereby increase precision.

USFWS staff have previously analyzed these studies at various stages of completion.

These analyses utilized the temporal pairing but an underlying probability framework for the

release-recovery data was not explicitly specified. The analyses did not account for unequal

sampling variation (due to, for example, differing release numbers) nor between release pair

variation (e.g., unaccounted-for environmental variation in underlying survival or capture

probabilities). Analyses of recoveries at different locations were typically carried out sepa-

rately on a location-specific basis; e.g., results for recoveries at Chipps Island were analyzed

and then the analysis was repeated for recoveries from the ocean fishery.

Bayesian hierarchical models.

In this report, Bayesian hierarchical models (BHMs) were used to reanalyze the data from

these studies. The BHM framework explicitly defined probability models for the release-

recovery data and accounted for unequal sampling variation and between release pair vari-

ation. Recoveries from multiple locations were analyzed in combination. Such a framework

is more statistically efficient and coherent than previous analyses in that several levels of

uncertainty are explicitly accounted for, using recoveries from multiple locations simultane-

ously increases precision, and the effect of sample size on precision can be readily examined.

However, the costs of the BHM approach include increased model complexity and more

technically difficult model fitting procedures, in this case, Markov chain Monte Carlo.
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Some assumptions of the BHMs as applied to these studies are worth highlighting. One is

that for temporally paired releases the capture probabilities at recovery locations were iden-

tical; e.g., for a temporally paired Courtland and Ryde release, the probability that a fish

alive at Chipps Island is then caught at Chipps Island is the same for fish from either release

location. A related assumption is that the ocean recovery probabilities, which includes sur-

vival, spatial distribution, and maturation probabilities, are the same for temporally paired

releases. Finally for the VAMP studies, where releases at two or three locations were made

more or less upstream of one another, and absolute survival, as contrasted to relative survival

is estimated, the survival of fish through in-common downstream sections was assumed the

same. For example, given a paired release at Dos Reis and at Jersey Point, fish from Dos

Reis that have survived to Jersey Point have the same survival probability from there on

as do the Jersey Point releases. Thus, it is assumed that there is no temperature shock,

due to differences in truck water temperature and river water temperature, which increases

mortality for Jersey Point releases over and above the mortality that will be experienced

by Dos Reis fish that have reached Jersey Point. To estimate relative survival, however,

between release groups, such shock is acceptable so long as it is the same for both release

groups.

Results.

For the most part, the substantive conclusions from the BHM analyses, summarized below,

were consistent with previous USFWS analyses.

Delta Cross Channel: There was modest evidence, 64 to 70% probability, that sur-

vival of Courtland releases, relative to the survival of Ryde releases, increased when

the gate was closed.

Interior: Survival for the interior Delta releases was estimated to be about 44% of the

survival for the Sacramento River releases.

Delta Action 8: There was a negative association between export volume and relative

survival, i.e., a 98% chance that as exports increased, relative survival decreased.

Environmental variation in the relative survival was very large, however; e.g., for one

paired release the actual relative survival at a low export export level could with high

probability be lower than relative survival at a high export level for another paired

release.

VAMP: (a) The expected probability of surviving to Jersey Point was consistently

larger for fish staying in the San Joaquin River (say passing Dos Reis) than fish

entering Old River, but the magnitude of the difference varied between models some-

what; (b) thus if the HORB effectively keeps fish from entering Old River, survival of
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out-migrants should increase; (c) there was a positive association between flow at Dos

Reis and subsequent survival from Dos Reis and Jersey Point, and if data from 2003

and later were eliminated from analysis the strength of the association increased and

a positive association between flow in Old River and survival in Old River appeared;

(d) associations between water export levels and survival probabilities were weak to

negligible. Given complexity and number of potential models for the VAMP data,

however, a more thorough model selection procedure using Reversible Jump MCMC

is recommended.

Discussion.

The resulting BHM analyses are not the ultimate, definitive explanations for what affects ju-

venile salmon survival through the Delta, particularly for out-migrants from the San Joaquin

River. In general data limitations inherent to release-recovery data, i.e., that only one cap-

ture is possible, relatively low capture probabilities, relatively high environmental variation,

and in the case of VAMP the lack of balance in the release strategy, affect the accuracy of

estimates of effects on survival.

The BHM framework, however, which allowed for between release variation in survival

and capture probabilities, is arguably an improvement over previous analyses. For example,

models without such random effects in the survival and capture probabilities, for example, did

not fit the data nearly as well as models with random effects. The variation in recoveries was

greater than what would be explained by standard, non-random effects logistic regression.

Given the apparently high environmental variation, it may take many replications of tem-

porally paired releases to more accurately quantify the effects of DCC gate position, exports,

flow, and HORB on survival. Regarding future work, if CWT release-recovery data continue

to be the primary source of information, then (a) making releases below the in-river recovery

locations, such as Chipps Island, is recommended to allow separate estimation of capture

and survival probabilities and (b) more detailed analysis of ocean recovery patterns for tem-

porally paired releases may be useful. A promising alternative to CWT data is the use of

acoustic tags and in-river receivers. Fish must be sacrificed to read CWTs while acoustic

tags can be detected, and read, remotely, thus allowing repeated recaptures and increased

precision in estimates of survival. Additionally, by judicious placement of receivers, acoustic

tags can provide information about migration paths much more readily than CWT data.
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1. Introduction

Throughout the Sacramento and San Joaquin river systems abundances of native Chinook

salmon runs are far below historical levels. The declines in abundances of some runs have

been drastic enough to result in endangered species listings; e.g., Sacramento winter run

Chinook salmon were put on the federal endangered species list in 1994. Reasons for the

declines include man induced losses of and changes in adult spawning and juvenile rearing

habitat such as the building of dams and various water diversions. To attempt to estimate the

survival probabilities for juvenile salmon during the out-migration period, and to understand

how survival may be associated with various water conditions and man-made structures, the

US Fish and Wildlife Service (USFWS), Stockton Fish and Wildlife Office, has been carrying

out various survival studies, more or less annually, for over twenty years.

Many of these studies have focused on survival through and near the California Delta

(hereafter the Delta), which is located in the lower reaches of the Sacramento and San

Joaquin rivers, including their confluence. The general design of the studies is to release

hatchery-reared juvenile Chinook salmon at two or more locations in the river, catch fish

downstream using a trawl, typically over a two to three week period, and then, over a two to

four year period, recover others in samples taken from ocean fishery catches. At the hatchery

the fish are tagged internally with coded-wire-tags and externally marked by excising the

adipose fin.

The release and recovery locations and duration of four of the studies are summarized in

Table 1. The locations of the various release locations for the studies and the downstream

recovery locations (Antioch and Chipps Island) are shown in Figure 1. Schematics of the

release-recovery design for each of the studies are shown in Figure 2.

The primary objectives of each study are listed below.

(1) Delta Cross Channel studies (DCC): To determine whether survival of out-migrating

juvenile salmon from Courtland, located on the Sacramento River just above the

Delta Cross Channel, to Chipps Island is higher when the Delta Cross Channel Gates

are closed than when they are open.

(2) Interior Delta vs mainstem Sacramento studies (Interior): To determine whether

survival of out-migrating juvenile salmon from Georgiana Slough, located in the north

(interior) Delta, to Chipps Island is lower than the survival from Ryde, located in

the Sacramento River, to Chipps Island.
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(3) Delta Action 8 studies (DA 8): To determine whether survival of Georgiana Slough

releases relative to Ryde releases is associated with water project exports (see the

Central Valley Project (CVP) and State Water Project (SWP) in Figure 1). (Note:

this is an extension of the Interior study.)

(4) Vernalis Adaptive Management Plan studies (VAMP): To determine if survival of out-

migrating juvenile salmon from various locations on the San Joaquin River (Durham

Ferry, Mossdale, Dos Reis, and Jersey Point) to Antioch and Chipps Island is related

to water project exports and San Joaquin River flows.

There are three main purposes of this paper: (1) to evaluate the four studies, some of which

are still ongoing, in terms of how well the studies did (or can) achieve their stated objectives,

(2) to demonstrate alternative analysis procedures, and (3) to make recommendations for

alternative study designs.

Section 2 reviews the data generation and analysis procedures of the USFWS for each

study. A general probability framework, hierarchical models, for viewing all four studies is

described in Section 3, particular models for each of the studies are given in Section 4, and

the framework is applied, with a reanalysis, to each of the studies in Section 5. Sample

size determination for some of the studies is discussed in Section 6 and the last section

includes recommendations and conclusions. Appendices include technical details of some of

the analysis procedures along with computer code.
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2. Background: Data Summary and Previous Analyses

2.1. Data. In all four studies releases were made in temporally matched pairs or sets, where

one release served as a control group in some regard. The term paired release-recovery

experiment will be used to describe these studies, even when more than two temporally-

matched releases were made. Table 2 summarizes the release-recovery notation used in this

report,with more explanation below, along with some of the notation used for models. The

release numbers and recoveries for the paired releases in each of the four studies are shown

in Tables 3-5.

Notation. Number of fish released is denoted by R and y is the number recovered. Release

locations Courtland, Georgiana Slough, Ryde, Durham Ferry, Mossdale, Dos Reis, and Jersey

Point are abbreviated Ct, GS, Ry, DF , MD, DR, and JP , respectively. Similarly, recovery

locations Chipps Island, Antioch, and the ocean fishery samples are abbreviated by CI ,

Ant, and Oc. The release and recovery abbreviations are used as subscripts for R and y;

for example, recoveries at Chipps Island of releases made from Courtland are represented by

yCt→CI . The ocean recoveries used for analysis are estimated, not observed, values and are

shown with a hat, e.g., ŷRy→Oc. Recovery fractions, numbers recovered divided by number

released, are denoted r̂; e.g., r̂Ry→Oc = ŷRy→Oc/R. The fraction of total recoveries relative to

number release are called combined recovery fractions and denoted, for example, r̂Ry→CI+Oc.

In-river smolt recoveries. For all four studies a midwater trawl operating at Chipps Island

has been used to capture the released salmon. The trawl is part of a longterm USFWS

monitoring program to collect information on the abundance of salmon and other species.

A single tow is usually of 20 minute duration and is made either along the north shore,

in the middle of the river, or along the south shore. During the period when fish from the

studies are out-migrating past Chipps Island, the trawl sampling effort is often increased. For

example, sampling during May and June (which is when DCC fish and VAMP fish pass by)

and during December and January (when Interior/Delta Action 8 fish pass by) has usually

been on a daily basis. For a given sample day at least 10 tows are made, and for some days

in May and June the number of tows is doubled.

For the VAMP study (since year 2000) additional trawling has been done using a Kodiak

trawl at Antioch in a fashion similar to that at Chipps Island. However, the number of tows

made in a sampled day has been more variable than that at Chipps Island; e.g., in year 2005,

the number of tows made at Antioch on a given sample day ranged from 5 to 30.
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Ocean adult recoveries. The estimated number of ocean recoveries are expansions of

observed recoveries taken from samples of landed ocean catches. Spatially and temporally

stratified random samples are taken of the catches landed by the commercial troll and sport

fisheries at various ports along the Pacific coast throughout the fishing season. Recoveries

from a given release can occur at ages 2, 3, 4 or 5; i.e., if out-migrating in year t (age 1),

it could be caught in years t+1, t+2, t+3, or t+4. The expanded recoveries from a given

release can be written approximately as follows, ignoring the distinction between samples

taken of commercial and of sport fisheries. Within stratum h (a particular year-week-area

combination), letting Nh be the total number of sample units, nh be the number selected

(within stratum h), and obsx→h be the number of sample recoveries from release x, the

estimated number of recoveries is

ŷx→Oc ≈
∑

year

∑

week

∑

area

Nyear,week,area

nyear,week,area
obsx→year,week,area .

These estimates will be referred to as expanded ocean recoveries. The overall sampling rate

is around 20 to 25%, i.e., n/N ≈ 0.20 to 0.25, and the precision of the estimates is likely

relatively high.

Salvaged fish. Out-migrating smolts are also recovered or collected at salvage facilities at

the water export locations (one near the state water project, SWP, and one near the federal

water project, CVP). The collection facilities are sampled on a regular, fairly systematic

basis, and salmon in the sample with a missing adipose fin are sacrificed to read the coded-

wire tag. Based on these samples, the total number of tagged fish in the collection facility are

estimated. This total, including sacrificed fish, is the estimated salvage. All the collected fish

(excluding those sacrificed during sampling) are then trucked from the facilities to locations

about 8 to 11 miles upstream of Chipps Island. Fish from the state facility are released either

in the Sacramento River, at Horseshoe Bend and, or in the San Joaquin River, at Curtis

Landing near Antioch Bridge; from federal facilities releases are either in the San Joaquin

River at Antioch, near Antioch Bridge, or in the Sacramento River at Emmanton, near

Sherman Island. Salvaged fish are potentially being recovered at Chipps Island and in the

ocean fisheries, thus using estimated salvaged fish as a response variable along with recoveries

at Chipps Island and elsewhere would potentially lead to double-counting. However, Newman

(2003) estimated that the probability of recovery at Chipps Island is in the range of 0.001

to 0.002. Thus the number of fish salvaged and caught at Chipps Island may be relatively

small.

Inland recoveries. Returning adult fish are also recovered in freshwater areas, in samples

taken to estimate escapement and at hatcheries, sometimes referred to as inland recoveries.
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Similar to ocean recoveries, observed and expanded numbers are calculated. Escapement

sampling procedures vary considerably throughout the Central Valley, and coverage is un-

even. Hatchery fish released away from the hatchery they were reared in are quite likely

to stray, with straying probabilities generally increasing with increasing distance from the

hatchery. If the straying pattern differs between releases within the same release set, and if

the sampling effort differs between return locations, then estimates of adult freshwater re-

turns need to be adjusted accordingly, otherwise bias will result. Such adjustments, however,

would be a considerable undertaking, and has not been attempted for the work described

herein.

Trawl efficiency measure. For some of the USFWS analyses, a survival “index” was

calculated using a measure of the trawl gear efficiency. The idea behind the trawl efficiency

measure was to adjust for possible differences in the capture probabilities between releases

in a paired release. The measure is based on duration of sampling and the channel width

sampled relative to the the length of out-migration time and total channel width at Chipps

Island (or Antioch) during that time. The relative width of channel sampled is calculated

by dividing the net width by the estimated channel width; e.g., at Chipps Island the channel

width is 3900 feet, the midwater trawl net is 30 feet wide, thus the fraction sampled is

30/3900 = 0.00769. The fraction of out-migration time sampled is calculated by dividing

the total minutes the net was towed by the number of minutes elapsed between the first and

last days of recovery; e.g., if the first recovery was on May 5 and the last on May 11, and

the net was towed for 2608 minutes, the fraction is 2608/(7*24*60) = 0.259. Trawl efficiency

is then the product of these two fractions, e.g., 0.259*0.00769 = 0.00199. More generically,

letting f denote the trawl efficiency measure:

f =

[
Sampling duration

Out-migration duration

]
×

[
Trawl net width

Channel width

]

Since the calculated out-migration duration is tied to the recovery dates, efficiency estimates

can differ between paired releases if the dates of first and last capture do not coincide.

Problems with this measure are discussed later.

2.2. DCC studies. The Delta Cross Channel (DCC) was built in 1951 by the US Bureau of

Reclamation to increase the amount of water transferred from the Sacramento River across

the Delta to the federal pumping plant at Tracy (the CVP), which in turns pumps water

into the Delta Mendota Canal. There are two movable gates, the DCC gate, which can

be opened to let water from the Sacramento River enter the Delta or closed to stop such

transfer. Just below the entrance to the DCC on the Sacramento River is the entrance to

the Georgiana Slough, which is another way for water, and fish, to enter the Delta. Once
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fish enter the Delta, because of the stream geometry and the relative proximity of the SWP

and CVP, they are presumably more vulnerable to mortality induced by the pumps.

To understand how the position of the Delta Cross Channel gate, as well as release location

relative to the entrance to Georgiana Slough, affected the survival of fish out-migrating down

the mainstem of the Sacramento River, a total of thirteen paired releases were made during

the spring months (usually May) between 1983 and 1989 at Courtland and at Ryde (Figure

1). All of the releases were juvenile fall run Chinook salmon that had been raised at the

California Department of Fish and Game’s Feather River fish hatchery. The Courtland site

is on the mainstem of the Sacramento River just above the entrances to the Delta Cross

Channel and Georgiana Slough, while Ryde is on the mainstem below both entrances; thus

fish released from Ryde are much less likely to enter the interior Delta. Four pairs were

released with the DCC gate closed and nine pairs were released with the DCC gate open.

Table 3 shows the numbers released at Courtland and Ryde and the number of recoveries at

Chipps Island and the expanded ocean recoveries.

Simple summaries. The combined Chipps Island and ocean fishery recovery fractions for

the Courtland (r̂Ct→CI+Oc) and Ryde (r̂Ry→CI+Oc) releases for different gate positions in

Figure 3. Given that Courtland is upstream of Ryde, one might expect the Ryde recovery

rate to be higher than the Courtland rate no matter what the gate position. However, in 2 of

the 4 open gate and 2 of the 9 closed gate situations the point estimate of the Ryde recovery

rate is less than the Courtland rate, presumably a reflection of sampling variation. Figure

4, which compares the ratio of recovery fractions, r̂Ct→CI+Oc/r̂Ry→CI+Oc, for different gate

positions, suggests that Courtland releases tend to survive better when the DCC gates are

closed. There was one outlier (r̂Ct→CI+Oc/r̂Ry→CI+Oc > 3) for the open gate release pairs; this

is from a 1989 release (Table 3, Group 13), where there were relatively few ocean recoveries

from the Ryde release.

Regarding other recoveries, the estimated number of juvenile fish salvaged by the fish

export facilities varied widely between releases (Table 3). For only one of the Ryde releases

were there ever any salvaged fish at the export facilities. For the Courtland releases there

were four releases with a considerable number of salvaged fish, ranging from 182 to 1075;

there was no association with gate position, however, in that the gate was closed for two

of these four cases. When the gate was closed, some of the salvaged fish likely entered the

Delta via Georgiana Slough (since no Ryde fish were recovered for those four cases). Inland

recoveries were minimal (fourteen fish total from all 13 pairs), none of which were to their

hatchery of origin at Feather River.
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Previous USFWS analyses. A USFWS analysis of DCC studies (Brandes and McLain,

2001) was based on survival indices to Chipps Island and expanded ocean recovery rates

for both Courtland and Ryde releases. Per release pair, the Chipps Island indices were

calculated by dividing the observed number of recoveries at Chipps Island by the estimates

of trawl efficiency, fCt and fRy, and by the number released, RCt and RRy:

ÎCt→CI =
yCt→CI

fCtRCt
=

r̂Ct→CI

fCt
ÎRy→CI =

yRy→CI

fRyRRy
=

r̂Ry→CI

fRy
.

expanded ocean fishery recovery rates were also calculated, r̂Ct→Oc and r̂Ry→Oc. Brandes and

McLain then carried out four paired t-tests for equality of the indices and ocean recovery

rates:

Ho : ICt→CI = IRy→CI | DCC gate open Ho : ICt→CI = IRy→CI | DCC gate closed

Ho : rCt→Oc = rRy→Oc| DCC gate open Ho : rCt→Oc = rRy→Oc| DCC gate closed

The null hypotheses for the Chipps Island indices were rejected, but were not rejected for

the ocean recovery rates.

Manly analyses. The hypotheses tested by Brandes and McLain were hypotheses of no lo-

cational differences in survival probabilities between Courtland and Ryde releases conditional

on a particular DCC gate position.

In contrast, Manly (2002) used the pairing of Courtland and Ryde to advantage by com-

paring the ratios of Chipps Island indices between the open and closed gate situations using

two sample t-tests for the following hypotheses.

Ho :
ICt→CI,t

IRy→CI,t
|Open =

ICt→CI,t

IRy→CI,t
|Closed

Ha :
ICt→CI,t

IRy→CI,t
|Open <

ICt→CI,t

IRy→CI,t
|Closed

Manly also tested for the equality of differences in indices. In both cases he did not find

statistically significant differences (using a pooled estimate of variance in each case, the P -

values were 0.393 for ratios and 0.250 for differences). These tests are more directly focused

on the effect of gate position and are more appropriate than the tests carried out by Brandes

and McLain.
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2.3. Interior studies. In contrast to the DCC studies where the relative survival in the

interior Delta was measured indirectly from the Courtland releases which might enter the

interior Delta (via the DCC or entering Georgiana Slough), the Interior studies focused

directly on the relative survival of fish known to be in the interior Delta A total of 15 paired

releases of late fall run fish (reared at Coleman National Fish Hatchery) were made during the

months of December and January in Georgiana Slough and at Ryde between 1993/1994 and

2005/2006 to study how the interior Delta releases’ survival compared to mainstem releases

(and for the related DA 8 study, to study how the relative survival related to exports). The

late fall run was chosen with the intent to imitate, to the degree possible, the natural winter

run, hoping to to perhaps gain understanding of how export operations impacted the winter

run. Releases in Georgiana Slough were made far enough into the slough as to make it

unlikely that fish would go upstream to Sacramento River and then travel down the river.

Table 4 shows release and recovery data for the Interior studies.

Simple summaries. The overall recovery fractions, recoveries at Chipps Island and in the

ocean fisheries divided by release number, are compared for the Georgiana Slough and Ryde

release pairs in Figure 5. While there is considerable between-pair variation, the overall

recovery fractions for Ryde releases remained higher than those for Georgiana Slough in all

cases.

Figure 6 compares the four sets of recovery fractions, at Chipps Island, in the ocean, at

the fish facilities, and at inland locations. The straight line drawn on each plot has a slope

equal to the mean of the ratio of recovery fractions of Georgiana Slough to Ryde releases,

e.g., (yGS→CI/RGS)/(yRy→CI/RRy). The means of the ratios were 0.26, 0.43, and 0.39 for

at Chipps Island, in the ocean, and inland, respectively, consistent evidence that Georgiana

Slough fish were surviving with a lower probability. Conversely, the relative fraction of fish

salvaged was proportionately much higher for Georgiana Slough releases compared to Ryde

releases, over 16 times greater.

The inland recoveries are perhaps comparable in this study given that the stray rates,

calculated as the relative fraction of inland recoveries returning to Coleman National Fish

Hatchery (CNFH), e.g., yGS→CNFH/yGS→Inland, were much the same for Georgiana Slough

and Ryde. Excluding one extreme observation, the relationship was quite linear and the

correlation coefficient was 0.93.

Previous USFWS analyses. The published analyses (Brandes and McLain, 2001) were

made using the data available at the time and it is these results that are discussed below.

Since then the analyses have been updated to include the most recent data (Pat Brandes,



23

personal communication), but the analyses have been similar to what is described here.

Brandes and McLain (2001, pp 72-77) calculated survival indices to Chipps Island for the

Georgiana Slough and Ryde releases,

ÎGS→CI =
r̂GS→CI

fGS
ÎRy→CI =

r̂Ry→CI

fRy
,

and ocean recovery rates, r̂GS→Oc and r̂Ry→Oc. Paired t-tests were used to test hypotheses of

equality of survival indices or ocean recovery rates for Georgiana Slough and Ryde releases.

Ho : IGS→CI = IRy→CI Ho : rGS→Oc = rRy→Oc

The test results were highly significant in both cases, with Chipps Island survival indices

and ocean recovery fractions for Georgiana Slough releases significantly lower than for Ryde

releases.

2.4. Delta Action 8 Experiments. These experiments overlap with the Interior studies

in that the same release-recovery data are used. How the two studies differ is that the

Interior studies focus on identifying whether or not differences in survival exist, and, if so,

what the magnitude of the differences are, while DA 8 is aimed at modeling differences as

a function of exports. Thus, on one hand, the DA 8 studies are not so much studies but

different analyses of the data provided by the Interior studies. On the other hand, however,

export levels have been deliberately manipulated to increase the scope of inference about

the possible relationship with survival. Furthermore, in recent years the spatial scope of

the DA 8 studies has expanded by additional releases being made at Sacramento, Sherman

Island, Vorden, and Port Chicago. These additional releases are, however, not discussed in

this report.

Simple summaries. The estimated fractions of juvenile fish salvaged are plotted against

exports for both release groups (Figure 7). The loess smooth drawn across the plot suggests

a positive association between exports and the fraction of the Georgiana Slough releases that

is salvaged. With the exception of the 1995 release, the fraction salvaged for Ryde releases

appears to be unrelated to exports.

Previous USFWS analyses. Brandes and McLain (2001, p 75) used an indirect approach

to model the ratio of Chipps Island survival indices for Georgiana Slough releases to Ryde

releases as a function of exports. Data from some fall run releases (raised at Feather River

hatchery) made in the spring months of 1992-1994 were also included in the analysis. The
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Chipps Island survival indices were first calculated for the Georgiana Slough and Ryde

releases separately and then the ratio of indices was regressed against exports:

IGS→CI

IRy→CI
= β0 + β1Exports + ε.

The resulting slope estimate, β̂1=-0.03, was significantly less than zero, which suggested a

negative relationship between exports and the ratio of survival indices.

2.5. VAMP and earlier studies. Prior to VAMP which began in 2000, between 1985 and

1999, several release and recovery experiments were carried out in the lower San Joaquin river

system and Delta. The objectives of these studies included comparing survival between fish

that traveled down Old River, which branches off the San Joaquin River, with the survival

of those that continued down the San Joaquin River. Old River passes by the CVP and

SWP pumping plants (Figure 1), and water, and fish, from Old River are drawn directly

towards the water export pumps. During the first years of experimentation, 1985-1990,

paired releases were made directly into Old River and directly into the San Joaquin River

near Dos Reis, which is a short distance downstream of the head of Old River. In terms of

recovery fractions at Chipps Island, the Old River releases had considerably lower fractions

than did Dos Reis releases (the median ratio of fraction for Old River releases to fraction of

Dos Reis releases was 0.46 (Table 5)).

Given what was learned about apparent survival in Old River, no further releases were

made directly into Old River after 1990, and a removable barrier was installed at the head

of Old River (HORB) starting in 1992 to lower the probability that an out-migrating salmon

would go down Old River. Partially to study the effectiveness of the HORB, paired releases

were made at Mossdale, just upstream of the head of Old River, at Dos Reis, and Jersey

Point starting in 1994. The HORB, however, cannot be placed in the river when flows are

above 5000 cfs and it cannot be present in the river at flows above 7000 cfs (San Joaquin

River Group Authority 2006), so it has not always been in place every year.

The VAMP studies (year 2000 to the present) have the primary aim of studying the effects

of flow and exports on salmon survival given that the HORB is in place. During the VAMP

studies exports are not to exceed 3000 cfs. The intended experiment design is to make

near-simultaneous releases from three locations: (1) at Durham Ferry on the San Joaquin

River, about 12 miles upstream of Old River, (2) Mossdale, and (3) Jersey Point (relatively

near the confluence with the Sacramento River); and then to make recoveries downstream at

Antioch by a kodiak trawl, further downstream at Chipps Island by a mid-water trawl, and

in the ocean fishery (Figure 1). In 2005 and 2006 flows were too high for HORB installation,



25

however, and releases were made at Dos Reis instead of Mossdale in 2005, and at Mossdale

instead of Durham Ferry in 2006.

Table 5 includes the release and recovery data from the pre-VAMP and VAMP studies.

Some of the associated covariates used in modeling recoveries are also shown and definitions

are provided in Table 6.

The fish used in the pre-VAMP and VAMP studies were all fall run, but the hatchery from

which the fish came has varied over time (see the stock column in Table 5). In the earliest

years, 1989-1995 most fish came from Feather River Hatchery. For 1996-1999 fish came from

both the Feather River Hatchery and the Merced River Fish Facility, but within any given

release set all fish came from the same hatchery. Since the VAMP studies began, all fish

have come from the Merced River Fish Facility.

A schematic of the release and recovery locations by year is shown in Table 7. A relatively

large number of observations (206 in total) have been generated, but imbalance in the release-

recovery locations is evident. Lack of balance in the design is also apparent in terms of the

covariates of interest, HORB position, flow, and exports (see Figure 8), the export and

flow levels are always relatively low when the HORB is in (due to the cfs bound mentioned

previously). The imbalance can cloud interpretation of the parameter estimates due to

potential confounding. For example, recovery fractions may be higher for Mossdale releases

when the barrier is in than when the barrier is out, but exports are (by design), on average,

lower when the barrier is in. Fortunately, there are observations with low exports and the

barrier being out. Similarly, there are observations with low flows and the barrier out, thus

potential confounding may be somewhat alleviated.

A comparison of the combined recovery fractions (r̂x→Ant+CI+Oc) for different release sites

is shown in Figure 9. Such a comparison is quite simplistic in that the pairing of releases is

not accounted for and sampling variation is ignored. With these limitations in mind, Durham

Ferry and Mossdale releases have relatively similar recovery rates, Old River recovery rates

are generally lower than Dos Reis recovery rates, and Jersey Point release recovery rates are

highest.

Salvage and adult inland recoveries. The estimated numbers of juvenile fish salvaged

at the fish facilities have been, on occasion, relatively large (Table 5). For example, a 1986

release from Old River of 100,181 fish had an estimated 62,564 fish salvaged, or about 62%

of the number released. The relationship between the HORB (in or out) and the estimated

fraction salvaged is plotted in Figure 10 (excluding Old River releases). For Durham Ferry
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and Mossdale, both located upstream of the head of Old River, there was a sizeable difference

in the fraction salvaged depending on HORB placement with the fraction decreasing with the

HORB in; note, however, sampling variation is not being accounted for in this comparison

and that for Durham Ferry, in particular, there were only two releases with the barrier

out. For Dos Reis and Jersey Point, the HORB had little to no relationship on the fraction

salvaged (ignoring the four extreme fractions).

The fraction of observed adult inland recoveries are shown in Figure 11. During the early

years (1985-1996) just a few recoveries were made anywhere (it could be due to lower survival

or sampling effort); for releases from recent years (2004-2006), adults have yet to return to

freshwater (in any numbers). During the intervening years (1997-2003), the observed fraction

returning was consistently highest for the Jersey Point releases, while the fraction for Durham

Ferry tended to be lower than for Mossdale. When release were made from both Dos Reis and

Mossdale, the fraction was slightly higher for Dos Reis releases. Thus the general pattern was

higher adult return fractions for releases made further down river. As for the Interior/DA

8 studies, the amount of straying from the natal hatchery was considerable, but an effect

of release location on straying was evident in the VAMP releases. For example, for a 2001

release set from Merced River Fish Facility (group 25 in Table 5), fish released from Durham

Ferry returned to Feather River Hatchery, Nimbus Hatchery, Stanislaus River, Tuolumne

River, as well as the Merced River Fish Facility. Fish released from Jersey Point strayed

even more, including above Red Bluff Diversion Dam, Butte Creek, Feather River Hatchery,

and Coleman National Fish Hatchery.

Previous USFWS analyses. Previous analyses by the USFWS of the juvenile recoveries

(in the trawl samples) and adult recoveries (in the ocean fishery catch samples) from the

VAMP and pre-VAMP experiments are described in Chapter 5 of the 2005 Annual Technical

Report for the San Joaquin River Agreement (San Joaquin River Group Authority 2006).

Discussion herein focuses on some of the analyses on pages 61 through 70 of that report. The

VAMP analyses primarily used recovery fractions with no trawl efficiency adjustments. In

some cases the observed recovery fraction was calculated with recoveries at a single recovery

location, Chipps Island alone or ocean fisheries alone (denoted RR in the Technical Report),

i.e., for release x, r̂x→CI and r̂x→Oc. In other cases the observed recovery rate was based

on recoveries at two locations, Antioch and Chipps Island, (denoted CRR for Combined

Recovery Rate in the Technical Report), namely, r̂x→(Ant+CI). In all cases ocean fisheries

recoveries were analyzed separately from Antioch and Chipps Island recoveries. The ratio of

recovery fractions for upstream releases (Durham Ferry, Mossdale, or Dos Reis) to recovery

fractions for downstream releases (Jersey Point) was the response variable used to study
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the relationships with flow, export, or HORB effects2. Thus releases from Jersey Point

were viewed as controls for upstream releases. For example, the response variable used in

regression models for Durham Ferry releases relative to Jersey Point releases was r̂DF→CI

r̂JP→CI
.

As will be shown later, these ratios can be interpreted as estimates of the ratio of survival

probabilities for upstream releases to survival probabilities for downstream releases.

Analysis of the ratios of recovery fractions was carried out in a somewhat piecemeal fashion

with freshwater recovery fractions and ocean fishery recovery fractions analyzed separately

and analyses primarily examining one covariate at a time, e.g., ratio of ocean fishery re-

covery fractions regressed on flow, with HORB value fixed (either HORB was in or it was

not). Some of the results are summarized in Table 8. In all cases, there were positive as-

sociations (although sometimes quite weak) between ratios of recovery rates and flows, but

the regression coefficient was statistically significant (at α=0.10 level) with HORB in and

non-significant when HORB was not in. Somewhat paradoxically, exports were positively

associated with ratios of recovery fractions; an explanation offered for this paradox is that

exports and flows were highly positively correlated (the correlation coefficient is 0.88).

2.6. Comments about previous analyses.

• Pairing is advantageous. A strength of all four designs is the use of paired releases.

For the DCC studies, the Ryde releases served as controls to the Courtland releases

in that river conditions (temperature, salinity, turbidity, etc) were relatively similar

for the two groups. For the Interior and DA 8 studies, the Ryde releases served

as controls to the Georgiana Slough releases. For the VAMP studies, the Jersey

Point releases were controls for the upstream releases at Dos Reis, Mossdale, and

Durham Ferry, although the similarity in river conditions were perhaps weakest in

these studies given the greater distances between release locations. This pairing is

advantageous in the sense that if these extraneous variables which could (and likely

do) affect survival are controlled for, then the statistical efficiency (as measured by

standard errors, say) is greater than what unpaired releases could achieve.

• Trawl efficiency measures and survival indices have questionable accuracy. Ideally,

the trawl efficiency measure would be an estimate of the probability of capturing a

fish given that it survived to the trawl location. Then the expected number caught

would be the product of number released, survival probability (S) between point of

2When the recovery rates in the ratio were based on recoveries at a single location, the ratio was denoted

DRR, Differential Recovery Rate. When recovery rates in the ratio were based on recoveries at Antioch and

Chipps Island, the ratio was denoted CDRR, Combined Differential Recovery Rate.
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release and trawl location, and trawl capture probability p, say , E[Y ] = RSp. Then

an estimate of survival is y/Rp̂. The survival index calculation implicitly aims to

make such an estimate using f as an estimate of p.

However, there are several problems with the calculation of f . Mathematically

there is the problem that the observed recovery rate, y/R, can exceed the trawl effi-

ciency measure, f , which then results in survival “indices” exceeding 1. For example,

with one of the DCC releases at Courtland (1983), the survival index was 1.22. There

is also the potential that prior to the day of first recovery, or after the day of last

capture, there were fish passing but none were caught. Assuming, momentarily, that

the use of duration of sampling and relative width of river sampled were adequate

measures of capture probability, the omission of days prior to first capture and after

last capture where fish were still passing would lead to an underestimate of p. Thus

the estimate of S, y/Rp̂, is an overestimate. There is also the practical problem that

when there are no captures, the measure of trawl efficiency is zero.

The efficiency calculation should involve a comparison of the volume of water

swept by the net with the total volume of water passing Chipps Island during the

out-migration period. For example, assuming that the gear has 100% efficiency for

fish in the water the mouth of the net passes through, i.e., there is no net avoidance

or selectivity for these smolt sized salmon, the probability of capture could be defined

to be the fraction of the total water volume passing Chipps Island, say, during the

out-migration, that the net passes through.

Due to the likely biases in trawl efficiency estimates, working with the unadjusted

recoveries, or raw recovery proportions (numbers caught/number released) seems

preferable. Some releases were made downstream of a recovery site, e.g., Chipps

Island, and capture probabilities can be estimated directly (Newman 2003 and see

Section 6.1).

• Combined analysis of in-river and ocean recoveries would be more efficient. Both

the Chipps Island and the ocean recoveries provide information about the survival

between release points and Chipps Island. Separate analyses of recoveries are not

as statistically efficient as analyses that incorporate both sets of recoveries simulta-

neously, or in the case of VAMP, not as efficient as analyses incorporating Antioch,

Chipps Island, and ocean recoveries.

• Accounting for unequal sampling variability. None of the analyses for any of the four

studies accounts for the fact that the level of sampling variation is not constant. As

release numbers change, for one thing, the precision of estimation recovery probabil-

ities will change.
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For example, in the 1987 DCC pair, over 100,000 were released from Courtland,

in contrast to releases of around 50,000 in 1989; the variances for estimated recovery

probabilities will differ even if the underlying true probabilities of recovery were

identical.

• Accounting for between-release pair variability. The environmental conditions of each

paired release vary over time, i.e., between release pairs. The survival and capture

probabilities can be viewed as random variables. Ignoring this between-release pair

variation may result in overestimates in the precision of the inferences.

• Indirect analyses may be less accurate than integrated analyses. Statistical analyses

of the data from all four studies proceeded in somewhat of a two-step manner, which

will be labeled an indirect analysis. For the DCC studies, the survival indices were

calculated first, and then paired t-tests were carried out treating these calculated

indices as if they were observations. Similarly, for the Interior studies, the survival

indices were calculated for the Georgiana Slough and Ryde releases separately, and

then paired t-tests were conducted with these indices. For the DA 8 studies, the

ratio of survival indices were first calculated, and then the ratio was regressed against

exports. Similarly for the VAMP studies, ratios of recovery fractions were calculated

first and then regressed against covariates like flow and exports.

The criticism leveled at this indirect approach is related to the previously men-

tioned issues of unequal sampling variability and between-release variability. Ignoring

such variability may bias the inferences, or at least provide inaccurate measures of

the degree of uncertainty. A more integrated approach for data analysis is to work

directly with the observed recoveries and to explicitly allow for unequal sampling vari-

ability and environmental variability, and that is the basis for the hierarchical models

described in Section 3.

• Study-specific comments. For the DA 8 analyses by Brandes and McLain (2001), the

use of fall and late-fall races in the same regression implies a rather strong assumption

that the ratio of survival indices, for a fixed export level, is the same for both races.

It should be noted that at the time of the previous analysis considerably less data

were available (only up through 1998 for Chipps Island recoveries) and fall run results

were included to increase sample size. More recent analyses (Pat Brandes, personal

communication) have been based on larger sample sizes and only late fall releases.

For the VAMP analyses, fitting multiple regressions that included flow, exports,

and HORB simultaneously would be more statistically efficient and perhaps easier to

interpret than doing several simple linear regressions.
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3. Hierarchical Probability Models

The objectives of each of the four studies can be restated as aims to estimate unknown

parameters of probability models, namely, survival probabilities and parameters for covari-

ates, e.g., water exports, thought to affect survival. Probability models provide a rigorous,

statistically defensible basis for both estimating such parameters as well as providing mea-

sures of uncertainty about the estimates. Additionally, such models are useful for evaluating

study designs and assessing the impact of changes in sample sizes.

Hierarchical, or multi-level, probability models can be used as a common framework for

analyzing each of the four studies. Hierarchical models can explicitly account for two levels of

variation, temporal and sampling, which exist with the studies. Temporal or environmental

variation is the variation over time in survival and capture probabilities. Because each of

the studies took place over several years with multiple pairs or sets of releases made, such

temporal or between group variation undoubtedly exists. Sampling variation is the between-

fish variation within a single release in terms of their fates, e.g., whether or not they are

caught at Chipps Island. A third level of variation, reflecting a Bayesian approach, can

be included to quantify uncertainty about parameters that characterize the between group

variation in survival and capture probabilities.

The hierarchical framework has an additional benefit, which will manifest itself in the

VAMP analysis, in that information available in one time period for one spatial location can

be used to make inferences for other time periods where such data were not available. For

example, releases were only made in Old River during some years of the pre-VAMP period

but that data can be used to make inferences about survival in Old River during the other

years.

A simplified representation of Bayesian hierarchical models as they relate to the analysis

of the release-recovery tag data is shown below.

Level 1, Observations: y’s ∼ Probability Distribution(R, St and pt)

Level 2, Random effects: St, pt ∼ Probability Distribution(η, Covariates)

Level 3, Hyperparameters: η ∼ Prior Probability Distribution
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The first level describes how the number of recoveries varies at random as a function of

number released (R) and the survival and capture probabilities, describing sampling varia-

tion. The second level describes how survival and capture probabilities vary with time (or

release set) and how they depend upon hyperparameters (η) and covariates, e.g., flow. The

third level describes prior opinion about the hyperparameters, for example, η = E[St], an

average or expected survival probability. Scientific interest is largely focused on these hy-

perparameters. A non-Bayesian hierarchical model would simply remove Level 3 and view

the hyperparameters as constants to be estimated along with standard errors and confi-

dence intervals, while Bayesian inference will yield a posterior probability distribution for

the hyperparameters.

3.1. General description of Bayesian hierarchical models (BHMs) for recoveries.

Let Si→j,t denote the probability of surviving from location i to location j for release pair or

set t and let pk,t be the probability of capture at location k for set t. Also let Ri,t equal the

number of fish released at location i for release set t and let yi→j,t be the number of fish out

of the Ri,t that were recovered at location j. Unless deemed necessary, the subscript for set

t will often be omitted. The notation r will be used for recovery probabilities which are the

product of survival and capture probabilities, e.g., r = Sp.

Level 1, within release sampling variation: The first level in the hierarchy is a probabil-

ity model for the recoveries given the release group specific survival and capture probabilities.

For example, suppose RRyde fish are released at Ryde and captures are then made at Chipps

Island. The recoveries, yRyde→CI , follow some distribution that depends on RRyde and the

product SRyde→CIpCI :

yRyde→CI ∼ Distribution(RRyde, SRyde→CIpCI )

Particular distributions will be described later3.

Level 2, between release temporal variation: The second level in the hierarchy is a

probability model for the survival and capture probabilities, S and p. Referring to the

previous Ryde to Chipps Island example:

SRyde→CI ∼ Distribution
(
µSRyde→CI

, σ2
SRyde→CI

)

pCI ∼ Distribution
(
µpCI

, σ2
pCI

)

3It should also be noted that the expanded ocean recoveries, ŷi→Oc, will be modeled at this level rather

than the observed ocean recoveries. Thus in fairness to previous USFWS analyses, this approach is to some

degree an indirect approach and is not fully integrated.
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where µ and σ2 are the mean and variance, respectively. For all four studies the questions

to be answered can be re-expressed as questions about how S, or, more basically, how µS

varies between release locations or under different experimental conditions.

Level 3, parameter value uncertainty. The third level of the hierarchy consists of prob-

ability distributions for the unknown parameters of the distributions in the second level.

These distributions are called prior probability distributions, or simply priors. In partic-

ular, priors are specified for the parameters of the distributions for survival and capture

probabilities. For example, again referring to the Ryde to Chipps Island example:

µSRyde→CI
∼ Distribution(α1, β1) σ2

SRyde→CI
∼ Distribution(α2, β2)

µpCI
∼ Distribution(α3, β3) σ2

pCI
∼ Distribution(α4, β4),

where αi, βi, i=1,2,3,4, are fixed hyperparameters.

3.2. Remarks. Before describing the specific hierarchical model formulations for the four

studies, some general comments about BHMs for release-recovery data are made.

(1) Bayesian vs Frequentist inference. With Bayesian methods (Carlin and Louis 1996,

Gelman, Carlin, Stern, and Rubin 2004), uncertainty about unknown parameters

before analyzing (and sometime before collecting) the data is expressed by means of

specifying prior probability distributions for these parameters; e.g., Level 3 above.

Bayesian inference proceeds by calculating the posterior distribution for the param-

eters conditional on the data. This procedure is known as updating the prior with

the data and proceeds by using Bayes theorem, which can be written generically as

follows. Letting θ denote the unknown parameters,

Pr(θ|Data) =
Pr(θ, Data)

Pr(Data)
=

Pr(Data|θ) Pr(θ)

Pr(Data)
,

where Pr(θ) is the prior distribution and Pr(θ|Data) is the posterior distribution.

Note that Pr(Data|θ) is the likelihood, i.e., the probability of the observed data

viewed as a function of the parameter θ.

An alternative is classical frequentist inference whereby parameters are viewed

simply as unknown constants and no probability distributions are used to character-

ize uncertainty about them. In the case of a hierarchical model, there are just two

levels, the first and second levels. Inference calculations are based solely on the like-

lihood, Pr(Data|θ) and maximum likelihood estimates of the unknown parameters,

e.g., µSi→j
, are calculated. Such estimates are, somewhat confusingly, called empirical

Bayes estimates; however, the inference procedure is frequentist, not Bayesian.
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A Bayesian approach has been chosen here for pragmatic reasons. With mod-

ern computing resources, integration algorithms such as Markov chain Monte Carlo

(MCMC, Gilks, Spiegelhalter, and Richards, 1996), and associated software such as

WinBUGS (Spiegelhalter, Thomas, and Best, 2003), it is easier to fit a hierarchical

model using Bayesian methods than it is using frequentist methods.

However, the most common complaint about Bayesian methods is the influence of

prior distributions on the results. If there are sufficient data and if the prior distri-

butions are sufficiently “non-informative”, then the resulting posterior distribution

is largely a function of the data. In the analyses described later, sensitivity to the

choice of prior is assessed.

For the sake of comparison, however, for the DCC and Interior studies it turns out

that classical analyses of hierarchical models are relatively easy to carry out and will

be presented along with the Bayesian analyses.

(2) Level 1 models. Multinomial distributions for recoveries are one possibility for the

first level. Such distributions result by assuming that within and between release

groups the fates of each fish are independent and that within a particular release

group, all fish have the same probabilities of survival and capture. For example,

suppose releases are made at Ryde and recoveries are made at Chipps Island and in

the ocean fisheries. The conditional distribution for recoveries at Chipps Island and

in the ocean fisheries is multinomial (Mn):

yRy→CI , yRy→Oc|Θ ∼ Mn(RRy, SRy→CIpCI , SRy→CI (1 − pCI )rCI→Oc) ,

where Θ = (SRy→CI , pCI , rCI→Oc)
4.

On the other hand, if fish within a single release do not behave independently,

e.g., they school, then the variability in observed recoveries can be larger than that

expected according to multinomial (or binomial) distributions. When the observed

variance exceeds that expected for a particular distribution, then it is said that there

is overdispersion. For example, suppose R=50,000 fish are released on ten occasions,

the expected recovery probability is Sp=0.02, and the number of recoveries is hy-

pothesized to be Binomial(R=50,000, Sp=0.02). The expected number of recoveries

is RSp=1000 and the theoretical variance is RSp(1 − Sp)= 50,000*0.02*0.98 = 980.

Suppose the observed number of recoveries from ten groups of 50,000 releases was

(951, 1026, 955, 942, 945, 1021, 1059, 955, 1059, 998). The average is 991, close to the

expected number, but the variance is 2236, much larger than 980, and evidence for

overdispersion. An alternative to the binomial distribution is the negative binomial

and details as to its formulation are given later.

4The ocean recovery probability rCI→Oc is a rather coarse summarization. It is a complicated function of

survival, movement, maturation, and fishery harvest probabilities.
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Overdispersion can also result from the fact that expanded ocean recoveries, ŷ1→3,t,

will be used instead of actual recoveries and the negative binomial distribution is again

one means to approximately account for this.

(3) Level 2 models. The Level 2 models that will be considered are all based on nor-

mal distributions for transformations of survival and capture probabilities or their

products. The logistic-normal formulation is commonly used to model probabili-

ties (Newman 2003), and often done for convenience. The logit transformation of a

probability π is

logit(π) = log

(
π

1 − π

)
.

While π is restricted to the interval [0,1], logit(π) can take on any real number value,

thus capable of being modeled by a normal distribution. Logistic-normal probability

models for the survival and capture probabilities would be

logit(Si→j,t) ∼ Normal
(
µSi→j

, σ2
Si→j

)

logit(pk,t) ∼ Normal
(
µpk

, σ2
pk

)
.

The expected values, e.g., µSi→j
, will in some cases be modeled as functions of co-

variates.

Even if independence does hold at the observation level (Level 1), the variation

in the survival and capture parameters between releases will induce overdispersion

in the observations. In other words, the variation in the observed recoveries will

be larger than that due to a multinomial distribution with parameters equaling the

expected survival and capture probabilities. As a simple example,

y|S, p ∼ Binomial(R, Sp)

S ∼ Distribution(µS , σ2
s)

p ∼ Distribution(µp, σ
2
p)

While the conditional variance of y is RSp, the unconditional variance is not RµSµp,

it is larger than that5.

(4) Accounting for the pairing of releases. The grouping or pairing of releases will be

reflected in levels 1 and 2 of the hierarchical model. Within a release pair a shared

capture probability will be assumed. Thus a single value of p realized at Level 2

will be used for the paired releases in the Level 1 distributions. Furthermore, within

a release pair, when one release is made directly upstream of another release, then

5Suppose y|θ is Binomial(R,θ) and E[θ]=µθ and Var[θ]=σ2
θ. The conditional variance of y is Rθ(1 − θ)

while the unconditional variance is Rθ(1−θ) + σ2
θR(R−1). Thus σ2

θR(R−1) is the amount of overdispersion.
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the survival probabilities are assumed the same for the stream sections that both

groups travel down. Note that this assumption means that fish released downstream

of an upstream release do not experience any additional mortality at time of release,

say a release shock effect, as might be due to a temperature difference between

water temperature in the truck transporting the fish and the water temperature in

the river. Additionally, there is an assumption that the upstream and downstream

releases essentially overlap one another spatially and temporally from the downstream

location onwards—i.e., the two releases temporally and spatially coincide; the issue

of timing is discussed in the next enumerated point.

For example, consider a paired release made at Durham Ferry and Mossdale with

kodiak trawl sampling at Antioch. The recovery probability for Durham Ferry re-

leases is the product SDF→MDSMD→AntpAnt , while the recovery probability for Moss-

dale releases is SMD→AntpAnt.

The efficiency of the paired release design manifests itself by these shared parameter

values, e.g., SMD→Ant and pAnt. Not only are there fewer parameters to estimate, but

also variation in capture probabilities and other shared survival probabilities have

been controlled for within the release pair. There are many environmental conditions,

e.g., water temperature, turbidity, or salinity, that can influence survival and capture

probabilities in addition to the factors of interest, e.g., DCC gate position, geographic

location, exports. With paired releases, however, the environmental conditions are

often quite similar meaning that parameters that do differ within a release pair can

be estimated more precisely than for unpaired releases.

(5) Assumption of equal capture probabilities. Within a release set, parameters for which

shared values are assumed include the freshwater capture probabilities (i.e., Chipps Is-

land midwater trawl for all four studies, and Antioch kodiak trawl for VAMP studies).

This assumption can be assessed if releases are made downstream of the freshwater

trawl sites and if the ocean recovery probabilities are assumed the same, because then

estimates of the freshwater capture probabilities can be made (Newman 2003, and

see later in this report). In the absence of such data, a less formal comparison can

be made by examining the recovery pattern over time along with the trawl fishing

schedule and effort. If the trawl effort is more or less consistent throughout the out-

migration periods of releases in a release pair, then whether or not the out-migration

timing is the same does not matter.

As an informal check, the distributions of recoveries at Chipps Island over time

were compared within release pairs for a few cases. Figure 12 shows the percentage of

total recoveries by date for three sample sets, one from DCC, one from Interior/DA

8, and one from VAMP. For the DCC example (from 1983),the time intervals of
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recovery were very similar (both had first recoveries on 19 May, Courtland’s last

recovery was 20 June and Ryde’s last was 7 June), and the general distribution is

relatively similar. For the Interior/DA 8 example (from 1999), the Ryde recoveries

tended to arrive earlier than the Georgiana Slough recoveries, but the duration of

the recovery period was longer for the Ryde releases. For the VAMP example (from

2000), the recovery distributions by date are consistent with what one would expect,

with Jersey Point recoveries tending to precede those from Mossdale which in turn

preceding those from Durham Ferry.

(6) Estimability of survival and capture probabilities. The release-recovery design affects

the estimability of parameters. Unless a release is made downstream of a recovery

location (say j), the capture probability at the recovery location cannot be estimated

separately from the survival probability for the next-nearest upstream release (located

at i say). What can be estimated is the product of the survival probability and

the capture probability, Si→jpj . In the case of two releases made above a single

recovery point, assuming equal recapture probabilities at a downstream location,

the ratio of survival probabilities can be estimated. In the case where the furthest

upstream releases must travel past the downstream release location, this ratio will

be the survival probability between the two upstream locations.

For example, the case where releases are made in the same linear stretch of water-

way (locations 1 and 2) with a single downstream recovery site (location 3) is shown

schematically as:

1 - 2
S1

- 3
S2

p3

In this case the parameter combinations S1S2p3 and S2p3 are estimable; e.g., Ŝ1S2p3

= y1→3/R1 and Ŝ2p3 = y2→3/R2. The upstream survival, S1, is then estimable, e.g.,

Ŝ1 = Ŝ1S2p3/Ŝ2p3, but downstream survival, S2 is not.

When releases are made at locations upstream of a recovery point where one re-

lease group’s travel path does not completely coincide with the other group’s path is

shown schematically as:

A
@

@@R2

SA

B�
���

SB - 3
p3

S2

where releases are made at locations A and B, but not 2. In this case SAS2p3 and

SBS2p3 are estimable, as is the ratio SA/SB. In the case of non-estimable parameters,

notation for estimable combinations of parameters will be written; e.g., r for Sp.
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4. Methods

4.1. DCC Studies. The primary objective is to determine how DCC gate position affected

the relative survival of Courtland to Ryde releases. This relative survival will be quantified

in the hierarchical model(s) by a parameter θt that is the ratio of the survival probability

between Courtland and Chipps Island to the survival probability between Ryde and Chipps

Island, where θt is a function of DCC gate position. It was assumed that gate position did

not affect Ryde releases.

Several different Bayesian hierarchical models were fit (and one non-Bayesian model) but

for all the models the parameterization of the ocean recovery probabilities were the same.

The probability that a fish from a Ryde release is recovered in the ocean fishery is denoted

rRy→Oc and can be viewed as being the following product of survival and capture probabilities:

rRy→Oc = SRy→CI (1 − pCI )rCI→Oc.

Furthermore, this probability was assumed the same for Ryde and Courtland releases within

the same release pair. Within a release pair, it was also assumed that the capture probability

at Chipps Island was the same.

Bayesian hierarchical model. The details of one of the BHMs are shown here. Variations

on this BHM included changes in all of the three levels of the model (possibilities are discussed

in Section 4.6). This BHM was based on the following assumptions (repeating some stated

previously):

• individual fish fates are independent;

• within a single release, S and p are identical for all travel paths and recovery locations;

• the survival probability from Courtland to Chipps Island is no greater than the

survival probability from Ryde; i.e., 0 ≤ θt ≤ 1;

• within a paired release, the capture probability at Chipps Island is the same;

• within a paired release, the probability that a fish alive just below Chipps Island (thus

not captured at Chipps Island) is then caught in the ocean fisheries is the same.

Level 1:

yCt→CI,t, ŷCt→Oc,t|θt, rRy→CI,t, rRy→Oc,t ∼ Mn(RCt,t, θtrRy→CI,t, θtrRy→Oc,t)(1)

yRy→CI,t, ŷRy→Oc,t|θt, rRy→CI,t, rRy→Oc,t ∼ Mn(RRy,t, rRy→CI,t, rRy→Oc,t) .(2)
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Level 2:

logit(θt) ∼ Normal
(
β0 + β1IDCCt=closed, σ

2
θ

)
(3)

logit(rRy→CI,t) ∼ Normal
(
µrRy→CI

, σ2
rRy→CI

)
(4)

logit(rRy→Oc,t) ∼ Normal
(
µrRy→Oc

, σ2
rRy→Oc

)
(5)

where IDCCt=closed equals 1 when the cross-channel gates are closed, and 0 otherwise.

Level 3:

β0, β1, µRy→CI,t, µRy→Oc,t ∼ Normal(0, 1.0E + 6)(6)

σ−2
θ , σ−2

rRy→CI
, σ−2

rRy→Oc
∼ Gamma(0.001, 0.001)(7)

Priors for the variances were specified in terms of the inverse of variance, the precision, i.e.,

inverse gamma prior distributions were used.

The key parameter in this formulation is β1 in Level 2. Positive values would be consistent

with the DCC closure increasing survival.

The Level 2 modeling of the Ryde recovery probabilities, rRy→CI,t and rRy→Oc,t, is simplistic

in that variation in the survival and capture probabilities is to some degree a function of

nonrandom measurable factors. For example, the capture probabilities at Chipps Island are

indeed a function of the amount of trawling that occurs; similarly, capture probabilities in

the ocean fishery are a function of fishing seasons and gear regulation. The overall results are

thought to be relatively robust to ignoring such structural, i.e., nonrandom, effects, unless

there is some systematic trend in such factors, and one consequence of such coarse modeling

will likely be relatively large variances in the logit normal model.

Non-Bayesian hierarchical model. In this formulation the Level 1 formulation is identical

to the BHM. For Level 2, however, the exact distributions for the survival and capture

probabilities were not specified, just the means and variances are denoted.

Level 1:

yCt→CI,t, ŷCt→Oc,t|Θ ∼ Mn(RCt,t, θtrRy→CI,t, θtrRy→Oc,t)

yRy→CI,t, ŷRy→Oc,t|Θ ∼ Mn(RRy,t, rRy→CI,t, rRy→Oc,t) .
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Level 2:

θt ∼ Distribution
(
µθ(DCCt), σ

2
θ(DCCt)

)
(8)

rRy→CI,t ∼ Distribution
(
µrRy→CI

, σ2
rRy→CI

)
(9)

rRy→Oc,t ∼ Distribution
(
µrRy→Oc

, σ2
rRy→Oc

)
(10)

where DCCt= Open or Closed and µ and σ2 denote the mean and variance of the (unspec-

ified) distribution.

Under this formulation, the key parameter is µθ(Closed)/µθ(Open). To estimate this ratio,

the individual release specific θ’s are estimated as follows.

θ̂ =
r̂Ct→CI+Oc

r̂Ry→CI+Oc
(11)

The parameters µθ(Open) and µθ(Closed) can be estimated by weighted averages of the θ̂’s:

µ̂θ(Open) =

nOpen∑

t=1

wt|Openθ̂t|Open(12)

µ̂θ(Closed) =

nClosed∑

t=1

wt|Closedθ̂t|Closed,(13)

where the weights are inversely proportional to the estimated variances:

wt =
1/var(θ̂t)∑n
i=1 1/var(θ̂i)

.(14)

The variances are estimated using the delta method. Details of the delta method are given

Appendix A (in particular a sample based estimate of V (θ̂t), shown in the lines following

Equation (59), is used).

The ratio of µθ(Open) and µθ(Closed) can be estimated using (12) and (13):

̂
(

µθ(Open)

µθ(Closed)

)
=

µ̂θ(Open)

µ̂θ(Closed)

(15)

The standard error for (15) can be calculated by using a hierarchical bootstrapping procedure

(described in Appendix B) to produce resampled estimates of µ̂θ(Closed) and µ̂θ(Open).
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4.2. Interior studies. For the Interior studies, interest is solely in the ratio of survival

probabilities of interior Delta releases (Georgiana Slough) and mainstem releases (Ryde),

which will be denoted θ and defined equal to SGS→CI/SRy→CI .

Several BHMs and one non-Bayesian hierarchical model were fit to the Interior data. Just

one of the BHMs is shown in detail here, and the assumptions for this model are essentially

identical to the one shown for DCC and are not repeated here.

Bayesian hierarchical model.

Level 1:

yGS→CI,t, ŷGS→Oc,t|θt, rRy→CI,t, rRy→Oc,t ∼ Mn(RGS,t, θtrRy→CI,t, θtrRy→Oc,t)(16)

yRy→CI,t, ŷRy→Oc,t|rRy→CI,t, rRy→Oc,t ∼ Mn(RRy,t, rRy→CI,t, rRy→Oc,t) .(17)

Level 2:

log(θt) ∼ Normal
(
µθ, σ

2
θ

)
(18)

logit(rRy→CI,t) ∼ Normal
(
µrRy→CI

, σ2
rRy→CI

)
(19)

logit(rRy→Oc,t) ∼ Normal
(
µrRy→Oc

, σ2
rRy→Oc

)
(20)

Level 3:

µθ, µRy→CI,t, µRy→Oc,t ∼ Normal(0, 1.0E + 6)(21)

σ−2
θ , σ−2

rRy→CI
, σ−2

rRy→Oc
∼ Gamma(0.001, 0.001)(22)

The key parameter in this model is the parameter µθ, where negative values would indicate

lower survival for Georgiana Slough releases relative to Ryde releases.

Non-Bayesian hierarchical model. The level 1 model is identical to the BHM.

Level 1:

yGS→CI,t, ŷGS→Oc,t|θt, rRy→CI,t, rRy→Oc,t ∼ Mn(RGS,t, θtrRy→CI,t, θtrRy→Oc,t)

yRy→CI,t, ŷRy→Oc,t|rRy→CI,t, rRy→Oc,t ∼ Mn(RRy,t, rRy→CI,t, rRy→Oc,t) .
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Level 2:

θt ∼ Distribution
(
µθ, σ

2
θ

)
(23)

rRy→CI,t ∼ Distribution
(
µrRy→CI

, σ2
rRy→CI

)
(24)

rRy→Oc,t ∼ Distribution
(
µrRy→Oc

, σ2
rRy→Oc

)
(25)

The parameter of primary interest in this formulation is µθ which can be estimated by

µ̂θ =
n∑

t=1

wt
r̂GS→CI+Oc,t

r̂Ry→Ci+Oc,t
,(26)

where the weight, wt, is equation (14). For the 2005 and 2006 release pairs, only the Chipps

Island recoveries are available (Table 4), and r̂GS→CI/r̂Ry→CI was used instead. Bootstrap-

ping was used to estimate standard errors and calculate confidence intervals.

4.3. Delta Action 8 Experiments. The Bayesian hierarchical models tried were nearly

identical to those for the Interior study except that the ratio θ = SGS→CI/SRy→CI was

modeled as a function of exports.

The assumptions are the same as for the Interior model with an additional assumption

about export effects.

• releases from Ryde are unaffected by export levels.

One of the Bayesian hierarchical models fit (similar to the Interior model shown in Equa-

tions 16 - 22) is the following.

Level 1:

yGS→CI,t, ŷGS→Oc,t|θt, rRy→CI,t, rRy→Oc,t ∼ Mn (RGS , θtrRy→CI,t, θtrRy→Oc,t)(27)

yRy→CI,t, ŷRy→Oc,t|rRy→CI,t, rRy→Oc,t ∼ Mn (RRy, rRy→CI,t, rRy→Oc,t)(28)
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Level 2:

logit(θt) ∼ Normal
(
β0 + β1Exp∗t , σ

2
θ

)
(29)

logit(rRy→CI,t) ∼ Normal
(
µrRy→CI

, σ2
rRy→CI

)
(30)

logit(rRy→Oc,t) ∼ Normal
(
µrRy→Oc

, σ2
rRy→Oc

)
(31)

Exp∗t were scaled exports, (Exportst−Exp)
sExp

.

Level 3:

β0, β1, µRy→CI , µRy→Oc ∼ Normal (0, 1.0E + 6)(32)

σ−2
θ , σ−2

rRy→CI
, σ−2

rRy→Oc
∼ Gamma (0.001, 0.001)(33)

The key parameter in terms of an export effect is β1; if β1 equals 0 there is no export

effect, while β1 < 0 indicates a negative export effect.

4.4. VAMP studies. The hierarchical models considered for the VAMP studies were much

more complicated than for the other three studies due to the greater number of release

and recovery locations, more complex stream geometry, and additional covariates of interest

(flow, exports, HORB). The models defined below aim to estimate, and model as a function of

covariates, the survival through different “reaches” of the out-migration path. For example,

suppose a release is made at Durham Ferry, and assume that with the HORB in place, there

is 100% probability that a fish passing the entrance to Old River will stay in the San Joaquin

River. Then the probability of surviving to Antioch, say, could be viewed as the product of

four reach-specific survival probabilities:

SDF→Ant = SDF→MDSMD→DRSDR→JP SJP→Ant

The hierarchical models aim to model some of these reach-specific survival probabilities

when they are estimable. Before describing the hierarchical model details, the geometry of

the out-migration routes and the issue of estimability of survival probabilities are discussed.

4.4.1. Geometry of out-migration routes. A simplistic network of the relative positioning

of the five release locations and the three recovery locations for the VAMP and pre-VAMP

studies is shown below, with approximate distances (miles) between locations in parentheses.
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(40*) (15)

OR----------------------\---------------

(15) (2) (1/4)/ \ \

DF---------> MD--->HOR---->DR------------------->JP---->Ant----->CI----->Ocean

(3) (38*) (7) (8)

HOR denotes the head of Old River.

The actual geometry is considerably more complex. The distances marked with an asterisk,

Dos Reis to Jersey Point and Old River to Jersey Point, denote situations where the actual

distances traveled by salmon between locations can vary considerably. Between Dos Reis and

Jersey Point there are multiple routes that salmon could take, e.g., after passing Stockton

on the San Joaquin River they could turn toward the CVP and SWP facilities at several

other locations (Turner Cut, Middle River, and at Franks Tract where Old River reconnects

with the San Joaquin River).

Similarly, distances traveled between “an” Old River release site and Jersey Point can

vary for several reasons: (a) there are multiple alternate channels a fish can take to reach

Jersey Point, (b) some of the Old River releases are “salvaged” at the CVP and SWP fish

facilities and then transported by truck to one of four possible locations on the Sacramento

or San Joaquin rivers (see Section 2), thus some of the surviving Old River releases would

have less chance of passing Jersey Point than others; (c) in 1985 the Old River release site

was approximately 6 miles further downstream than the location used for 1986-1990 releases.

While the term reach-specific survival probability will be used, it admittedly may be a

misnomer due to this complex stream geometry. One may want to mentally substitute the

phrase, “probability of reaching point B from point A”, for the notation SA→B .

4.4.2. Estimability of survival probabilities using paired releases. Survival probabilities are

a component of the second level of the hierarchical models and these survival probabilities

can, in principle, be modeled as functions of covariates. One might reasonably question

whether or not such functional models can be fit given the complex geometry and variation

in the grouping of release locations, i.e., “are the parameters of such models estimable?”.

Explanations for the estimability, or not, of some of the survival probabilities in the context

of paired releases are given first and followed by explanations for the use of underlying models

for survival to facilitate reach-specific survival probability estimation at time t when releases

were not made at both endpoints of the release.
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To begin, survival probabilities immediately above recovery locations cannot be estimated

separately from capture probabilities. The lack of releases below the recovery locations

(Table 7), e.g., between Antioch and Chipps Island, means that the survival and capture

probabilities are confounded. However, the recovery probabilities, combinations of survival

and capture probabilities, between Jersey Point and the three recovery locations are es-

timable; e.g., the recovery probability from Jersey Point to Antioch, rJP→Ant , is estimable,

but the components of rJP→Ant , namely the survival probability for that reach, SJP→Ant,

and the capture probability at Antioch, pAnt, are not individually estimable. The following

notation is used for these recovery probabilities.

rJP→Ant ≡ SJP→AntpAnt

rJP→CI ≡ SJP→Ant(1 − pAnt)SAnt→CIpCI

rJP→Oc ≡ SJP→Ant(1 − pAnt)SAnt→CI (1 − pCI )SCI→OcpOc

The survival probability between Durham Ferry and Mossdale can be estimated quite

simply, given paired releases at both locations and assuming that survival and capture prob-

abilities are identical from Mossdale onwards, namely the assumption that pairing of releases

is intended to ensure. For example, given recoveries at Antioch, Chipps Island, and in the

ocean,

ŜDF→MD =
(yDF→Ant + yDF→CI + yDF→Oc)/RDF

(yMD→Ant + yMD→CI + yMD→Oc)/RMD
.(34)

Such an estimate is a method of moments estimate. This can be made clear by substituting

the expected number of recoveries for the observed recoveries.

ŜDF→MD ≈
(RDF SDF→MD (rMD→Ant + rMD→CI + rMD→Oc))/RDF

(RMD (rMD→Ant + rMD→CI + rMD→Oc))/RMD
= SDF→MD

Similarly, the survival between Dos Reis and Jersey Point can be estimated for paired

releases, assuming identical survival and capture probabilities from Jersey Point onwards:

ŜDR→JP =
(yDR→Ant + yDR→CI + yDR→Oc)/RDR

(yJP→Ant + yJP→CI + yJP→Oc)/RJP
(35)

To estimate survival for a reach including the head of Old River, however, is not so

straightforward. For example, for a release at Mossdale, located just above the head of Old

River, the expected number of recoveries at Antioch (or Chipps Island or in the ocean) is

a weighted sum of survival probabilities. Assuming that all surviving fish will go by Jersey
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Point, the expected number of recoveries at Antioch is:

E[yMD→Ant] = RMD(pORSOR→JP rJP→Ant + (1 − pOR)SMD→DRSDR→JP rJP→Ant),

where pOR is the probability of going down Old River, SOR→JP is the survival probability

between the head of Old River and Jersey Point, and survival between Mossdale and Old

River is assumed to be 100%. The ratio of recovery fractions at Antioch between a Mossdale

release and a Dos Reis release is approximately

yMD→Ant/RMD

yDR→Ant/RDR
≈

pORSOR→JP + (1 − pOR)SMD→DRSDR→JP

SDR→JP
.(36)

If one assumes that the probability of going down Old River is zero when the HORB is

in place, then the right hand side of the above equation reduces to SMD→DR. However, if

that assumption is not made, or if the HORB is not in place, then to estimate SMD→DR,

one needs estimates of pOR, SOR→JP , and rJP→Ant . If releases are made in Old River and at

Jersey Point, then SOR→JP and rJP→Ant can be estimated. Estimation of pOR is problematic,

however, due to a lack of data.

4.4.3. Modeling of survival probabilities. The previous examples of estimating reach-specific

survival were based on the use of paired releases that were made at both endpoints of

the reach. Implicit to the calculations was the notion that the survival estimates were

release-time specific. Unfortunately, as was discussed previously and as Table 7 makes clear,

the release location “pairings” have varied considerably. For example, direct estimation of

SDR→JP between 2000 and 2004 using equation (35) is not possible due to the absence of

Dos Reis releases6.

However, if an underlying structure is assumed for reach-specific survival, one which is not

over-parameterized given the number of observations, survival for reaches which lack releases

at both endpoints can be estimated (or predicted) so long as such paired releases at those

endpoints have occurred at some time during the study. The following heuristic example is

given to provide some intuition as to why this is possible, but the actual estimation details

are omitted.

Suppose that at time t releases were made at Mossdale and Jersey Point but not Dos Reis

and the objective is to separately estimate SMD→DR,t and SDR→JP,t. To keep the example

simple, assume the HORB was in place and prevented all fish from entering Old River, thus

6As an aside, the HORB was in place during this period, 2000-2004, and if one assumes 100% survival

between Mossdale and Dos Reis when the barrier is in place, then SDR→JP can be directly estimated since

SMD→JP can be estimated and SMD→JP = SMD→DRSDR→JP = 1*SDR→JP .
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all the Mossdale fish reaching Old River stayed in the San Joaquin River, and SMD→JP,t can

be defined as the product SMD→DR,tSDR→JP,t. Also assume that SMD→DR is a function of

flow at Mossdale and SDR→JP is a function of flow at Dos Reis. Note first that SMD→JP,t can

be directly estimated using the method of moments procedure (e.g., equation 35). SMD→DR,t

and SDR→JP,t can be individually estimated given (a) recovery data from other sets of paired

releases made at Mossdale and Dos Reis and at Dos Reis and Jersey Point; (b) underlying

models for SMD→DR and SDR→JP ; (c) relevant covariates at time t. Given a sufficient number

of these other paired releases and corresponding flow data, the following models can be fit:

logit(SMD→DR) = β0 + β1F lowMD

logit(SDR→JP ) = γ0 + γ1F lowDR.

Given estimates of β0, β1, γ1, and γ2 and the flow measurements at time t, SMD→DR,t and

SDR→JP,t can be predicted. Thus, if SMD→JP,t can be directly estimated and SMD→DR,t and

SDR→JP,t can be predicted, then one can imagine (in a hand-waving way) that an integrated

procedure could be carried out to use all the release-recovery data simultaneously to both

estimate the parameters β0, β1, γ0, and γ1 and the time t-specific probabilities SMD→DR,t

and SDR→JP,t.

4.4.4. Hierarchical models. Several different formulations for the modeling of reach-specific

survival were considered, but a common underlying out-migration framework was assumed.

Durham Ferry releases go downstream to Mossdale. Fish at Mossdale go to the head of Old

River and proceed on to Dos Reis if they stay in the San Joaquin or they enter Old River.

Fish entering Old River then pass the Old River release site(s) and proceed to Jersey Point

(even fish that are salvaged at the fish facilities are assumed to have a positive probability

of going by Jersey Point). Fish passing Dos Reis proceed to Jersey Point, too. From Jersey

Point, fish pass Antioch, then Chipps Island, and then enter the ocean.

The following additional assumptions were made:

• When the HORB is in place, Durham Ferry and Mossdale releases do not enter Old

River.

• When the HORB is not in place, Durham Ferry and Mossdale releases enter Old

River with probability pOR, which is either a constant or a function of relative flow.

• Survival between the head of Old River and Dos Reis (about 3 miles) is 100%, and

survival between the head of Old River and the Old River release point(s) (about

0.25 miles) is 100%.
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The last assumption is made for reasons of parameter estimability for releases at Durham

Ferry or Mossdale. The survival probability from Mossdale to Jersey Point can be written

as follows.

SMD→JP = SMD→HOR [pORSHOR→ORSOR→JP + (1 − pOR)SHOR→DRSDR→JP ]

Given paired releases from Old River and Jersey Point, and Dos Reis and Jersey Point and

recoveries at Chipps Island, say, it is clear that SOR→JP and SDR→JP can be estimated;

e.g., ŜOR→JP = [yOR→CI/ROR]/[yJP→CI/RJP ] ≈ [SOR→JP rJP→CI ]/rJP→CI = SOR→JP . That

leaves four unknown parameters, SMD→HOR, pOR, SHOR→OR, and SHOR→DR, and only one

can be estimated using Mossdale or Durham Ferry recoveries at Chipps Island, say. Assuming

that SHOR→OR=1 and SHOR→DR=1, leaves SMD→HOR and pOR unknown. The probability

of traveling down Old River, pOR, was, for some models, set equal to the relative flow-based

values shown in Table 5, and then SMD→HOR was estimable. The basis for the calculated

values of pOR are described in Table 6. In other models, pOR was a fixed but unknown

parameter to be estimated and SMD→HOR was set equal to 1.0.

The three levels of the hierarchical models are as follows; release set subscripts (t) have

been omitted.

Level 1: the distributions for the recoveries of fish released at Durham Ferry, Mossdale, Dos

Reis, Old River, and Jersey Point (Θ denotes survival and recovery probabilities)

yDF→Ant, yDF→CI , ŷDF→Oc|Θ ∼ Mn(RDF , SDF→MDSMD→JP rJP→Ant,(37)

SDF→MDSMD→JP rJP→CI ,

SDF→MDSMD→JP rJP→Oc)

yMD→Ant, yMD→CI , ŷMD→Oc|Θ ∼ Mn(RMD, SMD→JP rJP→Ant ,(38)

SMD→JP rJP→CI , SMD→JP rJP→Oc)

yDR→Ant, yDR→CI , ŷDR→Oc|Θ ∼ Mn(RDR, SDR→JP rJP→Ant,(39)

SDR→JP rJP→CI , SDR→JP rJP→Oc)

yOR→CI , ŷOR→Oc|Θ ∼ Mn(ROR, SOR→JP rJP→CI , SOR→JP rJP→Oc)(40)

yJP→Ant, yJP→CI , ŷJP→Oc|Θ ∼ Mn(RJP , rJP→Ant , rJP→CI , rJP→Oc)(41)

where by assumption

SMD→JP = SMD→HOR [pORSOR→JP + (1 − pOR)SDR→JP ](42)

and when HORB is in place, SMD→JP = SMD→HORSDR→JP .
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Level 2: Random effects models for survival and recovery probabilities; (X = covariates)

logit(SDF→MD) ∼ Normal
(
X ′

1β, σ2
DF→MD

)
(43)

logit(SMD→HOR) ∼ Normal
(
X ′

2γ, σ2
MD→DR

)
(44)

logit(SDR→JP ) ∼ Normal
(
X ′

3ξ, σ
2
DR→JP

)
(45)

logit(SOR→JP ) ∼ Normal
(
X ′

4ζ, σ2
OR→JP

)
(46)

logit(rJP→Ant) ∼ Normal
(
µJP→Ant , σ

2
JP→Ant

)
(47)

logit(rJP→CI ) ∼ Normal
(
µJP→CI , σ

2
JP→CI

)
(48)

logit(rJP→Oc) ∼ Normal
(
µJP→Oc, σ

2
JP→Oc

)
(49)

Level 3:

β, γ, ξ, κ, ζ, µJP→Ant, µJP→CI , µJP→Oc ∼ Normal (0, 1.0E + 6)(50)

σ−2
i→j, ∼ Gamma (0.001, 0.001) .(51)

The Level 1 models for the years 1985-1999 excluded Antioch recoveries (since the trawl

was not in place) and for the years 2005-2006 excluded ocean recoveries (because none

were available at the time of analysis). Also the first release set used spray-dying to mark

individuals and ocean recoveries were not available (Table 5). When flow and export levels

were used as covariates in the Level 2 models they were standardized (mean was subtracted

and the difference divided by standard deviation); how flow and exports were calculated is

described in Table 6.

Given the multiple reaches and branching, the number of potential models is very large,

far more than for the other three data sets. A relatively small set was fit, however, due to

time constraints. As a demonstration of the general utility, or not, of random effects, some

models were fit without any random effects (thus resulting in Bayesian logistic regressions)

and some were fit with random effects only in the recovery probabilities, the rJP→Ant , rJP→CI ,

and rJP→Oc terms, with the intent of allowance for temporal variation in capture probabilities

but not survival probabilities.

4.5. BHM fitting and assessment. For the Bayesian analysis of the hierarchical models,

the program WinBUGS (Spiegelhalter, Thomas, and Best 2003) was used to generate samples
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from the posterior distributions for the parameters, random effects, and expected numbers

of recoveries. WinBUGS is based on a technique known as Markov chain Monte Carlo, MCMC

(Gilks, Richardson, and Spiegelhalter 1996). MCMC is a computer simulation method where

samples are generated from a Markov chain which has a limiting distribution equal to the

distribution of interest, in this case the posterior distribution.

By a limiting distribution it is meant that the samples do not initially come from the

desired distribution, but once “enough” samples are generated, the so-called burn-in period,

all additional samples do come from the desired distribution. WinBUGS includes measures

(e.g., the Brooks-Gelman-Rubin statistic) for determining an adequate burn-in period which

are based upon the results of simulating from multiple Markov chains. Informally stated,

the point at which the chains begin to overlap is the necessary burn-in period. For all four

studies, three different chains were run in parallel and the summary statistics are based on

the pooled output.

Quality of fit was assessed in two general ways, by making between model comparisons

of DIC, deviance information criterion (Gelman, et al. 2004), and, within a given model,

by examining the quality of fit to individual observations. The deviance for a particular

observation y and a particular parameter value θ is defined as follows:

D(y, θ) = −2 log(p(y|θ)),

where p(y|θ) is the probability (or density) of y given θ. The total deviance for a set of

observations is the sum of individual deviances. When comparing two models, say two

different values of θ, the model with the smaller deviance is preferred. In the case of normal

linear models, the total deviance is proportional to the sum of squared deviations of the

observed values from the fitted values; e.g., with a simple linear model, D(y, β0, β1)=
1

2σ2 (y−

β0 − β1x)2. MCMC yields a sample from the posterior distribution of θ and the mean

deviance, based on an MCMC sample of size L, is calculated by

D̂avg(y) =
1

L

L∑

l=1

−2 log(p(y|θl)),

where y is the entire vector of observed values.

Increasing the number of parameters typically decreases deviance and to compare models

with differing numbers of parameters, a measure that includes deviance but exacts an in-

creasing penalty for an increasing number of parameters is DIC, the deviance information

criterion, defined as follows.

DIC = 2D̂avg(y) − D(y, θ̂),
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where θ̂ is the posterior mean for θ.

Assessment of quality in terms of fit to individual observations was examined by calculating

Bayesian P-values and scaled residuals. Bayesian P-values are defined as the proportion of

time a predicted value exceeds the observed value:

Bayesian P-value =
1

L

L∑

l=1

I(ypred
l ≥ y),

where I() is an indicator function equaling 1 when the condition inside () is met. The

predicted value, ypred
l is found by simulating y from its probability distribution evaluated at

the parameter value θl (taken from the MCMC sample). Bayesian P-values near 0 or 1 are

indicative of a poor fit. Scaled residuals are defined by

Scaled residual =
y − ypred

sypred

,

where ypred and sypred are the mean and standard deviation of the predicted values.

4.6. Sensitivity analysis. The sensitivity of the results to the particular Bayesian hier-

archical formulations was evaluated by making changes in each of the three levels of the

hierarchy. In Bayesian methods sensitivity analysis is often focused on the choice of prior

distributions (Level 3), however, it can also include comparisons with alternative likelihood

models (Level 1) and random effects models (Level 2). The latter comparisons sometimes

are viewed as problems of model selection, but they can also be viewed as a form of sensi-

tivity analysis. Several of the alternatives discussed below were either directly suggested or

indirectly stimulated by comments from reviewers.

Negative Binomial likelihood (Level 1): A distribution sometimes used for overdis-

persed count data is the negative binomial. Overdispersed in this case is with reference to

a Poisson distribution where the variance equals the mean. The Poisson distribution itself

is often used as an approximation to the binomial distribution when the probability of suc-

cess is relatively small, the number of trials is large, and the expected number of successes

is relatively small; and in that case, if X ∼ Binomial(n, p), then X ≈ Poisson(np). Thus

the negative binomial can be used to approximate “overdispersed” binomial data in such a

setting (large n, small p, etc).
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An example formulation for one of the outcomes, recoveries at Chipps Island of releases

from Ryde, is the following.

yRy→CI ∼ NegBinom

(
kCI ,

kCI

RRyrRy→CI + kCI

)
,

where k is a non-negative constant that affects the degree of overdispersion (relative to a

Poisson, or indirectly a Binomial, random variable). The larger k is, the less the overdisper-

sion. Let p = kCI

RRyrRy→CI+kCI

E[yRy→CI ] =
kCI(1 − p)

p
≡ RRyrRy→CI

and

V [yRy→CI ] =
kCI (1 − p)

p2
≡ RRyrRy→CI

RRyrRy→CI + kCI

kCI

Negative binomial formulations were applied independently to recoveries at two (Chipps

Island and the ocean) or three (Antioch, Chipps Island, and the ocean) locations from the

same release. This univariate treatment ignores the Level 1 probabilistic dependence between

yCI and yOc, say, that the multinomial likelihood models recognize. While multivariate

negative binomial distributions do exist (Winkelmann 2000), the use of independent marginal

negative binomial distributions for each of the outcomes is probably adequate given how

extremely small the covariances are between the outcomes (due to the very small capture

probabilities).

Alternative random effects models (Level 2): Reviewers of an earlier draft had several

useful suggestions regarding Level 2 models. They are described below for completeness, but

all suggestions were not tried for all four studies.

(1) Log link function for θ. A ratio between survival probabilities, denoted by θ, was of

interest in all four studies. The logit link function bounds the ratio between 0 and

1, thus the survival in the numerator of the ratio was implicitly assumed to be less

than the value in the denominator. An alternative link function is the natural log

which would allow the survival in the numerator to exceed that in the denominator;

e.g., in the case of the Interior and DA 8 studies, the Georgiana Slough releases could

potentially have higher survival rates than the Ryde releases. In contrast to the logit

link function, there is the potential that fitted probabilities could mathematically

exceed 1 (which will cause the fitting algorithm in the multinomial case to fail).
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(2) Correlated random effects. Survival rates in different parts of the river, particularly

for the VAMP studies, might be positively correlated in the sense that when condi-

tions are good in one part of the river, it could well be that conditions are good in

other parts of the river (Bryan Manly, personal communication). One way to allow

for this possibility to specify a multivariate distribution for the Level 2 random ef-

fects. For example, with the Interior study, a multivariate normal distribution could

be specified for the (logit transformed) vector of ( θ, rRy→CI , rRy→Oc ):




logit(θ)

logit(rRy→CI )

logit(rRy→Oc)


 ∼ Multivariate Normal







µθ

µrRy→CI

µrRy→Oc


 ,




σ2
θ σθ,rRy→CI

σθ,rRy→Oc

σθ,rRy→CI
σ2

rRy→CI
σrRy→CI ,rRy→Oc

σθ,rRy→Oc
σrRy→CI ,rRy→Oc

σ2
rRy→Oc







(3) Extended logit-type link functions for ri→j and ri→k. For both the non-Bayesian and

Bayesian formulations the sum rRy→CI,t + rRy→Oc,t must be less than 1 by definition,

but such constraints are not built in. However, recovery probabilities are so small in

practice that the chance of estimating rRy→CI,t + rRy→Oc,t to be > 1 is negligible. An

alternative logit-like formulation (Russell Millar, personal communication) that does

satisfy this constraint is the following:

log

(
rRy→CI,t

1 − rRy→CI,t − rRy→Oc,t

)
(52)

log

(
rRy→Oc,t

1 − rRy→CI,t − rRy→Oc,t

)
.(53)

Then in the case of the Bayesian model,

E[rRy→CI,t] ≈
exp(µrRy→CI

)

1 + exp(µrRy→CI
) + exp(µrRy→Oc

)
.

(4) Secondary release-specific covariates. The random effects components at Level 2 will

to some degree account for factors influencing survival over and above the primary co-

variates that are being structurally modeled, namely DCC gate position (DCC), loca-

tion (Interior), location and exports (DA 8), and flow, exports, and HORB (VAMP).

For example with the Interior study, θt ∼ Normal(µθ, σ2
θ). Deviations from µθ are in

a sense a function of secondary covariates that are not modeled, such as temperature

(Baker, Speed, and Ligon, 1995). If the values of such covariates vary widely and

have a large effect on survival, then the variation in the random effects parameter will

be large, e.g., σ2
θ is large, and predictions of release-specific parameters, such as θt,

will have considerable uncertainty. Including such covariates into the Level 2 model

can however increase precision. After-the-fact assessment of secondary covariate in-

fluence can be done by comparing fitted values, e.g., θ̂t, or random effect “residuals”,
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with covariate values, and/or by including such covariates in the Level 2 model and

comparing the quality of fit.

Alternative priors (Level 3): Gelman (2006) has discussed potential problems with in-

verse gamma priors for the variance components of a hierarchical model. While he describes

sophisticated alternatives, a relatively simple choice is the use of a uniform distribution for

the standard deviation. For example,

σθ, σrRy→CI
, σrRy→Oc

∼ Uniform(0, 20)

was tried for some of the models.

Sensitivity to the above changes were assessed in terms of changes in the posterior means

for observations and parameters and by examining DIC, Bayesian p-values, and scaled resid-

uals.
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5. Results

The R package R2WinBUGS was used as an interface to WinBUGS to fit the BHMs and the

code for both are given in the appendices. For all models fit, three Markov chains were run

using different starting values. The Brooks-Gelman-Rubin statistic (see documentation in

WinBUGS and Brooks and Gelman (1998)) was calculated to assess convergence; values near

1 are consistent with convergence, i.e., the variance within a chain is more or less the same

as the variance between chains.

5.1. DCC studies.

5.1.1. Non-Bayesian results. Recall θ̂ = r̂Ct→CI+Oc/r̂Ry→CI+Oc, θ = SCt→CI/SRy→CI , and

µθ=E[θ]. The weighted estimates of µθ were 0.40 when the DCC gate was open and 0.64 when

the gate was closed. The estimate of µθ(Open)/µθ(Closed) was 0.40/0.64 = 0.63 with a standard

error of 0.20. The bootstrapped 95% confidence interval (using the percentile method, Efron

and Tibshirani (1993, p 170)) was (0.28, 1.10). Thus there is evidence suggesting that

when the gate is open, the survival of Courtland releases decreases, but there is considerable

uncertainty about this conclusion (see the bootstrap histogram of ratio estimates in Figure

13).

The weighting of the θ̂’s had considerable effect on the results. Assigning equal weights to

each release pair yielded µ̂θ(Open) = 0.92 and µ̂θ(Closed) = 1.02 and the estimate of µθ(Open)/µθ(Closed)

was 0.89. If the 1989 observation was removed (an apparent outlier), however, the equally

weighted estimate of µθ(Open)/µθ(Closed) was 0.60, quite similar to the weighted results.

5.1.2. Bayesian results. A combination of model formulations were fit, with multinomial or

negative binomial likelihoods at Level 1, logit or log transformations of θ at Level 2, and

inverse gamma or uniform priors for the variances or standard deviations of the random

effects at Level 3. One combination that did not work was the multinomial with a log trans-

formation of θ which sometimes led to the recovery “probabilities”, θrc and θro, exceeding

one. Table 9 shows the DIC values for some of the models tried. The model selected for

inference was the negative binomial with log transformed θ and uniform priors for the stan-

dard deviations. The R and WinBUGS program code are shown in Appendix E.1. For the

negative binomial binomials, a burn-in of 10,000 samples was used for each chain and an

additional 40,000 samples were generated. Based on the Brooks-Gelman-Rubin statistic for
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convergence, all values lying between 1.00 and 1.04, the chains had converged to the posterior

distribution.

Parameters of interest. Summaries of the posterior distributions of the selected model

are shown in Table 9. Of most relevance to the objectives of the DCC studies is the slope

coefficient β1, which when positive, suggests that closing the DCC gate increases survival for

Courtland releases. The mean value of β1 was 0.33, but the posterior distribution is quite

wide. A more direct measure of the DCC gate effect is the ratio of the closed gate ratio

(Courtland/Ryde) to the open gate ratio, θOpen/θClosed, which when less than 1.0 indicates

that survival for Courtland releases relative to Ryde releases is less with the DCC gates

open than with the gates closed. The posterior median for θOpen/θClosed
7 is 0.72, but the

probability that θOpen/θClosed is less than 1.0 is only 64%.

While not of direct relevance to the DCC studies, some of the other parameters are of

interest. The median recovery probability for Ryde releases at Chipps Island was 0.0008,

and for ocean recoveries it was 0.0080, an order of magnitude larger. The negative binomial

parameter kCI for Chipps Island recoveries is very large (mean value = 493), which indicates

little evidence for overdispersion, in contrast to kOc for ocean recoveries which was consid-

erably smaller (mean value = 17). The group 13 pair is perhaps to some degree responsible

for kOc’s value since the estimated ocean recoveries for Ryde were so much less than those

for Courtland.

Quality of fit. Forty-seven of the 52 observations (90%) had Bayesian P-values within the

middle 90% of the posterior predictive distributions. The five “outlying” observations were

the group 13 Ryde recoveries at Chipps Island (P-value=0.98) and in the ocean fisheries (P-

value=0.99) (see Figures 14 and 15), and Courtland recoveries at Chipps Island for groups

3, 9, and 10 (Figure 16). The scaled residuals are plotted against mean posterior predictions

in Figure 17 The largest scaled residuals are for the Chipps Island recoveries from Courtland

releases in groups 3 and 9, but, in contrast to the P-values, the group 13 Ryde residuals are

not outliers.

The influence of group 13 was assessed by removing those observations and re-fitting the

negative binomial model. The median value for θOpen/θClosed changed only slightly (from

0.72 to 0.65) and the probability that θOpen/θClosed was less than 1.0 only went from 64% to

70%. Thus the effect of this group on the most relevant parameters was minor.

7The mean is 1.32, reflecting strong right skewing in the posterior distribution. Note that an approximate

estimate of µθ(Open)/µθ(Closed) is logit(β0)
(−1)/logit(β0+β1)

(−1), or (1+exp(β0 +β1))/(exp(β1)+exp(β0 +

β1)). Substituting the posterior means for β0 and β1 yields 0.82.
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Random effects. Sensitivity to the Level 2 formulation was also examined by fitting a

multivariate normal random effects model for θ, rRy→CI , and rRy→Oc. The extended logit

transformation was used for rRy→CI and rRy→Oc. An inverted Wishart distribution was used

for the joint prior distribution of random effects. WinBUGS model code is shown in Appendix

E.2. The DIC value (Table 9) was slightly higher than for uncorrelated multinomial models,

and considerably higher than for the negative binomial models. The posterior median for the

ratio of ratios was 0.96. Negative correlations (on the logit and extended logit scales) were

found between θ and rRy→CI (correlation coefficient = -0.58), between θ and rRy→Oc (cor-

relation coefficient = -0.53), while the correlation between rRy→CI and rRy→Oc was positive

(correlation coefficient = 0.62).

The value of random effects in the model was examined by fitting a negative binomial

model without any random effects for θt, rRy→CI , and rRy→Oc, i.e., purely deterministic

Level 2 models. The apparent benefit to survival of having the DCC gates closed increased

sizeably, the probability that θOpen/θClosed was less than 1.0 went from 64% to 95%. However,

the model fit and predictive power worsened notably: the DIC increasing from 567.3 to 656.7,

the Bayesian P-values tended to become more extreme (particularly for ocean recoveries),

and the magnitude of scaled residuals in some cases nearly doubled (Figure 18).

5.2. Interior studies.

5.2.1. Non-Bayesian results. The estimate of the expected ratio of Georgiana Slough survival

to Ryde survival, µθ, based on a weighted average of θ̂ (r̂GS→CI+Oc/r̂Ry→CI+Oc) was 0.33

with a bootstrap standard error of 0.038 and a 95% confidence interval of (0.26,0.41). The

unweighted average of the θ̂’s was 0.40 (median=0.33) with a standard error 0.055 and a 95%

confidence interval of (0.30,0.51). In either case the evidence that the survival for Georgiana

Slough releases was low relative to Ryde releases was strong.

5.2.2. Bayesian results. Several combinations of models were fit to the Interior data. Based

on the DIC values, the multinomial models were all quite similar in terms of fit and preferable

to the negative binomial models (Table 10). However, the parameter estimates under the

negative binomial were very similar to those for the multinomial distribution. There was

little evidence for overdispersion based on the negative binomial model; e.g., for the log

transformed θ and uniform priors on the σ’s of the random effects, the median values for

kCI and kOc equaled 15 and 208. The results presented below are based on the multinomial

model with log transformed θ and uniform priors for the σ’s. The WinBUGS program code
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for the multinomial model is shown is shown in Appendix E.3. For each of the three chains a

burn-in of 50,000 samples was used and an additional 150,000 samples were generated. The

Brooks-Gelman-Rubin statistics were between 1.00 and 1.04 for all parameters.

Parameters of interest. Summary statistics for the posterior distributions are shown in

Table 10. The key parameter is θ, the ratio of Georgiana Slough to Ryde recoveries, and the

posterior mean predicted value was around 0.44, strong evidence, consistent with the non-

Bayesian analysis, that the Georgiana Slough recovery rates are considerably less than the

recovery rates for Ryde releases. However, the upper 4.9% of the distribution for θ was above

1.0, meaning that there was a 4.9% chance that Georgiana Slough recovery probabilities could

be higher than the Ryde recovery probabilities. The posterior mean predicted value of θ was

quite similar for all models, ranging from 0.41 to 0.44. The median recovery probability

at Chipps Island, rRy→CI , was 0.0004 and, as for DCC studies, the ocean fisheries recovery

probability was an order of magnitude higher, 0.0036.

Quality of fit. Of the 60 observations, 55 (or 92%) fell within the middle 90% of the posterior

predictive distributions. The five observations with extreme Bayesian P-values were groups

1 and 6 Ryde recoveries at Chipps Island, the group 5 Georgiana Slough recoveries at both

Chipps Island and in the ocean, and the group 12 Georgiana Slough recoveries at Chipps

Island. In each case, the observed value was either exceptionally small or large relative to

the predicted values; e.g., for the group 1 Ryde releases, the observed 37 recoveries at Chipps

Island were larger than 98% of the predicted values (Figure 19). The scaled residuals are

plotted against mean posterior predictions in Figure 20, and the largest residuals are for

those Chipps Island recoveries of Ryde releases with extreme P-values.

Random effects. A multivariate normal random effects model was also fit (using the same

approach as for the DCC implementation). Based on the DIC value, this model was of nearly

equivalent quality to the uncorrelated multinomial models (Table 10). The correlations

between the random effects were relatively low; correlation between θ and rRy→CI (on the

logit scales) was 0.11, between θ and rRy→Oc it was 0.23, and between rRy→CI and rRy→Oc it

was 0.31.

To determine the impact on results of including random effects, the multinomial model

with log transformed θ was fit without any random effects, i.e., deterministic Level 2 models.

The posterior mean for the expected value of θ, µθ, was -0.86, in contrast to -1.02 for the value

for the model that included random effects. However, exp(µθ) = 0.42, which is quite similar

to the posterior mean for the simulated value θ in the model including random effects (E[θ]

≈ 0.44). The key difference was in the considerably greater variability in the distribution
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for θ, with the coefficient of variation for the random effects model equal to 82% compared

to 3% for the model without random effects. The expected recovery probability for Ryde

releases at Chipps Island was 0.00045 and in the ocean was 0.0044, about 20% less than for

the random effects model. The prediction ability and quality of fit was considerably worse

when random effects were removed: the DIC value increased from 428 to 2184, the frequency

of relatively extreme Bayesian P-values increased considerably, and the magnitude of scaled

residuals increased four- to five-fold (Figure 21). The variation in the observed recovery

fractions was simply far larger than could be explained by a model without random effects.

Secondary covariates. The effect of secondary covariates was examined by plotting the

median fitted θ’s per release set against release temperature at Georgiana Slough and average

length of fish at release (Figure 22). No pattern was apparent. The release temperatures at

Ryde were very similar to those at Georgiana Slough with one exception, the tenth set, in year

2000 with tags 05-51-31 and 05-51-33, where Ryde temperature was 50 degrees Fahrenheit

in contrast to 63 degrees at Georgiana Slough. However, this release pair was not unusual

in terms of Bayesian P-values or scaled residuals, and it may be that the 63 degrees was a

data recording error (Pat Brandes, personal communication).

It is worth noting that the use of temperature at time of release is only a very limited

measure of the temperatures possibly experienced by a fish as it out-migrates. Potentially,

during the period of out-migration the variation in water temperatures could be extreme and

temperature at time of release would not necessarily be very reflective of the temperatures

encountered enroute.

Analyses with inland recoveries. Given the relatively similar stray rates for inland recov-

eries between Georgiana Slough and Ryde releases, additional model runs were made using

the inland recoveries in combination with the expanded ocean recoveries. The results for

the selected multinomial model (log transformed θ and uniform priors for the σ’s) were very

similar, e.g., the posterior mean for µθ was -1.03 compared to -1.02 for the results without

inland recoveries, but the posterior standard deviations for some of the fitted θ’s were slightly

smaller with inland recoveries included.

5.3. Delta Action 8 Experiments.

5.3.1. Exploratory data analysis. Non-BHM estimates of the ratio θ = SGS→CI/SRy→CI ,

namely θ̂ = r̂GS→CI+Oc/r̂Ry→CI+Oc, are plotted against exports in Figure 23. The vertical

lines in the plot mark ± 1 standard error, which was calculated using delta method (i.e.,
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the sample based estimates of
√

V (θ̂t) shown in Appendix A). Thus these standard errors

reflect within release pair variability only. The two especially large standard errors (middle

and right side of the plot) are for 2005 and 2006 and their magnitude is due to the lack of

ocean recovery information to date.

Also plotted in Figure 23 is a weighted,nonparametric regression curve. The curve was fit

using a supersmoother function in R and weights based on the delta method standard errors.

While this graph is a non-Bayesian, non-hierarchical, and indirect analysis, the gist of the

results is, as will be shown next, consistent with the Bayesian, hierarchical, and integrated

analysis, i.e., suggesting a slight negative association between exports and θ.

5.3.2. Bayesian analysis. As for the Interior analysis multinomial and negative binomial

distributions, logit and log transformations of θ (with θ now defined as a function of ex-

ports), and uniform and gamma distributions for σ’s were all tried. The WinBUGS code

for the multinomial distribution is shown in Appendix E.4. Burn-in time was set at 50,000

iterations and then at least 100,000 iterations were used for the posterior samples. The

Brooks-Gelman-Rubin statistics were between 1.0 and 1.03 for all parameters and trace

plots of the parameters were consistent with good mixing.

The preferred model based on DIC is the multinomial with log transformed θ and uniform

priors for the σ’s (Table 11), but all the multinomial models yielded quite similar results. The

DIC for this model, 427.0, however, was only slightly less than the DIC for the models without

exports (the “Interior” models where minimum DIC was 427.7). Summary statistics from

the posterior distributions are shown in Table 11. The negative binomial’s overdispersion

parameters were quite large (median values of 192 for kCI and 311 for kOc) indicating very

little overdispersion relative to a multinomial distribution.

Parameters of interest. The key parameter is β1 (the coefficient for exports in the logistic

regression of θ; see equation 29). It had a 98% probability of being negative, indicative of a

negative association between the relative survival of Georgiana Slough and Ryde releases (θ)

and exports. A posterior sample of predicted θ for different levels of exports was generated

and the results are plotted in Figure 24. The plot shows the decline in mean θ as exports

increases (when exports are at 2000 cfs, mean θ is 0.62, and when exports are at 10,000

cfs, mean θ is 0.31). The plot also shows the considerable range of variability in θ for any

given level of exports. The noise in this relationship is indirectly apparent given that the

DIC value for a model without exports (an Interior model) was not much higher than the

corresponding model with exports. Note that upper bounds on θ for lower levels exceed 1.0,
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allowing for the possibility that Georgiana Slough releases could have better survival than

Ryde releases (consistent with results for the Interior model).

Figure 25 compares the BHM predicted values of θ at different export levels with predictions

from indirect, non-Bayesian analyses. Model M1 mimics Brandes and McLain (2001) in that

a linear regression of the ratio of Chipps Island recovery fractions (r̂GS→CI/r̂Ry→CI ) was

regressed against (standardized) exports. Another model, M2, is a regression of the natural

logarithm of r̂GS→CI+Oc/r̂Ry→CI+Oc against (standardized) exports; the predicted values are

exp(β̂0 + β̂1Exp∗ + σ2/2). All three models had a negative association with exports but the

BHM results (M3) had a higher relative survival for Georgiana Slough releases than the two

non-Bayesian models.

Table 12 compares the BHM fitted values of θ compared to non-BHM estimates. The

BHM fitted values are the posterior means for the particular releases in contrast to posterior

predicted values for any release at a specified export level (as shown in Figure 25). The

non-BHM estimates are simply the release-specific ratios, rGS→CI+Oc/rRy→CI+Oc, i.e., not

modeled as a function of exports. Despite the underlying differences in estimation proce-

dures, the posterior means of fitted values and non-BHM estimates are quite similar. The

posterior standard deviations and standard errors are also similar with the exception of the

two most recent years without ocean data, where the posterior standard deviations are con-

siderably smaller than the standard errors, indicative of the information from other releases

that BHMs utilize. The last column of Table 12 shows the estimates of the survival ratios

using the method of Brandes and McLain (2001) with the Chipps Island recoveries. While

there are several release pairings with values similar to θ (a 1995 pairing, a 1999 pairing,

2000, 2004, and 2005), there are several, sometimes large differences as well (e.g., 1994 and

a 1995 pairing).

The posterior distributions of recovery probabilities for Ryde releases at Chipps Island

and in the ocean fisheries were nearly identical to the Interior study (Table 11).

Quality of fit. The Bayesian P-values and scaled residuals were essentially the same as for

the fitted Interior model. The relationship between temperature and length and fitted θ’s

would be similar to that for the fitted Interior model, too.

Additional analyses. The multivariate random effects model was also fit. The DIC value

was only slightly higher for the uncorrelated random effects models with log transformed

θ. The correlation between random effects, as compared to the Interior study, was slightly
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higher: between θ and rRy→CI (on the logit scales) it was 0.33, between θ and rRy→Oc it was

0.47, and between rRy→CI and rRy→Oc it was 0.33.

As for the Interior model, the inland recoveries were added to the ocean recoveries and the

preferred multinomial model was fit. The results were quite similar to those excluding the

inland recoveries. The DIC value was 427.6 (versus 427.0). The probability that β1 < 0 was

again 98%, although the posterior mean fitted values for θ|Exports differed by as much as

10% from the model without inland recoveries (e.g., for group 10, the posterior fitted value

of θ was 0.55 versus 0.65, Table 12).

Based on suggestions from anonymous reviewers, the ratio of exports to flow was sub-

stituted for absolute exports as a covariate. The DIC value was very similar (426.9 versus

427.0) and the probability that β1 < 0 was 0.98 still. Bayesian P-values and scaled residuals

were nearly identical.

5.4. VAMP studies. Initial analyses compared multinomial and negative binomial for-

mulations at Level 1. For the negative binomial model, three dispersion parameters were

included, for Antioch, Chipps Island, and the ocean recoveries. For further analyses and the

results presented here, the multinomial formulation was selected over the negative binomial

based on the facts that the dispersion parameters were all very large (at least 500 in all

three cases), indicating little overdispersion, and that the Bayesian P-values and and scaled

residuals were considerably better for the multinomial model.

The particular multinomial model used for inference used logit transformations of survival

probabilities for Level 2 and uniform priors for the σ’s for Level 3. The use of log transfor-

mations for Level 2 was not tried to lessen problems with probabilities exceeding one during

the fitting process. Inverse gamma priors for σ2 at Level 3 led to similar results. The R and

WinBUGS code used to fit a multinomial model is shown in Appendix E.5.

Including random effects had a considerable impact on DIC values. Table 13 compares the

DIC values for three models with only a single covariate (an indicator for HORB was used

to model SDR→JP ). When no random effects were included, the DIC was about six times

larger than for a model with random effects for the recovery probabilities, and inclusion of

random effects for survival and recovery probabilities further reduced DIC by about 2/3’s.

Thus including random effects considerably improved the DIC values.



62

Models where pOR was assumed known and a function of the relative flow into Old River

(see Table 6) were compared to models where pOR was fixed but unknown were compared.

To otherwise make the two situations equal, in both cases SMD→HOR was fixed equal to 1.0,

even though it was estimable with pOR known. For a model with no covariates, the DIC

values were nearly equal (DIC=1499 with pOR known and DIC=1496 with pOR estimated).

Somewhat arbitrarily, believing that pOR does in fact vary as a function of flow, and not

wanting to necessarily assume SMD→HOR=1.0, results for varying pOR are presented and

discussed below. The quality of fit and the relative magnitude of coefficients were much the

same for known and varying pOR and unknown and fixed pOR, however.

Table 14 summarizes results for some of the models (with varying pOR). The model with

the smallest DIC value models SDR→JP and SOR→JP both as functions of flow and export

levels (labeled Null.FE.FE); i.e.,

logit(SDR→JP ) ∼ Normal
(
ξ0 + ξ1F lowDR + ξ2ExportsDR, σ2

DR→JP

)

logit(SOR→JP ) ∼ Normal
(
ζ0 + ζ1F lowUOR + ξ2ExportsMD, σ2

OR→JP

)
.

Figure 26 contains histograms of a sample from the posterior distribution for the flow and

export coefficients (ξ1, ξ2, ζ1, ζ2) for this model. While the DIC value was lower than for

models without export coefficients and upper Old River flow, the posterior probabilities

suggested only weak effects of exports and the upper Old River flow on survival. Also

based on this model, Figure 27 plots, for each of the 35 release sets, the posterior mean

survival probabilities for travel down Old River exclusively, travel down the San Joaquin

River exclusively, and the expected values down the combination of rivers (given HORB and

pOR). The expected survival probability down Old River was always less than the survival

down the San Joaquin River. Different models yielded somewhat different expected values,

but the survival down Old River was generally, if not always, lower than those for the San

Joaquin.

The PI for the VAMP study asked how different the results would be if the release sets

from 2003 through 2006 were removed, since these were years with particularly low recovery

numbers for Durham Ferry and Mossdale releases. Only a couple of models were tried, but

the results were quite similar to those for the full data set. The most practically significant

results were that the positive effect of flow on SDR→JP and SOR→JP was considerably stronger:

the probability that the coefficients was positive was 100% for SDR→JP and 97% for SOR→JP .

Quality of fit. The posterior mean predicted values for the Null.FE.FE model are plotted

against the observed values for some of the data in Figure 27 (excluding Old River just to

avoid clutter). Note that these are predicted, not fitted values which include case-specific
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random effects. The observed values are in many cases far from the mean predicted values;

for cases of relatively large numbers of ocean recoveries in particular, the posterior mean

values are underestimates. The Bayesian P-values are perhaps more informative in that

they indicate just how extreme, or not, the observations are relative to the entire predictive

distribution. Of the 206 outcomes, 197 (96%) of the observations fell within the middle 90%

of the posterior predictive distributions. The “minimum” P-values, and posterior predictive

samples, for the worst fitting subset, recoveries at Antioch from Mossdale releases, are shown

in Figure 28, where there were three releases with one or zero recoveries at Antioch. The

scaled residuals, grouped by release-recovery category (again excluding Old River releases),

are plotted against posterior predictive means in Figure 29. For a few observations, e.g.,

Chipps Island recoveries from a Jersey Point release, the residuals exceeded 2 in absolute

value.

Secondary covariates. At a presentation of preliminary results to the VAMP science group,

the question of the effects of water temperature on survival was raised. The observed, or

in some cases estimated, water temperatures at release points were compared to the Level

2 random effects residuals, i.e., deviations from the mean value (on the logit scale), using

the Null.FE.FE model. For example, the survival, on the logit scale, between Durham Ferry

and Mossdale for release set t can be written as follows.

logit(SDF→MD,t) = β0 + εDF→MD,t,

where

εDF→MD,t ∼ Normal(0, σ2
SDF→MD

).

WinBUGS output included samples from the posterior distribution for these ε’s and the means

from these samples are what are plotted against the stream section temperatures in Figure

30. The Jersey Point plot is based on the residuals for relative survival to Chipps Island,

where εJP→Ant→CI,t and εJP→CI,t have been combined. The scatterplot smooths over the

plots suggests at most a slightly negative association between temperature and the random

effects for Durham Ferry releases, i.e., as release temperature increases the estimated survival

(on a logit scale) tends to decrease, but otherwise there was no evidence for an association.

As an aside, there was a single very large negative random effect for one of the Durham

Ferry releases (this was from a year 2000 release, group 24), as can be seen in Figure 30.

This was undoubtedly the cause of the very large variance term, σ2
DF→MD. The reason for

the large “residual” may be due to the low percentage of ocean recoveries, 0.2%, relative to

Jersey Point release which had 1.5%, in comparison to other Durham Ferry releases. It is

worth noting that the scaled residuals did not reveal this outlier because the large random
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effects variance scaled down the residual considerably. Thus scaled residuals alone are not

an adequate diagnostic of model fit in some cases.

Another concern raised by the VAMP science group and one of the reviewers was the

use of two different hatchery stocks, from Feather River Hatchery and Merced River Fish

Facility. There is some degree of temporal confounding in that Feather River Hatchery fish

were used only during the early years (1985-1998), while Merced River Fish Facility fish

were (mostly) used in the later years (1996-2006). If environmental conditions during the

early years were particularly poor for survival, for any stock, then it would be incorrect to

attribute the cause to stock. It should also be noted that another possible confounding factor

is that beginning in 1998, the sampling effort at Chipps Island essentially doubled, relative

to previous years. With these caveats in mind, the random effects residuals (Null.FE.FE

model) for two river sections, DR → JP and JP → CI for the two stocks were compared

and side-by-side boxplots are shown in Figure 31. The Durham Ferry to Mossdale section

was not included since all releases from Durham Ferry came from Merced River Fish Facility;

and the Mossdale to Dos Reis section was treated as having constant survival. Evidence for

a higher survival probability for the MRFF stock is apparent, particularly for the Jersey

Point releases. To allow for a stock effect, an expanded model for the recovery probabilities

was fit, i.e.,

logit(rJP→x) ∼ Normal
(
µJP→x + χIMRFF , σ2

JP→x

)

where x=Ant, CI , or Oc and IMRFF is an indicator variable for Merced River Fish Facility

stock. Some results for a model including this stock effect and SDR→JP modeled as a function

of flow are shown in Table 14. The DIC was higher than for a model without the stock

effect but the posterior means for parameters were much the same, suggesting that general

conclusions are robust to a possible stock effect.

Lastly, another concern expressed by reviewers was how recoveries of fish at the fish

facilities at CVP and SWP might affect results. Random effects residuals (Null.FE.FE

model) for different reaches were plotted against the estimated salvage (Figure 32). The

residuals for the logit of SOR→JP did not necessarily always apply to the Durham Ferry

and Mossdale releases because the HORB was sometimes in position and by assumption

those fish would only travel down the San Joaquin River. For the Old River releases, the

residuals for the logit of SOR→JP did tend to increase as fish salvaged increased, i.e., the

fitted survival probabilities were elevated somewhat as number of fish salvaged increased.

For the Durham Ferry, Mossdale, Dos Reis, and Jersey Point releases there is no apparent

relationship between number salvaged and the survival random effects.
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6. Study design and sample size issues

The objectives for all four multi-year studies have been translated into parameter estima-

tion problems, namely

• DCC: for comparing open gate to closed gate effects on survival, estimate µθ(Close)/µθ(Open)

(equation 8);

• Interior: for comparing survival from Georgiana Slough to survival from Ryde, esti-

mate µθ (equation 23);

• DA 8: for evaluating the effect of exports on the survival of Georgiana Slough releases

(relative to the survival of Ryde releases), estimate β1 (equation 29);

• VAMP: for evaluating the effect of flow on survival from Dos Reis to Jersey Point,

for example, estimate a parameter ξ1, say (equation 45).

Sample size and design issues translate into statements about bias and precision of these

parameter estimates.

6.1. Bias. Bias in parameter estimates depends primarily on model correctness, i.e., whether

or not the model assumptions hold. For example, at Level 1 were multinomial models

appropriate? Were the fish fates independent? Were the capture probabilities the same for

all fish within a paired release, e.g., the same probability of capture at Chipps Island or in

the ocean fisheries? At Level 2 were normal distributions appropriate for the random effects?

The question of independence was addressed indirectly by using the negative binomial

model as an alternative to the multinomial, and in the case of the DCC studies, the negative

binomial was preferable8. The question of equal capture probabilities within a release pair

was addressed non-rigorously (Section 3.2) by comparing the distribution of recovery times

at Chipps Island within a release pair for a few cases (Figure 12). To better answer these

two questions, two additions to the general release-recovery design are recommended.

(1) Use embedded replicates for some release groups. Embedded replicate tags provide a

means of detecting whether or not the assumption of independence has been violated.

With embedded replicate tags, the tag numbers vary from tag to tag within the same

“spool” of tagging wire that is used to tag a given release group. Schnute (1992)

8Although the better fit of the negative binomial in this case could be due to the estimation error in the

ocean recoveries more so than dependence between fish.
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pointed out that embedded replicate tags provide no additional information regard-

ing sampling variation if fish are independent and identically distributed. However,

if fish are not independent and identically distributed, then embedded replicates can

provide evidence for lack of independence, e.g., clustering. If variation between em-

bedded replicates is higher than expected according to the underlying multinomial

models, then dependence, such as clustering, could be the explanation. The negative

binomial distribution is one possible remedy in that case, but the development of

other alternative probability models would be worth exploring.

While embedded replicate data are not currently available, there were some “near”

replicate tag codes used for some of the releases in the VAMP studies. Table 15

contains information from five sets of Durham Ferry releases. The fish within each

set were reared in the same pond but differed by tag code. This is not exactly the

same as embedded replicate groups in that the lots tagged with different tag numbers

were tagged at different times. For each set a χ2 test was carried out to test that

the proportions recovered by location were the same within a set. The P-values

shown in Table 15 suggest departures from homogeneous multinomial distributions

for four of the five sets. The underlying probability distribution for the χ2 test is

multinomial. However, because ocean recoveries are estimated, not observed directly,

this assumption is not true and some extra-multinomial variation undoubtedly exists.

The ocean recoveries were then aggregated into the “non-caught” group and the χ2

tests were repeated, and this time no departures from homogeneity were observed.

Note that these results indicate that using multinomial distributions for Level 1 of

the hierarchical model is likely inaccurate, but they do not necessarily indicate a lack

of independence between fish.

(2) Make releases below the recovery locations. By making releases immediately down-

stream of capture locations, i.e. Chipps Island and Antioch, assuming that subse-

quent ocean recovery probabilities are the same for releases within a pair or grouping,

the capture probabilities at Chipps Island or Antioch can be estimated separately

of the survival probability of the immediately upstream section (Newman 2003).

Furthermore, estimates of capture probabilities provide a means of evaluating the

assumption of constant capture probabilities for paired releases.

For some of the releases in the DCC and the Interior/DA8 studies, downstream

releases were made below Chipps Island at Port Chicago or Benicia (see Tables 3 and

4). Method of moments estimates of the capture probabilities for the Courtland or

Georgiana Slough releases and the Ryde releases were calculated as follows

p̂CI =
yUp→CI

yUp→CI +
ŷUp→Oc∗RPC

ŷPC→Oc

,
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where the subscript Up is for any release location above Chipps Island. The resulting

estimates of pCI for the paired upstream releases are shown in Table 16. On average

the capture probabilities were higher for Ryde releases than for the Courtland or

Georgiana Slough releases. For the DCC studies, a simple paired t-test of equal

capture probabilities yielded a P-value of 0.21, suggesting that the differences could

be due to sampling variation alone (a more refined test would account for different

estimation errors). For the Interior/DA8 studies, however, the same test resulted in

a P-value of 0.017 suggesting that Ryde releases were indeed captured with a higher

probability than Georgiana Slough releases.

If in fact, the Ryde releases were recovered at a higher rate, then estimates of the

relative survival rates of Georgiana Slough to Ryde releases are likely biased low,

i.e., Georgiana Slough releases are surviving at a higher rate. Excluding the three

release pairs without associated Port Chicago releases, the non-Bayesian estimate

of µθ (equation 26) assuming equal capture probabilities is 0.46, while if different

capture probabilities are allowed the estimate is 0.57.

The hierarchical model can be modified to accommodate both recoveries of Port

Chicago releases, and separable upstream survival and capture probabilities, e.g., for

the Interior studies,

Level 1:

yGS→CI , yGS→Oc ∼ Mn(RGS , θSRypGS,CI , θSRy(1 − pGS,CI )rPC→Oc)

yRy→CI , yRy→Oc ∼ Mn(RRy, SRypRy,CI , SRy(1 − pRy,CI )rPC→Oc)

yPC→Oc ∼ Binomial (RPC , rPC→Oc)

Level 2:

logit(θ) ∼ Normal
(
µθ, σ

2
θ

)

logit(SRy) ∼ Normal
(
µSRy

, σ2
SRy

)

logit(pGS,CI ) ∼ Normal
(
µpGS,CI

, σ2
GS,CI

)

logit(pRy,CI ) ∼ Normal
(
µpRy,CI

, σ2
Ry,CI

)

logit(rPC→Oc) ∼ Normal
(
µrPC→Oc

, σ2
PC→Oc

)

The assumption of equal ocean recovery probabilities has not been addressed. Ear-

lier unpublished work by the author used cluster analyses to analyze the ocean re-

covery patterns for some Sacramento River and Delta releases. The estimated pro-

portions caught by age-port-time strata were used as the variable to cluster on and
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the results indicated greater similarities between releases made in the same year than

between years. More work is needed in this area.

6.2. Precision. Precision is the magnitude of the sampling error as measured by the size

of the standard error of parameter estimates (classical analysis) or the size of the standard

deviation of posterior distributions (Bayesian analysis). Sampling error of estimated survival

probabilities and related parameters is a function of the parameter values, capture probabil-

ities, inherent between year variation, sample size, and the degree of blocking or controlling

for variation. With regard to blocking, the pairing (or tripling, etc) of releases is a positive

feature of all the studies because it controls for at least some confounding factors and thereby

increases precision.

As sample sizes increase and capture probabilities increase, the standard error or standard

deviation of posterior distributions for the survival probabilities will generally decrease. For

these multi-year studies there are two kinds of sample sizes: the number of fish released

(R) and the number of years (or replications) of study (n). Increasing R or n will increase

precision.

With paired releases there are at least two R’s and how fish numbers are allocated to

each R will affect precision. For example, in a VAMP release group with 100,000 total fish

available, one could allocate 25,000 fish each to Durham Ferry, Mossdale, Dos Reis, and

Jersey Point, or one could put 40,000 at Durham Ferry and 20,000 each at the other three

sites. Determining “optimal” allocation is thus another problem.

Covariate values affect precision, too. For the DA 8 studies, increasing the number of

observations at the “extremes” of export levels will increase the precision in the estimate of

the slope parameter (β1 in Equation 29). Similarly, for the VAMP studies, increasing the

number of observations at the “extremes” of flow and exports will increase the precision of

the related (partial) slope parameters (Equations 43-46).

Thus there are an infinite number of ways to achieve a desired precision by varying the

number of years of study, varying the total number of fish released, varying the allocation of

fish to release sites within a pairing, and by manipulating the covariate values to the degree

possible. Ideally an analytic formula is derived which takes as input n, the total release

numbers, e.g., R1+R2, and the allocation to release sites (R1, R2), covariate values when

appropriate, guesses as to parameter values, and inherent between year variation (e.g., σ2
θ),

and then outputs the standard error or standard deviation of the posterior distribution for
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the parameter of interest. Or, more directly, an analytic formula takes as input the desired

standard error or posterior standard deviation, and whatever non-manipulable factors there

are (e.g., σ2
θ), and outputs the combinations of n, R1, R2, and covariate values that will

achieve the target precision.

The complexity of the hierarchical models for the DCC, DA 8, and VAMP studies is such

that analytic solutions are difficult, at best, to derive. In these cases, simulation studies

are an alternative: for different sample sizes and input values, simulate the data generation

and estimation processes and then look at the resulting standard deviation of estimates (or

posterior means). The following sections discuss sample size determination for each of the

studies.

6.2.1. DCC: Sample size for estimating µθ(Open)/µθ(Closed). Simulations of the data genera-

tion and data analysis processes were used to study the effect of changing n, the number

of replications of paired releases, on the standard error of the estimate of µθ(Open)/µθ(Closed) .

Results from the Bayesian analysis were used for the simulation of observations, but the

estimation procedure was non-Bayesian and bootstrapping was used to calculate standard

errors. Carrying out a full Bayesian analysis using WinBUGS to produce posterior standard

deviations would have taken considerably longer.

The simulations used recovery probabilities estimated from a BHM fit to the DCC data.

The BHM used the multinomial distribution at Level 1 and the 1989 outlier had been removed

from the data set. The median posterior values for β0 and β1 were used to generate the

relative survival probability for Courtland releases compared to Ryde releases (θ); the true

value of θ was around 0.73. Similarly recovery probabilities at Chipps Island and in the

ocean were generated. Recoveries at Chipps Island and in the ocean were simulated using

the multinomial distributions, and µθ(Open)/µθ(Closed) was estimated using equation (15).

Bootstrapping was then used to estimate the standard error. The R code for this exercise is

given in Appendix D.4.

The above procedure was carried out 100 times for n=10, 14, 20, and 24, where gates

were open in exactly half the replications, i.e., 5, 7, 10 and 12 replications of open gates.

The release numbers were fixed at 100,000 each for Courtland and for Ryde releases. The

bootstrap standard errors for the estimates are plotted in Figure 33. The median standard

errors for 10, 14, 20, and 24 replications were 0.72, 0.46, 0.42, and 0.36, which are large

relative to ratio value of 0.73.
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The effect of doubling the release numbers to 200,000 was examined. The reduction in

standard errors was negligible, indicating that the between replication variation, as reflected

in σθ, σRy→CI , and σRy→Oc, overshadows the sampling variation (given that R is at least

100,000).

The DCC studies consisted of only 13 replications, 4 with gates closed and 9 with gates

open, and the average release numbers were 90,000 for Courtland releases and 64,000 for

Ryde releases. Thus even if the true value of the ratio were 0.73, the chance of an estimated

value being found to be “statistically significant” is likely relatively low for this amount of

data.

6.2.2. Interior: Sample size for estimating µθ. An analytic formula for the variance of µ̂θ

was calculated in a classical, non-Bayesian framework (Appendix A). The resulting formula

can be used to determine the effect of release numbers and the number of replicate pairs on

the variance. Assuming that the same number are released in each group every year, i.e.,

R1t = R2t = R, simplifies the weights to wt=1/n. The formula, in this case, for µ̂θ (equation

(26)) is:

µ̂θ =
1

n

n∑

t=1

θ̂t =
1

n

n∑

t=1

y13,t + y14,t

y23,t + y24,t
.

Calculation of the variance of µ̂θ is quite lengthy and the details are provided in Appendix

A. After some algebra the theoretical variance of µ̂θ can be rewritten as follows:

V (µ̂θ) ≈
1

n

[
X

R
+ σ2

θ

]
,(54)

where X is a long tedious calculation (see Appendix C, where X=A + 0.5B and equation

(62)).

For a given release number R and specified variance, the necessary number of years can

be calculated:

n =
X
R

+ σ2
θ

V
.(55)

Similarly for a fixed number of years n and specified variance, the necessary release numbers

can be calculated:

R =
X

V n − σ2
θ

.(56)
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One crucial factor in sample size determination is σ2
θ . The output from a BHM fit (logit

transformed θ with inverse gamma priors for the σ2’s) was used to estimate σ2
θ . A median

value for σ2
ε of 1.05 and the median value for µθ of -0.40 were used to generate a sample

of 1000 logit(θ)’s. The inverse logit transformation was applied to calculate θ and the

sample variance of θ, an estimate of σ2
θ , was calculated to be 0.044. Also needed (in the

“X” term) are values for the means and variances of the recovery probabilities at the two

recovery locations. For the demonstration below values were chosen arbitrarily, but similar

to estimated values from BHM fits to the real data.

Figure 34 is a plot of the number of replications, n, to achieve a range of desired standard

errors for µ̂θ based on σ2
θ = 0.044 and R = 50,000, 75,000, or 150,000. The effect of num-

bers released (over this range of values) is minor in comparison to the number of years of

experimentation. If σ2
θ were smaller, then the relative importance of R would increase.

As a check on the theoretical calculations, the plotted values were compared to the boot-

strap standard error for θ̂ in the Interior studies. There were 14 “years” of release pairings

and the bootstrap standard error for θ̂ was 0.055. The mean number released at Georgiana

Slough was 58,000 and at Ryde it was 45,000, so assume roughly 50,000 for both groups. If

one plots the point (0.055, 14) on Figure 34, the point is very close to the line for R=50,000.

6.2.3. DA 8: estimating β1. To study the effect of sample size (both n and R) on the

precision of estimates of β1, the slope coefficient in a linear model of the relative survival

of Georgiana Slough releases regressed against exports (equation 29)), simulation of the

data generation and data estimation was processes was used. To be consistent with a fully

Bayesian analysis, WinBUGSwould be used to generate samples from the posterior distribution

for β1 and calculate the standard deviations. This would be very computer intensive and

take a considerable amount of time.

An approximate, but easier alternative was chosen. Recoveries were simulated according

to the hierarchical model but the approximate indirect estimation procedure (which ignores

unequal sampling and between pair variation) was used to estimate β1. To simulate the

recoveries the medians of the posterior distributions for the parameters (σ2
θ , σ2

rRy→CI
, σ2

rRy→Oc
,

β0, and β1) from one of the fitted BHMs were used. The export levels were randomly selected

from a Uniform(1500, 11000) distribution, and then standardized using the mean (6376) and

standard deviation (3284) of the observed data. The logit transform of θ was simulated using

Equation 29. The fitted regression was of the logit transform of θ̂ on standardized exports.
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The standard errors of β̂1 based on 10,000 simulations per combination of R and n are

shown in Table 17. The R code is given in Appendix D.6. Again the standard errors are

more sensitive to n than R, at least for R ≥ 50,000 per release. In relative terms the

standard errors were large given that the true value of β1 was 0.57; even with 25 release

pairs with R=150,000, the coefficient of variation was 40% (0.228/0.57). Thus the between

pair variation is the factor most affecting how easily a “significant” export effect can be

detected. The coefficient of variation could be reduced to around 20% if n = 100 paired

releases were made.

6.2.4. VAMP: estimating regression coefficients for flow, exports, and HORB. As for the DA

8 studies, linear regression coefficients are of primary interest. The analysis of sample size

effects on estimates of coefficients discussed here is based on a version of a VAMP model that

precedes those presented in this report (subsequently modified based on suggestions from

reviewers). With the earlier version there were no branching probabilities at the head of Old

River and survival between Mossdale and Dos Reis was modeled without explicit allowance

for travel down Old River when the HORB was not in place. Due to time limitations, the

sample size analysis was not repeated with the newer models. However, the analysis was

based on data simulated from the earlier model and the general conclusions are expected to

be consistent with what would be observed if the analysis were carried out using simulated

data from the final VAMP models.

Data were simulated according to the following reach-specific survival probability models:

logit(SDF→MD) ∼ Normal
(
β0 + β1F low, σ2

DF→MD

)

logit(SMD→DR) ∼ Normal
(
γ0 + γ1F low + γ2IHORB + γ3Exports × (1 − IHORB, σ2

MD→DR

)

logit(SDR→JP ) ∼ Normal
(
ξ0 + ξ1F low + ξ2IHORB + ξ3Exports, σ2

DR→JP

)

Again, for convenience, simulations from the hierarchical model were used to generate ob-

servations, then non-Bayesian estimates of the section-specific survival probabilities (or θs)

were regressed, on a per river segment basis, against the relevant covariates.

The simulated model structure and parameter values are shown in Appendix D.7. A posi-

tive flow effect was assumed between Durham Ferry and Mossdale. To reduce the probability

of maximum likelihood estimates being truncated at 1, the intercepts for the logit transforms

were made relatively negative. For reporting the effect of sample sizes, the interquartile range

was calculated instead of the standard deviation to lessen the impact of potentially skewed

sampling distributions.
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The results are shown in Table 18. Again number of replications of the release sets has a

larger effect on the variability of point estimates than number released. The relative error,

IQR/true value, tends to decrease the further downstream the releases are made. This is

presumably due to the fact that more fish are providing information about survival for the

lower reaches; e.g., from Dos Reis to Jersey Point there are the Dos Reis releases as well

as surviving fish from the Durham Ferry and the Mossdale releases. This suggests that a

more refined sample size determination could lead to fewer releases for further downstream

releases relative to upstream releases.

6.3. Acoustic tagging studies as an alternative. Acoustic tagging experiments have

been, and are currently being, conducted in the Sacramento-San Joaquin system. It would be

worthwhile to make a cost and precision comparison between acoustic tagging and CWTs in

terms of estimating survival probabilities and related parameters. Acoustic tags and receivers

are quite expensive compared to CWTs; e.g., the cost for a single acoustic tag in early 2008

was around $300 while an individual CWT costs a fraction of a cent. On the other hand,

detection probabilities using hydrophonic receivers are orders of magnitude greater than

capture probabilities at Chipps Island, for example, and the precision of estimated survival

probabilities, per number of fish, are considerably greater with acoustic tags compared to

CWTs. Furthermore, acoustic tags combined with strategically placed receivers can more

readily provide information about the out-migration route taken by the juvenile salmon.

Statistical analysis procedures are not yet entirely worked out for such studies but Skalski,

et al. (2002) and Muthukumarana, Schwarz and Swartz (2008) have developed methodologies

for radio-tagged salmon that could be applicable to the Sacramento-San Joaquin system. The

general features of BHMs would still be appropriate for multi-year studies using acoustic tags.
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7. Conclusions and Recommendations

7.1. Comparison with previous analyses. The reanalysis of the four studies within a

Bayesian hierarchical framework led to conclusions that were more often consistent with

previous analyses than not and a comparison of the alternative analyses is summarized

below. Major differences between previous analyses and the BHM analyses for all studies

were that previous analyses did not account for unequal sampling variation and between

release pair variation while the BHMs did.

(1) DCC: The analysis of Manly (2002) is more directly comparable to the hierarchical

model than the previous USFWS analyses (Brandes and McLain, 2001). Manly used

only Chipps Island recoveries and calculated survival indices (recovery rates adjusted

by Chipps Island sampling effort). The ratio of the Courtland to Ryde survival indices

when the gates were open was estimated to be 0.650, and 0.705 when the gates were

closed. Using t-tests, Manly found no significant difference in these ratios.

The Bayesian hierarchical model analysis used Chipps Island and ocean recoveries

simultaneously and, with the negative binomial formulation, allowed for overdisper-

sion relative to binomial models. The conclusions were similar to those of Manly:

survival for Courtland releases relative to Ryde releases appears to be lower with

the gates open (median=0.54) than with the gates closed (median=0.75), with the

median ratio of ratios equal to 0.72. The BHM median ratio of ratios was lower than

Manly’s implied value of 0.92 (0.650/0.705), but the BHM posterior 97.5 percentile

value was over 5.

(2) Interior: Brandes and McLain (2001) had a shorter time series available when they

did their analyses so results are not directly comparable with the BHM results. They

analyzed the available recoveries from Georgiana Slough and Ryde releases of Chipps

Island (using survival indices) and ocean recoveries separately. Based on paired t-

tests of the null hypothesis of equal survival indices for Georgiana Slough and Ryde,

they found statistically significant differences between the two release locations.

The Bayesian hierarchical model (while using Chipps Island and ocean recoveries

simultaneously) led to conclusions similar to Brandes and McLain: Georgiana Slough

releases have a lower survival probability than Ryde releases with the median value

of the posterior distribution for the ratio of the survival probabilities equal to 0.36.

(3) DA 8: Again, using the shorter time series available at the time Brandes and McLain

(2001) used an indirect approach (applied separately to Chipps Island and ocean

recoveries, and using a combination of fall run and late fall run releases) to analyze
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the effect of exports on the relative survival of Georgiana Slough releases. They found

a statistically significant negative association between exports and survival.

The Bayesian hierarchical model (fitted only to the late fall run) used Chipps Island

and ocean recoveries simultaneously, and modeled the relationship between exports

and survival directly. The hierarchical model results again led to conclusions similar

to Brandes and McLain: there is over a 98% probability that as exports increase the

survival decreases for Georgiana Slough releases. The posterior median value for the

slope coefficient was -0.31. This is just slightly less negative than a non-Bayesian

indirect estimate of -0.39, where logit(θ̂) was regressed on exports. However, the

intercept in the linear model regression survival against exports was considerably

higher for the BHM than for the non-Bayesian models; thus the BHM was suggesting

an overall higher relative survival for Georgiana Slough releases.

(4) VAMP: Previous analyses of VAMP and pre-VAMP data (2005 Annual Technical Re-

port by San Joaquin River Group Authority) were carried out in a piecemeal fashion

using several simple linear regressions of release-specific recovery rates against flow,

exports, and flow/exports when HORB was either in or out (see Table 8. Also the re-

covery fractions for the freshwater recoveries (Antioch and Chipps Island combined)

and ocean recoveries were analyzed separately, and releases at Durham Ferry and

Mossdale were treated as a single release. The results were that with the HORB out,

survival of releases above the head of Old River was not significantly related to flow,

exports, or flow/exports (at α=0.05). However, with HORB in, survival of releases

made above the head of Old River was significantly related to flow, but the relation-

ship with exports and flow/exports was inconsistent and sometimes paradoxical (e.g.,

exports were positively associated with survival, weakly statistically significant using

Antioch and Chipps Island recoveries and insignificant using ocean recoveries). The

fact that the presence of the HORB affected the relationships with flow suggests an

interaction between flow and HORB.

The Bayesian hierarchical model analyzed the multiple release and recovery data,

including Antioch, Chipps Island, and ocean recoveries, simultaneously. Reach-

specific survival probabilities were linked together, along with recovery probabilities

at the three recovery sites. Logit transformations of survival and recovery proba-

bilities were modeled with random effects and various covariates, particularly flow

and exports, were tried. For the various models fitted, there were two in-common

conclusions: (1) flow is positively associated with the probability of surviving from

Dos Reis to Jersey Point and (2) the survival probability for that reach is generally

greater than the survival probability for fish traveling down Old River. Assuming

that the HORB effectively keeps out-migrating salmon from entering Old River, the
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second conclusion implies that the HORB can increase salmon survival. For fish that

do enter Old River, there was some evidence that flow in Old River was positively

associated with survival between Old River and Jersey Point, but the evidence was

not as consistently strong as for the Dos Reis to Jersey Point reach. There was little

evidence for any association between exports and survival, and what evidence there

was pointed towards a somewhat surprising positive association with exports.

7.2. Criticisms of and concerns about the BHMs. The BHMs as formulated for the

CWT release-recovery data do not provide the ultimate definitive explanations of what

affects the survival of out-migrating juvenile Chinook salmon through the Delta, nor of

the magnitude of effect of the factors of interest. Some of the limitations are inherent to

CWT release-recovery data: the fish can only be captured once, the capture probabilities

are relatively low, and information about out-migration paths through the Delta is difficult

to acquire unless recoveries can be made at multiple locations.

Other limitations are a function of the accuracy of assumptions made, in particular, that

capture probabilities are the same for temporally paired releases, relatedly that ocean sur-

vival, spatial-distribution, and maturation probabilities are the same for such paired releases,

and, in the case of the VAMP model, that the survival in downstream sections is the same

for all fish within a paired release that pass through the section. A potential violation of this

last assumption could occur if downstream releases experienced some additional mortality

at the time of release, such as might be caused by extreme differences in truck water temper-

atures and river water temperatures, a shock effect (Newman 2003), that is not experienced

by fish released upstream that are passing by. Regarding the assumption of equal ocean

capture probabilities, a relatively simple cluster analysis of catch recoveries (unpublished

work) had been done prior to earlier analyses of Sacramento River releases (Newman and

Rice 2002). The results suggested greater between release year variation than within release

year variation, but a more rigorous examination may be fruitful.

The BHMs for the DCC, Interior, and Delta Action 8 studies are relatively simple and the

number of models considered was relatively few. However, for the VAMP data, the number

of models and complexity of models considered was much greater. The use of DIC to select

amongst the different VAMP models is not entirely satisfying and the use of posterior model

probabilities may be a better alternative (see comments by Giminez, et al. (in review)). A

Reversible Jump MCMC add-on procedure for WinBUGS, which allows one to search through

model space, is now available (http://www.winbugs-development.org.uk/rjmcmc.html)
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and might be usable for some of the BHMS considered. In short, a more thorough model

selection procedure needs to be carried out, particularly for the VAMP models.

While acoustic tags and receivers are not necessarily a complete solution, due to oc-

casional difficulty in successfully placing receivers in the Sacramento-San Joaquin system

(Pat Brandes, personal communication), they potentially offer considerable advantages over

CWT release-recovery data. First, multiple recaptures are possible, which thereby increases

precision. Second, capture probabilities with acoustic receivers are sometimes two orders

of magnitude greater than capture probabilities by a mid-water trawl. Third, judicious

placement of receivers at junctions can provide information about out-migration paths that

are much more difficult to determine using CWT data, which require trawling at the same

junctions, and preferably the release of additional fish at those same points.

7.3. Recommendations. Recommendations on alternative data generation procedures were

made earlier (Section 6.1). These recommendations are summarized briefly here along with

additional recommendations.

(1) Use embedded replicate tags to check for violations of the assumption of independence

between fish.

(2) Make releases below freshwater recovery locations, e.g., below Chipps Island, so as

to allow separate estimation of capture probabilities at the recovery location.

(3) Carry out a more detailed analysis of the ocean catch recovery patterns by age-port-

month of recovery to better determine how similar the recovery patterns are within

paired releases.

(4) Carry out a benefit-cost comparison of CWTs and acoustic tags, including a compar-

ison of the precision of estimates of survival probabilities per number of fish released.

(5) Specify an underlying probability model for any analyses of release-recovery data,

and in the case of multi-year survival studies, in particular, formulate hierarchical

probability models.

(6) Use such probability models prior to carrying out release-recovery experiments to

evaluate design and sample size options.

(7) Estimate the sampling errors for estimated ocean recoveries and incorporate the errors

into the probability model for observed and estimated recoveries; hierarchical models

can be extended to another level to include such variation.

(8) Carry out a more rigorous model-selection procedure for the various VAMP models

using Reversible Jump MCMC.
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provided helpful remarks to improve the readability of the report.
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Table 1. Overview of the release and recovery locations, and duration, of the

four studies.

Study Duration Primary Release Locations Recovery Locations

DCC 1983-1989 Courtland and Ryde Chipps Island, Ocean

Interior and DA 8 1994-present Georgiana Slough and Ryde Chipps Island, Ocean

VAMP 1985-present Durham Ferry, Mossdale, Antioch, Chipps Island, Ocean

(and pre-VAMP) Dos Reis, Jersey Point
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Table 2. Summary of notation for releases, recoveries, and model parameters.

Symbol Definition

Ct, Ry, GS release locations: Courtland, Ryde, Georgiana Slough

DF , MD, DR, JP release locations (VAMP): Durham Ferry, Mossdale, Dos Reis, and Jersey Point

CI, Oc, A recovery locations: Chipps Island, Ocean, and Antioch

Ra number of fish released at location a

ya→b number of recoveries at location b of CWT fish that were released at location a

ŷa→Oc estimated number of ocean recoveries of CWT fish that were released at location a

r̂a→b observed recovery fraction, ya→b/Ra

Sa→b probability of surviving between location a and location b

pb probability of capture at location b (given alive at that location)

logit(π) logistic transform of a probability, π, log
(

π
1−π

)

µθ expected (average) value of a random variable θ

σ2
θ standard deviation of a random variable θ

Notation used in DCC BHM

θ(DCC) SCt→CI/SRy→CI , which varies as a function of DCC gate position

IDCC=closed indicator variable that equals 1 when DCC gate is closed, else equals 0

β0, β1 intercept and slope in logit model for θ(DCC),

E[logit(θ(DCC))]=β0 + β1IDCC=closed

rRy→CI Pr(fish released from Ryde survives to and is captured at Chipps Island)

rRy→Oc Pr(fish released from Ryde survives to and is captured in the ocean)

Notation used in Interior BHM

θ SGS→CI/SRy→CI

rRy→CI Pr(fish released from Ryde survives to and is captured at Chipps Island)

rRy→Oc Pr(fish released from Ryde survives to and is captured in the ocean)

Notation used in Delta Action 8 BHM

β0, β1 intercept and slope in logit model for θ (as a function of standardized exports),

E[logit(θ)]=β0 + β1

(
(Exports−Exp)

sExp

)

Notation used in VAMP BHM

rJP→A Pr(fish released from JP survives to and is captured at Antioch)

rJP→CI Pr(fish released from JP survives to and is captured at Chipps Island)

rJP→Oc Pr(fish released from JP survives to and is captured in Ocean)

β parameter(s) for E[logit(SDF→MD)]

γ parameter(s) for E[logit(SMD→DR)]

ξ parameter(s) for E[logit(SDR→JP )]

ζ parameter(s) for E[logit(SOR→JP )]
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Table 3. DCC: Release and recovery data. Recoveries at Chipps Island, in the ocean fisheries, and

at the SWP and CVP fish salvage facilities are in the columns headed CI , Oc, and FF , respectively.

Ryde releases were occasionally made at Isleton and some of the Port Chicago releases were actually

at Benicia.

Tag Codes DCC Courtland Ryde Pt.Chicago

Year Grp Courtland Ryde Pt Chicago Gate RCt CI Oc FF RRy CI Oc FF RPC Oc

1983 1 06-62-24 06-62-23 06-62-30 closed 96,706 89 428 0 92,693 96 368 0 43,374 129

1987 2 06-62-53:54 06-62-55 NA closed 100,302 73 1981 182 51,103 47 1607 0 NA NA

1988 3 B6-14-02:03 06-31-01 B6-14-08 closed 107,249 151 1188 1075 52,741 104 1076 0 55,265 1115

1988 4 06-62-59:60 06-62-63 06-31-04 closed 106,901 37 1037 0 53,961 44 252 0 54,151 1022

1984 5 06-62-27 06-62-29,06-42-09 06-62-31,06-62-37 open 62,604 37 399 0 59,998 38 268 0 42,000 316

1985 6 06-62-38,06-62-41 06-62-35 06-62-45 open 100,626 38 313 0 107,161 89 926 0 48,143 465

1986 7 06-62-43 06-62-48 06-62-51 open 98,866 39 1692 8 101,320 75 1979 0 47,995 1377

1987 8 06-62-56:57 06-62-58 NA open 100,919 43 1434 187 51,008 47 1039 0 NA NA

1988 9 B6-14-04:05 06-31-02 B6-14-08 open 102,480 145 936 450 53,238 145 1324 0 55,265 1115

1988 10 06-62-50 06-31-03 06-31-04 open 99,827 5 70 0 53,942 38 285 0 54,151 1022

1989 11 06-31-11 06-31-12 NA open 51,211 46 240 26 51,046 58 417 18 NA NA

1989 12 06-31-08 06-31-07 06-31-09 open 50,659 19 41 0 50,601 26 82 0 45,446 181

1989 13 06-01-14-01-03,06-58-05 06-01-14-01-02 06-01-14-01-04 open 90,720 21 84 0 51,134 8 10 0 48,329 352
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Table 4. Interior and DA 8: Release and recovery data. Recoveries at Chipps Island, in the ocean

fisheries, at the SWP and CVP fish salvage facilities, and at Inland locations (expanded numbers)

are in the columns headed CI , Oc, FF , and IL, respectively. Ryde releases were occasionally made

at Isleton (denoted by asterisk by tag code) and some of the Port Chicago releases were actually

at Benicia (denoted by asterisk by tag code). Exports are a three day average volume of water

exported from SWP and CVP.

Release Tag Codes Georgiana Slough Ryde Pt.Chicago

Date Grp Georg.Sl. Ryde Pt Chicago RGS CI Oc FF IL RRy CI Oc FF IL Exports RPC Oc

12/02/93 1 06-45-21 06-45-22 NA 33,668 5 80 248 12 34,650 37 292 10 36 10,434 NA NA

12/05/94 2 05-34-25 05-34-26* NA 31,532 4 11 87 8 30,220 15 29 6 13 5,988 NA NA

01/04-05/95 3 06-25-25 06-25-24* NA 31,328 2 101 837 53 31,557 13 266 231 138 10,403 NA NA

01/10-11/96 4 05-41-13 05-41-14 05-41-11 33,670 5 146 768 9 30,281 21 240 12 23 9,523 34,596 265

12/04-05/97 5 05-50-50 05-50-60 05-50-61 61,276 2 7 153 4 46,756 22 41 18 11 10,570 48,080 141

01/13-14/97 6 05-50-49 05-50-62 ” 66,893 18 240 24 51 49,059 48 167 0 70 3,887 ” ”

12/01-02/98 7 05-23-08 05-23-20 05-23-22 69,180 12 173 28 44 48,207 30 182 0 102 1,868 45,195 140

12/29-30/98 8 05-23-12 05-23-21 ” 68,843 12 150 48 54 48,804 17 156 0 88 1,984 ” ”

12/10-11/99 9 05-51-30 05-51-32* 05-51-34 65,517 3 43 24 9 53,426 16 128 0 20 3,237 49,208 274

12/20-21/99 10 05-51-31 05-51-33* ” 64,515 21 151 82 32 49,341 19 161 4 66 4,010 ” ”

01/03-05/02 11 05-07-76 05-07-67 05-07-68 77,053 18 248 390 110 52,327 34 520 18 366 7,789 47,876 314

12/05-06/02 12 05-10-98,05-11-68 05-11-67 05-11-66 90,219 1 68 700 10 49,629 18 147 42 15 5,007 47,048 458

12/09-10/03 13 05-17-71:72 05-17-81:82 05-17-80* 68,703 5 50 306 2 45,981 13 128 24 12 4,016 24,785 156

12/08-09/04 14 05-22-92:93 05-22-80:81 05-22-82 72,082 10 NA 0 NA 50,397 28 NA 0 NA 6,092 25,132 NA

12/08-09/05 15 05-27-84:87 05-27-88:91 05-27-94,95 70,414 6 NA 165 NA 51,017 23 NA 12 NA 10,837 NA NA
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Table 5. VAMP: Release and recovery data from pre-VAMP (1985-

1991, 1994-1999) and VAMP (2000-2006) studies. Recovery locations

are Antioch (Ant), Chipps Island (CI), ocean fisheries (Oc), and the

SWP and CVP fish salvage facilities (FF). Stock designations FRH and

MRFF denote Feather River Hatchery and Merced River Fish Facility

(excepting group 4, all releases in same group have same stock). Flow

and Exports (Exp) column headings DF, MD, DR, and UOR are for

Durham Ferry, Mossdale, Dos Reis, and Upper Old River. Flows, ex-

ports, pOR, and temperature are defined in Table 6.

Group Stock Release Release Tag Release Recovery Location HORB DF MD DR UOR MD DR pOR Temp

No. Location Date Codes Number Ant CI Oc FF Flow Flow Flow Flow Exp Exp

1 MRFF Dos Reis 4/30/85 Yellow 149968 — 94 — 4450 Out — — 384 — — 5794 81 21.1

Old River 4/29/85 Red 150048 — 99 — 37299 — 2475 — 1928 5257 5709 21.1

2 MRFF Dos Reis 5/29/86 064658,B61101 95595 — 36 2068 2960 Out — — 2442 — — 5626 73 20.0

Old River 5/30/86 064659,B61102 100181 — 21 1139 62564 — 7140 — 4842 4096 5626 21.1

3 MRFF Dos Reis 4/27/87 06450:3,4,5 92612 — 79 1219 5469 Out — — 391 — — 5856 90 21.1

Old River 4/27/87 06450:6,7,8 90952 — 17 500 24019 — 2480 — 2057 7370 5856 22.2

4 MRFF Dos Reis 5/02/89 06011101:07,08,13 76073 — 12 78 428 Out — — 577 — — 1798 66 21.7

Old River 5/03/89 060111010:4-6 74341 — 4 16 1439 — 2500 — 1522 1797 1798 21.7

FRH Jersey Pt 5/05/89 06011101:09,10 56233 — 56 283 824 — — — — — — 20.0

5 FRH Dos Reis 4/20/89 063114 52962 — 11 34 2714 Out — — -17 — — 10212 104 20.6

Old River 4/21/89 063113 51972 — 5 38 2916 — 1945 — 2049 10295 10212 19.5

Jersey Pt 4/24/89 060111011:1-2 56816 — 53 180 144 — — — — — — 17.8

6 FRH Dos Reis 4/16/90 060114010:7-8 105742 — 4 23 1766 Out — — 48 — — 9597 119 20.0

Old River 4/17/90 060114010:5-6 106267 — 2 14 2613 — 1400 — 1060 9400 9597 21.1

Jersey Pt 4/18/90 0601140109 52962 — 32 224 156 — — — — — — 17.2

7 FRH Dos Reis 5/02/90 060114011:0-1 103533 — 4 34 150 Out — — 431 — — 2353 84 20.0

Old River 5/03/90 060111011:2-3 103595 — 1 11 1346 — 1400 — 934 3276 2242 22.2

Jersey Pt 5/04/90 063119 50143 — 56 204 62 — — — — — — 20.0

8 FRH Dos Reis 4/15/91 060114011:4-5 102999 — 17 86 7130 Out — — -49 796 — 5990 126 15.6

Jersey Pt 4/19/91 0601140206 52139 — 94 358 331 — — — — — — 17.2

9 FRH Mossdale 4/11/94 0601140315 51804 — 0 62 705 Out — 1580 466 1018 2087 1725 67 17.2

Jersey Pt 4/13/94 0601140403 50689 — 10 420 14 — — — — — — 17.8

10 FRH Mossdale 4/26/94 0601140404 50726 — 2 89 0 In — 3115 2891 0 1120 1598 11 15.6

Continued on next page
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Group Stock Release Release Tag Release Recovery Location HORB DF MD DR UOR MD DR pOR Temp

No. Location Date Codes Number Ant CI Oc FF Flow Flow Flow Flow Exp Exp

Jersey Pt 4/27/94 0601140408 53810 — 16 756 0 — — — — — — 17.2

11 FRH Mossdale 4/17/95 0601140:414,501 100969 — 20 461 2682 Out — 18700 8267 9192 3707 3684 55 13.9

Dos Reis 4/17/95 0601140412 50848 — 8 234 0 — — 8267 — — 3684 13.9

Jersey Pt 4/19/95 0601140413 50779 — 26 280 0 — — — — — — 15.6

12 FRH Mossdale 5/05/95 06315:0-1 102562 — 13 392 1883 Out — 21250 9316 9801 3770 3958 58 16.7

Dos Reis 5/05/95 063147 52097 — 21 393 0 — — 9316 — — 3958 17.2

13 FRH Mossdale 5/17/95 0601140504,

63148 1041245 — 8 353 1628 Out — 23100 9545 10066 3507 4209 59 17.2

Dos Reis 5/17/95 063149 51665 — 9 245 12 — — 9545 — — 4209 18.3

14 FRH Mossdale 4/15/96 060106011:4-5 100742 — 2 100 1084 Out — 6665 3296 3499 2040 1614 53 15.6

Jersey Pt 4/18/96 0601060113 50041 — 25 332 0 — — — — — — 16.7

15 FRH Mossdale 4/30/96 060106020:1,5 99656 — 1 26 1432 Out — 6565 3113 3378 1660 1629 52 17.8

Dos Reis 5/01/96 0601060:110,203 98638 — 3 67 0 — — 3113 — — 1629 17.2

Jersey Pt 5/03/96 0601060109 50820 — 24 311 12 — — — — — — 17.8

16 MRFF Dos Reis 5/01/96 0601110:412-415 107961 — 10 58 0 Out — — 3113 3378 — 1629 52 17.2

Jersey Pt 5/03/96 0601110501 51737 — 39 186 0 — — — — — — 18.9

17 FRH Mossdale 4/28/97 060106030:2-3 48730 — 10 329 226 In — 6135 4709 284 2330 2329 16 16.1

Dos Reis 4/29/97 060106030:4-5 49784 — 10 259 125 — — 4709 — — 2329 15.6

Jersey Pt 5/02/97 060106020:7-8 49815 — 55 697 12 — — — — — — 17.2

18 MRFF Dos Reis 4/29/97 06254:5,6 102431 — 16 348 394 In — — 4709 284 — 2329 16 15.6

Jersey Pt 5/02/97 062547 51540 — 27 355 24 — — — — — — 17.8

19 MRFF Dos Reis 5/08/97 062548 46682 — 5 90 78 In — — 4740 268 — 2410 21 17.2

Jersey Pt 5/12/97 062549 47208 — 18 192 14 — — — — — — 19.4

20 MRFF Mossdale 4/16/98 06011108:09-11 77430 — 88 157 48 Out — 24950 9645 10356 805 1722 60 13.9

Dos Reis 4/17/98 06011108:06-08 77180 — 93 145 0 — — 9645 — — 1722 15.0

Jersey Pt 4/20/98 06011108:12-13 50050 — 187 201 0 — — — — — — 17.2

Continued on next page
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No. Location Date Codes Number Ant CI Oc FF Flow Flow Flow Flow Exp Exp

21 FRH Mossdale 4/23/98 060106050:5-6 33800 — 7 13 192 Out — 20250 8447 9404 1932 1926 57 18.9

Dos Reis 4/24/98 060114060:6-7 47874 — 17 56 0 — — 8447 — — 1926 18.9

Jersey Pt 4/28/98 060106050:3-4 31091 — 40 47 0 — — — — — — 18.9

22 MRFF Mossdale 4/19/99 06264:2-4 74646 — 36 395 2940 Out — 6905 3180 3429 2683 3105 55 16.7

Dos Reis 4/19/99 06264:5-6 49636 — 39 376 185 — — 3180 — — 3105 17.2

Jersey Pt 4/21/99 062647,

0601110815 48907 — 59 715 60 — — — — — — 17.2

23 MRFF Durham F. 4/17/00 06040:1-2,64563 72094 27 28 693 521 In 6690 6995 5918 296 2265 2366 18 13.9

Mossdale 4/18/00 06440:1-2 46111 30 18 381 457 — 6995 5918 — 2265 2366 13.3

Jersey Pt 4/20/00 06440:3-4 51098 97 65 1353 0 — — — — — — 17.8

24 MRFF Durham F. 4/28/00 060106091:4-5,

601110814 74001 31 22 162 279 In 5665 5969 5062 560 2238 2196 11 17.2

Jersey Pt 5/01/00 060106100:1-2 49871 152 78 589 6 — — — — — — 17.2

25 MRFF Durham F. 4/30/01 0644:29-31 68192 76 53 366 84 In 4125 4170 3630 687 1475 1482 12 21.7

Mossdale 5/01/01 06443:2-3 44923 33 31 232 48 — 4170 3630 — 1475 1482 19.4

Jersey Pt 5/04/01 06443:4-5 49161 329 111 1031 0 — — — — — — 20.0

26 MRFF Durham F. 5/07/01 06443:6-8 71744 29 9 92 39 In 4135 4145 3610 654 1566 1495 12 18.9

Mossdale 5/08/01 0644:39-40 48888 19 8 52 36 — 4145 3610 — 1566 1495 21.1

Jersey Pt 5/11/01 06444:1,2 51107 96 44 581 0 — — — — — — 22.8

27 MRFF Durham F. 4/18/02 06447:1-4 97318 63 21 270 207 In 3165 3255 2671 549 1536 1532 19 15.0

Mossdale 4/19/02 06445:7-8 50411 42 13 145 234 — 3255 2671 — 1536 1532 13.9

Jersey Pt 4/22/02 0644:59-60 48496 190 83 951 48 — — — — — — 18.0

28 MRFF Durham F. 4/25/02 0644:70,75-77 98082 18 15 58 175 In 3356 3356 2814 570 1523 1507 20 17.0

Mossdale 4/26/02 06447:8-9 48924 7 5 40 129 — 3356 2814 — 1523 1507 17.5

Jersey Pt 4/30/02 06448:0-1 46469 75 46 597 0 — — — — — — 17.5

29 Durham F. 4/21/03 06028:2-3,62742 74377 6 3 19 51 In 3430 3345 2904 297 1494 1497 7 15.0

Mossdale 4/22/03 06274:3,8 49827 4 5 8 0 — 3345 2904 — 1494 1497 15.2

Jersey Pt 4/25/03 062744 24441 71 57 263 0 — — — — — — 16.5

30 MRFF Durham F. 4/28/03 06274:5-7 74491 0 0 10 24 In 3370 3370 3017 299 1481 1479 11 16.5

Mossdale 4/29/03 0627:49-50 48317 0 1 5 12 — 3370 3017 — 1481 1479 15.7

Jersey Pt 5/02/03 062751 25732 35 39 415 0 — — — — — — 15.0

31 MRFF Durham F. 4/22/04 06275:2-5 91867 2 3 3 96 In 3170 3160 2831 297 1483 1483 11 15.5

Continued on next page
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Group Stock Release Release Tag Release Recovery Location HORB DF MD DR UOR MD DR pOR Temp

No. Location Date Codes Number Ant CI Oc FF Flow Flow Flow Flow Exp Exp

Mossdale 4/23/04 064670,06458:2-3 73258 1 3 2 30 — 3160 2831 — 1483 1483 17.0

Jersey Pt 4/26/04 064580 22708 22 25 117 12 — — — — — — 21.5

32 MRFF Durham F. 5/02/05 06467:2-5 93833 6 12 — 1527 Out 8250 8195 3743 3934 1961 2293 56 16.0

Dos Reis 5/03/05 064591,06469:7,8 69125 7 3 — 7 — — 3743 — — 2293 17.0

Jersey Pt 5/06/05 064588 22767 31 32 — 0 — — — — — — 18.0

33 MRFF Durham F. 5/09/05 06458:4-6 91563 7 6 — 844 Out 8940 9085 4147 4529 2303 2300 55 14.9

Dos Reis 5/10/05 0645:89-90,

064699 68646 7 6 — 6 — — 4147 — — 2300 15.0

Jersey Pt 5/12/05 064700 23231 27 38 — 0 — — — — — — 19.0

34 MRFF Mossdale 5/04/06 06471:3-4 48828 9 9 — 18 Out — 29350 10756 11130 1538 1544 61 18.0

Dos Reis 5/05/06 064716 25463 3 7 — 0 — — 10756 — — 1544 17.5

Jersey Pt 5/06/06 064715 26119 26 58 — 0 — — — — — — 19.0

35 MRFF Mossdale 5/19/06 0647:2-3 73764 0 8 — 48 Out — 24650 10018 10423 6283 6046 59 19.5

Jersey Pt 5/22/06 064724 24757 14 44 — 0 — — — — — — 19.5



90

Table 6. VAMP: Definitions of covariates used in modeling (and listed in

Table 5). DAYFLOW is a California Department of Water Resources (CDWR)

database and DSM2 is a CDWR model; Yiguo Liang and Min Yu (personal

communication) supplied the DSM2 model-based values. Vernalis is 6 miles

upstream of Durham Ferry.

Covariate Definition Source

DF Flow Mean flow at Vernalis for day of

and day after release at Durham Ferry. DAYFLOW

MD Flow Mean flow at Vernalis for day of

and day after release at Mossdale. DAYFLOW

DR Flow Median flow at Stockton for 8 days starting

on day of release at Dos Reis.

In absence of Dos Reis release, day of release =

day of a Mossdale release or day

after a Durham Ferry release.

UOR Flow Median (Vernalis Flow- Stockton Flow) 1985-1989:

starting on day of release at Upper Old River, Vernalis Flow (DAYFLOW)

Dos Reis, or Mossdale, in that order of priority. Stockton Flow (DWR equ’ns)

For group 24, started day after 1990-2006:

release at Durham Ferry Flows (DSM2)

MD Exp Mean of combined CVP and SWP exports

for the day of and day after release at Mossdale.

DR Exp Median of combined CVP and SWP exports

for 8 days starting on day of release at Dos Reis.

pOR Proportion of San Joaquin River flow diverted 1985-1989:

into Old River = Dos Reis, Stockton Flows (DWR equ’ns)

1-(Dos Reis or Stockton flow)/Vernalis flow Vernalis Flow (DAYFLOW)

calculated for day of Mossdale or upper Old River 1990-2006:

release, or day before a Dos Reis release, Dos Reis, Stockton Flows (DSM2)

or day after a Durham Ferry release.

Temp Temperature (in Celcius) in the river

at the release site
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Table 7. VAMP: Year specific schematic of the release and recovery locations

in the VAMP and related San Joaquin studies since 1985. Release locations

(marked by R) are Durham Ferry (DF), Mossdale (MD), Old River (OR),

Dos Reis (DR), and Jersey Point (JP). Recovery locations (marked by X)

are Antioch (Ant), Chipps Island (CI), and ocean fisheries (Oc). X* denotes

recoveries that are not yet available.

Release Locations Recovery Locations

Group Year DF MD OR DR JP Ant CI Oc #Obs’ns

1 1985 R R X 2

2 1986 R R X X 4

3 1987 R R X X 4

4 1989 R R R X X 6

5 1989 R R R X X 6

6 1990 R R R X X 6

7 1990 R R R X X 6

8 1991 R R X X 4

9 1994 R R X X 4

10 1994 R R X X 4

11 1994 R R R X X 6

12 1995 R R X X 4

13 1995 R R X X 4

14 1996 R R X X 4

15 1996 R R R X X 6

16 1996 R R X X 4

17 1997 R R R X X 6

18 1997 R R X X 4

19 1997 R R X X 4

20 1998 R R R X X 6

21 1998 R R R X X 6

22 1999 R R R X X 6

23 2000 R R R X X X 9

24 2000 R R X X X 6

25 2001 R R R X X X 9

26 2001 R R R X X X 9

27 2002 R R R X X X 9

28 2002 R R R X X X 9

29 2003 R R R X X X 9

30 2003 R R R X X X 9

31 2004 R R R X X X 9

32 2005 R R R X X X∗ 6

33 2005 R R R X X X∗ 6

34 2006 R R R X X X∗ 6

35 2006 R R X X X∗ 4
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Table 8. VAMP: Summary of analyses in 2005 Annual Technical Report for

San Joaquin River Agreement. Response variable, RRa/b→c, denotes ratio of

recovery fractions at location c from releases at location a and location b.

Abbreviations are DF (Durham Ferry), MD (Mossdale), DR (Dos Reis), JP

(Jersey Point), Ant (Antioch), CI (Chipps Island), and Oc (ocean fisheries).

Sign refers to the slope coefficient. The P-value refers to a test that the slope

coefficient equals 0.

Response variable Covariate(s) Sign P-value R2 n

RR(DF+MD)/JP→Ant+CI Vernalis Flow (HORB in) + < 0.01 0.50 15

RR(DF+MD)/JP→Ant+CI Vernalis Flow (HORB out) + > 0.10 0.29 8

RR(DF+MD)/JP→Ant+CI Vernalis Flow/Exports (HORB in) + < 0.02 0.30 18

RR(DF+MD)/JP→Ant+CI CVP+SWP Exports (HORB out) + < 0.10 0.38 9

RR(DF+MD)/JP→Oc Vernalis Flow (HORB in) + < 0.01 0.58 15

RR(DF+MD)/JP→Oc Vernalis Flow (HORB out) + > 0.10 0.36 7

RR(DF+MD)/JP→Oc Vernalis Flow/Exports (HORB in) + < 0.10 0.20 17

RR(DF+MD)/JP→Oc CVP+SWP Exports (HORB out) + > 0.10 0.40 7

RRMD/JP→Ant+CI Vernalis Flow/Exports (HORB out) + > 0.10 0.10 9

RRMD/JP→Oc Vernalis Flow/Exports (HORB out) + > 0.10 0.08 6

RRDR/JP→Ant+CI Modeled SJ Flow + > 0.10 0.19 12

RRDR/JP→Oc Modeled SJ Flow + < 0.01 0.64 12
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Table 9. DCC: Summary of BHMs fit and model selected for inference. Top

table compares DIC values for several BHMs. Column headed f(θ) refers to

the transformation used and column headed σ’s refers to the priors used for

standard deviations of random effects. The column headed by
θOpen

θClosed
gives

the posterior median of the ratios. Bottom table contains summaries for the

model selected for inference. The σ2 values are the posterior medians for σ2
θ ,

σ2
µRy→CI

, and σ2
µRy→Oc

.

Level 1 Dist’n f(θ) σ’s DIC
θOpen

θClosed

Negative Binomial log Uniform 567.3 0.73

Multinomial logit Uniform 649.8 0.94

Multinomial (correlated)) logit Inv. Wishart 655.1 0.96

Negative Binomial, log θ, Uniform priors for σ

Percentiles

Parameter Mean 0.025 0.50 0.975 σ2

β0 -0.62 -1.06 -0.62 -0.13

β1 0.32 -0.56 0.32 1.18

θ (open) 0.69 0.13 0.54 2.20 0.622

θ (closed) 1.00 0.17 0.75 3.33 0.622

θ(open)/θ(closed) 1.32 0.09 0.73 5.67

kCI 492.9 17.1 492.1 974.7

kOc 16.9 2.68 7.12 25.1

µRy→CI -7.09 -7.49 -7.09 -6.71 0.672

µRy→Oc -4.82 -5.57 -4.82 -4.06 1.242

rRy→CI 0.0011 0.0002 0.0008 0.0037

rRy→Oc 0.0195 0.0005 0.0081 0.1108
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Table 10. Interior: Summary of BHMs fit and model selected for inference.

Top table compares DIC values for several BHMs and the mean posterior

predicted survival of Georgiana Slough relative to Ryde survival (θ). Column

headed f(θ) refers to the transformation of θ used and column headed σ’s

refers to the priors used for standard deviations of random effects (the inverse

gamma is actually the gamma on the precision, inverse of σ2). Bottom table

contains summaries for the model selected for inference. The σ2 values are the

posterior medians for σ2
θ , σ2

µRy→CI
, and σ2

µRy→Oc
.

Level 1 Dist’n f(θ) σ’s DIC θ

Multinomial log Uniform 427.6 0.44

Multinomial log Inv. Gamma 427.6 0.43

Multinomial logit Inv. Gamma 428.2 0.42

Multinomial logit Uniform 428.3 0.42

Multinomial (correlated) logit Inv. Wishart 428.8 0.41

Negative Binomial log Uniform 441.7 0.42

Multinomial, log θ, Uniform priors for σ

Percentiles

Parameter Mean 0.025 0.50 0.975 σ2

µθ -1.02 -1.35 -1.02 -0.70 0.502

µRy→CI -7.72 -7.94 -7.72 -7.51 0.362

µRy→Oc -5.61 -6.11 -5.61 -5.12 0.882

θ 0.44 0.10 0.36 1.26

rRy→CI 0.0005 0.0002 0.0004 0.0009

rRy→Oc 0.0057 0.0006 0.0036 0.0226
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Table 11. DA 8: Posterior distribution summaries for the multinomial model

(with log transformed θ and uniform priors on the σ’s). The σ2 values are the

posterior medians of σ2
θ , σ2

rRy→CI
, and σ2

rRy→Oc
.

Percentiles

Parameter Mean 0.025 0.50 0.975 σ2

β0 -1.05 -1.38 -1.04 -0.75

β1 -0.29 -0.61 -0.28 0.02 0.542

µRy→CI -7.72 -7.94 -7.72 -7.65 0.362

µRy→Oc -5.61 -6.08 -5.61 -5.07 0.862

rRy→CI 0.0005 0.0002 0.0004 0.0010

rRy→Oc 0.0057 0.0006 0.0036 0.0227

Table 12. DA 8: Comparison of BHM and non-Bayesian estimates of release

pair-specific θ, ratio of the Georgiana Slough survival probability to the Ryde

survival probability. BHM values are mean and standard deviation of pos-

terior distribution. Non-Bayesian values are the MLEs (maximum likelihood

estimates) and standard errors (using the delta method). Ratio of survival in-

dices is based upon the Chipps Island recoveries alone (Pat Brandes, personal

communication).

BHM Non-Bayesian Ratio of

Group Mean Std Dev MLE Std Error Survival Indices

1 0.27 0.032 0.27 0.032 0.14

2 0.33 0.085 0.33 0.098 0.27

3 0.37 0.041 0.37 0.043 0.16

4 0.51 0.052 0.52 0.053 0.26

5 0.14 0.041 0.11 0.039 0.05

6 0.87 0.080 0.88 0.081 0.28

7 0.61 0.060 0.61 0.061 0.24

8 0.65 0.069 0.66 0.072 0.72

9 0.27 0.044 0.26 0.044 0.16

10 0.72 0.075 0.73 0.078 0.67

11 0.33 0.024 0.33 0.024 0.31

12 0.24 0.033 0.23 0.033 0.04

13 0.27 0.041 0.26 0.041 0.28

14 0.30 0.089 0.25 0.226 0.32

15 0.22 0.076 0.19 0.298 0.16
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Table 13. VAMP: Comparison of DIC values for simple models with and

without random effects. Only covariate is an indicator variable for HORB in

a logit transformation of SDR→JP .

Model Class DIC

No Random Effects 25,000

Recovery random effects 4,300

Survival and recovery random effects 1,500

Table 14. VAMP: Comparison of model results for pOR known, multinomial

distributions, logit θ’s, and Uniform priors for σ’s. When entries under S

are decimals, the value shown is the posterior median probability of survival.

When entries contain covariate names, the reported percentage is the posterior

probability that the flow coefficient is positive or that the exports coefficient

is negative.

Label SDF→MD SDR→JP SOR→JP DIC

Null.Null.Null 0.62 0.21 0.09 1499.1

Null.FE.FE 0.63 Flow: 89%+ Flow: 65%+ 1474.8

Exports: 21%- Exports: 33%-

Null.F.Null 0.63 Flow: 86%+ 0.10 1491.4

Null.F.Null.Stk 0.63 Flow: 90%+ 0.10 1494.5

(Stock, 100%+)
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Table 15. Recoveries from replicate releases made at Durham Ferry and χ2

tests of homogeneity. χ2 values are based on Antioch, Chipps Island, and

Ocean recoveries. P-values were calculated by Monte Carlo simulations; P-

values were calculated with Antioch, Chipps Island, and Ocean categories (w/

ocean) and with Antioch and Chipps Island categories (w/o ocean). Number

in parentheses next to year is the release set number.

P-Values

Set R yAnt yCI yOc χ2 w/ ocean w/o Oc

2000 (19)

60401 23529 6 7 217

60402 24177 10 10 232

64563 24457 11 11 247 3.1 0.80 0.70

2001 (21)

64429 23351 28 14 96

64430 22720 30 22 159

64431 22376 18 17 112 24.0 <0.01 0.27

2001 (22)

64436 24029 8 2 17

64437 23907 11 5 47

64438 24054 10 2 28 17.8 <0.01 0.64

2002 (23)

64471 23920 11 4 33

64472 23920 20 9 96

64473 23872 12 4 73

64474 24747 20 4 68 34.6 <0.01 0.32

2002 (24)

64470 24680 6 3 23

64475 24659 2 5 22

64476 24783 4 3 8

64477 24381 6 4 6 19.6 0.02 0.78
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Table 16. Estimated capture probabilities at Chipps Island for the DCC and

Interior/DA 8 studies (based on ocean recoveries of Port Chicago releases).

DCC

Year Tag Code Ct Ryde

83 6-62-24,6-62-23 0.00062 0.00078

87 6-62-53,6-62-54-6-62-55 NA NA

88 B6-14-2,B6-14-3,6-31-1 0.00256 0.00195

88 6-62-59,6-62-60,6-62-63 0.00067 0.00328

84 6-62-27,6-62-29,6-42-09 0.00070 0.00107

85 6-62-38:6-62-41,6-62-35 0.00095 0.00093

86 6-62-43,6-62-48 0.00095 0.00093

87 6-62-56,6-62-57,6-62-58 NA NA

88 B6-14-4,B6-14-5,6-31-2 0.00312 0.00222

88 6-62-50,6-31-3 0.00135 0.00251

89 6-31-11,6-31-12 NA NA

89 6-31-8,6-31-7 0.00184 0.00126

89 6-1-14-1-3,6-58-5,6-1-14-1-2 0.00182 0.00579

Interior/DA 8

Year Tag Code GS Ryde

1996 5-41-13,5-41-14 0.00026 0.00067

1998 5-50-50,5-50-60 0.00084 0.00157

1998 5-50-49,5-50-62 0.00022 0.00084

1999 5-23-08,5-23-20 0.00021 0.00051

1999 5-23-12,5-23-21 0.00025 0.00034

2000 5-51-30,5-51-32 0.00039 0.00070

2000 5-51-31,5-51-33 0.00077 0.00066

2002 5-07-76,5-07-67 0.00048 0.00043

2003 5-11-68,5-11-67 0.00020 0.00119

2004 5-17-71/72,5-17-81/82 0.00060 0.00065
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Table 17. DA 8: Standard errors for β̂1, estimated slope coefficient, as a

function of R (number released, RGS = RRyde) and n (number of release pairs).

Calculations are based upon simulations and regression of logit(θ̂) against

standardized exports where the true value of β1 was 0.57.

R n

15 20 25

50,000 0.333 0.275 0.236

100,000 0.299 0.261 0.230

150,000 0.300 0.267 0.228
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Table 18. VAMP: Interquartile range for parameter estimates for different

stream sections as a function of number released (R = RDF = RMD = RDR

= RJP ) and number of release sets (n). Calculations are based upon 10,000

simulations and regressions of point estimates of survival probabilities (logit

transformed) against the covariates. The true values are shown for each pa-

rameter. HORB is an indicator equal to 1 when the barrier is in.

Durham Ferry to Mossdale

β1 = 1.0

flow

n

R 15 20 25

50,000 1.476 1.279 1.123

100,000 1.418 1.200 1.063

150,000 1.388 1.179 1.018

Mossdale to Dos Reis

γ1 = 0.32 γ2 = 5 γ3 = -1.4

flow HORB exports×(1-HORB)

n n n

R 15 20 25 15 20 25 15 20 25

50,000 1.347 1.097 0.965 3.048 2.529 2.244 1.264 1.077 0.896

100,000 1.270 1.060 0.898 2.868 2.429 2.135 1.230 1.029 0.877

150,000 1.209 1.030 0.873 2.778 2.415 2.087 1.184 0.997 0.854

Dos Reis to Jersey Point

ξ1 = 0.71 ξ2 = 5 ξ3 = -0.5

flow HORB exports

n n n

R 15 20 25 15 20 25 15 20 25

50,000 0.527 0.447 0.396 1.839 1.533 1.336 0.529 0.432 0.375

100,000 0.520 0.427 0.375 1.654 1.419 1.265 0.484 0.415 0.360

150,000 0.517 0.433 0.367 1.579 1.365 1.215 0.487 0.408 0.352
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Figure 1. Map of release and recovery locations used by the USFWS for the

multi-year studies.
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Figure 2. Schematics of release and recovery locations for the four multi-year

studies. SA→B is the survival probability between point A and point B, and

pC is the capture probability at location C .
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Figure 3. DCC: Recovery fractions for Courtland (r̂Ct→CI+Oc) and Ryde

(r̂Ry→CI+Oc) releases by release pair. First four pairs are from releases that

occurred when the gates were closed (with plotting character C), and the last

nine are when the gates were open (plotting character O).
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Figure 4. DCC: Boxplots of the ratio of recovery fractions for Courtland to

Ryde releases, r̂Ct→CI+Oc/r̂Ry→CI+Oc , when the DCC gates were open and

closed.
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Figure 5. Interior/DA 8: Recovery fractions for Georgiana Slough

(r̂GS→CI+Oc) and Ryde (r̂Ry→CI+Oc) releases by release pair.

2 4 6 8 10 12 14

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Release Set

Ryde

Georgiana Slough



107

Figure 6. Interior/DA 8: Comparison of recovery fractions at Chipps Island,

in the ocean fisheries, in fish facility salvage, and from inland recoveries for

Georgiana Slough and Ryde releases by release pair. Straight lines on plots

have slope equal to mean of the ratios of recovery fractions, with slope written

below x-axis label.
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Figure 7. DA 8: Estimated fraction of the release that is salvaged at the

SWP and CVP fish facilities plotted against the export level (for both Geor-

giana Slough and Ryde releases). Solid line and dashed line are scatterplot

smooths of fraction salvaged for Georgiana Slough and Ryde releases, respec-

tively.
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Figure 8. VAMP: Combinations of flow and export volumes when the HORB

is in and when it is out. The flow and export measurements were those mea-

sured or estimated effective near Mossdale.
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Figure 9. VAMP: Recovery fractions by release site; i.e., for release site x,

(yx→Ant + yx→CI + yx→Oc)/Rx.
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Figure 10. VAMP: Estimated fraction of releases salvaged at SWP and CVP

fish salvage facilities when the HORB is in or out.
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Figure 11. VAMP: Adult inland recovery fractions for Durham Ferry, Moss-

dale, Dos Reis, and Jersey Point releases by release pair.
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Figure 12. CWT recovery pattern by date at Chipps Island for examples

taken from DCC, Interior/DA 8, and VAMP studies.
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Figure 13. DCC: Bootstrap sample (B=10,000) of the estimated ratio,
̂

(
µθ(Open)

µθ(Closed)

)
, equation (15). Vertical line marks the point estimate.
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Figure 14. DCC: Predicted recoveries at Chipps Island of Ryde releases,

yRy→CI (red vertical line), and Bayesian P-values.
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Figure 15. DCC: Predicted recoveries in Ocean fisheries of Ryde releases,

ŷRy→Oc (red vertical line), and Bayesian P-values.
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Figure 16. DCC: Predicted recoveries at Chipps Island of Courtland releases,

yCt→CI (red vertical line), and Bayesian P-values.
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Figure 17. DCC: scaled residuals plotted against predicted values.
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Figure 18. DCC: scaled residuals plotted against predicted values for model

without random effects.
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Figure 19. Interior: Predicted recoveries at Chipps Island of Ryde releases,

yRy→CI (red vertical line), and Bayesian P-values.
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Figure 20. Interior: scaled residuals plotted against predicted values.
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Figure 21. Interior: scaled residuals plotted against predicted values for

model without random effects.
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Figure 22. Interior: Posterior median θ’s plotted against secondary covari-

ates, Georgiana Slough release temperatures and mean fish lengths at time of

release.
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Figure 23. DA 8: θ̂ (=r̂GS→CI+Oc/r̂Ry→CI+Oc) plotted against export levels.

Vertical lines extend up and down one standard error. Fitted line is a nonpara-

metric weighted regression using the supersmoother function in R with weights

being the inverse of the standard errors squared.
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Figure 24. DA 8: Posterior means (solid) and medians (dashed line) for

θ from the BHM (with log transformed θ and uniform priors on standard

deviations of random effects) plotted against export levels. The 2.5% and

97.5% intervals are indicated by vertical lines.
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Figure 25. DA 8: Predicted θ (SGS→CI/SRy→CI ) values for different levels of

exports for three different models, M1, M2, and M3. M1 is a linear regression

of r̂GS→CI/r̂Ry→CI on exports. The M2 values are the exponentiated values

of a linear regression of log(r̂GS→CI+Oc/r̂Ry→CI+Oc) on exports. M3 is a BHM

(with log transformed θ and uniform priors on standard deviations of random

effects). Also plotted are the non-BHM point estimates r̂GS→CI+Oc/r̂Ry→CI+Oc

for the individual releases (denoted by X).
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Figure 26. VAMP: Histograms of posterior distributions for coefficients, ξ1,

ξ2, ζ1, ζ2, corresponding to flow at Dos Reis and exports following the time of

releases from Dos Reis, and flow in Upper Old River and exports following the

time of releases from Upper Old River (or Mossdale). (Based on Null.FE.FE

model.)
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Figure 27. VAMP: Posterior mean survival probabilities for each of the re-

lease sets through the Dos Reis to Jersey Point reach, the Upper Old River

to Jersey Point “reach”. Blue vertical bars on x-axis denote when the HORB

was in place. (Based on Null.FE.FE model.)

0 5 10 15 20 25 30 35

0
.2

0
.3

0
.4

0
.5

Survival from Mossdale −> JP w/ and w/o HORB

Index

M
e

a
n

 s
u

rv
iv

a
l v

a
lu

e
s

via Old River
via San Joaquin



129

Figure 28. VAMP: Posterior predictive distribution and Bayesian P-values

for recoveries at Antioch of releases from Mossdale. P-values are the minimum

of the two tail probabilities. (Based on Null.FE.FE model.)
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Figure 29. VAMP: Scaled residuals versus posterior predictive means.

(Based on Null.FE.FE model.)
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Figure 30. VAMP: Random effects residuals, by stream section, for logit of

survival plotted against water temperature at release with supersmoother fit

superimposed. The effects for Jersey Point are for the logit of Chipps Island

recovery rate, either rJP→Ant→CI or rJP→CI . (Based on Null.FE.FE model.)
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Figure 31. VAMP: Random effects residuals, by stream section, for logit

of survival plotted against stock origin (FRH=Feather River Hatchery,

MRFF=Merced River Fish Facility). The effects for Jersey Point are for the

logit of Chipps Island recovery rate, rJP→CI . (Based on Null.FE.FE model.)
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Figure 32. VAMP: Random effects residuals, by stream section, for logit of

survival plotted against the estimated number of salmon salvaged at the fish

facilities at CVP and SWP. The effects for Jersey Point are for the logit of

Chipps Island recovery rate, rJP→CI . (Based on Null.FE.FE model.)
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Figure 33. DCC: Bootstrap standard errors for
µ̂θ(Open)

µθ(Closed)
as a function of the

number of replications. The number of replications on the x-axis refer to the

total number of replications, with half being gates open and half with gates

closed; e.g., 10 means 5 experiments with DCC gate open and 5 experiments

with DCC gate closed. Number of fish released at each site was fixed at

100,000, RCt=RRy=100,000. An extreme value of 62, for n=10 was deleted

before plotting.
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Figure 34. Interior: Number of years of experimentation (n) to achieve

a specified standard error for µ̂θ for expected numbers of recoveries plotted
against observed numbers of recoveries, by release site and recovery location.

(µθ=0.8.)
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Appendix A. DCC and Interior: Theoretical variance of µ̂θ

The expected value of the ratio of the survival probabilities for two “upstream” releases,

µθ, can be estimated by averaging year specific estimates of θt:

µ̂θ =
n∑

t=1

wtθ̂t

=
n∑

t=1

wt
(y13,t + y14,t)/R1t

(y23,t + y24,t)/R2t
,

where wt are weights,
∑n

t=1 wt = 1. Variation in this estimate arises from between year

variation in the survival and capture probabilities and within year sampling variation. The

following standard result from probability theory reflects these two levels of variation and is

used to calculate the variance of µ̂θ:

V (µ̂θ) = E [V (µ̂θ|θt, S23,t, pt, πt)] + V [E (µ̂θ|θt, S23,t, pt, πt)] .(57)

A.1. V [E] calculation. Regarding the second term on the righthand side of (57), the ex-

pectation portion can be written:

E[µ̂θ|θt, S23,t, pt, πt] =

n∑

t=1

wtE[θ̂t|θt, S23,t, pt, πt] ≈

n∑

t=1

wtθt,

assuming that θ̂t is unbiased for θt. Then

V [E(µ̂θ|θt, S23,t, pt, πt)] ≈
n∑

t=1

w2
t V (θt) =

n∑

t=1

w2
t σ

2
θ .(58)

If each of the yearly estimates of θ are given equal weight (as would be the case with equal

release numbers per year), this component reduces to

V [E(µ̂θ)|θt, S23,t, pt, πt)] ≈
σ2

θ

n
.

A.2. E[V ] calculation. For the first term on the righthand side of (57), the delta approxi-

mation (Stuart and Ord, 1987, p. 324) is used to calculate V (µ̂θ|θt, S23,t, pt, πt):

V (µ̂θ|µθ, S23,t, pt, πt) =
n∑

t=1

w2
t V (θ̂t),(59)
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where

V (θ̂t) ≈ d2
1 (v(y13,t) + v(y14,t) + 2cov(y13,t, y14,t)) +

d2
2 (v(y23,t) + v(y24,t) + 2cov(y23,t, y24,t)) ,

and

d1 =
R2t

R1t

1

E[y23,t] + E[y24,t]
=

R2t

R1t

1

R2tS23,t(pt + (1 − pt)πt)

=
1

R1tS23,t(pt + (1 − pt)πt)

v(y13,t) = R1tθtS23,tpt (1 − θtS23,tpt)

v(y14,t) = R1tθtS23,t(1 − pt)πt (1 − θtS23,t(1 − pt)πt)

cov(y13,t, y14,t) = −R1tθtS23,tpt ∗ θtS23,t(1 − pt)πt

d2 =
R2t

R1t

E[y13,t] + E[y14,t]

(E[y23,t] + E[y24,t])2
=

θtS23,t(pt + (1 − pt)πt)

R2t (S23,t(pt + (1 − pt)πt))
2

v(y23,t) = R2tS23,tpt (1 − S23,tpt)

v(y24,t) = R2tS23,t(1 − pt)πt (1 − S23,t(1 − pt)πt)

cov(y23,t, y24,t) = −R2tS23,tpt ∗ S23,t(1 − pt)πt

The expected value, E [V (µ̂θ)|θt, S23,t, pt, πt)], is also approximated using the delta method
(with a second order approximation, Stuart and Ord (1987, p 342)9). Assuming independence
between θt and the survival and capture probabilities, the approximation has the following
form:

E [V (µ̂θ)|θt, S23,t, pt, πt)] ≈

n∑

t=1

w2
t V (θ̂t)

∣∣∣
µ

+

0.5

n∑

t=1

w2
t


 d2V

dθ2
t

∣∣∣∣
µ

σ2
θt

+
d2V

dS2
23,t

∣∣∣∣∣
µ

σ2
S23,t

+
d2V

dp2
t

∣∣∣∣
µ

σ2
pt

+
d2V

dπ2
t

∣∣∣∣
µ

σ2
πt


(60)

where µ denotes the expected values µθ, µS23 , µp, and µπ.

9Note: simply substituting (µθ, µS23
, µp,µπ) for (θt, S23,t, pt, πt) into V (θ̂t) is relatively inaccurate. Simula-

tions using beta distributions for the survival and capture probabilities indicated that such an approximation

was biased low.
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Formulae for second derivatives. The formulae for the second derivatives are shown below;

to reduce notation the t subscripts have been dropped and S23,t is simply written as S.

Furthermore, let

N1 = θp(1 − θSp) + θ(1 − p)π(1 − θS(1 − p)π) − 2θ2pS(1 − p)π

N2 = θ2p(1 − Sp) + θ2(1 − p)π(1 − S(1 − p)π) − 2θ2pS(1 − p)π

D1 = R1S(p + (1 − p)π)2

D2 = R2S(p + (1 − p)π)2

Then

d2V

dθ2
=

d2N1

dθ2
D−1

1 +
d2N2

dθ2
D−1

2 ,

where

d2N1

dθ2
= −2Sp2 − 2S(1 − p)2π2 − 4Sp(1 − p)π

d2N2

dθ2
= 2p − 2Sp2 + 2(1 − p)π − 2S(1 − p)2π2 − 4Sp(1 − p)π

And

d2V

dS2
= 2

[
θ2p2 + θ2(1 − p)2π2 + 2θ2p(1 − p)π

]
D−2

1 R1(p + (1 − p)π)2 +

2N1D
−3
1

(
R1(p + (1 − p)π)2

)2
+

2
[
θ2p2 + θ2(1 − p)2π2 + 2θ2p(1 − p)π

]
D−2

2 R2(p + (1 − p)π)2 +

2N2D
−3
2

(
R2(p + (1 − p)π)2

)2
.

And

d2V

dp2
=

d2N1

dp2
D−1

1 − 2
dN1

dp
D−2

1

dD1

dp
+ 2N1D

−3
1

(
dD1

dp

)2

− N1D
−2
1 R1S(2 − 4π + 2π2) +

d2N2

dp2
D−1

2 − 2
dN2

dp
D−2

2

dD2

dp
+ 2N2D

−3
2

(
dD2

dp

)2

− N2D
−2
2 R2S(2 − 4π + 2π2),
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where

dN1

dp
= θ − 2θ2Sp − θπ − θ2S(−2 + 2p)π2 − 2θ2S(1 − 2p)π

d2N1

dp2
= −2θ2S − 2θ2Sπ2 + 4θ2Sπ

dD1

dp
= R1S(2p + 2π − 4pπ + (−2 + 2p)π2)

dN2

dp
= θ2 − 2θ2Sp − θ2π − θ2S(−2 + 2p)π2 − 2θ2S(1 − 2p)π

d2N2

dp2
= −2θ2S − 2θ2Sπ2 + 4θ2Sπ

dD2

dp
= R2S(2p + 2π − 4pπ + (−2 + 2p)π2).

Lastly,

d2V

dπ2
=

d2N1

dπ2
D−1

1 − 2
dN1

dπ
D−2

1

dD1

dπ
+ 2N1D

−3
1

(
dD1

dπ

)2

− 2N1D
−2
1 R1S(1 − p)2 +

d2N2

dπ2
D−1

2 − 2
dN2

dπ
D−2

2

dD2

dπ
+ 2N2D

−3
2

(
dD2

dπ

)2

− 2N2D
−2
2 R2S(1 − p)2,

where

dN1

dπ
= θ(1 − p) − 2θ2S(1 − p)2π − 2θ2Sp(1 − p)

d2N1

dπ2
= −2θ2S(1 − p)2

dD1

dπ
= 2R1S(1 − p)(p + (1 − p)π)

dN2

dπ
= θ2(1 − p) − 2θ2S(1 − p)2π − 2θ2Sp(1 − p)

d2N2

dπ2
= −2θ2S(1 − p)2

dD2

dπ
= 2R2S(1 − p)(p + (1 − p)π).

Each of the above second derivatives is then evaluated at the expected values for θt, S23,t,

pt, and πt.
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A.3. Summary. Thus equation (57), which is found by adding equations (58) and (60),

yields an approximate theoretical variance. This is what is needed for determining sample

sizes and making power calculations. One must put in assumed known parameter values,

particularly the means and variances of θt, S23,t, pt, and πt. R code has been written that

calculates the theoretical variance approximation (Appendix D.1).

The quality of the approximation to the theoretical variance was evaluated using sim-

ulations. The simulation code (in R code) is listed in Appendix D.2. The results based

on 30,000 simulations (example code also given in Appendix D.2) are summarized below;

R1=R2=50,000 in each case and σθ was fixed at 0.1, and E[S23]= 0.9 σS23=0.15, E[p3]=0.002,

σp3=0.0002, E[π]=0.0079, σπ=0.00627.

θ n Theoretical Simulated SE Relative

Std Error Std Error Error (%)

0.6 5 0.05117 0.05202 -1.7%

0.6 10 0.03618 0.03685 -1.8%

0.8 5 0.05408 0.05663 -4.7%

0.8 10 0.03824 0.03875 -1.3%

0.95 5 0.05646 0.05795 -2.6%

0.95 10 0.03992 0.04092 -2.5%

The theoretical standard error approximation appears to be biased low, with a negative bias

from 1 and 5%.
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Appendix B. DCC and Interior: Bootstrap estimate of variance of µ̂θ

To calculate confidence intervals or carry out hypothesis tests in practice, the standard

error must be calculated using the data, not hypothesized values for the parameters. Esti-

mates of unknown parameters can be substituted in some cases, but the calculations can be

involved. A simpler approach is to use a bootstrap procedure. The general procedure for

bootstrapping hierarchical models is described by Davison and Hinkley (1997, pp 100-102).

The gist of the bootstrap procedure is to mimic the original data generation procedure:

first, generate samples of the “annual” studies, then generate observations within each gener-

ated study. To generate samples of the studies, the release pairs are resampled with replace-

ment; this then reflects between release pair variation. To generate observations, samples

are generated from trinomial distributions for recoveries using the observed recovery rates

for each sampled group. Thus the recoveries within a group are resampled with replacement.

An alternative is to sample without replacement, however, with large release numbers the

results will be essentially equivalent.

Bootstrap code has been written in R (Appendix D.3) that is applicable to the Interior

studies and the problem of estimating µθ. The quality of the bootstrap standard errors,

and 95% confidence intervals based on ± 2 standard errors, was evaluated by simulation

study. The bootstrap standard errors compared favorably to empirical standard errors and

the confidence intervals were reasonably accurate for the values of µθ tried. For example,

with θ=0.6, R1=R2=50,000, the median bootstrap standard error was 0.03808 compared to

an empirical standard error of 0.03641. The percentage of bootstrap based 95% confidence

intervals that included µθ was 95.16%, thus accurate coverage.
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Appendix C. Interior: Sample size determination

There are two sample sizes that can be manipulated to achieve a specified level of precision

(standard error) and these are n, the number of replications of paired releases, and R1 and

R2, the number of fish released. The variance formula for µ̂θ given in Appendix A can be

used to solve for R1, R2, and n to achieve a specified standard error. For any given standard

error there are multiple combinations of R1, R2, and n that will work. For simplicity assume

that R1=R2=R and that the annual weights, wt, are thus 1/n. The variance formula (see

equations (59) and (60)) can be written:

V [µ̂θ] ≈
σ2

θ

n
+

1

n


V (θ̂t) + 0.5


 d2V

dθ2
t

∣∣∣∣
µ

σ2
θt

+
d2V

dS2
23,t

∣∣∣∣∣
µ

σ2
S23,t

+
d2V

dp2
t

∣∣∣∣
µ

σ2
pt

+
d2V

dπ2
t

∣∣∣∣
µ

σ2
πt





(61)

The term V (θ̂t) and the second derivative terms each have release number, R, in the

denominator and the variance formula can be rewritten as:

V [µ̂θ] ≈
σ2

θ

n
+

1

n

[
A

R
+ 0.5

B

R

]
(62)

where A and B are constants involving the means and standard deviations of θt, S23,t, pt,

and πt (as in equation (61)). One can then solve for n given V [µ̂θ] and R, or for R given n

and V [µ̂θ]:

n =
σ2

θ + 1
R
[A + 0.5B]

V [µ̂θ]

R =
A + 0.5B

nV [µ̂θ] − σ2
θ

.

R code has been written for both of these cases (Appendix D.5).
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Appendix D. R code

D.1. Interior: Theoretical variance calculation. The R function, theory.exp.var, es-

timates the variance of µ̂θ (the non-Bayesian estimate, see Equation (57)) based on number

released, number of replicates (years of experimentation), and parameter values.

theory.exp.var <- function(R1,R2,n,mu.theta,sigma2.theta,mu.S,sigma2.S,

mu.p,sigma2.p,mu.pi,sigma2.pi) {

# Calculates variance of mu.theta.hat using double variance formula

# Var() = E[V] + V[E]

# - delta approximations used for conditional variance and unconditional

# expectation

# Input parameters:

# R1, R2 = number released in each group (group 1 is the "upstream" grp)

# n = number of years of experimentation

# mu.theta = expected value of theta, the ratio of survival rates

# sigma2.theta = variance of theta

# mu.S = expected value of S_{23}, survival from location 2 to 3

# sigma2.S = variance of S_{23}

# mu.p = expected probability of capture at location 3

# sigma2.p = variance of p

# mu.pi = expected probability of recovery (S_{34}*p_4) at loc. 4

# sigma2.pi = variance of pi

theta <- mu.theta; S<-mu.S; p <- mu.p; opi <- mu.pi #saves typing

N1 <- theta*p*(1-theta*S*p)+theta*(1-p)*opi*

(1-theta*S*(1-p)*opi)-2*theta^2*p*S*(1-p)*opi

D1 <- R1*S*(p+(1-p)*opi)^2

N2 <- theta^2*p*(1-S*p)+theta^2*(1-p)*opi*

(1-S*(1-p)*opi)-2*theta^2*p*S*(1-p)*opi

D2 <- R2*S*(p+(1-p)*opi)^2

#-------- 2nd Derivative wrt Theta -------------

d2N1 <- -2*S*p^2 - 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi

d2N2 <- 2*p-2*S*p^2+2*(1-p)*opi- 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi

d2.theta <- d2N1*D1^(-1) + d2N2*D2^(-1)
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#-------- 2nd Derivative wrt S_{23} -------------

d1N1 <- d1N2 <-

-theta^2*p^2-theta^2*(1-p)^2*opi^2- 2*theta^2*p*(1-p)*opi

d1D1 <- R1*(p+(1-p)*opi)^2

d1D2 <- R2*(p+(1-p)*opi)^2

d2.S23 <- -2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 +

-2*d1N2*D2^(-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2

#-------- 2nd Derivative wrt p -------------

d1N1 <- theta - 2*theta^2*S*p - theta*opi -

theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi

d1N2 <- theta^2 - 2*theta^2*S*p - theta^2*opi -

theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi

d2N1 <- d2N2 <- -2*theta^2*S*(1+opi^2-2*opi)

d1D1 <- R1*S*(2*p+2*opi-4*p*opi+(-2+2*p)*opi^2)

d1D2 <- R2/R1*d1D1

d2.p <- (d2N1 * D1^(-1) - 2*d1N1*D1^(-2)*d1D1 +

2*N1*D1^(-3)*d1D1^2 - N1*D1^(-2)*R1*S*(2-4*opi+2*opi^2)) +

(d2N2 * D2^(-1) - 2*d1N2*D2^(-2)*d1D2 +

2*N2*D2^(-3)*d1D2^2 - N2*D2^(-2)*R2*S*(2-4*opi+2*opi^2))

#-------- 2nd Derivative wrt pi -------------

d1N1 <- theta*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)

d1N2 <- theta^2*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)

d2N1 <- d2N2 <- -2*theta^2*S*(1-p)^2

d1D1 <- R1*S*2*(1-p)*(p+(1-p)*opi)

d1D2 <- R2/R1*d1D1

d2.pi <- (d2N1*D1^(-1) - 2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 -

2*N1*D1^(-2)*R1*S*(1-p)^2) +

(d2N2*D2^(-1) - 2*d1N2*D2^(-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2 -

2*N2*D2^(-2)*R2*S*(1-p)^2)

#----output ----------

out <- (N1/D1+N2/D2) +

0.5*(d2.theta*sigma2.theta + d2.S23*sigma2.S +

d2.p*sigma2.p + d2.pi*sigma2.pi)

SE <- sqrt((1/n)*(out + sigma2.theta))

return(SE)

}}
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D.2. Interior: Simulation of hierarchical recovery model. The R function, two.grp.sim,

simulates the recoveries from paired releases for a specified number of years of study, numyrs.

The other input parameters are the number of fish released in each group (R1 and R2) and

the expected values and standard deviations of the parameters, θ, S23, p, and π.

#------------------------------------------------------------------------

# --- Pgm to simulate the hierarchical processes of between year variation

# and within year variation in survival, capture, and then estimate

# expected ratio of survival probabilities (mu.theta)

two.grp.sim <- function(numyrs,R1,R2,mu.theta,sig.theta,mu.S23,sig.S23,

mu.p,sig.p,mu.pi,sig.pi) {

temp <- alpha.beta(mu.theta,sig.theta)

theta <- rbeta(numyrs,temp$alpha,temp$beta)

temp <- alpha.beta(mu.S23,sig.S23)

S23 <- rbeta(numyrs,temp$alpha,temp$beta)

temp <- alpha.beta(mu.p,sig.p)

p <- rbeta(numyrs,temp$alpha,temp$beta)

temp <- alpha.beta(mu.pi,sig.pi)

pi.o <- rbeta(numyrs,temp$alpha,temp$beta)

# recoveries from group 1

y13 <- rbinom(numyrs,R1,theta*S23*p)

y14 <- rbinom(numyrs,R1-y13,theta*S23*(1-p)*pi.o/(1-theta*S23*p))

# recoveries from group 2

y23 <- rbinom(numyrs,R2,S23*p)

y24 <- rbinom(numyrs,R2-y23,S23*(1-p)*pi.o/(1-S23*p))

theta.hat <- ((y13+y14)/R1)/((y23+y24)/R2)

output <- list(theta.hat=theta.hat,y13=y13,y14=y14,y23=y23,y24=y24)

return(output)

}

An example demonstrating use of two.grp.sim, along with output, is shown below.

two.grp.sim(numyrs=10,R1=60000,R2=75000,mu.theta=0.8,sig.theta=0.12,mu.S23=0.85,sig.S23=0.10,

mu.p=0.002,sig.p=0.0003,mu.pi=0.008,sig.pi=0.005)
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#$theta.hat

# [1] 0.8438486 0.8993476 0.7716049 0.7328767 0.7480971 0.9375000 0.4288026

# [8] 0.9076545 0.8216946 0.7474530

#

#$y13

# [1] 89 63 100 71 81 124 41 90 115 67

#

#$y14

# [1] 339 709 100 143 548 59 65 427 238 696

#

#$y23

# [1] 139 81 165 111 171 143 122 97 179 136

#

#$y24

# [1] 495 992 159 254 880 101 187 615 358 1140

Below is R code that uses two.grp.sim for 30,000 simulations, estimating θ in each case,

calculates the empirical standard error of θ̂, and then compares this standard error to the

theoretical approximation.

set.seed(201)

numsims <- 30000

numyrs.opt <- 10

numrel.opt <- 50000

mu.theta <- 0.6; sig.theta <- 0.1

mu.S <- 0.9; sig.S23 <- 0.15

mu.p <- 0.002; sig.p <- 0.0002

mu.pi <- 0.0079; sig.pi <- 0.00627 #based on Ctland, DCC recoveries

mean.theta.vector <- numeric(numsims)

for(i in 1:numsims) {

out <- two.grp.sim(numyrs=numyrs.opt,R1=numrel.opt,R2=numrel.opt,

mu.theta=mu.theta,sig.theta=sig.theta,mu.S=mu.S,sig.S23=sig.S23,

mu.p=mu.p,sig.p=sig.p,mu.pi=mu.pi,sig.pi=sig.pi)$theta.hat

mean.theta.vector[i] <- mean(out)

}

empirical.se <- sd(mean.theta.vector)

#--- theoretical variance approximation

out <- theory.exp.var(R1=numrel.opt,R2=numrel.opt,n=numyrs.opt,

mu.theta=mu.theta,sigma2.theta=sig.theta^2,mu.S=mu.S,sigma2.S=sig.S23^2,

mu.p=mu.p,sigma2.p=sig.p^2,mu.pi=mu.pi,sigma2.pi=sig.pi^2)
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#--- 95% confidence intervals, using theoretical SE

lb <- mean.theta.vector-2*out

ub <- mean.theta.vector+2*out

performance <- rep(FALSE,numsims)

performance[lb <= mu.theta & mu.theta <= ub] <- TRUE

#print output

cat("Empirical SE=",empirical.se,"\n",

"Theoretical SE=",out,"rel err=",1-empirical.se/out,"\n",

"CI coverage=",sum(performance)/numsims,"\n")

# Empirical SE= 0.03685179

# Theoretical SE= 0.03618268 rel err= -0.01849254

# CI coverage= 0.9508667
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D.3. Interior: Bootstrap estimate of variance of µ̂θ. The R function, two.grp.boot,

estimates the variance of µ̂θ (the non-Bayesian estimate, see Equation 57 in Appendix A)

using B bootstrap samples. Other inputs are number of release pairs (numyrs), number

released from each group, and number of recoveries from each group. Conceptually, one can

view locations 1, 2, 3, and 4 as a spatial sequence with 1 furthest upstream and 4 furthest

downstream; y13 is the number recovered from the first release group at “downstream”

recovery location 3, below release location 2, and y14 is the number recovered at downstream

recovery location 4, below recovery location 4.

two.grp.boot <- function(B,numyrs,R1,R2,y13,y14,y23,y24,wts=NULL,wt.opt=FALSE) {

#K. Newman, 3 October 2006

# Modified 7 August 2007 to calculate weighted estimate

# Computes a bootstrap estimate of the SE of the estimated

# avg. ratio of upstream survival to downstream survival (mu.theta)

# given multiple years of paired release and recovery data.

# Uses a hierarchical bootstrap:

# (1) resample the release pairs (between year variation)

# (2) resample the recoveries (within year variation)

#Not yet computationally efficient....

mu.theta.star <- numeric(B)

if(wt.opt) wts <- wts/sum(wts) #scale to sum to 1.0

for(b in 1:B) {

#resample the pairs of release groups first

n.star <- sample(1:numyrs,numyrs,replace=TRUE)

R1.star <- R1[n.star]

R2.star <- R2[n.star]

p13.star <- y13[n.star]/R1.star

p14.star <- y14[n.star]/R1.star

p23.star <- y23[n.star]/R2.star

p24.star <- y24[n.star]/R2.star

#next "resample" within each selected release group pairs

# recoveries from group 1

y13.star <- rbinom(numyrs,R1.star,p13.star)

y14.star <- rbinom(numyrs,R1.star-y13.star,p14.star/(1-p13.star))

# recoveries from group 2

y23.star <- rbinom(numyrs,R2.star,p23.star)

y24.star <- rbinom(numyrs,R2.star-y23.star,p24.star/(1-p23.star))
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theta.hat.star <- ((y13.star+y14.star)/R1.star)/

((y23.star+y24.star)/R2.star)

#Bootstrap estimate of mu.theta

if(wt.opt) {

mu.theta.star[b] <- sum(wts*theta.hat.star)

} else {

mu.theta.star[b] <- mean(theta.hat.star)

}

}

boot.se <- sd(mu.theta.star)

return(boot.se)

}



151

D.4. DCC: Simulating effect of sample sizes on estimate of DCC effect. The R code

simulates the survival and recapture processes when the DCC is either open or closed and

outputs a bootstrap estimate of the ratio of expected ratios of DCC closed to DCC open.

#DCC sample size determination

# Based on underlying hierarchical model with multinomial dist’n

# "True" parameter values based on results from Bayesian analysis

# For specified b0 and b1 and var(theta)

# DCC closed: for n/2 times (and R_1 = R_2)

# (1) generate logit(theta_closed)

# (2) generate r_{Ry -> CI}, r_{Ry -> Oc}

# (3) generate observations

# DCC open: for n/2 times (and R_1 = R_2)

# (4) generate logit(theta_open)

# (5) generate r_{Ry -> CI}, r_{Ry -> Oc}

# (6) generate observations

# then (7) estimate ratio of means

# then bootstrap a SE for this ratio....

# ..repeat the above

#WinBUGS results with last year deleted

b0 <- 0.83; b1 <- 2.29; sig2.theta <- 7.44

mu.r.Ry.CI <- -6.98; sig2.r.Ry.CI <- 0.39

mu.r.Ry.Oc <- -4.62; sig2.r.Ry.Oc <- 0.97

R.Ct <- R.Ry <- 100000

num.reps.seq <- c(5,7,10,12); num.outer <- length(num.reps.seq)

numsims <- 100

ratio.matrix <- se.matrix <- matrix(NA,num.outer,numsims)

dimnames(ratio.matrix) <- dimnames(se.matrix) <- list(2*num.reps.seq,1:numsims)

for(rep in 1:num.outer) {

num.reps.open <- num.reps.closed <- num.reps.seq[rep]

print(c("Number of reps=",num.reps.open))

for(i in 1:numsims) {

#Simulating the gate-closed group

theta.closed <- inv.logit(rnorm(num.reps.closed,b0+b1,sqrt(sig2.theta)))

r.Ry.CI <- inv.logit(rnorm(num.reps.closed,mu.r.Ry.CI, sqrt(sig2.r.Ry.CI)))

r.Ry.Oc <- inv.logit(rnorm(num.reps.closed,mu.r.Ry.Oc, sqrt(sig2.r.Ry.Oc)))

y.Ct.CI.c <- rbinom(num.reps.closed,R.Ct,theta.closed*r.Ry.CI)

y.Ct.Oc.c <- rbinom(num.reps.closed,R.Ct-y.Ct.CI.c,

theta.closed*r.Ry.Oc/(1-theta.closed*r.Ry.CI))

y.Ry.CI.c <- rbinom(num.reps.closed,R.Ry, r.Ry.CI)
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y.Ry.Oc.c <- rbinom(num.reps.closed,R.Ry-y.Ry.CI.c, r.Ry.Oc/(1-r.Ry.CI))

thetac.hat <- ((y.Ct.CI.c+y.Ct.Oc.c)/R.Ct)/

((y.Ry.CI.c+y.Ry.Oc.c)/R.Ry)

#Now the gate-open group

theta.open <- inv.logit(rnorm(num.reps.open,b0,sqrt(sig2.theta)))

r.Ry.CI <- inv.logit(rnorm(num.reps.open,mu.r.Ry.CI, sqrt(sig2.r.Ry.CI)))

r.Ry.Oc <- inv.logit(rnorm(num.reps.open,mu.r.Ry.Oc, sqrt(sig2.r.Ry.Oc)))

y.Ct.CI.o <- rbinom(num.reps.open,R.Ct,theta.open*r.Ry.CI)

y.Ct.Oc.o <- rbinom(num.reps.open,R.Ct-y.Ct.CI.c,

theta.open*r.Ry.Oc/(1-theta.open*r.Ry.CI))

y.Ry.CI.o <- rbinom(num.reps.open,R.Ry, r.Ry.CI)

y.Ry.Oc.o <- rbinom(num.reps.open,R.Ry-y.Ry.CI.c, r.Ry.Oc/(1-r.Ry.CI))

thetao.hat <- ((y.Ct.CI.o+y.Ct.Oc.o)/R.Ct)/

((y.Ry.CI.o+y.Ry.Oc.o)/R.Ry)

ratio.pt.est <- mean(thetao.hat)/mean(thetac.hat)

ratio.matrix[rep,i] <- ratio.pt.est

#--- bootstrap se for the ratio estimate

B <- 10000

ratio.boot <- numeric(B)

for(b in 1:B) {

#resample the pairs of release groups first

nc.star <- sample(1:num.reps.closed,num.reps.closed,replace=TRUE)

no.star <- sample(1:num.reps.open, num.reps.open, replace=TRUE)

p13c.star <- y.Ct.CI.c[nc.star]/R.Ct

p14c.star <- y.Ct.Oc.c[nc.star]/R.Ct

p23c.star <- y.Ry.CI.c[nc.star]/R.Ry

p24c.star <- y.Ry.CI.c[nc.star]/R.Ry

p13o.star <- y.Ct.CI.o[no.star]/R.Ct

p14o.star <- y.Ct.Oc.o[no.star]/R.Ct

p23o.star <- y.Ry.CI.o[no.star]/R.Ry

p24o.star <- y.Ry.CI.o[no.star]/R.Ry

#next "resample" within each selected release group pairs

y13c.star <- rbinom(num.reps.closed,R.Ct,p13c.star)

y14c.star <- rbinom(num.reps.closed,R.Ct-y13c.star,p14c.star/(1-p13c.star))

y23c.star <- rbinom(num.reps.closed,R.Ry,p23c.star)

y24c.star <- rbinom(num.reps.closed,R.Ry-y23c.star,p24c.star/(1-p23c.star))

thetac.hat.star <- ((y13c.star+y14c.star)/R.Ct)/
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((y23c.star+y24c.star)/R.Ry)

y13o.star <- rbinom(num.reps.open,R.Ct,p13o.star)

y14o.star <- rbinom(num.reps.open,R.Ct-y13o.star,p14o.star/(1-p13o.star))

y23o.star <- rbinom(num.reps.open,R.Ry,p23o.star)

y24o.star <- rbinom(num.reps.open,R.Ry-y23o.star,p24o.star/(1-p23o.star))

thetao.hat.star <- ((y13o.star+y14o.star)/R.Ct)/

((y23o.star+y24o.star)/R.Ry)

ratio.boot[b] <- mean(thetao.hat.star)/mean(thetac.hat.star)

}

boot.se <- sd(ratio.boot)

se.matrix[rep,i] <- boot.se

print(c("iter=",i,"pt est of ratio=",round(ratio.pt.est,2),"se =",round(boot.se,2)))

}

}
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D.5. Interior: Sample size determination. The R function, sampsize.interior, out-

puts either the release number R or the number of release pairs n required to achieve a

specified standard error targSE for µ̂θ.

sampsize.interior <- function(nopt=TRUE,Ropt=FALSE, targSE,

mu.theta,sigma2.theta,mu.S,sigma2.S,

mu.p,sigma2.p,mu.pi,sigma2.pi) {

# Sample size determination

# Based on theory.exp.var() R function.

#set nopt=TRUE and Ropt=R to achieve target SE

#set nopt=n and Ropt=TRUE to achieve target SE

if(nopt) R <- Ropt

if(Ropt) n <- nopt

R1 <- R2 <- R

theta <- mu.theta; S<-mu.S; p <- mu.p; opi <- mu.pi #saves typing

N1 <- theta*p*(1-theta*S*p)+theta*(1-p)*opi*

(1-theta*S*(1-p)*opi)-2*theta^2*p*S*(1-p)*opi

D1 <- R1*S*(p+(1-p)*opi)^2

N2 <- theta^2*p*(1-S*p)+theta^2*(1-p)*opi*

(1-S*(1-p)*opi)-2*theta^2*p*S*(1-p)*opi

D2 <- R2*S*(p+(1-p)*opi)^2

#-------- 2nd Derivative wrt Theta -------------

d2N1 <- -2*S*p^2 - 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi

d2N2 <- 2*p-2*S*p^2+2*(1-p)*opi- 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi

d2.theta <- d2N1*D1^(-1) + d2N2*D2^(-1)

#-------- 2nd Derivative wrt S_{23} -------------

d1N1 <- d1N2 <-

-theta^2*p^2-theta^2*(1-p)^2*opi^2- 2*theta^2*p*(1-p)*opi

d1D1 <- R1*(p+(1-p)*opi)^2

d1D2 <- R2*(p+(1-p)*opi)^2

d2.S23 <- -2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 +

-2*d1N2*D2^(-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2

#-------- 2nd Derivative wrt p -------------
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d1N1 <- theta - 2*theta^2*S*p - theta*opi -

theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi

d1N2 <- theta^2 - 2*theta^2*S*p - theta^2*opi -

theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi

d2N1 <- d2N2 <- -2*theta^2*S*(1+opi^2-2*opi)

d1D1 <- R1*S*(2*p+2*opi-4*p*opi+(-2+2*p)*opi^2)

d1D2 <- R2/R1*d1D1

d2.p <- (d2N1 * D1^(-1) - 2*d1N1*D1^(-2)*d1D1 +

2*N1*D1^(-3)*d1D1^2 - N1*D1^(-2)*R1*S*(2-4*opi+2*opi^2)) +

(d2N2 * D2^(-1) - 2*d1N2*D2^(-2)*d1D2 +

2*N2*D2^(-3)*d1D2^2 - N2*D2^(-2)*R2*S*(2-4*opi+2*opi^2))

#-------- 2nd Derivative wrt pi -------------

d1N1 <- theta*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)

d1N2 <- theta^2*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)

d2N1 <- d2N2 <- -2*theta^2*S*(1-p)^2

d1D1 <- R1*S*2*(1-p)*(p+(1-p)*opi)

d1D2 <- R2/R1*d1D1

d2.pi <- (d2N1*D1^(-1) - 2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 -

2*N1*D1^(-2)*R1*S*(1-p)^2) +

(d2N2*D2^(-1) - 2*d1N2*D2^(-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2 -

2*N2*D2^(-2)*R2*S*(1-p)^2)

A <- R*(N1/D1+N2/D2)

B <- R*(d2.theta*sigma2.theta + d2.S23*sigma2.S +

d2.p*sigma2.p + d2.pi*sigma2.pi)

if(nopt) {

n <- (sigma2.theta+ (1/R)*(A+0.5*B))/targSE^2

return(n)

}

else {

R <- (A+0.5*B)/(n*targSE^2-sigma2.theta)

return(R)

}

}

Demonstration of usage:

mu.theta <- 0.8; sig.theta <- 0.1
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mu.S <- 0.9; sig.S23 <- 0.15

mu.p <- 0.002; sig.p <- 0.0002

mu.pi <- 0.0079; sig.pi <- 0.00627

sampsize(nopt=TRUE,Ropt=50000, targSE=0.05,

mu.theta=mu.theta,sigma2.theta=sig.theta^2,

mu.S=mu.S,sigma2.S=sig.S23^2,

mu.p=mu.p,sigma2.p=sig.p^2,

mu.pi=mu.pi,sigma2.pi=sig.pi^2)

#[1] 5.8491

Thus need 5.85 or 6 years of paired releases, each of size 50,000, to achieve a standard

error of 0.05.
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D.6. DA 8: Simulating the effect of sample size on the precision of β1.

#--- Simulating hierarchical model and indirect fitting procedure

# for Delta Action 8 experiments

# and then calculating the Std Deviation of the estimates

b0 <- -0.4; b1 <- -0.57; sig.theta <- sqrt(0.79)

mu.rc <- -7.71; sig.rc <- sqrt(0.1)

mu.ro <- -5.63; sig.ro <- sqrt(0.64)

R.set <- c(50000, 100000, 150000); n.R <- length(R.set)

n.set <- c(15,20,25) ; n.n <- length(n.set)

sd.mat.b1 <- mean.mat.b1 <- matrix(NA,n.R,n.n)

dimnames(sd.mat.b1) <- dimnames(mean.mat.b1) <-

list(paste("R=",R.set),paste("n=",n.set))

numsims <- 1000

b1.vec <- numeric(numsims)

inv.logit <- function(x) exp(x)/(1+exp(x))

for(i in 1:n.R) {

R <- R.set[i]

for(j in 1:n.n) {

n <- n.set[j]

cat("R=",R,"n=",n,"\n")

for(k in 1: numsims) {

#simulate parameters

exports <- runif(n,1500,11000)

std.exports <- (exports-6058)/3158

temp <- rnorm(n,b0+b1*std.exports,sig.theta)

theta <- inv.logit(temp)

temp <- rnorm(n,mu.rc,sig.rc)

rc <- inv.logit(temp)

temp <- rnorm(n,mu.ro,sig.ro)

ro <- inv.logit(temp)

#simulate recoveries

y.gs.ci <- rbinom(n,R,theta*rc)

y.gs.oc <- rbinom(n,R-y.gs.ci,(theta*ro)/(1-theta*rc))

y.ry.ci <- rbinom(n,R,rc)

y.ry.oc <- rbinom(n,R-y.ry.ci,ro/(1-ro))

#estimate theta’s (divisions by R cancel)

theta.hat <- (y.gs.ci+y.gs.oc)/(y.ry.ci+y.ry.oc)
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logit.theta.hat <- logit(theta.hat)

miss <- is.na(logit.theta.hat) | is.infinite(logit.theta.hat)

#regress theta.hats on exports

temp <- lm(logit.theta.hat[!miss] ~ std.exports[!miss])

b1.vec[k] <- coef(temp)[[2]]

}

sd.mat.b1[i,j] <- sd(b1.vec,na.rm=TRUE)

mean.mat.b1[i,j] <- mean(b1.vec,na.rm=TRUE)

}

}
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D.7. VAMP: Simulating effect of sample size on precision of parameter estimates.

#--- Simulating hierarchical model and indirect fitting procedure

# for VAMP experiments and then calculating the IQR of the estimates

numsims <- 10000

# Utility function

iqr <- function(x) {

out <- diff(quantile(x,prob=c(0.25,0.75),na.rm=TRUE))

return(out)

}

# Durham Ferry to Mossdale Section: function of flow

b0 <- -2.5 ; b1 <- 1.0; sig.df.md <- 1/sqrt(0.1)

# Mossdale to Dos Reis Section: function of flow, HORB, exports*(1-HORB)

g0 <- -1.5; g1 <- 0.32; g2 <- 5; g4 <- -1.4; sig.md.dr <- 1/sqrt(0.14)

# Dos Reis to Jersey Point Section: function of flow, HORB, exports

xi0 <- -1.5; xi1 <- 0.71; xi2 <- 5; xi3 <- -0.5; sig.dr.jp <- 1/sqrt(0.79)

# Jersey Point to Antioch, Chipps Island, and the Ocean

mu.jp.ant <- -6.34; sig.jp.ant <- 1/sqrt(2.4)

mu.jp.ci <- -6.48; sig.jp.ci <- 1/sqrt(12.4)

mu.jp.oc <- -4.61; sig.jp.oc <- 1/sqrt(0.7)

R.set <- c(50000, 100000, 150000); n.R <- length(R.set)

n.set <- seq(15,25,by=5) ; n.n <- length(n.set)

iqr.mat.b1 <- median.mat.b1 <- matrix(NA,n.R,n.n)

iqr.mat.g1 <- median.mat.g1 <- iqr.mat.g2 <- median.mat.g2 <-

iqr.mat.g4 <- median.mat.g4 <- matrix(NA,n.R,n.n)

iqr.mat.xi1 <- median.mat.xi1 <- iqr.mat.xi2 <- median.mat.xi2 <- iqr.mat.xi3 <-

median.mat.xi3 <- matrix(NA,n.R,n.n)

dimnames(iqr.mat.b1) <- dimnames(median.mat.b1) <-

dimnames(iqr.mat.g1) <- dimnames(median.mat.g1) <-

dimnames(iqr.mat.g2) <- dimnames(median.mat.g2) <-

dimnames(iqr.mat.g4) <- dimnames(median.mat.g4) <-

dimnames(iqr.mat.xi1) <- dimnames(median.mat.xi1) <-

dimnames(iqr.mat.xi2) <- dimnames(median.mat.xi2) <-

dimnames(iqr.mat.xi3) <- dimnames(median.mat.xi3) <-
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list(paste("R=",R.set),paste("n=",n.set))

b1.vec <- g1.vec <- g2.vec <- g4.vec <- xi1.vec <-

xi2.vec <- xi3.vec <- numeric(numsims)

for(i in 1:n.R) {

R <- R.set[i]

for(j in 1:n.n) {

n <- n.set[j]

cat("R=",R,"n=",n,"\n")

for(k in 1: numsims) {

#simulate parameters

flow <- rgamma(n,1.4,0.00013)

std.flow <- (flow-10400)/8800

exports <- rgamma(n,3.62,0.0016)

std.exports <- (exports-2200)/1150

HORB <- numeric(n)

barrier <- rbinom(sum(flow<=7000),1,0.5)

HORB[flow <= 7000] <- barrier

temp <- rnorm(n,b0+b1*std.flow,sig.df.md)

df.md <- inv.logit(temp)

temp <- rnorm(n,g0+g1*std.flow + g2*HORB +

g4*std.exports*(1-HORB), sig.md.dr)

md.dr <- inv.logit(temp)

temp <- rnorm(n,xi0+xi1*std.flow+xi2*HORB + xi3*std.exports, sig.dr.jp)

dr.jp <- inv.logit(temp)

temp <- rnorm(n,mu.jp.ant,sig.jp.ant)

ra <- inv.logit(temp)

temp <- rnorm(n,mu.jp.ci,sig.jp.ci)

rc <- inv.logit(temp)

temp <- rnorm(n,mu.jp.oc,sig.jp.oc)

ro <- inv.logit(temp)

#simulate recoveries at Antioch, Chipps Island, and Ocean

temp <- df.md*md.dr*dr.jp; p1 <- temp*ra; p2 <- temp*rc; p3 <- temp*ro

y.df.ant <- rbinom(n,R,p1)

y.df.ci <- rbinom(n,R-y.df.ant,p2/(1-p1))

y.df.oc <- rbinom(n,R-y.df.ant-y.df.ci,p3/(1-p2-p3))
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temp <- temp/df.md; p1 <- temp*ra; p2 <- temp*rc; p3 <- temp*ro

y.md.ant <- rbinom(n,R,p1)

y.md.ci <- rbinom(n,R-y.md.ant,p2/(1-p1))

y.md.oc <- rbinom(n,R-y.md.ant-y.md.ci,p3/(1-p1-p2))

temp <- temp/md.dr; p1 <- temp*ra; p2 <- temp*rc; p3 <- temp*ro

y.dr.ant <- rbinom(n,R,p1)

y.dr.ci <- rbinom(n,R-y.dr.ant,p2/(1-p1))

y.dr.oc <- rbinom(n,R-y.dr.ant-y.dr.ci,p3/(1-p1-p2))

y.jp.ant <- rbinom(n,R,ra)

y.jp.ci <- rbinom(n,R,rc)

y.jp.oc <- rbinom(n,R,ro)

#estimate theta’s (divisions by R cancel)

theta.df.md <- (y.df.ant+y.df.ci+y.df.oc)/(y.md.ant+y.md.ci+y.md.oc)

theta.df.md[theta.df.md >= 1 | is.infinite(theta.df.md)] <- 0.999

theta.df.md[theta.df.md <= 0] <- 0.001

miss.df <- is.na(theta.df.md)

logit.theta.df.md <- logit(theta.df.md[!miss.df])

theta.md.dr <- (y.md.ant+y.md.ci+y.md.oc)/(y.dr.ant+y.dr.ci+y.dr.oc)

theta.md.dr[theta.md.dr >= 1 | is.infinite(theta.md.dr)] <- 0.999

theta.md.dr[theta.md.dr <= 0] <- 0.001

miss.md <- is.na(theta.md.dr)

logit.theta.md.dr <- logit(theta.md.dr[!miss.md])

theta.dr.jp <- (y.dr.ant+y.dr.ci+y.dr.oc)/(y.jp.ant+y.jp.ci+y.jp.oc)

theta.dr.jp[theta.dr.jp >= 1 | is.infinite(theta.dr.jp)] <- 0.999

theta.dr.jp[theta.dr.jp <= 0] <- 0.001

miss.dr <- is.na(theta.dr.jp)

logit.theta.dr.jp <- logit(theta.dr.jp[!miss.dr])

#regress theta.hats

# survival from Durham Ferry to Mossdale

temp <- lm(logit.theta.df.md ~ std.flow[!miss.df])

b1.vec[k] <- coef(temp)[[2]]

# survival from Mossdale to Dos Reis

temp <- lm(logit.theta.md.dr ~ std.flow[!miss.md] +

HORB[!miss.md] + (std.exports*(1-HORB))[!miss.md])

g1.vec[k] <- coef(temp)[[2]]

g2.vec[k] <- coef(temp)[[3]]
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g4.vec[k] <- coef(temp)[[4]]

# survival from Dos Reis to Jersey Point

temp <- lm(logit.theta.dr.jp ~ std.flow[!miss.dr] + HORB[!miss.dr] +

std.exports[!miss.dr])

xi1.vec[k]<- coef(temp)[[2]]

xi2.vec[k]<- coef(temp)[[3]]

xi3.vec[k]<- coef(temp)[[4]]

}

iqr.mat.b1[i,j] <- iqr(b1.vec)

median.mat.b1[i,j] <- median(b1.vec,na.rm=TRUE)

iqr.mat.g1[i,j] <- iqr(g1.vec)

median.mat.g1[i,j] <- median(g1.vec,na.rm=TRUE)

iqr.mat.g2[i,j] <- iqr(g2.vec)

median.mat.g2[i,j] <- median(g2.vec,na.rm=TRUE)

iqr.mat.g4[i,j] <- iqr(g4.vec)

median.mat.g4[i,j] <- median(g4.vec,na.rm=TRUE)

iqr.mat.xi1[i,j] <- iqr(xi1.vec)

median.mat.xi1[i,j]<- median(xi1.vec,na.rm=TRUE)

iqr.mat.xi2[i,j] <- iqr(xi2.vec)

median.mat.xi2[i,j]<- median(xi2.vec,na.rm=TRUE)

iqr.mat.xi3[i,j] <- iqr(xi3.vec)

median.mat.xi3[i,j]<- median(xi3.vec,na.rm=TRUE)

}

}
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Appendix E. WinBUGS code with R interface

E.1. DCC hierarchical model. Negative binomial distribution for Level 1, logit transfor-

mation of θ for Level 2, gamma priors for precision for Level 3.

R code frontend to WinBUGS

library(R2WinBUGS)

input.data <- list(

R.Ct = c(96706, 100302, 107249, 106901, 62604, 100626,

98866, 100919, 102480, 99827, 51211, 50659, 90720),

R.Ryde=c(92693, 51103, 52741, 53961, 59998, 107161, 101320,

51008, 53238, 53942, 51046, 50601, 51134),

y.ct.ci = c(89, 73, 151, 37, 37, 38, 39, 43, 145, 5, 46, 19, 21),

y.ct.oc = c(428, 1981, 1188, 1037, 399, 313, 1692, 1434, 936, 70, 240, 41, 84),

y.ry.ci = c(96, 47, 104, 44, 38, 89, 75, 47, 145, 38, 58, 26, 8),

y.ry.oc = c(368, 1607, 1076, 252, 268, 926, 1979, 1039, 1324, 285, 417, 82, 10),

gate.pos=c(1,1,1,1,0,0,0,0,0,0,0,0,0), n=13)

n <- input.data$n

init.val.generator <- function(n) {

eps.theta <- rnorm(n,0,0.1); eps.rc <- rnorm(n,0,0.1)

eps.ro <- rnorm(n,0,0.1); sigma.theta <- runif(1,0,20)

sigma.rc <- runif(1,0,20); sigma.ro <- runif(1,0,20)

b0 <- rnorm(1,-9,1); b1 <- rnorm(1,-2,1)

mu.rc <- rnorm(1,-1,0.5);mu.ro <- rnorm(1,-1,0.5)

k.ci <- sample(1:100,1);k.oc <- sample(1:100,1)

out <- list( b0 = b0,b1=b1,mu.rc=mu.rc, mu.ro= mu.ro,

k.ci=k.ci,k.oc=k.oc)

return(out)

}

init.values <- list(init.val.generator(n),

init.val.generator(n), init.val.generator(n))

params <- c("b0","b1","mu.rc","mu.ro","sigma.theta","sigma.rc","sigma.ro",

"k.ci","k.oc")

out.DCC.negbin <- bugs(data=input.data, inits=init.values,

parameters.to.save=params, model.file=

"C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_DCC_NegBin.txt",

n.chains=3, n.iter=50000, n.burnin=10000,n.thin=10,debug=TRUE)
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WinBUGS model code

# Code for DCC analysis of gate position effect on Courtland

# releases’recovery rate (relative to Ryde releases) that are later recovered at

# Chipps Island, and in the Ocean fisheries.

model {

#Priors

b0 ~ dnorm(0,1.0E-6); b1 ~ dnorm(0,1.0E-6)

mu.rc ~ dnorm(0,1.0E-6); mu.ro ~ dnorm(0,1.0E-6)

sigma.theta ~ dunif(0,20); sigma.rc ~ dunif(0,20)

sigma.ro ~ dunif(0,20)

k.ci ~ dunif(0,1000); k.oc ~ dunif(0,1000)

tau.theta <- 1/(sigma.theta*sigma.theta)

tau.rc <- 1/(sigma.rc*sigma.rc)

tau.ro <- 1/(sigma.ro*sigma.ro)

for(i in 1:n) {

# random effects

eps.theta[i] ~ dnorm(0.0, tau.theta)

eps.rc[i] ~ dnorm(0.0, tau.rc)

eps.ro[i] ~ dnorm(0.0, tau.ro)

# rc = recovery probability at Chipps Island

# ro = recovery probability in Ocean fisheries

# theta is the ratio of Courtland survival probability to Ryde survival probability

log(theta[i]) <- b0 + b1*gate.pos[i] + eps.theta[i]

logit(rc[i]) <- mu.rc + eps.rc[i]

logit(ro[i]) <- mu.ro + eps.ro[i]

p.ct.ci[i] <- k.ci/(R.Ct[i]*theta[i]*rc[i]+k.ci)

p.ct.oc[i] <- k.oc/(R.Ct[i]*theta[i]*ro[i]+k.oc)

p.ry.ci[i] <- k.ci/(R.Ry[i]*rc[i]+k.ci)

p.ry.oc[i] <- k.oc/(R.Ry[i]*ro[i]+k.oc)

y.ct.ci[i] ~ dnegbin(p.ct.ci[i],k.ci)

y.ct.oc[i] ~ dnegbin(p.ct.oc[i],k.oc)

y.ry.ci[i] ~ dnegbin(p.ry.ci[i],k.ci)

y.ry.oc[i] ~ dnegbin(p.ry.oc[i],k.oc)

}

}
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E.2. DCC hierarchical model with multivariate Level 2 distribution. The WinBUGS

model code is shown below.

model {

#Priors

b0 ~ dnorm(0, 1.0E-6)

b1 ~ dnorm(0, 1.0E-6)

mu.rc ~ dnorm(0,1.0E-6)

mu.ro ~ dnorm(0,1.0E-6)

Omega[1:3,1:3] ~ dwish(R[,],4)

Sigma[1:3,1:3] <- inverse(Omega[,])

for(i in 1:n) {

#Mean structure

mu[i,1] <- b0 + b1*gate.pos[i]

mu[i,2] <- mu.rc

mu[i,3] <- mu.ro

#Correlated random effects

Y[i,1:3] ~ dmnorm(mu[i,],Omega[,])

theta[i] <- exp(Y[i,1])/(1+exp(Y[i,1]))

rc[i] <- exp(Y[i,2])/(1+exp(Y[i,2])+exp(Y[i,3]))

ro[i] <- exp(Y[i,3])/(1+exp(Y[i,2])+exp(Y[i,3]))

p13[i] <- theta[i] * rc[i]

p14[i] <- theta[i] * ro[i]

condp14[i] <- p14[i]/(1-p13[i])

p23[i] <- rc[i]

p24[i] <- ro[i]

condp24[i] <- p24[i]/(1-p23[i])

#Two trinomial distributions for the recoveries

y.ct.ci [i] ~ dbin(p13[i], R.Ct[i])

condR.Ct[i] <- R.Ct[i]-y.ct.ci [i]

y.ct.oc[i] ~ dbin(condp14[i], condR.Ct[i])

y.ry.ci[i] ~ dbin(p23[i], R.Ryde[i])

condR.Ryde[i] <- R.Ryde[i]-y.ry.ci[i]

y.ry.oc[i] ~ dbin(condp24[i], condR.Ryde[i])

}

}
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E.3. Interior hierarchical model. Multinomial distribution for Level 1; logit (or log)

transformation of θ for Level 2, uniform priors on σ for Level 3.

R code frontend to WinBUGS

# Georgiana Slough and Ryde releases

library(R2WinBUGS)

input.data <- list(

R.gs= c( 33668, 31532, 31328, 33670, 61276, 66893, 69180,

68843, 65517, 64515, 77053, 55173, 68703, 72082,70414),

R.ry= c( 34650, 30220, 31557, 30281, 46756, 49059, 48207, 48804, 53426,

49341, 52327, 49629,45981, 50397,51017),

y.gs.ci= c( 5 ,4,2,5,2,18,12,12,3,21,18,1,5,10, 6),

y.gs.oc= c( 80,11,101,146,7,240,173,150,43,151,248,68,50,NA, NA),

y.ry.ci= c( 37,15 ,13 ,21,22,48,30,17,16,19,34,18,13,28, 23),

y.ry.oc= c(292,29,266,240,41,167,182,156,128,161,520,147,128,NA, NA),

n=15)

init.val.generator <- function(n) {

eps.theta <- rnorm(n,0,0.1); eps.rc <- rnorm(n,0,0.1)

eps.ro <- rnorm(n,0,0.1); sigma.theta <- runif(1,1,2)

sigma.rc <- runif(1,1,2); sigma.ro <- runif(1,1,2)

mu.theta <- rnorm(1,-5,0.5);mu.rc <- rnorm(1,-5,0.5)

mu.ro <- rnorm(1,-5,0.5)

out <- list(eps.theta = eps.theta,eps.rc = eps.rc, eps.ro = eps.ro,

mu.theta=mu.theta,mu.rc=mu.rc, mu.ro= mu.ro,

sigma.theta = sigma.theta,sigma.rc = sigma.rc, sigma.ro = sigma.ro)

# tau.theta = rgamma(1,0.1,0.1), tau.rc = rgamma(1,0.1,0.1), tau.ro = rgamma(1,0.1,0.1))

return(out)

}

init.values <- list(init.val.generator(n),

init.val.generator(n), init.val.generator(n))

params <- c("mu.theta","mu.rc","mu.ro","sigma.theta","sigma.rc","sigma.ro")

out.int.multinom <- bugs(data=input.data, inits=init.values,

parameters.to.save=params, model.file=

"C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_Interior_Multinomial.txt",

n.chains=3, n.iter=100000, n.burnin=50000,n.thin=1,debug=TRUE)
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WinBUGS model code

model {

#Priors for the Parameters in the logistic models

mu.theta ~ dnorm(0,1.0E-6)

mu.rc ~ dnorm(0,1.0E-6)

mu.ro ~ dnorm(0,1.0E-6)

sigma.theta ~ dunif(0,20)

sigma.rc ~ dunif(0,20)

sigma.ro ~ dunif(0,20)

tau.theta <- 1/(sigma.theta*sigma.theta)

tau.rc <- 1/(sigma.rc*sigma.rc)

tau.ro <- 1/(sigma.ro*sigma.ro)

for(i in 1:n) {

eps.theta[i] ~ dnorm(0.0, tau.theta)

eps.rc[i] ~ dnorm(0.0, tau.rc)

eps.ro[i] ~ dnorm(0.0, tau.ro)

#logit(theta[i]) <- mu.theta + eps.theta[i]

log(theta[i]) <- mu.theta + eps.theta[i]

logit(rc[i]) <- mu.rc + eps.rc[i]

logit(ro[i]) <- mu.ro + eps.ro[i]

r.gs.ci[i] <- theta[i] * rc[i]

r.gs.oc[i] <- theta[i] * ro[i]

cond.gs.ro.rc[i] <- r.gs.oc[i]/(1-r.gs.ci[i])

cond.ro.rc[i] <- ro[i]/(1-rc[i])

}

for(i in 1:(n-2)) {

#Two trinomial distributions for the recoveries

y.gs.ci[i] ~ dbin(r.gs.ci[i], R.gs[i])

cond.R.gs[i] <- R.gs[i]-y.gs.ci[i]

y.gs.oc[i] ~ dbin(cond.gs.ro.rc[i], cond.R.gs[i])

y.ry.ci[i] ~ dbin(rc[i], R.ry[i])

cond.R.ry[i] <- R.ry[i]-y.ry.ci[i]

y.ry.oc[i] ~ dbin(cond.ro.rc[i], cond.R.ry[i])

}

#handling the missing ocean data in the last year

for(i in (n-1):n) {

y.gs.ci[i] ~ dbin(r.gs.ci[i], R.gs[i])

y.ry.ci[i] ~ dbin(rc[i], R.ry[i])

}

}
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E.4. DA 8 hierarchical model. Multinomial distribution for Level 1; logit (or log) trans-

formation of θ for Level 2; gamma priors for precision (or uniform for σ’s) for Level 3.

R code frontend to WinBUGS

# Code for DA 8 analysis of exports effects on Georgiana Slough releases

# that are later recovered Chipps Island, and in the Ocean fisheries.

library(R2WinBUGS)

exports.raw <- c(10434,5988,10403,9523,10570,3887,1868,1984,3237,4010,7789,5007,4016,6092,10837)

exports <- as.vector(scale(exports.raw))

input.data <- list(

R.gs= c( 33668, 31532, 31328, 33670, 61276, 66893, 69180,

68843, 65517, 64515, 77053, 55173, 68703, 72082,70414),

R.ry= c( 34650, 30220, 31557, 30281, 46756, 49059, 48207, 48804, 53426,

49341, 52327, 49629,45981, 50397,51017),

y.gs.ci= c( 5 ,4,2,5,2,18,12,12,3,21,18,1,5,10, 6),

y.gs.oc= c( 80,11,101,146,7,240,173,150,43,151,248,49,50,NA, NA),

y.ry.ci= c( 37,15 ,13 ,21,22,48,30,17,16,19,34,18,13,28, 24),

y.ry.oc= c(292,29,266,240,41,167,182,156,128,161,520,147,128,NA, NA),

exports= exports, n=15)

n <- input.data$n

init.val.generator <- function(n) {

eps.theta <- rnorm(n,0,0.1); eps.rc <- rnorm(n,0,0.1)

eps.ro <- rnorm(n,0,0.1)

b0 <- rnorm(1,-9,1); b1 <- rnorm(1,-2,1)

mu.rc <- rnorm(1,-1,0.5);mu.ro <- rnorm(1,-1,0.5)

sigma.theta <- runif(1,0,20);sigma.rc <- runif(1,0,20);sigma.ro <- runif(1,0,20)

out <- list(eps.theta = eps.theta,eps.rc = eps.rc, eps.ro = eps.ro,

b0 = b0,b1=b1,mu.rc=mu.rc, mu.ro= mu.ro,

sigma.theta = sigma.theta,sigma.rc = sigma.rc, sigma.ro = sigma.ro)

#tau.theta = rgamma(1,0.1,0.1), tau.rc = rgamma(1,0.1,0.1), tau.ro = rgamma(1,0.1,0.1))

return(out)

}

init.values <- list(init.val.generator(n),init.val.generator(n),

init.val.generator(n))

params <- c("b0","b1","mu.rc","mu.ro","sigma.theta","sigma.rc","sigma.ro","theta")

out.DA8.multinom <- bugs(data=input.data, inits=init.values,

parameters.to.save=params, model.file=

"C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_DA8_Multinomial.txt",

n.chains=3, n.iter=200000, n.burnin=50000,n.thin=10,debug=TRUE)
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WinBUGS model code

model {

#Level 3: Priors for the Parameters in the logistic models

b0 ~ dnorm(0, 1.0E-6)

b1 ~ dnorm(0, 1.0E-6)

mu.rc ~ dnorm(0,1.0E-6)

mu.ro ~ dnorm(0,1.0E-6)

sigma.theta ~ dunif(0,20); tau.theta <- 1/(sigma.theta*sigma.theta)

sigma.rc ~ dunif(0,20); tau.rc <- 1/(sigma.rc*sigma.rc)

sigma.ro ~ dunif(0,20); tau.ro <- 1/(sigma.ro*sigma.ro)

#Level 2: Generating random effects and probabilities

for(i in 1:n) {

eps.theta[i] ~ dnorm(0.0, tau.theta)

eps.rc[i] ~ dnorm(0.0, tau.rc)

eps.ro[i] ~ dnorm(0.0, tau.ro)

log(theta[i]) <- b0 + b1*exports[i] + eps.theta[i]

logit(rc[i]) <- mu.rc + eps.rc[i]

logit(ro[i]) <- mu.ro + eps.ro[i]

r.gs.ci[i] <- theta[i] * rc[i]

r.gs.oc[i] <- theta[i] * ro[i]

cond.gs.ro.rc[i] <- r.gs.oc[i]/(1-r.gs.ci[i])

cond.ro.rc[i] <- ro[i]/(1-rc[i])

}

#Level 1: Obs’ns

for(i in 1:(n-2)) {

#Two trinomial distributions for the recoveries

y.gs.ci[i] ~ dbin(r.gs.ci[i], R.gs[i])

cond.R.gs[i] <- R.gs[i]-y.gs.ci[i]

y.gs.oc[i] ~ dbin(cond.gs.ro.rc[i], cond.R.gs[i])

y.ry.ci[i] ~ dbin(rc[i], R.ry[i])

cond.R.ry[i] <- R.ry[i]-y.ry.ci[i]

y.ry.oc[i] ~ dbin(cond.ro.rc[i], cond.R.ry[i])

}

#handling the missing ocean data in the last two years

for(i in (n-1):n) {

y.gs.ci[i] ~ dbin(r.gs.ci[i], R.gs[i])

y.ry.ci[i] ~ dbin(rc[i], R.ry[i])

}

}
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E.5. VAMP hierarchical model. Multinomial distribution for Level 1; logit transforma-

tion of θ for Level 2; uniform priors on σ’s for Level 3.

R code frontend to WinBUGS

Creating input file.

#Flow at Durham Ferry: 2 day avg (day of and day after release) at Vernalis from DAYFLOW

DF.flow.raw <- c(rep(NA,22),6690,5665,4125,4135,3165,3356,3430,3370,3170,8250,8940,NA,NA)

DF.flow <- as.vector(scale(DF.flow.raw))

DF.flow[is.na(DF.flow)] <- -99

#Flow at Mossdale: 2 day avg (day of and day after release) at Vernalis from DAYFLOW

MD.flow.raw <- c(2475,7140,2480,2500,1945,1400,1400,NA,1580, 3115,18700,21250,23100,6665,6565,NA,6135,

NA, NA, 24950, 20250, 6905,

6995, 5969, 4170,4145,3255,3356,3345,3370,3160,

8195, 9085, 29350, 24650)

MD.flow <- as.vector(scale(MD.flow.raw))

MD.flow[is.na(MD.flow)] <- -99

#Exports at Mossdale: 2 day avg (day of and day after release)

MD.exp.raw <- c(5257,4096,7370,1797,10295,9400,3276,7610, 2087,1120,3707,3770, 3507,2040,1660,NA,2330,

NA,NA, 805,1932,2683,

2265,2238,1475,1566,1536,1523,1494,1481,1483,

1961,2303,1538,6283)

MD.exp <- as.vector(scale(MD.exp.raw))

MD.exp[is.na(MD.exp)] <- -99

#Flow at Dos Reis: 2 Day average (day of and day after release) at Dos Reis

DR.flow.raw <- c(384,2492,391,677,-17,48,431,-49,

466, 2891, 8267, 9316, 9545, 3296, 3113, 3113, 4709, 4709,4740,9645,

8447, 3180,

5918, 5062, 3630, 3610,2671,2814, 2904, 3017, 2831,

3743, 4147, 10756, 10018)

DR.flow <- as.vector( scale(DR.flow.raw))

#Exports at time of release at Dos Reis

DR.exp.raw <- c(5794,5626,5856,1798,

10211.5,9597,2353,5990,1725,1598, 3684,3958,4209,1614,1629,1629,

2329, 2329,2410,1722,1926,3105,

2366, 2196,1482, 1495,1532,1507,1497,1479,1483,

2293, 2300,1544,6046)

DR.exp <- as.vector(scale(DR.exp.raw))

#Flow at Upper Old River: median of 5 days, day of release + next 4 days

UOR.flow.raw <- c(1928,4842,2057,1522,2049,1060,934,796,1018,0,
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9192,9801,10066,3499,3378,3378,284,284,268,10356,9404,3429,

296,560,687,654,549,570,297,299,297,

3934,4529,11130,10423)

UOR.flow <- as.vector(scale(UOR.flow.raw))

#Temperatures at release

DR.temp <- c(21.1,20.0,21.1,21.7,20.6,20.0,20.0,15.6,NA,NA,13.9,17.2,18.3,NA,17.2,17.2,15.6,15.6,17.2,15.0,

18.9,17.2,rep(NA,9),17.0,15.0,17.5,NA)

UOR.temp <- c(21.1,21.1,22.2,21.7,19.5,21.1,22.2,rep(NA,28))

JP.temp <- c(rep(NA,3),20.0,17.8,17.2,20.0,17.2,17.8,17.2,15.6,NA,NA,16.7,17.8,18.9,17.2,17.8,19.4,17.2,18.9,

17.2,17.8,17.2,20.0,22.8,18.0,17.5,16.5,14.0,21.4,18.0,19.0,19.0,19.5)

MD.temp <- c(rep(NA,8),17.2,15.6,13.9,16.7,17.2,15.6,17.8,NA,16.1,NA,NA,13.9,18.9,16.7,13.3,NA,19.4,21.1,13.9,

17.5,15.2,15.7,17.0,NA,NA,18.0,19.5)

DF.temp <- c(rep(NA,22),13.9,17.2,21.7,18.9,15.0,17.0,15.0,16.5,15.5,16.0,14.9,NA,NA)

#Stock origin

stock.origin <- c(rep("MRFF",4),rep("FRH",11),"MRFF","FRH",rep("MRFF",3),"FRH",rep("MRFF",14))

stock <- rep(1,length(stock.origin))

stock[stock.origin=="FRH"] <- 0

#Year of release

VAMP.Year <- c(85,86,87,89,89,90,90,91,94,94,rep(95,3),rep(96,3),rep(97,3),98,98,

99,100,100,101,101,102,102,103,103,104,105,105,106,106)+1900

# Indicator variable for Head of Old River Barrier, 1=In and 0=Out

HORB <- c(rep(0,4),0, 0,0,0, 0,1, 0, 0,0, 0, 0, 0,1,1,1, 0, 0, 0,

1, 1,1,1,1, 1, 1,1, 1,

0, 0, 0, 0)

#proportion down Old River = 1-(San Joaquin/Vernalis);

# used some eq’n for 1985-1989, and used some model for 1990-2006

p.OR <- c(0.81, 0.73, 0.90, 0.66,

1.04, 1.19, 0.84, 1.26, 0.67, 0.11, 0.55, 0.58,0.59,0.53, 0.52,

0.52,0.16,0.16,0.21,0.6,0.57,0.55,0.18,0.11,0.12,0.12,0.19,0.20,0.07,0.11,0.11,

0.56, 0.55, 0.61, 0.59)

# 1989-1999, MD, OR, DR, and JP releases; CI and Oc recoveries; 22 groups of releases

# 2000-2004, no Dos Reis releases, Antioch, Chipps Island, and Ocean recoveries, 9 groups of releases

# 2005-2006, no Ocean recoveries, 4 release groupings

n1 <- 22; n2 <- 9; n3 <- 4

#------------------------------------------------------------------------------------------------------------------

#Durham Ferry Release and Recovery Data

R.DF <- c(rep(NA,22),

72094, 74001, 68192, 71744, 97318, 98082, 74377, 74491, 91867,

93833, 91563, NA,NA)
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DF.index.2 <- 23:31; DF.index.3 <- 32:33

y.DF <- cbind(c(rep(NA,22), 27, 31, 76,29, 63,18, 6, 0, 2,6, 7,NA,NA),

c(rep(NA,22), 28, 22, 53, 9, 21,15, 3, 0, 3,12, 6,NA,NA),

c(rep(NA,22),693,162,366,92,270,58,19,10, 3,NA,NA,NA,NA),

c(rep(NA,22),521,279, 84, 39, 207,175,51,24,96,1527,844,NA,NA))

#------------------------------------------------------------------------------------------------------------------

#Mossdale Release and Recovery Data

R.MD <- c(rep(NA,8),51084,50726,100969,102562,104125,100742,99656, NA,

48730, NA, NA, 77430, 33800, 74646,

46111, NA, 44923, 48888, 50411, 48924, 49827, 48317, 73258,

NA, NA, 48828, 73764)

MD.index.1 <- c(9:15,17,20:22); MD.index.2 <- c(23,25:31); MD.index.3<- 34:35

y.MD <- cbind(c(rep(NA,22),30,NA,33,19, 42, 7, 4, 0, 1,NA,NA,9,0),

c(rep(NA,8), 0, 2,20, 13, 8, 2, 1, NA,10,NA,NA, 88, 7, 36,

18, NA, 31, 8, 13, 5, 5, 1, 3,NA,NA,9,2),

c(rep(NA,8),62,89,461,392,353,100,26,NA,329,NA,NA,157,13,395,

381, NA,232,52,145,40, 8, 5,2,rep(NA,4)),

c(rep(NA,8),705,0,2682,1883,1628,1084,1432,NA,226,NA,NA,48,

192,2940,457,NA,48,36,234,129,0,12,30,NA,NA,18,48))

#------------------------------------------------------------------------------------------------------------------

#Dos Reis Release and Recovery Data

R.DR = c(149968,95595,92612,76073,

52962,105742,103533,102999,NA,NA, 50848,52097, 51665,

NA,98638, 107961,49784,102431,46682,77180,47874, 49636,

NA,NA,NA,NA,NA,NA,NA,NA,NA,

69125, 68646,25463, NA)

DR.index.1<- c(1:8,11:13,15:22); DR.index.2 <- NULL;DR.index.3 <- 32:34

y.DR <- cbind(c(rep(NA,22),rep(NA,9),7,7,3,NA),

c(94, 36, 79, 12,

11, 4, 4,17, NA,NA, 8, 21, 9, NA,3,10, 10, 16, 5, 93,17, 39,rep(NA,9),

3,6,7,NA),

c(NA, 2068, 1219, 78,

34,23,34,86,NA,NA,234,393,245,NA,67,58,259,348,90,145,56,376,rep(NA,9),

rep(NA,4)),

c(4450,2960,5469,428,2714,1766,150,7130,NA,NA,234,393,245,NA,0,0,125,394,

78,0,0,185,rep(NA,9),7,6,0,NA))

#-----------------------------------------------------------------------------------------------------------------

#Old River Release and Recovery Data

R.OR <- c(150048, 100181,92612, 74341,51972,106267,103595, rep(NA,28))

OR.index.1 <- 1:7

y.OR <- cbind(rep(NA,35),

c(99, 21, 17, 4, 5, 2, 1,rep(NA,28)),

c(NA,1139,500,16,38,14,11,rep(NA,28)),

c(37299,62564,24019,1439,2916,2613,1346,rep(NA,28)))
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#------------------------------------------------------------------------------------------------------------------

#Jersey Point Release and Recovery Data

R.JP<- c(rep(NA,3),56233,

56816, 52962, 50143, 52139,50689, 53810,50779, NA, NA, 50041, 50820,

51737, 49815, 51540, 47208, 50050, 31091, 48907,

51098, 49871, 49161, 51107, 48496, 46469, 24441, 25732, 22708,

22767, 23231, 26113, 24757)

JP.index.1<- c(4:11,14:22); JP.index.2 <- 23:31; JP.index.3 <- 32:35

y.JP <- cbind(c(rep(NA,22),97,152, 329, 96,190, 75, 71, 35, 22,

31,27,26,14),

c(NA,NA,NA,56,53, 32, 56 ,94, 10, 16, 26,NA,NA, 25, 24, 39, 55, 27, 18,187,40, 59,

65, 78, 111, 44, 83, 46, 57, 39, 25,

32,38,58,44),

c(NA,NA,NA,283,180,224,204,358,420,756,280,NA,NA,332,311,186,697,355,192,201,47,715,

1353,589,1031,581,951,597,263,415,117,

rep(NA,4)),

c(NA,NA,NA,824,144,156,62,331,14,0,0,NA,NA,0,12,0,12,24,14,0,0,185,0,6,0,0,48,0,0,0,

12,0,0,0,0))

#---Creating an input.data object for input to WinBUGS ------------------------------------------

input.data <- list(

n1=n1,n2=n2,n3=n3,

R.DF = R.DF, n.DF.2=length(DF.index.2),n.DF.3=length(DF.index.3),

DF.index.2=DF.index.2,DF.index.3=DF.index.3,

y.DF.Ant=y.DF[,1],y.DF.CI=y.DF[,2],y.DF.Oc=y.DF[,3],

R.MD = R.MD, n.MD.1 = length(MD.index.1),n.MD.2=length(MD.index.2),n.MD.3=length(MD.index.3),

MD.index.1=MD.index.1,MD.index.2=MD.index.2,MD.index.3=MD.index.3,

y.MD.Ant = y.MD[,1], y.MD.CI = y.MD[,2], y.MD.Oc = y.MD[,3],

R.DR = R.DR, n.DR.1 = length(DR.index.1), n.DR.3 = length(DR.index.3),

DR.index.1=DR.index.1,DR.index.3=DR.index.3,

y.DR.Ant=y.DR[,1],y.DR.CI=y.DR[,2],y.DR.Oc=y.DR[,3],

R.OR = R.OR, n.OR.1 = length(OR.index.1), OR.index.1=OR.index.1,

y.OR.CI=y.OR[,2],y.OR.Oc=y.OR[,3],

R.JP = R.JP, n.JP.1 = length(JP.index.1),n.JP.2=length(JP.index.2),n.JP.3=length(JP.index.3),

JP.index.1=JP.index.1,JP.index.2=JP.index.2,JP.index.3=JP.index.3,

y.JP.Ant=y.JP[,1],y.JP.CI=y.JP[,2],y.JP.Oc=y.JP[,3],

MD.exp=MD.exp,

DR.flow=DR.flow,

DR.exp=DR.exp,

# stock=stock
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#DF.flow=DF.flow

#MD.flow=MD.flow,

UOR.flow=UOR.flow

)

if(branch) {

input.data[[length(input.data)+1]] <- p.OR

names(input.data)[length(input.data)] <- "p.OR"

input.data$p.OR[p.OR>1] <- 1

input.data$p.OR[HORB==1] <- 0

} else {

input.data[[length(input.data)+1]] <- HORB

names(input.data)[length(input.data)] <- "HORB"

}
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Sourcing the input file and calling WinBUGS.

library(R2WinBUGS)

#source the input data

branch <- TRUE

source("C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/VAMP_inputdata.r")

#---Creating a list of 3 lists of initial values for input to WinBUGS

n <- input.data$n1+input.data$n2+input.data$n3

init.val.generator <- function(n) {

eps.df.md <- rnorm(n,0,1); eps.dr.jp <- rnorm(n,0,1); eps.or.jp <- rnorm(n,0,1)

eps.jp.ant<- rnorm(n,0,0.1);eps.jp.ci<- rnorm(n,0,0.1);eps.jp.oc<- rnorm(n,0,0.1)

b0 <- rnorm(1,-1,1)

xi0<- rnorm(1,1,1); xi1 <- rnorm(1,0,0.1); xi2<- rnorm(1,0,0.1) #xi3=rnorm(1,0,0.1)

z0 <- rnorm(1,1,1); z1 <- rnorm(1,1,1); z2 <- rnorm(1,1,1)

mu.jp.ant <- rnorm(1,-4,1); mu.jp.ci <- rnorm(1,-4,1); mu.jp.oc <- rnorm(1,-4,1)

sigma.df.md <- runif(1); sigma.dr.jp <- runif(1); sigma.or.jp <- runif(1)

sigma.jp.ant <-runif(1); sigma.jp.ci <- runif(1); sigma.jp.oc <- runif(1)

out <- list(eps.df.md = eps.df.md,eps.dr.jp = eps.dr.jp, eps.or.jp = eps.or.jp,

eps.jp.ant=eps.jp.ant,eps.jp.ci = eps.jp.ci, eps.jp.oc = eps.jp.oc,

b0 = b0,xi0=xi0,xi1=xi1,xi2=xi2,

z0 = z0,z1=z1,z2=z2,

mu.jp.ant=mu.jp.ant, mu.jp.ci=mu.jp.ci, mu.jp.oc=mu.jp.oc,

sigma.df.md=sigma.df.md, sigma.dr.jp=sigma.dr.jp, sigma.or.jp=sigma.or.jp,

sigma.jp.ant=sigma.jp.ant,sigma.jp.ci=sigma.jp.ci,sigma.jp.oc=sigma.jp.oc)

return(out)

}

init.values <- list(init.val.generator(n),init.val.generator(n),

init.val.generator(n))

#----- Parameters for which MCMC samples are wanted

params <- c("b0","xi0", "xi1", "xi2", #"xi3",

"z0", "z1", "z2",

"mu.jp.ant","mu.jp.ci","mu.jp.oc",

"sigma.df.md", "sigma.dr.jp","sigma.or.jp","sigma.jp.ant",

"sigma.jp.ci", "sigma.jp.oc",

"fit.MD.CI.1","fit.MD.Oc.1","fit.MD.CI.2","fit.MD.Oc.2",

"fit.MD.CI.3","fit.MD.Oc.3")

#call to WinBUGS vi bugs() function

temp <- bugs(data=input.data, inits=init.values,

parameters.to.save=params, model.file=

"C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_VAMP_Branch.txt",

n.chains=3, n.iter=250000, n.burnin=50000,n.thin=10,debug=TRUE)
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WinBUGS model code

# Example Code for branching model used for VAMP data.

# Admittedly clunky use of conditional binomials instead of multinomial.

# Model: DF->MD = constant + noise

# MD->DR = constant

# DR->JP = f(Flow,Exports)+noise

# OR->JP = f(Flow,Exports)+noise

#******************************************************************************************************

#Branching Model

model {

#Priors for the Parameters in the logistic models

# DF -> MD

b0 ~ dnorm(0, 1.0E-6)

# MD -> DR

#g0 ~ dnorm(0, 1.0E-6)

# DR -> JP

xi0 ~ dnorm(0, 1.0E-6); xi1 ~ dnorm(0, 1.0E-6)

xi2 ~ dnorm(0, 1.0E-6);

# OR -> JP

z0 ~ dnorm(0, 1.0E-6); z1 ~ dnorm(0, 1.0E-6)

z2 ~ dnorm(0, 1.0E-6)

# JP -> Ant, CI, Oc

# chi ~ dnorm(0, 1.0E-6)

mu.jp.ant ~ dnorm(0,1.0E-6); mu.jp.ci ~ dnorm(0,1.0E-6);

mu.jp.oc ~ dnorm(0,1.0E-6)

sigma.df.md ~ dunif(0,20); tau.df.md <- 1/(sigma.df.md*sigma.df.md)

#sigma.md.dr ~ dunif(0,20); tau.md.dr <- 1/(sigma.md.dr*sigma.md.dr)

sigma.dr.jp ~ dunif(0,20); tau.dr.jp <- 1/(sigma.dr.jp*sigma.dr.jp)

sigma.or.jp ~ dunif(0,20); tau.or.jp <- 1/(sigma.or.jp*sigma.or.jp)

sigma.jp.ant ~ dunif(0,20); tau.jp.ant <- 1/(sigma.jp.ant*sigma.jp.ant)

sigma.jp.ci ~ dunif(0,20); tau.jp.ci <- 1/(sigma.jp.ci*sigma.jp.ci)

sigma.jp.oc ~ dunif(0,20); tau.jp.oc <- 1/(sigma.jp.oc*sigma.jp.oc)

#-------------------------------------------------------------------------------------------

# Random effects generation; some unnecessary: early Antioch and recent ocean

for(i in 1:(n1+n2+n3)) {

eps.df.md[i] ~ dnorm(0.0, tau.df.md)
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eps.dr.jp[i] ~ dnorm(0.0, tau.dr.jp)

eps.jp.ant[i] ~ dnorm(0.0,tau.jp.ant)

eps.jp.ci[i] ~ dnorm(0.0, tau.jp.ci)

eps.jp.oc[i] ~ dnorm(0.0, tau.jp.oc)

eps.or.jp[i] ~ dnorm(0.0, tau.or.jp)

#Mossdale to Dos Reis survival

# logit(S.md.dr[i]) <- g0 + eps.md.dr[i]

S.md.dr[i] <- 1.0

#Old River to Jersey Point survival

#logit(S.or.jp[i]) <- z0+ eps.or.jp[i]

#logit(S.or.jp[i]) <- z0+ z1*UOR.flow[i] + eps.or.jp[i]

#logit(S.or.jp[i]) <- z0+ z2*MD.exp[i]+ eps.or.jp[i]

logit(S.or.jp[i]) <- z0+ z1*UOR.flow[i] + z2*MD.exp[i]+ eps.or.jp[i]

#Dos Reis to Jersey Point survival

#logit(S.dr.jp[i]) <- xi0 + eps.dr.jp[i]

#logit(S.dr.jp[i]) <- xi0 + xi1*DR.flow[i] + eps.dr.jp[i]

logit(S.dr.jp[i]) <- xi0 + xi1*DR.flow[i] + xi2*DR.exp[i] + eps.dr.jp[i]

#Mossdale to Jersey Point survival: a combination of probabilities

S.md.jp[i] <- p.OR[i]*S.or.jp[i] + (1-p.OR[i])*S.md.dr[i]*S.dr.jp[i]

logit(r.jp.ant[i]) <- mu.jp.ant + eps.jp.ant[i]

logit(r.jp.ci[i]) <- mu.jp.ci + eps.jp.ci[i]

logit(r.jp.oc[i]) <- mu.jp.oc + eps.jp.oc[i]

#logit(r.jp.ant[i]) <- mu.jp.ant + chi*stock[i] + eps.jp.ant[i]

#logit(r.jp.ci[i]) <- mu.jp.ci + chi*stock[i] + eps.jp.ci[i]

#logit(r.jp.oc[i]) <- mu.jp.oc + chi*stock[i] + eps.jp.oc[i]

}

#-------------------------------------------------------------------------------------------

# Modeling the Recoveries

# 1985-1999, MD, DR, and JP releases; CI and Oc recoveries; 18 groups ----------------

# Mossdale recoveries for 1989-1999 (11 releases)

for(j in 1:n.MD.1) {

p1.MD1[j] <- S.md.jp[MD.index.1[j]]*r.jp.ci[MD.index.1[j]]

p2.MD1[j] <- p1.MD1[j]*r.jp.oc[MD.index.1[j]]/r.jp.ci[MD.index.1[j]]

cond.p2.MD1[j] <- p2.MD1[j]/(1-p1.MD1[j])
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y.MD.CI[MD.index.1[j]] ~ dbin(p1.MD1[j] , R.MD[MD.index.1[j]])

temp1[j] <- R.MD[MD.index.1[j]] - y.MD.CI[MD.index.1[j]]

y.MD.Oc[MD.index.1[j]] ~ dbin(cond.p2.MD1[j], temp1[j])

fit.MD.CI.1[j] <- R.MD[MD.index.1[j]]*p1.MD1[j]

fit.MD.Oc.1[j] <- R.MD[MD.index.1[j]]*p2.MD1[j]

}

#Dos Reis recoveries for 1985-1999 (15 releases)

#1985 has only CI recs

p1.DR1[1] <- S.dr.jp[DR.index.1[1]]*r.jp.ci[DR.index.1[1]]

y.DR.CI[DR.index.1[1]] ~ dbin(p1.DR1[1],R.DR[DR.index.1[1]])

for(j in 2:n.DR.1) {

p1.DR1[j] <- S.dr.jp[DR.index.1[j]]*r.jp.ci[DR.index.1[j]]

p2.DR1[j] <- S.dr.jp[DR.index.1[j]]*r.jp.oc[DR.index.1[j]]

cond.p2.DR1[j] <- p2.DR1[j]/(1-p1.DR1[j])

y.DR.CI[DR.index.1[j]] ~ dbin(p1.DR1[j],R.DR[DR.index.1[j]])

temp2[j] <- R.DR[DR.index.1[j]]-y.DR.CI[DR.index.1[j]]

y.DR.Oc[DR.index.1[j]] ~ dbin(cond.p2.DR1[j], temp2[j])

}

#Old River recoveries for 1985-1999 (7 releases)

#1985 has only CI recs

p1.OR1[1] <- S.or.jp[OR.index.1[1]]*r.jp.ci[OR.index.1[1]]

y.OR.CI[OR.index.1[1]] ~ dbin(p1.OR1[1], R.OR[OR.index.1[1]])

for(j in 2:n.OR.1) {

p1.OR1[j] <- S.or.jp[OR.index.1[j]]*r.jp.ci[OR.index.1[j]]

p2.OR1[j] <- S.or.jp[OR.index.1[j]]*r.jp.oc[OR.index.1[j]]

cond.p2.OR1[j] <- p2.OR1[j]/(1-p1.OR1[j])

y.OR.CI[OR.index.1[j]] ~ dbin(p1.OR1[j], R.OR[OR.index.1[j]])

temp.2a[j] <- R.OR[OR.index.1[j]]-y.OR.CI[OR.index.1[j]]

y.OR.Oc[OR.index.1[j]] ~ dbin(cond.p2.OR1[j],temp.2a[j])

}

#Jersey Point recoveries for 1985-1999 (16 releases)

for(j in 1:n.JP.1) {

cond.p2.JP1[j] <- r.jp.oc[JP.index.1[j]]/(1-r.jp.ci[JP.index.1[j]])

y.JP.CI[JP.index.1[j]] ~ dbin(r.jp.ci[JP.index.1[j]],R.JP[JP.index.1[j]])

temp3[j] <- R.JP[JP.index.1[j]]-y.JP.CI[JP.index.1[j]]

y.JP.Oc[JP.index.1[j]] ~ dbin(cond.p2.JP1[j], temp3[j])

}

#------

# ----- 2000-2004, DF, MD, and JP releases; Antioch, CI and Oc recoveries; n2=9 groups ----

# ----- loop from 19 to 27



179

#Durham Ferry recoveries for 2000-2004 (9 releases)

for(j in 1:n.DF.2) {

logit(S.df.md.DF2[j]) <- b0 + eps.df.md[DF.index.2[j]]

p1.DF2[j] <- S.df.md.DF2[j]*S.md.jp[DF.index.2[j]]*r.jp.ant[DF.index.2[j]]

p2.DF2[j] <- p1.DF2[j]*r.jp.ci[DF.index.2[j]]/r.jp.ant[DF.index.2[j]]

p3.DF2[j] <- p1.DF2[j]*r.jp.oc[DF.index.2[j]]/r.jp.ant[DF.index.2[j]]

cond.p2.DF2[j] <- p2.DF2[j]/(1-p1.DF2[j])

cond.p3.DF2[j] <- p3.DF2[j]/(1-p1.DF2[j]-p2.DF2[j])

y.DF.Ant[DF.index.2[j]] ~ dbin(p1.DF2[j], R.DF[DF.index.2[j]])

temp4[j] <- R.DF[DF.index.2[j]] - y.DF.Ant[DF.index.2[j]]

y.DF.CI[DF.index.2[j]] ~ dbin(cond.p2.DF2[j], temp4[j])

temp5[j] <- temp4[j] - y.DF.CI[DF.index.2[j]]

y.DF.Oc[DF.index.2[j]] ~ dbin(cond.p3.DF2[j],temp5[j])

}

#Mossdale recoveries for 2000-2004 (8 releases)

for(j in 1:n.MD.2) {

p1.MD2[j] <- S.md.jp[MD.index.2[j]]* r.jp.ci[MD.index.2[j]]

p2.MD2[j] <- p1.MD2[j]*r.jp.ci[MD.index.2[j]]/r.jp.ant[MD.index.2[j]]

p3.MD2[j] <- p1.MD2[j]*r.jp.oc[MD.index.2[j]]/r.jp.ant[MD.index.2[j]]

cond.p2.MD2[j] <- p2.MD2[j]/(1-p1.MD2[j])

cond.p3.MD2[j] <- p3.MD2[j]/(1-p1.MD2[j]-p2.MD2[j])

y.MD.Ant[MD.index.2[j]] ~ dbin(p1.MD2[j], R.MD[MD.index.2[j]])

temp6[j] <- R.MD[MD.index.2[j]] - y.MD.Ant[MD.index.2[j]]

y.MD.CI[MD.index.2[j]] ~ dbin(cond.p2.MD2[j], temp6[j])

temp7[j] <- temp6[j] - y.MD.CI[MD.index.2[j]]

y.MD.Oc[MD.index.2[j]] ~ dbin(cond.p3.MD2[j],temp7[j])

fit.MD.CI.2[j] <- R.MD[MD.index.2[j]]*p1.MD2[j]

fit.MD.Oc.2[j] <- R.MD[MD.index.2[j]]*p2.MD2[j]

}

#Jersey Point recoveries for 2000-2004 (9 releases)

for(j in 1:n.JP.2) {

cond.p2.JP2[j] <- r.jp.ci[JP.index.2[j]]/(1-r.jp.ant[JP.index.2[j]])

cond.p3.JP2[j] <- r.jp.oc[JP.index.2[j]]/(1-r.jp.ant[JP.index.2[j]]-r.jp.ci[JP.index.2[j]])

y.JP.Ant[JP.index.2[j]] ~ dbin(r.jp.ant[JP.index.2[j]], R.JP[JP.index.2[j]])

temp8[j] <- R.JP[JP.index.2[j]] - y.JP.Ant[JP.index.2[j]]

y.JP.CI[JP.index.2[j]] ~ dbin(cond.p2.JP2[j], temp8[j])

temp9[j] <- temp8 [j]- y.JP.CI[JP.index.2[j]]
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y.JP.Oc[JP.index.2[j]] ~ dbin(cond.p3.JP2[j], temp9[j])

}

# -----

# ----- 2005-2006, DF, MD, DR and JP releases; Antioch, CI recoveries; n3=4 groups -------

#Durham Ferry recoveries (2 releases)

for(j in 1:n.DF.3) {

logit(S.df.md.DF3[j]) <- b0 + eps.df.md[DF.index.3[j]]

p1.DF3[j] <- S.df.md.DF3[j]* S.md.jp[DF.index.3[j]]*r.jp.ant[DF.index.3[j]]

p2.DF3[j] <- p1.DF3[j]*r.jp.ci[DF.index.3[j]]/r.jp.ant[DF.index.3[j]]

cond.p2.DF3[j] <- p2.DF3[j]/(1-p1.DF3[j])

y.DF.Ant[DF.index.3[j]] ~ dbin(p1.DF3[j],R.DF[DF.index.3[j]])

temp10[j] <- R.DF[DF.index.3[j]] - y.DF.Ant[DF.index.3[j]]

y.DF.CI[DF.index.3[j]] ~ dbin(cond.p2.DF3[j], temp10[j])

}

#Mossdale recoveries (2 releases)

for(j in 1:n.MD.3) {

p1.MD3[j] <- S.md.jp[MD.index.3[j]]*r.jp.ant[MD.index.3[j]]

p2.MD3[j] <- p1.MD3[j]*r.jp.ci[MD.index.3[j]]/r.jp.ant[MD.index.3[j]]

cond.p2.MD3[j] <- p2.MD3[j]/(1-p1.MD3[j] )

y.MD.Ant[MD.index.3[j]] ~ dbin(p1.MD3[j], R.MD[MD.index.3[j]])

temp11[j] <- R.MD[MD.index.3[j]] - y.MD.Ant[MD.index.3[j]]

y.MD.CI[MD.index.3[j]] ~ dbin(cond.p2.MD3[j] , temp11[j])

fit.MD.CI.3[j] <- R.MD[MD.index.3[j]]*p1.MD3[j]

fit.MD.Oc.3[j] <- R.MD[MD.index.3[j]]*p2.MD3[j]

}

#Dos Reis recoveries (3 releases)

for(j in 1:n.DR.3) {

p1.DR3[j] <- S.dr.jp[DR.index.3[j]]*r.jp.ant[DR.index.3[j]]

cond.p2.DR3[j] <- S.dr.jp[DR.index.3[j]]*r.jp.ci[DR.index.3[j]]/(1-p1.DR3[j])

y.DR.Ant[DR.index.3[j]] ~ dbin(p1.DR3[j] , R.DR[DR.index.3[j]])

temp12[j] <- R.DR[DR.index.3[j]] - y.DR.Ant[DR.index.3[j]]

y.DR.CI[DR.index.3[j]] ~ dbin(cond.p2.DR3[j], temp12[j])

}

#Jersey Point recoveries (4 releases)

for(j in 1:n.JP.3) {

cond.p2.JP3[j] <- r.jp.ci[JP.index.3[j]]/(1-r.jp.ant[JP.index.3[j]])
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y.JP.Ant[JP.index.3[j]] ~ dbin(r.jp.ant[JP.index.3[j]] ,R.JP[JP.index.3[j]])

temp13[j] <- R.JP[JP.index.3[j]] - y.JP.Ant[JP.index.3[j]]

y.JP.CI[JP.index.3[j]] ~ dbin(cond.p2.JP3[j], temp13[j])

}

}


