Sediment Quality Objectives for California Enclosed Bays and Estuaries

### **Benthic Indicator Development**

- Scientific Steering Committee
- 28<sup>th</sup> February 2006



#### Overview

- Previous accomplishments
  - Select a "benthic index" approach
  - Identify habitats and develop candidate indices
    - Developed five benthic indices in two habitats
- Subsequent activities
  - Evaluate indices
  - Select benthic index(es)
  - Develop index application strategy

### Previous Accomplishments

- Compiled database
  - Standardized taxonomy
- Defined six habitat strata
  - Two with sufficient data for index development
    - Southern California euhaline bays
    - Polyhaline San Francisco Bay
- Identified five candidate indices
- Calibrated candidate indices in both habitats

### **Identified Six Habitats**

- 1 Southern California Euhaline Bays\*
- 2 Polyhaline San Francisco Bay\*
- 3 Estuaries and Wetlands
- 4 Very Coarse Sediments
- 5 Mesohaline San Francisco Bay
- 6 Limnetic or Freshwater

Habitats with sufficient data for index development

### **Five Candidate Indices**

| Acronym | Name                                                       |
|---------|------------------------------------------------------------|
| IBI     | Index of Biotic Integrity                                  |
| RBI     | Relative Benthic Index                                     |
| BRI     | Benthic Response Index                                     |
| RIVPACS | River Invertebrate Prediction and<br>Classification System |
| BQI     | Benthic Quality Index                                      |

## **Index Composition**

| <b>Candidate Index</b> | Data                                    |
|------------------------|-----------------------------------------|
| IBI                    | Community measures                      |
| RBI                    | Community measures                      |
| BRI                    | Species abundances                      |
| RIVPACS                | Presence/absence of multiple species    |
| BQI                    | Species abundances & community measures |

#### Overview

- Previous accomplishments
  - Select a "benthic index" approach
  - Identify habitats and develop candidate indices
    - Developed five benthic indices in two habitats
- Subsequent activities
  - Evaluate indices
  - Select benthic index(es)
  - Develop index application strategy

### **Index Evaluation**

- Screening-level evaluation
  - Species richness
  - Independence from natural gradients
- Classification accuracy
  - Biologist best professional judgment



(Sneak Peek)

All indices performed well
None stood out as much better or worse than the others

# Correlations With No. of Taxa

Southern California Euhaline Bays



10

#### Correlations With No. of Taxa Polyhaline San Francisco Bay



## Independence From Natural Gradients

- Benthic indices should measure habitat condition
  - Rather than habitat factors
- Tested by plotting benthic indices against
  - Depth
  - Percent fines
  - Salinity
  - TOC
  - Latitude, and
  - Longitude

#### • Conclusion

- The indices are not overly sensitive to habitat factors

#### **Correlations with Depth**

Polyhaline San Francisco Bay



13

### **Correlations with Fine Sediments**

#### Southern California Euhaline Bays



#### **Correlations with Habitat Variables**

Spearman Correlation Coefficients

|                                                  | BQI   | BRI            | IBI           | RBI   | RIVPACs |  |  |  |  |
|--------------------------------------------------|-------|----------------|---------------|-------|---------|--|--|--|--|
| Southern California Euhaline Bays                |       |                |               |       |         |  |  |  |  |
| Depth <sup>+</sup> -0.38 -0.52 -0.02 -0.06 -0.05 |       |                |               |       |         |  |  |  |  |
| Fines <sup>†</sup>                               | 0.22  | 0.23           | 0.37          | 0.42  | 0.19‡   |  |  |  |  |
| Salinity*                                        | -0.14 | -0.28          | -0.09         | 0.02  | 0.03    |  |  |  |  |
| TOC†                                             | 0.15  | 0.19           | 0.36          | 0.29  | 0.24‡   |  |  |  |  |
| Latitude†                                        | -0.05 | -0.15          | -0.16         | -0.12 | 0,21‡   |  |  |  |  |
| Longitude <sup>†</sup>                           | 0.10  | 0.22           | 0.21          | 0.15  | -0.15‡  |  |  |  |  |
| †: n=670; ‡: n=320; *: n=66                      |       |                |               |       |         |  |  |  |  |
|                                                  |       | Polyhaline San | Francisco Bay |       |         |  |  |  |  |
| Depth                                            | -0.29 | -0.48          | -0.14         | -0.38 | -0.32   |  |  |  |  |
| Fines                                            | 0.53  | 0.56           | 0.25          | 0.61  | 0.49    |  |  |  |  |
| Salinity                                         | -0.38 | -0.40          | -0.05         | -0.42 | -0.31   |  |  |  |  |
| TOC                                              | 0.49  | 0.60           | 0.21          | 0.57  | 0.46    |  |  |  |  |
| Latitude                                         | -0.39 | -0.50          | -0.05         | -0.32 | -0.21   |  |  |  |  |
| Longitude                                        | 0.31  | 0.54           | 0.21          | 0.36  | 0.05    |  |  |  |  |

n=160 for all indices other than the IBI, where n=112

## **Classification Accuracy**

- Index results compared to biologist BPJ
  - Nine benthic ecologists
    - Ranked samples on condition, and
    - Evaluated on a four-category scale
      - Reference, Marginal, Affected, Severely affected
- 36 samples
  - Covering the range of conditions encountered
    - On a chemical contamination gradient
- Data provided
  - Species abundances
  - Region, depth, salinity, and sediment grain size

## Advantages of BPJ Comparison

- Provides an opportunity to assess intermediate samples
  - Previous benthic index efforts focused on extremes
- Quantifies classification consistency
  - Provides a means for assessing how well indices are working
  - The commonly used 80% standard has no basis

#### **Evaluation Process**

- Two-step evaluation
  - Quantified expert performance
    - Condition ranks
    - Category concordance
      - > Are there "outlier" experts?
  - Compared index and expert results
    - Condition ranks
    - Category concordance

## **Condition Rank Correlations**

#### Southern California Euhaline Bays

n=24; p < 0.0001 for all cases

|   | С    | D    | Μ    | Ν    | 0    | R    | Т    | V    |
|---|------|------|------|------|------|------|------|------|
| D | 0.88 |      |      |      |      |      |      |      |
| Μ | 0.91 | 0.96 |      |      |      |      |      |      |
| Ν | 0.92 | 0.90 | 0.89 |      |      |      |      |      |
| 0 | 0.92 | 0.93 | 0.96 | 0.90 |      |      |      |      |
| R | 0.92 | 0.93 | 0.92 | 0.93 | 0.95 |      |      |      |
| Т | 0.93 | 0.92 | 0.93 | 0.94 | 0.92 | 0.93 |      |      |
| V | 0.93 | 0.91 | 0.92 | 0.93 | 0.93 | 0.95 | 0.96 |      |
| W | 0.81 | 0.83 | 0.84 | 0.80 | 0.88 | 0.90 | 0.80 | 0.81 |

### **Condition Rank Correlations**

#### Polyhaline San Francisco Bay

n=12; p < 0.001 for all cases

|   | С    | D    | Μ    | Ν    | 0    | R    | Т    | V    |
|---|------|------|------|------|------|------|------|------|
| D | 0.93 |      |      |      |      |      |      |      |
| Μ | 0.97 | 0.96 |      |      |      |      |      |      |
| Ν | 0.94 | 0.84 | 0.93 |      |      |      |      |      |
| 0 | 0.95 | 0.91 | 0.92 | 0.87 |      |      |      |      |
| R | 0.92 | 0.89 | 0.92 | 0.86 | 0.97 |      |      |      |
| Т | 0.97 | 0.95 | 0.99 | 0.93 | 0.92 | 0.92 |      |      |
| V | 0.97 | 0.94 | 0.98 | 0.93 | 0.94 | 0.94 | 0.99 |      |
| W | 0.92 | 0.86 | 0.89 | 0.87 | 0.97 | 0.98 | 0.89 | 0.90 |

#### **Condition Categories**

Southern California Euhaline Bays

| #  | С | D | М | N | 0 | R | Т | V | W |
|----|---|---|---|---|---|---|---|---|---|
| 21 | А | М | М | А | М | М | А | А | М |
| 22 | М | М | Μ | М | М | М | М | М | А |
| 23 | R | R | R | R | R | R | R | R | М |
| 24 | М | М | М | А | М | М | М | М | М |
| 25 | R | R | R | R | R | R | R | R | М |
| 26 | S | S | S | S | S | S | А | S | S |
| 27 | R | R | R | R | R | М | R | R | А |
| 28 | S | S | S | А | S | А | S | S | S |
| 29 | М | R | R | Μ | М | М | М | R | М |
| 30 | А | М | М | Μ | А | А | А | А | А |
| 31 | А | А | А | М | А | А | А | А | А |
| 32 | А | А | М | А | М | А | М | М | А |
| 33 | А | М | А | А | А | А | А | Α | А |
| 34 | S | S | S | S | S | S | А | S | S |
| 35 | М | А | М | М | М | М | M | М | А |
| 36 | S | S | S | S | S | А | S | S | А |
| 37 | R | R | R | R | R | R | М | R | R |
| 38 | S | S | S | S | S | S | А | S | А |
| 39 | А | S | S | S | S | S | S | S | S |
| 40 | R | R | R | R | R | R | М | R | R |
| 41 | S | А | S | А | S | А | А | А | А |
| 42 | А | A | A | A | А | А | А | А | A |
| 43 | Μ | R | М | М | A | М | R | М | Μ |
| 44 | R | R | R | R | М | R | М | R | R |



#### **Index Evaluation**

Correlation of Candidate Index Rank with Mean Rater Rank

| Index                           | Euhaline SoCal<br>Bays | Polyhaline San<br>Francisco Bay |
|---------------------------------|------------------------|---------------------------------|
| BQI                             | 0.89                   | 0.92                            |
| BRI                             | 0.88                   | 0.83                            |
| IBI                             | 0.70                   | 0.85                            |
| RBI                             | 0.82                   | 0.90                            |
| RIVPACs                         | 0.84                   | 0.86                            |
| Mean Rater<br>Correlation (n=9) | 0.95                   | 0.96                            |

#### Southern California Euhaline Bays



#### **Polyhaline San Francisco Bay**



25

#### **Classification Accuracy**

- How well do candidate indices evaluate condition category?
- Assessed at two levels
  - Status (Good or Bad)
  - Four-category scale
    - Reference, Marginal, Affected, Severely affected

#### Index Classification Accuracy Status: Good or Bad

| Index   | Southern California<br>Euhaline Bays<br>(n=24) | Polyhaline<br>San Francisco Bay<br>(n=11) |
|---------|------------------------------------------------|-------------------------------------------|
| BQI     | 79.2                                           | 100.0                                     |
| BRI     | 87.5                                           | 100.0                                     |
| IBI     | 70.8                                           | 100.0                                     |
| RBI     | 75.0                                           | 100.0                                     |
| RIVPACs | 91.7                                           | 100.0                                     |
| Raters  | 91.2                                           | 94.9                                      |

#### Index Classification Accuracy Four-Category Classification

| Index   | Southern California<br>Euhaline Bays<br>(n=24) | Polyhaline<br>San Francisco Bay<br>(n=11) |
|---------|------------------------------------------------|-------------------------------------------|
| BQI     | 62.5                                           | 90.9                                      |
| BRI     | 58.3                                           | 72.7                                      |
| IBI     | 50.0                                           | 80.0                                      |
| RBI     | 50.0                                           | 72.7                                      |
| RIVPACs | 62.5                                           | 81.8                                      |
| Raters  | 80.1                                           | 85.9                                      |

#### Overview

- Previous accomplishments
  - Select a "benthic index" approach
  - Identify habitats and develop candidate indices
    - Developed five benthic indices in two habitats
- Subsequent activities
  - Evaluate indices
  - Select benthic index(es)
  - Develop index application strategy

### Select Benthic Indices

- We tried combining indices to improve classification accuracy
  - Tested many different permutations and combinations
- Index combinations improved results

   Several different combinations yielded similar results
- We selected three indices previously published, applied and accepted in California
  - BRI, IBI, and RBI
  - Combined as the median condition category
  - Classification accuracy was similar to several other combinations

#### Classification Accuracy BRI-IBI-RBI Combination

|                            | Southern<br>Euhalir<br>(n= | California<br>ne Bays<br><sup>(24)</sup> | Poly<br>San Fran<br>(r | vhaline<br>ncisco Bay<br>n=11) |
|----------------------------|----------------------------|------------------------------------------|------------------------|--------------------------------|
| Measure                    | Good-Four-BadCategory      |                                          | Good-<br>Bad           | Four-<br>Category              |
| BRI-IBI-RBI<br>Combination | 87.5                       | 70.8                                     | 100.0                  | 72.7                           |
| Index Range                | 70.8-87.5                  | 50.0-58.3                                | 100.0                  | 72.7-80.0                      |
| Experts                    | 91.2                       | 80.1                                     | 94.9                   | 85.9                           |

### Conclusion

- Experts did well
  - Index combinations did almost as well
- Many index combinations worked equally well
  - Not as well as the average expert
  - But better than the weakest expert
- We selected a combination of three indices previously accepted and used in California