Microcystis aeruginosa A new toxic alga in the Delta

Peggy Lehman¹, Greg Boyer², Catherine Hall³, Scott Waller¹ and Karen Gehrts¹

¹CA Dept of Water Resources, ²State University of New York and ³UCSIRO, Australia

forms a surface scum of large green flakes up to 1 inch in diameter

Study Goals 2003 & 2004

 Determine the geographic distribution of the bloom

Assess bloom toxicity

Assess the bloom impact to the estuarine food web

Methods

- Single day in October 2003 & biweekly sampling in 2004
- Sampled at 10 to 14 stations from brackish to freshwater
- Collected phytoplankton samples for chlorophyll a concentration and *Microcystis* toxin analysis
- Measured ancillary water quality data (pH, specific conductance, water temperature and nutrient concentration)
- Conducted initial laboratory feeding tests with Eurytemora affinis

Net sampling

bloom occurred throughout the Delta

5. S. S.

biomass was highest in shallow freshwater habitat of the central Delta

Biomass was highest in early September

Microcystis contained toxic microcystins

percent microcystins composition

			demethy	r "	non-			
station	RR	YR	LR	LR	polar	LW	LF	unknown
Sacramento River								
Collinsville			100					
Brannon Island			88	14	12		29	
Chipps Island	, aft er.		100					
Central delta		u.						
Franks Tract			95		10		24	
Mildred Island	12	*	2 90	21	31	23	15	3
Old River	9		88	11	5		14	34
San Joaquin River								
San Joaquin River			70	20.5	4	5	25	
Sand Mound Slough			96	20			17	
Venice Cut			86		13		16	

the bloom toxicity was highest in the central delta

chl *a* – specific toxicity was higher in the western delta

Toxins occurred throughout the food web

it was not eaten by *Eurytemora affinis*

0.05 <u>+</u> 0.01 µg l⁻¹ (100 animals) ⁻¹ **Treatment** 0.07 <u>+</u> 0.01 µg l⁻¹ (100 animals) ⁻¹

Why is it here

Environmental conditions

	Napa River	Suisun Marsh	Suisun Bay	Western Delta	Central Delta
Chloride mg/L	6450	1880	2310	316	38
Specific Conductance mS/cm	18.94	5.65	7.53	1.18	0.20
Phosphorus mg/L	0.08	0.13	0.11	0.10	0.07
Nitrite + Nitrate mg/L	0.01	0.21	0.32	0.26	0.14
Temperature °C	21.16	21.38	20.63	21.11	22.99
Secchi Depth cm	59	22	36	40	160
Turbidity NTU	7	42	38	22	3
Total Suspended Solids mg/L	14	33	36	19	2

Summary

the new freshwater cyanobacteria bloom was widely distributed and occurred between July and November

the bloom was toxic and contained microcystins that can cause liver cancer in humans and wildlife

bloom toxins entered at least the base of the food web, but was not readily eaten by a desirable zooplankton food, Eurytemora affinis

ambient toxicity of the largest colonies were below the WHO advisory level for drinking water quality of 1 μg I⁻¹

the long-term impacts of the bloom on drinking water, ecological processes and management in the Delta are unknown

