Advanced Treatment Systems Research in the Tahoe Basin

Philip Bachand¹ and John Reuter²

¹Bachand & Associates, phil@swampthing.org; ²University of California Tahoe Research Group, jereuter@ucdavis.edu

Outline

- Current projects at Lake Tahoe
 - What they are?
 - Who is involved?
- Approach
- Constituents of Concern (COCs)
- Discussion of Our Current Projects

AT Projects in the Tahoe Basin

Project	Goal	Organizations	Funders
Low Intensity Chemical	Integrating wetlands/basin	B&A, UCD CE,	Caltrans/OWP,
Dosing (LICD) for P and	with chemical treatment to	UCD TRG,	USDA FS, City
Fine Particle Removal	improve stormwater treatment	USGS/CSUS	of SLT
Enhancing P removal	Investigating locally	UCD TRG, B&A	USDA FS,
with Adsorptive Media	available adsorptive media		Placer Co.
	for application in basins		
	and wetlands		
Apalachee Phase I	Investigate innovative	CSUS OWP;	
Erosion Control Project	BMPs for stormwater	UCD TRG, CE &	
	control	Ecotox; B&A	
Meyers Station	Investigate chemical dosing	CSUS OWP, Eco-	Caltrans
Experimental Station	and adsorptive	logic	
	technologies for highway		
	runoff treatment		
Caltrans Demonstration	Demonstration system	CSUS OWP	Caltrans
Projects	using filtration basins and		
	different adsorptive media		
	to improve stormwater		
	quality		

Involved Researchers (in no particular order)

Abbreviation	Organization	Principal ¹			
B&A	Bachand & Associates	Philip Bachand, Ph.D.			
UCD CE	UC Davis Civil and Env. Eng.	Professor Jeannie Darby			
USGS	USGS Water Resources Dept, Sacramento	Roger Fujii, Ph.D <i>and</i> <i>Brian Bergamaschi,</i> <i>Ph.D.</i>			
UCD TRG	UC Davis, Tahoe Research Group	John Reuter, Ph.D. and Alan Heyvaert, Ph.D			
UCD LAWR	UC Davis, Land, Air and Water Resources	Professor Will Horwath			
UCD Ecotox	UC Davis, Ecotoxicology	Michael Johnson, Ph.D.			
CSUS OWP	California State Univ. of Sacramento, Office of Water Programs	Kevin Murphy, Dipen Patel, Ph.D. and John Johnston, Ph.D.			
CSUS Chem	California State Univ. of Sacramento, Chemistry	Professor Susan Crawford			
HF	Hydrofocus, Inc	Steve Deverel, Ph.D.			
¹ Italics indicates principal not involved in Tahoe but related California					

projects.

Unifying Approach

- Applied research bridging theory and real-world applications
- Mechanistic approach focusing on COCs
 - transport and cycling
 - removal and sequestration
- Integrates small-scale laboratory and *in situ* studies with larger-scale field studies
- If possible work within constraints of existing infrastructure (i.e., basins, treatment wetlands, basins and drains, farm fields)
- Consider regulatory framework and goals

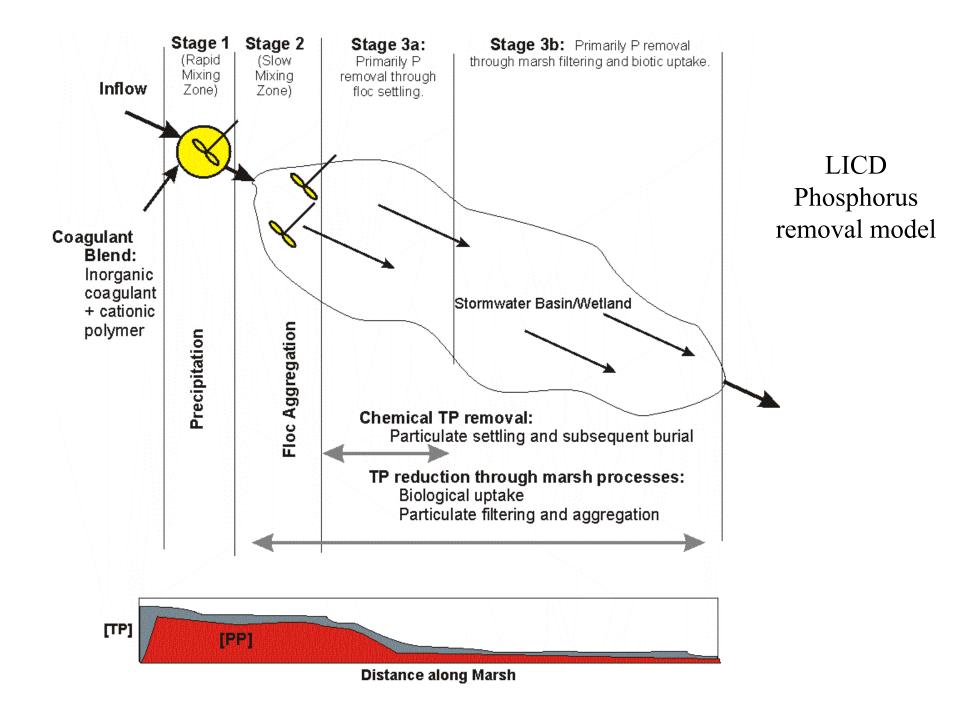
COCs at Lake Tahoe

- Primary Fine particles, Phosphorus
- Secondary Nitrogen

Enhancing Phosphorus and Fine Particle Removal Through Low Intensity Chemical Dosing and its Potential Application in the Tahoe Basin

P.A.M. Bachand of Bachand & Associates; J. Trejo, J. Darby, A. Heyvaert and J. Reuter of UC Davis; R. Fujii of USGS and S. Crawford of CSU Sacramento

- Funded by Forest Service through Placer County and Caltrans
- In collaboration with CSUS Office of Water Programs


LICD Project's Goal

- Phase 1 study
 - Determine the feasibility (i.e., performance, environmental, logistical) of LICD for application in the Tahoe Basin.
 - Investigate its application to high nutrient/turbidity loaded sites for which agencies are enthusiastic
- Phase 2 (contingent upon Phase 1 results)

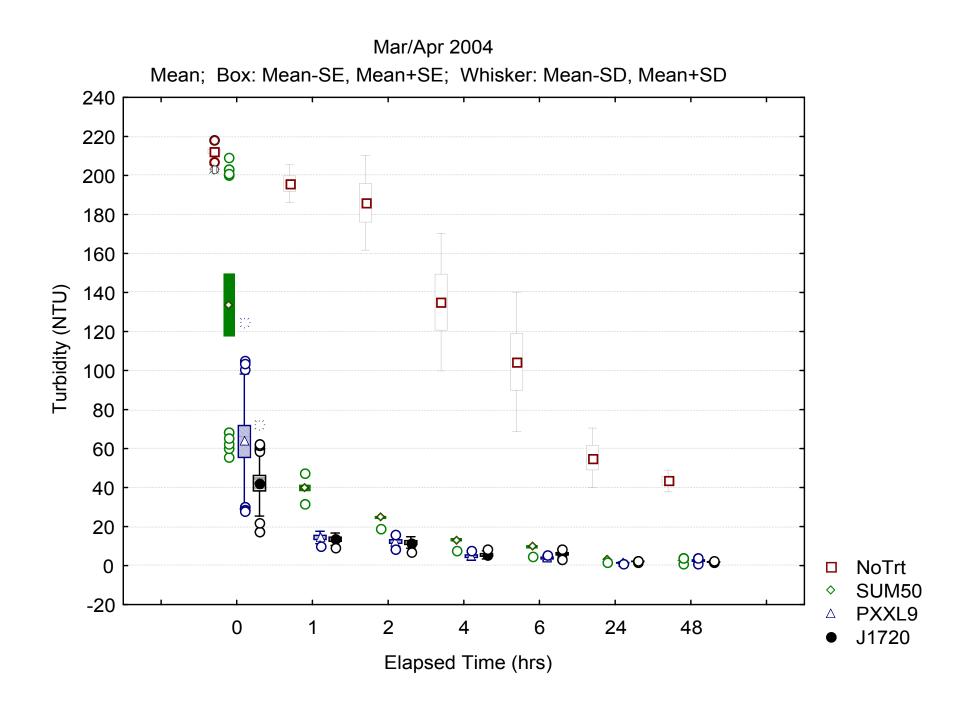
- Test technology in larger-scale replicated pilot system.

Phase 1 Overview

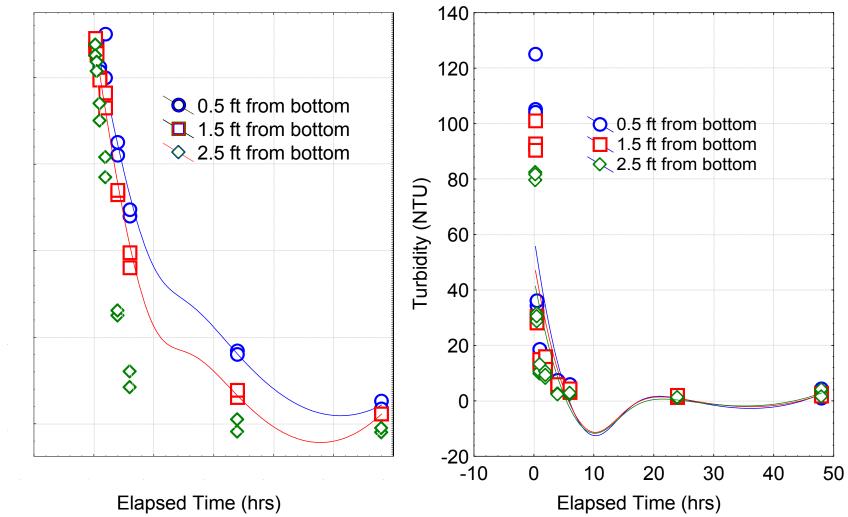
- Feasibility
 - Laboratory & Settling Column
 - Performance
 - Flocculate stability and fate studies
 - Preliminary Eco-toxicity Assessment and EIR/EIS
 Issues Investigation
 - Site and Watershed Selection
 - Cost Analysis
- Pre-implementation
 - Site design
 - Experimental design

Summary of Water Quality Improvements using Coagulants, Phase 3 Studies, 2003

Dep. Var.	No	Trt	PAS	SC	PX	1 9	SUN	/150	J17	20
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Dose mg-me/L	NA	NA	7.1	1.1	6.0	0.8	2.7	1.7	1.3	0.8
Dose mg-coag/L	NA	NA	137	22	108	14	21	13	22	14
TP ppb	166	150	12	9	18	6	14	8	19	12
FTP ppb	19	9	5	2	6	2	7	3	7	3
Turbidity 5min	139	160	17	22	14	6	27	20	18	8
Turbidity 30 min	89	111	1	1	1	1	6	5	6	6


No Treatment

PAX XL9


Turbidity Settling Column Tubidity at 24 hrs

Stratification in sampling

Turbidity (NTU)

Preliminary Floc Stability/ Ecotoxicity Results

- Preliminary Floc Stability Results
 - Clear crystalline structures
 - More stable structures than found in stormwater
 - Appears true chemical bond formation is creating stable aluminum compounds
- Very, Very Preliminary Ecotoxicity Results
 - Untreated and treated stormwater showing some toxicity

LICD Summary

Performance feasibility suggests ready for Phase 2 study

- Test application issues
- Test performance against temporally variable conditions
- Develop operational and design/retrofit recommendations
- Ecotoxicity & environmental effects studies need more study
- Broadened the dialog in the Tahoe Basin on this technology in a TMDL world
- Provided important data for other Tahoe AT projects
- Provided important data describing stormwater settling characteristics

Investigating Various Locally Available Media for Dissolved Phosphorus Removal through Adsorption

P.A.M. Bachand, Bachand & Associates and Alan Heyvaert, UC Davis Tahoe Research Group

- Funded by Forest Service through Placer County
- In collaboration with CSUS Office of Water Programs (Caltrans Research Team)

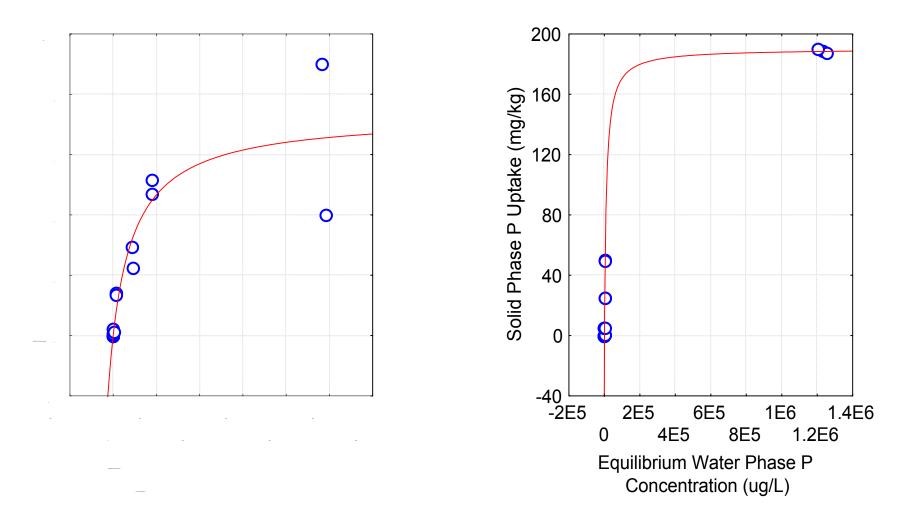
Adsorption Project's Goal:

- Test and describe adsorptive capacity of locally available soils and adsorptive media
- Predict performance for P removal
- Confirm performance with laboratory column studies and *in situ* experiments
- Develop recommendation for application in demonstration-scale project.

Factors affecting Performance of Different Media

Chemical –

• Rich in Fe, Al or Ca


Physical -

- Specific surface area (m^2/g)
 - Sand: 1.8 2.4 (Stevik et al. 1999)
 - LWA: 0.2 0.9 (Stevik et al. 1999)
 - DE: 2 90 (Eagle Picher)
 - AA: >300 (Alcoa)
- Grain size (Arias et al 2001)
 - $d_{10}: 0.3 2. Mm$
 - $d_{60}: 0.5 8.0 \text{ mm}$
 - $\ d_{60}^{}/d_{10}^{} < 4$

Langmuir Curves for Isotherm Data

Coon Street Basin Soil

Lanthanum coated MP79

Isotherm constants and retardation factors (R_d) for tested soils and substrates.

Soil/Media	Langmuir Constants			Linear Is	Retardation	
	а	b	R ²	K _d	R ²	Factor R _d ^c
	L/mg	mg/kg		ml/g		
20-mesh Dolomite	3.60E-02	7,976	0.8816	256.3	0.9561	1590
Coon St. Basin	1.76E-03	3,659	0.8820	12.9	0.7034	81
Round Hill Basin	6.62E-03	1,149	0.9452	3.8	0.3786	25
Eloise Basin	9.10E-03	796	0.6870	19.9	0.9371	125
Fine Truckee Sand ^b				3.6	0.9959	23
Course Truckee Sand ^b				0.8	0.5765	6

Notes

a. Based upon equilibrium phosphorus concentrations in the water of < 10 ppm.

b. From Martis Valley, Truckee, CA.

c. Assumed porosity of 30% and a dry bulk density of 1.86 g/cm³ based upon dense mixed-grain sand (Terzaghi and Peck, 1967) or fine gravel and sand (Garde and Rau, 1987)

$$R \equiv 1 + \frac{\rho_b K_d}{n}$$

Adsorptive Project Summary to Date

- Local soils do not adsorb phosphorus as well as other locally available media
- Important to assess media in the context of P concentrations in the Tahoe Basin
- Realistic retardation coefficients can be developed from the isotherms an a physical assessment of the media.
- Data from project has been useful for larger-scale studies (i.e., Meyers, Caltrans Demonstration Projects)
- Results not only useful for assessing advanced treatment but also groundwater effects.

Related Projects in California

Project	Goal ¹	Organizations ²	Funders ³				
Low Intensity Chemical	Integrating wetlands/basin	B&A, UCD CE,	CALFED, USGS				
Dosing (LICD) for DOC	with chemical treatment to	USGS/CSUS,					
removal	remove DOC and COCs from	CCWD					
	Ag Drains						
Hydrologic BMPs for	Developing hydrologic BMPs to	UCD LAWR,	Board/CALFED				
Rice in the Delta	minimize DOC and N export	USGS, HF, B&A,					
	from Rice Fields	DU					
Watershed Effects on	Develop BMPs for different	UCD CE & LAWR,	Board/CALFED,				
COCs and	land uses to minimize	HF, B&A, USGS,	USGS				
Recommended BMPs	watershed discharges of	RCD					
	turbidity, DOC and other COCs						
And Others							
1. DOC = Dissolved Organic Carbon; COC = Constituent of Concern							
2. DU = Ducks Unlimited, CCWD = Contra Costa Water District, RCD = Yolo County							
Resource Conservation District							
3. CALFED = California Bay Delta Authority; Board = State Water Quality Control Board							