Algal Stream Condition Index (ASCI)

Susie Theroux October 26, 2018

Once upon a time...

• GOAL:

• Develop a statewide algal index

• APPROACH:

- Model the ASCI after the CSCI
- Develop an Observed to Expected (O/E) and a Multi-Metric Index (MMI) and a combined version
- Develop for diatoms, soft-algae, and hybrid

Results

• GOAL:

• Developed statewide algal indices!

• DETAILS:

- O/E models had poor precision
- Modeling did not improve MMI performance
- MMIs for diatoms, soft-algae, and hybrid assemblages all had great performance
- Genus-level diatom MMI had good, but not great, performance

Refresher on O/E development

O/E – poor responsiveness, poor precision

How we developed MMIs

Examples of metrics

Class	Example metrics	% most tolerant taxa	% sensitive taxa (BCG 2)
Tolerance	BCG taxa, Tolerant/Intolerant taxa	hybrid metric	hybrid metric
Motility	Highly motile taxa	15-	30-
Dissolved oxygen	Requires 10% or 30% DO		
Salinity	Brackish, freshwater taxa		20-
Saprobility	AM/AMPS taxa	5-	10-
Indicator classes	High N; Low P; High Cu	0-	
Diversity	Simpson; Shannon	Reference Intermediate Stressed	Reference Intermediate Stressed
Taxonomic group	Amphora taxa; ZHR; CRUS taxa		

MMI results – better precision and responsiveness than O/E

MMI results

- Why did modeling not improve MMI performance?
 - Modeling with geographic variables helped to decrease regional bias for many metrics
 - However, for some metrics, regional bias scores were still too high even after modeling
 - No geographic clustering of algal communities, difficult to predict with geographic variables (same issue with O/E)
 - Algal diversity is high across the state, low at individual sites, potentially the result of highly fragmented algal communities

Low regional bias for MMI indices ...and much lower than SoCal IBI

Good response to stressor gradients

1.5

Relationships with environmental variables

These plots show simple correlations of index scores with selected environmental variables. The top row of CSCI relationships of the California Stream Condition Index (CSCI, macroinvertebrate infex), D18 (southern Califor (southern California soft-bodied algal index), and H20 (southern California hybrid algal index) with the select bottom panels shows relationships of the ASCI scores with the same variable. The linear fit between the ind environmental variable is shown in blue and the selected biointegrity goal for each ASCI index is shown as t squared values (proportion of explained variance) for each panel are shown in parentheses.

https://sccwrp.shinyapps.io/ascifigs/

Conclusions

- O/E models had poor performance, are not recommended
- All three assemblages (diatoms, SBA, hybrid) had strong MMIs that respond well to stressor gradients
- Improved regional bias performance for the species-level MMIs makes them excellent options for statewide application
- The diatom genus-level pMMI had good performance, although not as strong as the species-level MMIs
- Next steps: Science Panel feedback December, possible submission targeted for late January

Questions?

Susie Theroux susannat@sccwrp.org

Bonus slides

Bonus slides

Response to stressor gradients

Algal MMIs vs. SoCal IBI

Statewide algal index

Genus-level MMI

Choosing the best-performing indices

				Accuracy		Prec	Precision		Responsiveness		Spearmans Correlation (Rho		
				Mean score	F	Var	Among sites (SD)	Within sites (SD)	t	Var	TN	ТР	SpCond
Index	Level	Assemblage	Туре	Cal	Cal	Cal	Cal	Cal	Cal	Cal			
OE+MMI	species	diatoms	Predictive	1.00	0.34	0.13	0.14	0.07	18.68	0.50	-0.44	-0.37	-0.48
OE+MMI	species	hybrid	Predictive	1.00	2.60	0.05	0.17	0.09	17.70	0.35	-0.40	-0.36	-0.40
OE+MMI	species	sba	Predictive	1.00	1.74	0.07	0.24	0.13	20.56	0.39	-0.40	-0.43	-0.32
O/E	genus	diatoms	Predictive	1.01	0.49	-0.13	0.18	0.11	9.5	0.30	-0.305	-0.176	-0.314
O/E	genus	hybrid	Predictive	1.01	0.48	-0.18	0.25	0.16	8.0	0.20	-0.294	-0.202	-0.266
O/E	genus	sba	Predictive	1.01	0.66	-0.11	0.38	0.29	15.7	0.27	-0.316	-0.356	-0.227
MMI	species	diatoms	Null	1.00	3.31	0.16	0.17	0.09	22.30	0.52	-0.49	-0.49	-0.59
MMI	species	hybrid	Null	1.00	2.28	0.14	0.13	0.08	27.20	0.59	-0.55	-0.51	-0.55
MMI	species	sba	Null	1.00	1.34	-0.08	0.14	0.09	21.86	0.40	-0.45	-0.33	-0.41
рММІ	genus	diatoms	Pred	1.00	1.91	-0.17	0.17	0.13	22.65	0.32	-0.42	-0.41	-0.40

(p)MMIs with strongest performance

Diatom MMI scores

Soft-algae MMI scores

Hybrid MMI scores

Genus-level MMI

Description	Diatom	SBA	Hybrid	Diatom-genus	Response to stress
Count species: BCG 3 taxa	Х	х	х		Increase
Count species: high copper indicators		х			Increase
Count species: high DOC indicators		х			Increase
Count species: low total phosphorous indicators		х			Decrease
Count species: of SPI 2 taxa				х	Decrease
Proportion individuals: most tolerant taxa		х			Increase
Proportion species: Cyclotella taxa	х		х	х	Increase
Proportion species: Green algae		х			Increase
Proportion species: high copper indicators			х		Increase
Proportion species: high DOC indicators			х		Increase
Proportion species: low total nitrogen indicators			Х		Decrease
Proportion species: low total phosphorous indicators	x				Decrease
Proportion species: NHHONF taxa	x		х		
Proportion species: non-ref indicators		x			Increase
Proportion species: SPI 4+5 taxa				X*	Increase
Proportion species: Suriella taxa	х		х	х	Increase
Proportion species: taxa requiring at least 10% oxygen	x		x		Increase
Richness: NAHON taxa				х	Increase
Proportion species: Gomphonema taxa				x	Decrease
Proportion species: least tolerant taxa				х	Decrease

*denotes predictive metric

Metrics in each MMI

Description	Diatom	Soft-algae	Hybrid	Response to stress
Count species: BCG 3 taxa	Х	x	Х	Increase
Count species: high copper indicators		x		Increase
Count species: high DOC indicators		x		Increase
Count species: low total phosphorous indicators		x		Decrease
Count species: of SPI 2 taxa				Decrease
Proportion individuals: most tolerant taxa		x		Increase
Proportion species: Cyclotella taxa	х		х	Increase
Proportion species: Green algae		x		Increase
Proportion species: high copper indicators			x	Increase
Proportion species: high DOC indicators			х	Increase
Proportion species: low total nitrogen indicators			х	Decrease
Proportion species: low total phosphorous indicators	x			Decrease
Proportion species: NHHONF taxa	x		х	
Proportion species: non-ref indicators		x		Increase
Proportion species: SPI 4+5 taxa				Increase
Proportion species: Suriella taxa	x		x	Increase
Proportion species: taxa requiring at least 10% oxygen	x		x	Increase

Looking forward

- SWAMP Bioassessment workgroup will be discussing
 - Guidance on selecting indices to use
 - Using multiple lines of evidence
- Algae SOP may be updated following ASCI roll-out
 - Do we still need to collect a qualitative fraction?
- Transitioning to DNA-based algae taxonomy
 - Pilot studies are on-going to evaluate sequencing approaches for DNA-based algae taxonomy
 - ASCI may be retrofitted or modified to accommodate DNA data

Examples of metrics

Class	Example metrics
Tolerance	BCG taxa, Tolerant/Intolerant taxa
Motility	Highly motile taxa
Dissolved oxygen	Requires 10% or 30% DO
Salinity	Brackish, freshwater taxa
Saprobility	AM/AMPS taxa
Indicator classes	High N; Low P; High Cu
Diversity	Simpson; Shannon
Taxonomic group	Amphora taxa; ZHR; CRUS taxa

- Generally, trait attributes are assigned to algae at the species
 - Literature
 - Observations from field/lab studies
 - Indicator species analysis for California
 - Other diatom indices (e.g. French diatom index SPI)

Observed vs. Expected reference site scores

Table 1. Performance measures to evaluate the ASCI. pMMI = predictive multimetric index, and observed (O)/ expected (E) taxa index at calibration (Cal) sites. For accuracy tests, only reference sites were used. Accuracy: mean score (ref) = mean score of reference sites (* indicates value is mathematically fixed at 1); F = F-statistic for differences in scores at reference calibration sites among 5 PSA regions (Central Valley); Var = variance in index scores explained by natural gradients at reference sites. Precision: among sites = standard deviation of scores at reference sites; within sites = standard deviation of within-site residuals for reference calibration and validation sites with multiple samples. Responsiveness: t = t-statistic for difference between mean scores at reference and stressed sites, var = variance in index scores explained by human-activity gradients at all sites. Red scores indicate lower performance scores for each measure.

					Accuracy		Prec	cision	Respon	siveness	Spearm	ans Correlati	on (Rho)
				Mean score	F	Var	Among sites (SD)	Within sites (SD)	t	Var	TN	ТР	SpCond
Index	Level	Spp	Туре	Cal	Cal	Cal	Cal	Cal	Cal	Cal			
O/E+MMI	genus/species	diatoms	Predictive	1.00	0.34	0.13	0.14	0.07	18.7	0.50	-0.44	-0.37	-0.48
O/E+MMI	genus/species	hybrid	Predictive	1.00	2.60	0.05	0.17	0.09	17.7	0.35	-0.40	-0.36	-0.40
O/E+MMI	genus/species	soft-algae	Predictive	1.00	1.74	0.07	0.24	0.13	20.6	0.39	-0.40	-0.43	-0.32
O/E	genus	diatoms	Predictive	1.01	0.49	-0.13	0.18	0.11	9.5	0.30	-0.31	-0.18	-0.31
O/E	genus	hybrid	Predictive	1.01	0.48	-0.18	0.25	0.16	8.0	0.20	-0.29	-0.20	-0.27
O/E	genus	soft-algae	Predictive	1.01	0.66	-0.11	0.38	0.29	15.7	0.27	-0.32	-0.36	-0.23
ММІ	species	diatoms	Null	1.00	3.31	0.16	0.17	0.09	22.3	0.52	-0.49	-0.49	-0.59
ММІ	species	hybrid	Null	1.00	2.28	0.14	0.13	0.08	27.2	0.59	-0.55	-0.51	-0.55
ММІ	species	soft-algae	Null	1.00	1.34	-0.08	0.14	0.09	21.9	0.40	-0.45	-0.33	-0.41
pMMI	genus	diatoms	Pred	1.00	1.91	-0.17	0.17	0.13	22.7	0.32	-0.42	-0.41	-0.40

Final ASCI(s)

- O/E indices had consistently poor performance for all three assemblages
- MMI indices were high-performing 🖒
- Winning MMI indices did not include any predictive metrics, thus making them standard MMI indices (like the SoCal IBI) ^_(ツ)_/⁻
- Diatom genus MMI had pretty good performance, not as good as species-level MMI
- New algal MMIs have much less regional bias scores than the previous algal IBI therefore making them excellent options for statewide application

AlgaeField	AlgaeValue	AlgaeValueDescr
OxygenRequirements	DO_30	>30% DO saturation
OxygenRequirements	DO_50	>50% DO saturation
OxygenRequirements	DO_75	>75% DO saturation
OxygenRequirements	DO_10	about 10% DO saturation or less
OxygenRequirements	DO_100	nearly 100% DO Saturation
Saprobity	AMPS	alpha-meso/polysaprobous
Saprobity	AM	alpha-mesosaprobous
Saprobity	BM	beta-mesosaprobous
Saprobity	OS	oligosaprobous
Saprobity	PS	polysaprobous
TrophicState	E	Eutrophic
TrophicState	I	Indifferent
TrophicState	Μ	Mesotrophic
TrophicState	ME	Mesotrophic-Eutrophic
TrophicState	0	Oligotrophic
TrophicState	OM	Oligotrophic-Mesotrophic
TrophicState	PH	Polytrophic (Hypereutrophic)
NitrogenUptakeMetabolism	NAHON	N-autotrophic-high organic N
NitrogenUptakeMetabolism	NALON	N-autotrophic-low organic N
NitrogenUptakeMetabolism	NHHONF	N-heterotrophic-high organic N (facultative)
NitrogenUptakeMetabolism	NHHONO	N-heterotrophic-high organic N (obligate)