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Chemistry Indicators and Evaluation Methods 
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CHEMICAL INDICATORS 
 
The chemical indicators evaluated in this study were based on chemical-specific sediment 
quality guidelines (SQGs) obtained from several sources.  SQGs are numeric values 
intended to help in the interpretation of sediment chemistry data.  SQGs are not intended 
to be a final assessment of environmental condition at a site, but rather to assist in the 
determination of the potential for biological effects.  Numerical SQGs have been 
developed using both mechanistic and empirical relationships between chemistry and 
biological effect.  Both types of approaches were evaluated in the early phases of the 
SQO project, but the mechanistic approaches (i.e., equilibrium partitioning) were not 
included in the final statistical evaluations based on the results of preliminary analyses 
and the recommendation of the SSC.   
 
Three types of empirical chemical indicators were compared and evaluated: established 
indicators that were based on existing published SQGs that were developed for 
application on a national level, regional indicators that represent established indicator 
approaches calibrated to California data, and new indicators developed specifically for 
this project.  All of the chemical indicators were based on chemical mixtures in order to 
represent the joint effects of multiple chemicals present in a sample.  The individual 
chemical SQGs were integrated using a method specific to each approach to describe 
mixture effects.  The chemicals included in each candidate indicator are shown in Table 
1. 
 
Established Indicators 
 
Effects Range Median (NOAA ERM) 
The Effects Range Median (ERM) approach (Long et al., 1995) is one of the most 
commonly used SQGs.  This method is used to identify adverse effects to sediment 
dwelling marine organisms.  The ERM values were created from a national database of 
paired biological effects and sediment contaminant data.  Multiple biological effects 
indicators were included in the database (this approach is not endpoint specific) and 
evaluated for the degree of concordance between chemical and different types biological 
responses.  Only the data for which a biological effect was observed in association with 
elevated chemical concentrations were used for ERM derivation.   
 
The ERMs were calculated by sorting the data in ascending order of concentration to 
calculate percentiles.  The ERM corresponds to the 50th percentile (median value) for 
each chemical and represents the concentration above which adverse effects are 
frequently observed.  Individual ERMs were combined as a mean quotient to represent 
chemical mixture effects.  The quotients were calculated by normalizing each chemical to 
its respective ERM and subsequently averaging them for each sample.   
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Mean Sediment Quality Guideline Quotient 1 (SQGQ1) 
The mean sediment quality guideline quotient 1 (SQGQ1) is a subset of chemical-specific 
SQGs from various empirical and mechanical approaches (Fairey et al. 2001).  The 
chemical suite includes five metals and four organics (Table 1).  This suite of chemicals 
was selected because it was found to contain the chemicals with the strongest 
relationships to adverse biological effects in the data used for evaluation.   
 
SQGQ1 quotients are calculated by normalizing each chemical value by its 
corresponding SQG.  Then the normalized values for the suite of chemicals are averaged.   
 
Consensus Midpoint Effect Concentration (Consensus) 
The Consensus guidelines represent the integration of different types of SQGs.  This 
approach collected and collated existing SQGs for chemicals of interest and evaluated 
them to determine their applicability (Swartz, 1999).  Consensus SQG values have been 
developed for the threshold effect concentration (TEC), contaminant concentrations 
below which harmful effects on organisms are expected to occur infrequently; probable 
effect concentration (PEC), which represent contaminant concentrations above which 
harmful effects are frequently observed; and the midpoint effect concentration (MEC), an 
intermediate level of effect between the TEC and PEC.  The MEC values were used to 
derive the Consensus chemical indicator evaluated in the SQO project.   
 
Consensus MEC values were calculated by determining the geometric mean of three or 
more SQGs.  Consensus values were previously derived for PAHs and PCBs in marine 
and freshwater systems, as well as for metals and several pesticides in freshwater systems 
(Swartz, 1999; McDonald et al., 2000).  This project also used consensus MEC values 
calculated by SCCWRP for other chemicals: DDTs, dieldrin, arsenic, cadmium, 
chromium, copper, lead, mercury, nickel, silver, and zinc (Vidal and Bay, 2005).   
 
The Consensus chemical indicator evaluated in this project was the mean quotient of the 
individual consensus MECs.  Individual chemical values were normalized by dividing 
them by their corresponding consensus MEC value, then the normalized values where 
averaged for each sample.  
 
Logistic Regression Modeling (NatPmax) 
The Logistic Regression Modeling (LRM) approach is based on statistical analysis of 
matching chemistry and biological effects for a single endpoint (e.g., amphipod toxicity) 
(Field et al., 1999).  Chemistry and toxicity data from national databases were used for 
this approach.  The LRM method does not yield specific SQG values for each chemical, 
but rather describes the relationship between contaminant concentrations and the 
probability of toxicity.  This relationship can be used to calculate SQGs based on the 
level of protection desired.   
 
In the LRM approach, data for individual sediment samples were sorted by ascending 
concentrations for each particular contaminant.  The data were screened to reduce the 
influence of samples that did not contribute to the toxic effects associated with the 
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specific contaminant of interest.  A logistic regression model was then applied to the 
screened data that described the relationship between the concentration of a selected 
contaminant and the probability of observed toxicity.  The logistic model can be 
simplified and described by the following equation: 
 p= eB0+B1 (x) / (1 + e B0+B1 (x)) 
Where:   p= probability of observing a toxic effect; 
  B0= intercept parameter; 
  B1= slope parameter; and, 
  x= concentration or log concentration of the chemical. 
 
Individual chemical regression models were combined into a single mixture effects 
model based on the maximum probability of effects or Pmax (Field et al., 2002).  The 
maximum probability obtained from the individual chemical models is selected to 
represent the chemical mixture present in a sample.   
 
Regional Indicators 
Regional chemical indicators were developed based on two established SQG approaches: 
NatPmax and NOAA ERM.  Three versions of each indicator were developed: a 
statewide version that was calibrated to data from throughout California, and two region 
specific versions.  The region-specific versions were calibrated separately for northern 
and southern California data using Point Conception as the separation point.   
 
CA ERM, SoCA ERM, NorCA ERM   
SQGs analogous to ERMs were calculated using California data.  The data were screened 
to identify toxic samples (> 20% mortality) with chemical concentrations > 2x median 
concentration of non-toxic samples.  After screening, the data were sorted in ascending 
order and the median concentration for each chemical was calculated (for chemicals with 
> 10 samples).  CA ERM values were calculated for 27 chemicals for the statewide and 
southern California indicators and for 25 chemicals for the northern California indicator 
(Table 1).    
 
CA Pmax, SoCA Pmax, NorCA Pmax   
Development of California LRM models and the Pmax approach followed the methods 
described in Field et al. (2002).  California-specific models were selected from a library 
of models that included national models as well as models derived using the California 
data sets.  The selected models were developed and evaluated based on toxicity (using 
control-adjusted amphipod survival < 80% as the definition of toxic samples). The 
selected models were chosen based on the goodness of fit with the observed probability 
of toxicity.  Models with high false positive rates were not used for analysis.   
 
 
New Indicators 
 
Mean Weighted Toxicity or Benthic Category Score (TCS, BCS) 
The mean weighted category score approach is a novel approach based on the association 
between chemicals and the magnitude of biological response (i.e., category prediction 
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based on toxicity or benthic community disturbance).  Three thresholds defining the 
biological response categories and a weighting factor reflecting the strength of 
association were calculated for each chemical.  The thresholds and weights were 
determined for each chemical by optimizing the weighted kappa statistic for each 
chemical with respect to agreement with biological response.  First, we calculated 
prediction thresholds for individual constituents to coincide with effects levels based on 
the BRI (Benthic Response Index) or amphipod mortality.  Calibrations for biological 
response were developed separately for the BRI and amphipod mortality.  Based on these 
chemical thresholds, an effects level prediction was determined for each chemical in the 
sample, given as a categorical response (e.g. 1 = reference, 2 = low, 3 = moderate, 4 
=high).  In addition, we calculated the overall weighted kappa value for that constituent 
for use as a weighting factor.  Each constituent’s predicted effect level was multiplied by 
its respective weighting factor to produce a “kscore”.  These “kscores” were then 
summed across all constituents in the sample and divided by the sum of all kappa values, 
giving a mean weighted score for either toxicity (TCS) or benthic disturbance (BCS). 
 
Mean Weighted Score (mnwks):  
  

  
cat

mnkws
κ
κ
×

= ∑
∑

 

 
where cat = predicted toxicity or benthic impact category, and κ is the associated 
weighted kappa value for that constituent. 
 
North and South versions of the TCS and BCS were calculated.  A statewide TCS was 
also developed, which was the average of the north and south versions. 
 
 
INDICATOR COMPARISON AND EVALUATION METHODS 
 
The comparison and evaluation of the chemical indicators were based on statistical 
analyses conducted on independent validation data sets, composed of matched chemistry 
and toxicity (or chemistry and benthic disturbance) data from California embayments.  
The validation data were grouped into two regions: North, consisting of samples located 
north of Pt. Conception (N=147 for toxicity and 25 for benthos); and South, consisting of 
samples located south of Pt. Conception (N=249 for toxicity and 146 for benthos).  
Results for a statewide data set are reported for some analyses; these results were 
calculated by combining the north and south validation data sets.  Indicator development 
and calibration was conducted on a separate set of data (development data set) that 
contained approximately double the number of samples present in each validation data 
set. 
 
Comparison and evaluation of the chemical indicators were based on two characteristics: 
strength of association between chemistry and biological response and classification 
accuracy.  The strength of association was measured as the nonparametric Spearman’s 
correlation coefficient between the chemical indicator value and either sediment toxicity 
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(amphipod mortality) or benthic community response (benthic community category based 
on a combination of four indices).   
 
Classification accuracy represents the ability of the chemical indicator to correctly predict 
the measured toxicity response (i.e., nontoxic, low, moderate, or high) or benthic 
response category for the sample.  Two measures of classification accuracy were 
calculated: agreement and weighted kappa.  Agreement is the percentage of samples 
where the chemical indicator correctly predicted the biological response category.  The 
weighted kappa statistic is a measure of the magnitude of agreement between two sets of 
category predictions.  The weighted kappa statistic differs from the percent agreement in 
that it corrects for the agreement expected purely by chance and gives partial credit that is 
related to the magnitude of disagreement (i.e., an incorrect prediction that is close to the 
measured category is given more partial credit than a prediction that differs greatly).   
 
The thresholds used for the analysis of classification accuracy were selected using a 
statistical optimization procedure based on maximizing overall agreement between the 
chemical indicator and the biological impact category.  Choosing the “best” set of 
thresholds for each indicator assured that the thresholds were comparable among 
indicators. 
 
Threshold selection and calculation of correlation, agreement, and weighted kappa used a 
resampling (bootstrap) approach based on even numbers of samples within each 
biological impact category, where possible.  Randomly selecting equal numbers of test 
samples from each biological impact category reduces testing bias and provides a more 
reliable measure of classification accuracy, particularly for the weighted kappa statistic 
which is sensitive to unequal sample proportions among categories. The values reported 
in this document are the median of 50 resamples.  The results for nonbootstrapped 
analyses are also reported to assess whether the ranking of candidates changed when 
applied to a more representative distribution of the data.  These results are based on a 
single analysis of the entire validation data set. 
 
Both correlation and classification accuracy were used to evaluate the candidate chemical 
indicators and select the recommended approaches.  The 90th percentile confidence limits 
of the bootstrapped results were used to identify the best performing indicators with 
respect to correlation and classification accuracy.  The approach having the best overall 
performance for both correlation and classification accuracy was selected as the 
recommended indicator.  The correlation results were given greater weight when the 
rankings were variable among the performance measures. 
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Table 1.  List of analytes included in each chemical indicator evaluated.   
 

Indicator 

Chemicals NOAA 
ERM 

CA 
ERM 

NorCA 
ERM 

SoCA 
ERM SQGQ1 Consensus TCS BCS National 

Pmax 
CA 

Pmax 
NorCA 
Pmax 

SoCA 
Pmax 

Arsenic • •  •  •       
Cadmium • • • • • • • • • • • • 
Chromium • • • •  •       
Copper • • • • • • • • • • • • 
Lead • • • • • • • • • •  • 
Mercury • • • •  • • • • • •  
Nickel • •  •  •      • 
Silver • • • • • •       
Zinc • • • • • • • • • • • • 
Chlordanes  • • • •        
Alpha Chlordane       • •  •  • 
Gamma Chlordane       • •    • 
DDTs • • • •  •     •  
o,p’-DDE       • •     
o,p’-DDD       • •    • 
o,p’-DDT       • •   •  
p,p’-DDD       • •   • • 
p,p’-DDE       • •   •  
p,p’-DDT       • • • •  • 
Dieldrin  • • • • • •  • •  • 
Nonachlor          •  • 
PAHs     • •       
Low molecular weight 
PAHs       • •  • • • 
High molecular weight 
PAHs       • •  • • • 
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Indicator 

Chemicals NOAA 
ERM 

CA 
ERM 

NorCA 
ERM 

SoCA 
ERM SQGQ1 Consensus TCS BCS National 

Pmax 
CA 

Pmax 
NorCA 
Pmax 

SoCA 
Pmax 

1-Methylnaphthalene         •    
1-Methylphenanthrene         •    
2,6-Dimethylnaphthalene         •    
2-Methylnaphthalene • • • •     •    
Acenaphthalene • • • •     •    
Acenaphthylene • • • •     •    
Anthracene • • • •     •    
Benz(a)anthracene • • • •     •    
Benzo(a)pyrene • • • •     •    
Benzo(b)fluoranthene         •  •  
Benzo(e)pyrene           •  
Benzo(g,h,I)perylene         •    
Benzo(k)fluoranthene         •    
Biphenyl         •    
Chrysene • • • •     •  •  
Dibenz(a,h)anthracene • • • •     •    
Fluoranthene • • • •     •    
Fluorene • • • •     •    
Indeno(1,2,3-c,d)pyrene         •    
Naphthalene • • • •         
Perylene         •    
Phenanthrene • • • •     •    
Pyrene • • • •     •    
PCBs • • • • • • • • • • • • 
Tributyltin  • • •         
 
 


