

SWAMP Newsletter

Sound science for informed water quality management

2017 | Fall Issue

Statewide Hydrologic Classification Map Now Available

By Eric Stein (erics@sccwrp.org)

A team from the Southern California Coastal Water Research Project (SCCWRP) and UC Davis recently completed a hydrologic classification of all streams in the state (Figure 1). The classification divided the

state's streams into nine hydrologic classes based on the dominant processes that control flow. Catchment characteristics were used in combination with longterm flow data from over 200 reference stream gauges to develop the hydrologic classes, which have been attributed to the National Hydrography Dataset Plus (NHDPlus) stream layer for the state (Table 1). These stream classes represent distinct hydrologic landscapes, with unique flow patterns, flow sources, hydrologic characteristics, and catchment controls over rainfallrunoff response.

The classification system was developed to support a statewide effort to define environmental flow targets associated with maintaining healthy instream biological communities. Hydrologic classification is an important precursor to identifying the degree of hydrologic alteration and developing management targets for stream networks. State and regional

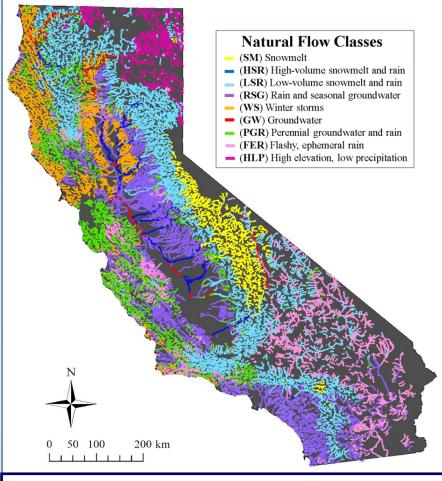


Figure 1: Hydrologic classification of California streams.

Water Board staff has begun using the classification system to explore patterns in bioassessment scores based on the California Stream Condition Index (CSCI), and to support causal assessments investigating the correlation between altered hydrology and lower CSCI scores. The SCCWRP/UC Davis team is currently building on this effort to define reference hydrographs for each of the nine stream classes that can be used to support these analyses. (Continued on next page)

SWAMP Newsletter

Sound science for informed water quality management

2017 | Fall Issue

Class	Name	Hydrologic Characteristics	Physical and Climatic Catchment Controls
SM	Snowmelt	 Large spring snowmelt pulse (~May 24) Very high seasonality index Extreme low flows (<10th percentile) Sep-Feb 	• High elevation catchments (>2,293 m), major snow influence
LSR	Low-volume snowmelt and rain	 Transition between SM and HSR Bimodal snow - rain hydrograph driven by spring snowmelt pulse and winter rain 	 Mid-elevation catchments with limited area (<2,144 km²) [low winter temperatures (Jan temp <-5C°), high stream density (>0.65 km/km²)]
HSR	High-volume snowmelt and rain	 Spring snowmelt pulse (~May 4) High seasonality but larger winter storm contributions Retain high baseflow throughout summer Bimodal snow - rain hydrograph 	 Mid-elevation catchments (1,126 - 2,293 m), large contributing area (>2,144 km²) <i>not</i> underlain by volcanic geology [high stream density (>0.65 km/km²), mild winter temperatures (Jan temp >-5C°)] OR Low elevation (<1,125 m) with very large contributing area (>15,420 km²) and high clay content soils (>17% clay)
ws	Winter storms	Predictable large fall and winter stormsEarliest peak flows (in January)	 Low elevation catchments with substantial winter precipitation OR Low elevation, mid-slope (31 - 24%) catchments with low winter precipitation but high riparian soils clay content (>23%) AND Underlain by unconsolidated aquifers covered by thick alluvium
GW	Groundwater	 Highest mean annual flows and highest minimum flows Low seasonality and high predictability 	 Mid-elevation catchments with large area (>2,144 km²) underlain by volcanic (basaltic and andesitic) geology [low stream density (<0.65)] OF Low elevation, limited winter precipitation, very large contributing area (>15,420 km²) with low riparian soils clay content (<17%) AND Underlain by igneous and metamorphic rock aquifers
PGR	Perennial groundwater and rain	 Low seasonality and mean annual streamflow Transition between WS and GW, with winter rain contributions but generally stable flows 	 Low elevation catchments with low clay content riparian soils (<23%) [low stream density (<1.1 km/km²)] AND Underlain by sedimentary rock materials in Central Coast region
RGW	Rain and seasonal groundwater	 Bimodal hydrograph driven by winter rain pulse and percolating winter rain appearing as baseflow pulse later in year, can be ephemeral 	 Low elevation with limited winter precipitation and low slopes (<24%) AND Coastal catchments with small aquifers driving short residence times
FER	Ephemeral, flashy rain	 Lowest mean annual flows, often ephemeral Highest CV, lowest predictability Longest extreme low flow duration Highest flows in winter 	 Low elevation catchments with high clay content soils (>23%) and high slopes (>31%) [high stream density (>1.15 km/km²)]
HLP	High elevation, low precipitation	Low mean annual flowsHighest flows in winter	High elevation but low slopeLow precipitation and limited snow influence

Table 1: Description of the nine hydrologic classes identified for California streams.

The statewide shapefile and geodatabase (along with a Google Earth KML layer) of the stream classification is available on the California Open Data Portal (<u>https://data.ca.gov/dataset/flow-targets-southern-california-streams</u>) and the Bioassessment Site Map Server (<u>http://www.waterboards.ca.gov/water_issues/programs/swamp/bioassessment/csci_scores_map.shtml</u>).