

Final Report

AGREEMENT: 01-227-550-0

ALISO BEACH CLEAN BEACHES INITIATIVE

J01P28 Interim Water Quality Improvement Package Plant Best Management Practices

COUNTY OF ORANGE RESOURCES AND DEVELOPMENT MANAGEMENT DEPARTMENT WATERSHED AND COASTAL RESOURCES

Prepared By: Max Andersen, PE Janua Revised Fei

January 2005 Revised February 2005

TABLE OF CONTENT

PAGE
1 2 2 10 11 12 14 16 16 18
3 4 5
6 7 8 8 9 13
Appendix A-1 Appendix A-2 Appendix A-3 Appendix A-7 Appendix A-9
Appendix A-4 Appendix A-5 Appendix A-6 Appendix A-8 Appendix A-13
Appendix B-1

J01P28 Interim Water Quality Improvement Package Plant Best Management Practices

INTRODUCTION

The J01P28 Interim Water Quality Improvement Package Plant Best Management Practices (J01P28 IWQPP BMP) was executed in response to the San Diego Regional Water Quality Control Board (SDRWQCB) 13225 Directive to clean up Aliso Creek and consistent with the Special Conditions, item 6, Water Quality Enhancements for CDP No. 5-97-316-A4. The J01P28 IWQPP BMP project is a Clean Beaches Initiative project. (J01P28 is a storm drain facility number identifying Springdale Storm Drain as a tributary to the Aliso Creek that is identified as facility J01).

On March 2, 2001 the San Diego Regional Water Quality Control Board issued a directive pursuant to California Water Code Section 13225 ("Directive") to the County of Orange, the Orange County Flood Control District, the City of Laguna Beach, the City of Laguna Hills, the City of Laguna Niguel, the City of Laguna Woods, the City of Lake Forest and the City of Mission Viejo ("Permittees") for an investigation of urban runoff in the Aliso Creek watershed. The Directive found that the Permittees may be discharging waste with high bacteria levels from municipal storm drain outfalls into Aliso Creek and its tributaries. The Directive required the Permittees to begin a comprehensive monitoring program and undertake investigations within the storm drain system to identify the causes of the problem and the control actions needed to correct the problem.

Also, in 2001, the County of Orange needed to divert the Aliso Creek low flows to the South Orange County Wastewater Authority's Ocean Outfall Line in an effort to reduce the number of posted beach mile days (BMD) at Aliso Beach. The diversion effort required a California Coastal Commission (CCC) permit. The Coastal Development Permit (CDP) for the diversion project was conditioned by the CCC staff to include the Special Conditions, item 6, Water Quality Enhancements for CDP No. 5-97-316-A4 that required proof of authorized expenditure of funding to implement treatment systems in Aliso Creek using Clear Creek System (CCS) or equivalent filtration.

Aliso Creek is listed as a Category I (Impaired) Priority Watershed (Aliso-San Onofre, #18070301) in the California Unified Assessment List and the lower portion of Aliso Creek is designated as impaired for bacterial contamination on the Clean Water Act Section 303 (d). In addition, the San Diego Regional Water Quality Control Board (Region 9) has identified Aliso Creek as a target watershed for priority water quality enhancement efforts. In the Region 9 basin plan, Aliso Creek is listed with beneficial uses of Warm Freshwater Habitat (WARM), Wild Life Habitat (WILD) and Agricultural Supply (AGR) with a potential beneficial use of Contact Water Recreation (REC-1).

GOALS AND SCOPE OF PROJECT

The purpose of the project is to filter and disinfect approximately 100,000 gallons to 150,000 gallons per day of contaminated dry-weather urban runoff from a 60-inch storm drain (Facility No. J01P28) to REC 1 standards and, thereby, reduce bacteria in Aliso Creek to recreation standard (REC 1) levels and reduce the number of postings at Aliso Beach.

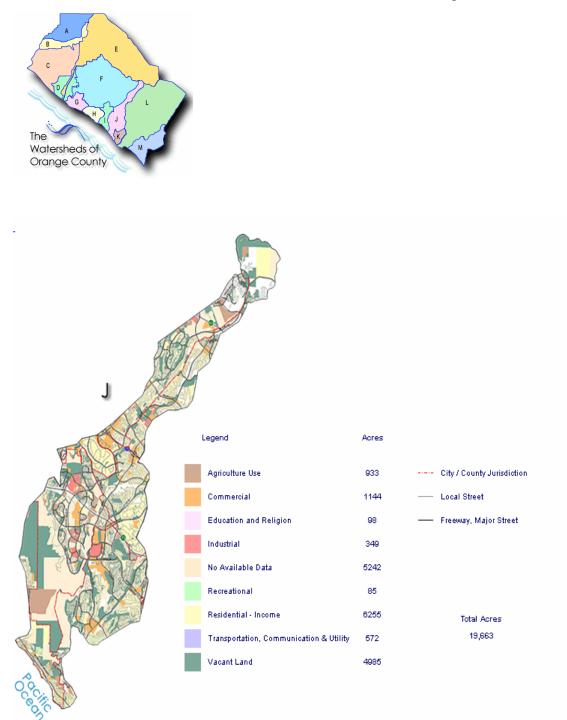
The SDRWQCB Basin Plan contains water quality objectives for the protection of water bodies designated with water contact recreation (REC-1) and non-contact recreation (REC-2) beneficial uses. In the Basin Plan, Aliso Creek, Sulphur Creek, English Canyon Channel, and Wood Canyon Channel are listed as having REC-2 and *potential* REC-1 beneficial uses. The mouth of Aliso Creek is listed as having REC-1 and REC-2 beneficial uses. Although only the receiving waters have designated beneficial uses, for the purposes of discussion, the quality of water from each stormdrain and receiving water will be compared to both objectives. These objectives are written in the Basin Plan as follows:

Water Quality Objective for Non-Contact Recreation:

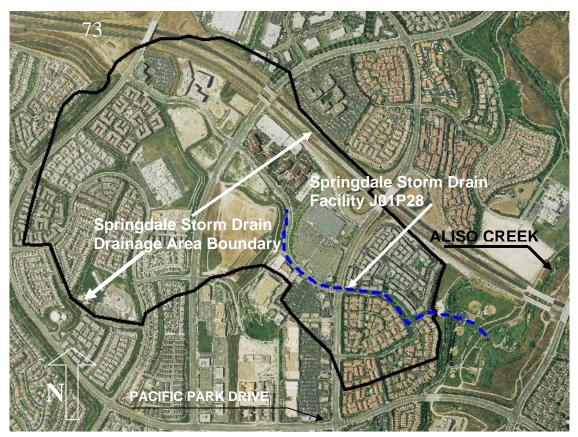
In waters designated for non-contact recreation (REC-2) and not designated for contact recreation (REC-1), the average fecal coliform concentrations for any 30-day period, shall not exceed 2,000/100 ml nor shall more than 10 percent of the samples during any 30-day period exceed 4,000/100 ml.

Water Quality Objective for Contact Recreation:

In waters designated for contact recreation (REC-1), the fecal coliform concentration based on a minimum of not less than five samples for any 30-day period, shall not exceed a log-mean of 200/100 ml, nor shall more than 10 percent of the total samples during any 30-day period exceed 400/100 ml.


PROJECT DESCRIPTION AND TECHNIQUES

The Aliso Creek Watershed covers 30.4 square miles of Orange County and includes portions of the cities of Aliso Viejo, Dana Point, Laguna Niguel, Laguna Woods, Laguna Beach, and Lake Forest. Aliso Creek originates in the Santa Ana Mountains and terminates at the Pacific Ocean at Aliso Beach in South Laguna. Figure 1 below shows the Clear Creek Systems, Inc. installation before it is screened in to blend with the surroundings. Figure 2 below represents a map of the development in the watershed.


Figure 1. Completed Clear Creek Systems, Inc. (CCS) Package Treatment Plant Installation.

- At right are three (3) tanks 30 inches in diameter and 60 inches high containing the multi-media filter,
- In center are two (2) tanks 48 inches in diameter and 72 inches high Organoclay filter,
- At left are the control panels and UV chambers.
- Immediately behind the CCS system is the storm drain outlet basin, and
- In front is a regional recreational bike trail

Figure 2. Aliso Creek Watershed

There are 13 watersheds in the County of Orange. Aliso Creek Watershed covers 30.4 square miles and is identified with the letter J - 43% of the watershed contains residential, industrial, educational, or commercial development – 30% is made up of open space, agriculture, or recreational – 27% is shown as no available data but appears presently to be open space. Aliso Creek carries the Facility Number J01 and J01P28 identifies the storm drain called Springdale Storm Drain.

Figure 3. Springdale Storm Drain (J01P28) Drainage Area in the City of Aliso Viejo. The area is located immediately adjacent and south of Highway 73 in the County of Orange and in the vicinity of Pacific Park Drive and Alicia Parkway. The drainage area covers approximately 2 square miles and approximately 6% of the Aliso Creek watershed.

Figure 4 Before and After Photo.

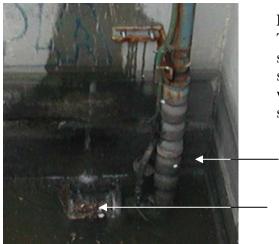


Figure 5. UV Cylinders. Each of the stainless steel cylinders contain four (4) – ultra violet light lamps enclosed in protective quarts sleeves.

Figure 6.A Energy Dissipater End Wall and Discharge Point for Treatment System Effluent

Figure 6.B Inlet Strainer

The inlet strainer is a Yardney self-cleaning pump suction screen that uses the intake water to wash trash of the screen's outside surface .

INTAKE PIPE

STRAINER

Figure 7. Information Signs

The informational signs are included as an educational effort and provide a funding disclaimer and a simple message about how to keep the environment cleaner.

Springdale Storm Drain (Facility J01P28) is a tributary to Aliso Creek. The storm drain is designed for a 25 year frequency storm of approximately 1400 cubic feet per second (CFS). The storm drain also conveys runoff water from a fully developed area of approximately 2 square miles in the city of Aliso Viejo. The volume of urban runoff water varies seasonally from approximately 60,000 gallons per day to approximately 130,000 gallons per minutes. The greatest daily dry weather runoff is in the late summer and early fall. The greatest rate of discharge is experienced in the morning ours before 9:00 AM. The rate of dry weather discharge varies from 85 gallons per minute to 135 gallons per minute (0.3 CFS or 0.02 % of the possible storm flow). The development is a mix of urban residential, commercial, light industry, and community association green areas such as ball fields. The storm drain pipe is a 60 inch reinforced concrete pipe and the storm drain outlet is a rectangular reinforced concrete energy dissipater basin with the dimensions 40 feet long, 30 feet wide and with an end wall that is 5 feet high. The basin is located adjacent to the creek. Figure 3 represents an aerial map of the Springdale Storm Drain tributary.

In 2002, the County of Orange contracted for the installation of a Clear Creek Systems, Inc. (CCS) package plant treatment system in order to implement Best Management Practices (BMP) at the Springdale Storm Drain. The CCS treatment system includes three (3) - 200 gallons tanks multi media filter, two (2) - 500 gallons tanks organo clay filters and two (2) ultra violet light disinfection chambers. The UV chambers consist of two (2) steel cylinders with four (4) -160 Watt - UV lamps in each cylinder. The cylinders are shown in figure 5. The filters and UV disinfection units were installed by Clear Creek Systems, Inc (CCS). The package plant treatment system has three main phases:

- Sediment and debris removal
- Oils, pesticides, and trace metals removal
- Disinfection

The larger debris and trash removal is performed at the inlet strainer that is located in the basin (see figure 6.B). Sediment removal is performed in the basin and in the multimedia filter. The oils, pesticides and trace metals are removed via adsorption onto the Organoclay media and the ultra violet light chambers removes bacteria and viruses. The system began operation July 31, 2003. As of October 2004 the PLC showed that a total of 1.4 million gallons had been treated. During the months of February and March of 2004 the system was deactivated due to storm events. The Nuisance Special Wastewater Discharge permit prohibits discharge of storm water to the MNWD sewer system and the system must be deactivated during storm conditions.

The package plant treatment system filters and disinfects approximately 100,000 gallons per day of urban runoff. The design capacity is 250,000 gallons per day. The treated water is discharged at the storm drain outlet approximately 50 feet

from the creek (The 50 feet distance is measured at dry weather flow conditions. At high storm flow conditions, when the system is deactivated, the creek reaches the storm drain outlet). See Figure 6.A for the basin and discharge point.

The CCS equipment backwash of the multi-media filter is pressure sensor controlled and will discharge the backwash water containing suspended particles and sediments to the Moulton Niguel Water District (MNWD) sewer facility and is eventually discharged via the SOCWA ocean outfall line into the ocean. Backwash of the filters is accomplished by using the available storm drain water. The permit for the discharge to the MNWD requires self monitoring and reporting on pesticides and heavy metals on a monthly sampling and testing program.

SCHEDULED SUBMITTALS

DOCUMENTS SUBMITTED WITH REPORT NO. 1:

- Quarterly Progress Report
- Construction Agreement with disclaimer language
- Contract Summary Form
- Permits
- Plans and Special Provisions, AIT for August 6, 2002, Subcontract for construction

DOCUMENTS SUBMITTED WITH REPORT NO. 2

- Progress Payment Report No. 12
- Electrical Engineer's Certification
- Contract Change Order No. 1
- Contract Change Order No. 2
- Contract Change Order No. 3
- Notice of Completion
- Moulton Niguel Water District Special Wastewater Discharge Permit MNWD N4 – 001
- Quality Assurance Plan
- Notice of Completion
- As-builts
- Operations and Maintenance Manual
- Monitoring Plan
- Monitoring Data from 7/31/03 to 9/03/03

DOCUMENTS SUBMITTED WITH REPORT NO. 3

• Results of Monitoring July to October 2003

DOCUMENTS SUBMITTED WITH REPORT NO. 4

• Results of Monitoring October to December 2003

ENVIRONMENTAL DOCUMENTATION AND PERMITS

- The Revised Mitigated Negative Declaration (RMND No. 01-145) was adopted by the County of Orange Board of Supervisors on May 21, 2002 as adequate for the construction of the project and the Notice of Determination was filed on May 21, 2002
- Fish and Game /Streambed Alteration Agreement 5-2002-0121 was received May 30, 2002.
- Clean Water Act Section 401 Certification was received on June 13, 2002
- MNWD permit for Nuisance water Special Waste Water Discharge Permit issued on March 24, 2003.
- Electrical building permit was obtained on April 14, 2003.

MONITORING

The County of Orange Resources and Development Management Department (RDMD) Environmental Resources Section (ER) samples for indicator bacteria and prepares the reporting and analysis. The reports are posted quarterly on the RDMD Website, <u>http://www.ocwatershed.com</u>.

Bacteria indicator sampling was conducted on the water before it enters the system, after it is processed, and approximately 15 feet before it reaches Aliso Creek. Aliso Creek was sampled 25 feet upstream and downstream of its confluence with J01P28 as part of an ongoing monitoring program for the 13225 Directive issued by the San Diego Regional Board. The data was used to evaluate the effectiveness of the Clear Creek System. The sites are sampled once per week - five times in each thirty day period. Sampling is conducted randomly Monday through Friday unless rainfall occurs. If rainfall is predicted for a sampling day, that sampling is rescheduled. A schematic of the sampling sites is included in Appendix B last page.

South Orange County Wastewater Authority samples the surf zone at Aliso Beach. The results are listed on the OCHA websites http://www.ocbeachinfo.com/downloads/reports/2003oceanreport.pdf and http://www.ocbeachinfo.com/downloads/reports/2003oceanreport.pdf and http://www.ocbeachinfo.com/downloads/reports/2003oceanreport.pdf and http://www.ocbeachinfo.com/downloads/reports/2003oceanreport.pdf and http://www.ocbeachinfo.com/downloads/reports/2003oceanreport.pdf and http://www.ocbeachinfo.com/downloads/data/index.htm .

Figure 8.

Review of the data for the results at Sample Station C1, S8 and S9 is included in Chart No. 5, Appendix A-9. Sample station C1 is at the mouth of Aliso Creek, S8 is located ½ mile south of the mouth of the Aliso Creek and S9 is located ¼ mile south of Aliso Creek. Chart No. 5 indicates that the farther away from the mouth of the creek, the lower is the concentration of indicator bacteria. This is likely to be caused by the diluting effect of the continuous mixing of the discharge from the creek with the surf zone water.

MONITORING DATA

The monitoring data is included in Appendix A.

TABLE No. 1 through TABLE No. 3 identify the results of the sampling at the J01P28 and Aliso Creek confluence, upstream (U/S), downstream (D/S) and at the J01P28 sample location. The sample data includes the time period from beginning of July 2003 to end of June 2004. The corresponding graphs are included as Chart No. 1 through Chart No. 3.

TABLE No. 5, includes the data for the performance analysis of the Best Management Practices System at Springdale Storm Drain and includes the results from April 6, 2004 to June 29, 2004 for the sampling at five (5) locations related to the confluence between Springdale Storm Drain tributary (J01P28) and Aliso Creek (J01).

- influent to J01P28 CCS unit,
- effluent of J01P28 CCS unit,
- in J01P28 15 feet upstream of the confluence with Aliso Creek (J01),
- in Aliso Creek 25 feet upstream of the confluence with J01P28, and
- in Aliso Creek 25 feet downstream of the confluence with J01P28.

The report to the Region 9 Water Quality Control Board for April 04 to July 04 (See Appendix B) included an analysis of the data and concluded that there is no significant increase in pollution of the creek at the confluence with J01P28 and that the CCS, Inc. treatment system is capable of reducing the concentration of fecal coliform geomean by 99%. (*A significant amount of bacteria regrowth takes place in the habitat in the short distance between the discharge point and the confluence with Aliso Creek. The habitat contains fine silts, trash and dense vegetation. This area is regularly flooded during storm events.)* The table values are included in TABLE No. 4. The substantial reduction in bacteria concentration between influent (water before it enters the system) and effluent (discharge water immediately after it is processed) indicates that the treatment system has succeeded in reducing the contribution of pollutants to Aliso Creek. Please refer to Appendix B for the schematic of the monitoring locations for the data in TABLE No. 4.

Sampling and analysis of the performance of the CCS, Inc package treatment plant recommenced April 04 and after the storm drain outlet basin had been

cleaned out. The sampling locations were for influent, effluent, and approximately 15 feet before it reaches Aliso Creek. In addition, sampling also continued at Aliso Creek 25 feet upstream and downstream of its confluence with J01P28 (as part of the Directive monitoring program). This data was used to evaluate the effectiveness of the Clear Creek System and is included in TABLE 4.

Results from the CCS effluent were compared to results from the CCS influent to determine if the treatment system was successful in reducing bacteria levels during April through June 2004. The fecal coliform geomean of the effluent, 317 CFU/100mL, was found to be statistically significantly lower (ANOVA α = 0.05) than the fecal coliform geomean of the influent, 77,414 CFU/100mL, with a 99.6% reduction.

The fecal coliform levels of the CCS effluent immediately after treatment were compared to those levels of the effluent 15 feet before it meets Aliso Creek. Results from the fecal coliform geomean of the effluent 15 feet before Aliso Creek, 2,575 CFU/100mL, was found to be statistically significantly higher (ANOVA α = 0.05) than the effluent immediately after treatment, 317 CFU/100mL.

Once expelled from the treatment plant, the water enters a ponded area (approximately 20 feet long, 6 feet wide and 0 - 18 inches deep (See Figure 6), The water then flows for approximately 30 feet in a natural ditch into Aliso Creek. There are no inputs to the channel between the treatment plant and its confluence with Aliso Creek. This area is shaded. Regrowth may be a possible factor in the increase in bacteria levels between the two points. See Table 4 for data. A schematic of the flow is included in Appendix B.

Comparisons were conducted of fecal coliform levels in Aliso Creek upstream and downstream of its confluence with J01P28 to determine if there was an impact from J01P28. There was no significant difference (ANOVA α = 0.05) found between the quarterly geomean of levels upstream, 765 CFU/100mL, and the quarterly geomean of levels downstream, 1300 CFU/100mL. Thus there was no significant impact from the J01P28 input during the quarter, for the first spring quarter (April-June) in the four years of Directive monitoring. Each of the prior quarterly reports can be found on the County's website identified as: http://www.ocwatershed.com/watersheds/Aliso_reports_studies.asp

The surf zone monitoring data can be found under the "Historic Data " section of the HCA website:

http://www.ocbeachinfo.com/downloads/reports/2003oceanreport.pdf

The water at the mouth of the Aliso Creek has a higher concentration of bacteria than the surf zone water at Aliso Beach Middle and/or Aliso Beach South as evidenced in Chart No. 5 (Page A-13) but it was not possible to relate the monitoring results at the confluence to the monitoring results at the mouth of Aliso Creek.

EFFECTIVENESS IN REACHING GOALS:

The CCS treatment system has the ability to treat the influent at J01P28 to REC 1 standards. However, bacterial regrowth in the effluent water occurs so rapidly at the confluence with Aliso Creek, that to reduce the bacteria in Aliso Creek to REC 1 standards is likely to require more units at other locations up and down the creek.

The HCA Annual Ocean and Bay Water Quality Report shows that in year 2003 Aliso Beach had 5 AB411 period postings over 9 days for a total of 0.5 Beach Mile Days (BMD). The total available AB411 beach mile days for Aliso Beach were 428 BMDs. These postings represents one tenth of a percent of the available BMDs and is a reduction of 70% ((1.7-0.5)/1.7) of the BMD postings in 2002 for Aliso Beach. The small number of postings can be contributed to several efforts by the Cities and the County in cleaning up the watershed and is not entirely due to the installation and operation of the CCS system at J01P28. Efforts by the Cities include public education and code enforcement related to operation of restaurants. It is not possible to identify the individual share of the successful reduction in BMD posting.

Two information signs were added to the CCS system enclosure in an effort to help educate the public and to help reduce vandalism. It appears to have been positively received by the public. County staff has received encouraging comments from people passing by the treatment system.

PROJECT CHALLENGES

Sole Source Contracting:

- The Coastal Commission staff report special condition stated Clear Creek Systems, Inc. or equivalent.
- Solution: Design consultant was directed to identify manufacturers of equivalent treatment systems and delivery times. When none other was available in the relatively short time frame, the Board of Supervisors approved the sole source contract.

Contractor Bonding Requirements:

- County of Orange requires sufficient bonds to allow bonding company to complete the project including warranties in the event the construction contractor defaults. The cost of bonding was not included in the contractor's proposal.
- Solution: Contractor was given additional time to negotiate the cost of bonds

Obtaining UL Certification on UV Control Cabinet:

• The UV disinfection equipment did not have UL certification. The electrical permit required specifically UL certification.

• Solution: The Contractor was given additional time to field certify the equipment by UL and subsequently when field certification was not possible, an electrical engineer certified in the state of California as contracted to prepare a certification that the equipment was installed in accordance with the California Electrical Code.

Protecting against Vandalism:

- The equipment had sustained minor damage, when several large rocks were thrown over the construction security fencing prior to completion of installation.
- Solution: A contract change order was approved to completely enclose the equipment with an 8 feet high security chain link fence including an over head chain link fence.

Water Rights Claims:

- During the environment document preparation phase, a water rights claim was filed against the project.
- Solution: The County of Orange hired a special counsel to defend against the claim. On March 6, 2002 the State Water Resources Control Board found that that use of the urban runoff water in a storm drain does not require a water rights permit unless the water is diverted from a natural water course.

MNWD Permit Requirement Compliance:

- The equipment performs automatic backwashing of the multimedia filter and discharge the backwash to the Moulton Niguel Water District (MNWD). Backwashing limitation were repeatedly exceeded.
- Solution: Work to comply with the MNWD permit is ongoing.

Equipment Failures:

- The CCS unit has experienced a high number of down times.
- Solution: The contractor has performed additional maintenance when notified and has replace parts on warranty as needed. The storm drain outlet basin was cleaned out a the end of March 04 after the end of the storm season and prior to restart of the start up of the equipment.

Regrowth of Bacteria Downstream Of Discharge Point:

- The treated water experiences a rapid regrowth of the bacteria concentration after being released back into the stream.
- Solution: Work on this problem is ongoing. Additional permits are applied for in order to perform clean-up work in the habitat and the storm drain outlet basin.

Clean Up Of Basin:

- Organic matter from the dense surrounding vegetation continues to accumulate in the storm outlet basin. Clean up of the basin is difficult because of limited heavy equipment (vacuum trucks) access .
- Solution: A permit to expand the equipment access pad has been applied for through Department of Fish and Game.

CONCLUSIONS AND RECOMMENDATION

The Clear Creek Systems (CCS) package plant treatment system is operating successfully and is reducing the contribution of contaminants to Aliso Creek. However, it is difficult to determine the CCS installation's contribution to the reduction in postings at the Aliso Beach.

Due to the high degree of effectiveness in eliminating bacteria, this project is clearly headed in the right direction and it is recommended that the operation be continued. However, additional steps are needed to increase the effectiveness of this system. First, pursue regulatory permit approval to follow Maintenance and Operations Divisions staff recommendations to clean up the habitat immediately downstream of the treatment outlet pipe by removing dead and decomposing vegetation; second, that trash removal should be scheduled after end of each storm season; and third, that overhead screening of the outlet structure discharge basin be installed to help lower water temperature and limit the amount of organic matter in the storm drain outlet basin. These suggestions will be implemented pending available budget and manpower.

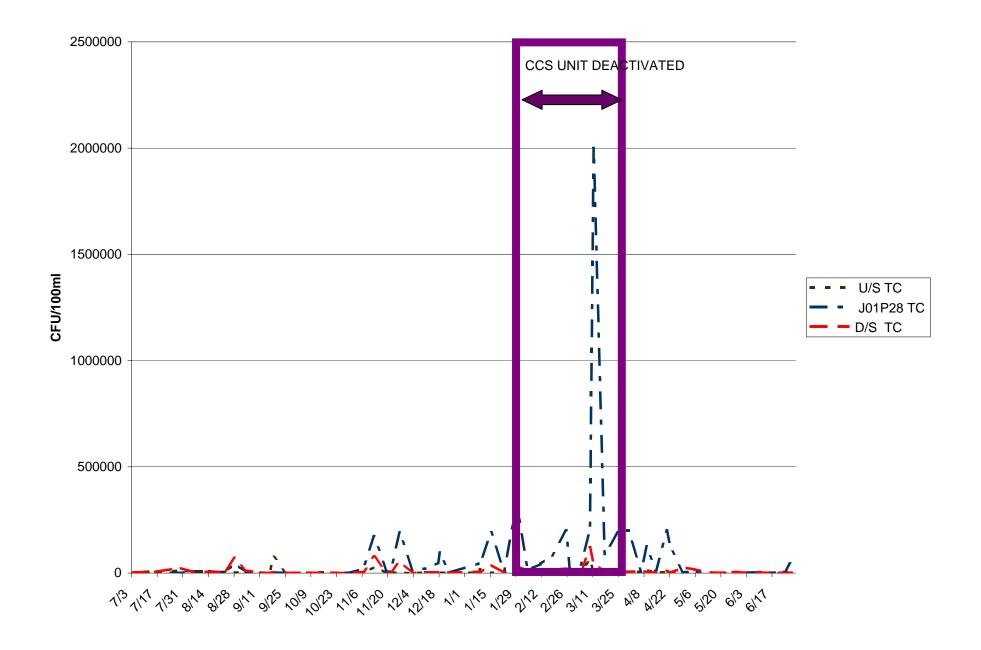
The data in Table 4 suggest that there are sufficient nutrients in the riparian habitat and the creek sediments to support the bacterial regrowth. One way to reduce the regrowth potential is to reduce the travel time and distance for the effluent through the habitat might be to locate the treatment unit closer to the receiving water.

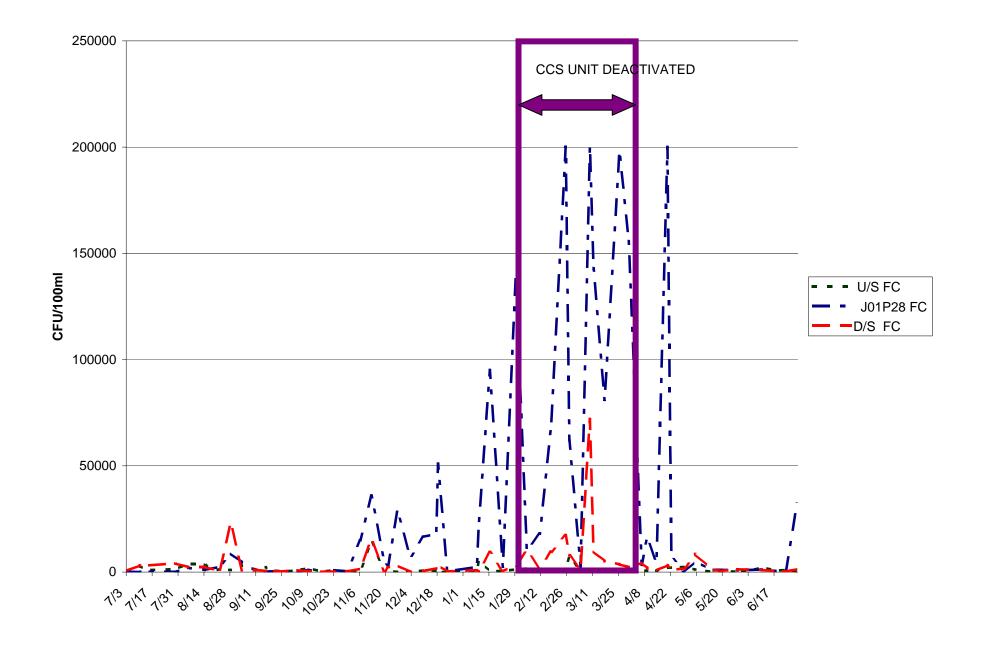
To reduce the impact of the potential regrowth of bacteria it might be necessary to locate a larger capacity treatment system near the Pacific Coast Highway just inland of the Aliso Beach.

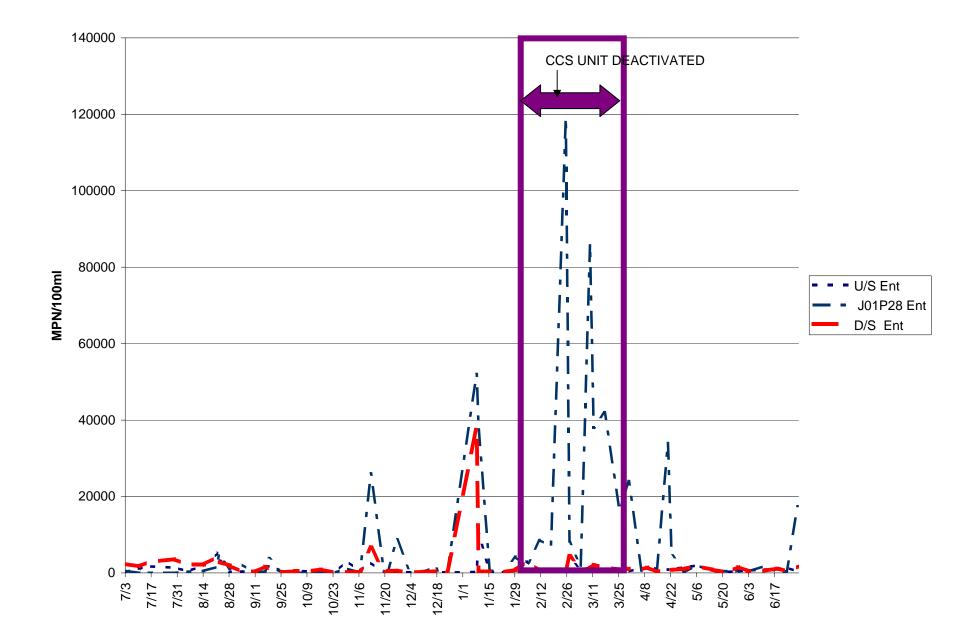
Additional source control BMPs should be installed at the tributaries to Aliso Creek where the 13225 directive monitoring efforts indicate that the concentration of bacteria is high.

Fecal matter from water foul has a significant impact on the water quality at all of the beach outlets at the Orange County beaches. Effective beach outlet maintenance management must include regular elimination of outlet ponds before they become attractive resting places for the shore birds.

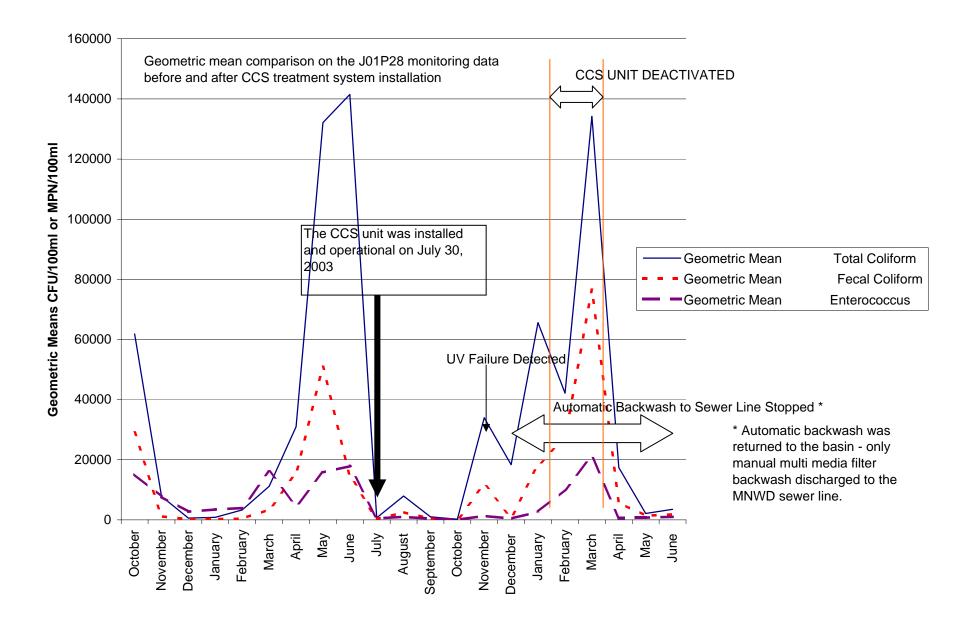
APPENDIX A

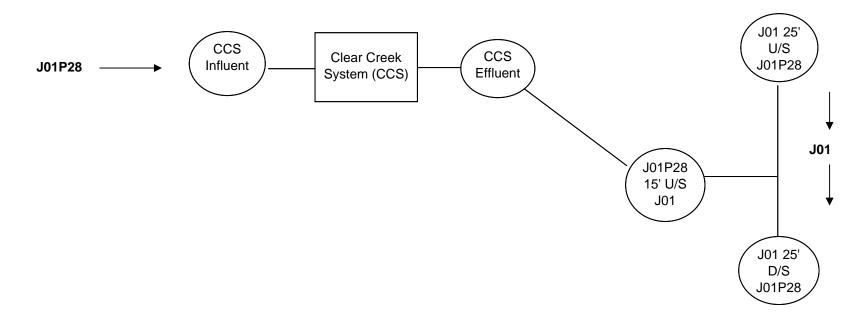

MONITORING DATA FOR TOTAL COLIFORM AT THE CONFLUENCE


	Total Coliform in Aliso	Total Coliform in J01P28	Total Coliform in Aliso		Total Coliform in Aliso	Total Coliform in J01P28	Total Coliform in Aliso
	Creek U/S of Confluence	at Confluence with Aliso	Creek D/S of Confluence		Creek U/S of Confluence	at Confluence with Aliso	Creek D/S of Confluence
Date	with J01P28 CFU/100 ml	Creek CFU/100 ml	with J01P28 CFU/100 ml	Date	with J01P28 CFU/100 ml	Creek CFU/100 ml	with J01P28 CFU/100 ml
7/3/03	380	690	3230	1/8/04	560	45000	7100
7/10/03	4750	0	5000	1/9/04	17700	48000	400
7/15/03	4550	0	5200	1/15/04	1360	192000	39000
7/29/03	11000	0	25000	1/22/04	550	8950	1730
8/5/03	9000	6650	5000	1/29/04	29800	327000	33000
8/14/03	7600	7450	5000	2/4/04	4200	14400	10600
8/21/03	4100	4200	3700	2/11/04	610	43000	5500
8/22/03	6300	3400	2500	2/17/04	1290	80000	15800
8/28/03	2300	44000	72000	2/25/04	1770	200000	21000
9/3/03	4300	5400	12900	2/27/04	9250	13400	13200
9/11/03	1700	330	1170	3/4/04	2600		
9/16/03	3700	300	720	3/9/04	63000	200000	121000
9/18/03	77000	2700	4700	3/11/04	3000	2000000	45000
9/25/03	460	780	620	3/17/04	870		6800
10/2/03	1060	20	1420	3/25/04	1710		9500
10/9/03	2400	1330	1800	3/30/04	1430		5900
10/16/03	3100	10	1290	4/6/04	6500		9000
10/23/03	1040	1190	530	4/9/04	13900		
10/30/03	1300	1660	225	4/14/04	1500		
11/6/03	4600	20000	5600	4/20/04	4300		11600
11/12/03	27000	173000	77000	4/22/04	2900		1630
11/19/03	750	7500	0	4/29/04	3900		
11/21/03	1900	6950	2750	5/5/04	7200		
11/26/03	390	193000	55000	5/14/04	1360		3300
12/3/03	230	15400	290	5/19/04	1590		1510
12/10/03	2000	21000	2250	5/26/04	440		4500
12/17/03	1110	48000	2300	5/28/04	1540		
12/18/03	100	98000	5700	6/2/04	1430		
12/23/03	250	1380	1160	6/10/04	3800		
				6/18/04	1160		
				6/23/04	6300		640
				6/29/04	980	87000	2800


	Fecal Coliform in Aliso	Fecal Coliform in J01P28	Fecal Coliform in Aliso		Fecal Coliform in Aliso	Fecal Coliform in J01P28	Fecal Coliform in Aliso
	Creek U/S of Confluence		Creek D/S of Confluence		Creek U/S of Confluence	at Confluence with Aliso	Creek D/S of Confluence
	with J01P28 CFU/100 ml		with J01P28 CFU/100 ml		with J01P28 CFU/100 ml		with J01P28 CFU/100 ml
7/3/03	190	220		1/8/04		2500	
7/10/03	2700	0	3200	1/9/04	5100	23000	
7/15/03	900	0	3150	1/15/04	380	95000	9350
7/29/03	1400	0	4100	1/22/04	490	2600	370
8/5/03	3800	2050	2300	1/29/04	1300	139000	3020
8/14/03	3550	950	2300	2/4/04	1630	10400	10100
8/21/03	1060	2300	860	2/11/04	280	18000	1790
8/22/03	1190	2700	780	2/17/04	950	68000	9600
8/28/03	990	8700	23000	2/25/04	1410	200000	17300
9/3/03	3200	4600	980	2/27/04	7200	62000	7800
9/11/03	1080	180	960	3/4/04	460	2800	1330
9/16/03	2400	160	540	3/9/04	1020	200000	72000
9/18/03	1030	330	690	3/11/04	1180	143000	9700
9/25/03	230	430	270	3/17/04	520	81000	5100
10/2/03	740	10		3/25/04	430	198000	3600
10/9/03	1800	1080	440	3/30/04	180	156000	2300
10/16/03	320	10		4/6/04	1090	3400	4300
10/23/03	810		310	4/9/04	470	16200	1900
10/30/03	305	390	310	4/14/04	590	4600	820
11/6/03	460	15000		4/20/04	2000	200000	3200
11/12/03	14400	36000		4/22/04	2100	7200	880
11/19/03	180		0	4/29/04	2400	10	
11/21/03	490 80		2200	5/5/04	1140		
11/26/03 12/3/03	80 90			5/14/04	620	1050	
12/3/03	720	16600		5/19/04	210	940	
12/10/03	610			5/26/04	860	940	
12/17/03	10			6/2/04	450	980	-
12/18/03	90	280	3200	6/10/04	2200	1240	
12/20/00	30	200	500	6/18/04	770	470	
				6/23/04	1000	1080	
				6/29/04	310	32000	

MONITORING DATA FOR ENTEROCOCCUS AT THE CONFLUENCE


	Enterococcus in Aliso	Enterococcus in J01P28	Enterococcus in Aliso		Enterococcus in Aliso	Enterococcus in J01P28	Enterococcus in Aliso
		U/S of Confluence with	Creek D/S of Confluence		Creek U/S of Confluence	U/S of Confluence with	Creek D/S of Confluence
	with J01P28	Aliso Creek	with J01P28		with J01P28	Aliso Creek	with J01P28
	MPN/100ml	MPN/100ml	MPN/100ml	Date	MPN/100ml	MPN/100ml	MPN/100ml
7/3/03	280	540	2285	1/8/04	250		38000
7/10/03	1100	0	1700	1/9/04	10400	38000	340
7/15/03	1700	0	2850	1/15/04	320	770	320
7/29/03	1400	0	3600	1/22/04	140	20	230
8/5/03	450	290	2200	1/29/04	680	4200	805
8/14/03	1830	530	2200	2/4/04	3100	1760	3000
8/21/03	5200	1610	4200	2/11/04	280	8600	490
8/22/03	3400	4800	2900	2/17/04	180	7100	270
8/28/03	230	1000	1900	2/25/04	970	119000	710
9/3/03	330	2300	380	2/27/04	4400	8200	4400
9/11/03	410	30	340	3/4/04	760	1640	660
9/16/03	1490	410	1700	3/9/04	730	86000	1250
9/18/03	1820	3800	950	3/11/04	2070	38000	2160
9/25/03	170		190	3/17/04		42000	1420
10/2/03	530			3/25/04	1150	16400	900
10/9/03	380			3/30/04	400	24000	1070
10/16/03	390			4/6/04		30	
10/23/03	10			4/9/04	1260	1220	1460
10/30/03	3050			4/14/04	1130	160	
11/6/03	570			4/20/04	840	34000	
11/12/03	2700			4/22/04			790
11/19/03	310			4/29/04	1410		
11/21/03	230			5/5/04	1940		
11/26/03	140			5/14/04			
12/3/03	130		-	5/19/04		500	
12/10/03	280			5/26/04		360	
12/17/03	230			5/28/04	-		
12/18/03	90			6/2/04	620	300	500
12/23/03	100	270	100	6/10/04	890	1690	
				6/18/04	1010	340	
				6/23/04		340	
				6/29/04	390	17400	1730



		Geometric Mean	Geometric Mean	Geometric Mean
Year	Month	Total Coliform	Fecal Coliform	Enterococcus
2003	October	61851	29066	15155
2003	November	7841	1184	7708
2003	December	586	239	2734
2003	January	855	257	3443
2003	February	3298	354	3916
2003	March	11186	3453	16005
2003	April	30989	15408	4689
2003	May	132127	50843	15739
2003	June	141477	14619	17879
2003	July	690	220	540
2003	August	7918	2538	1035
2003	September	1024	425	426
2003	October	221	131	26
2003	November	33972	11735	1348
2003	December	18383	785	407
2004	January	65588	18158	2638
2004	February	42132	27520	10095
2004	March	134189	76495	21114
2004	April	17410	5759	706
2004	May	2121	1390	727
2004	June	3524	1816	1004

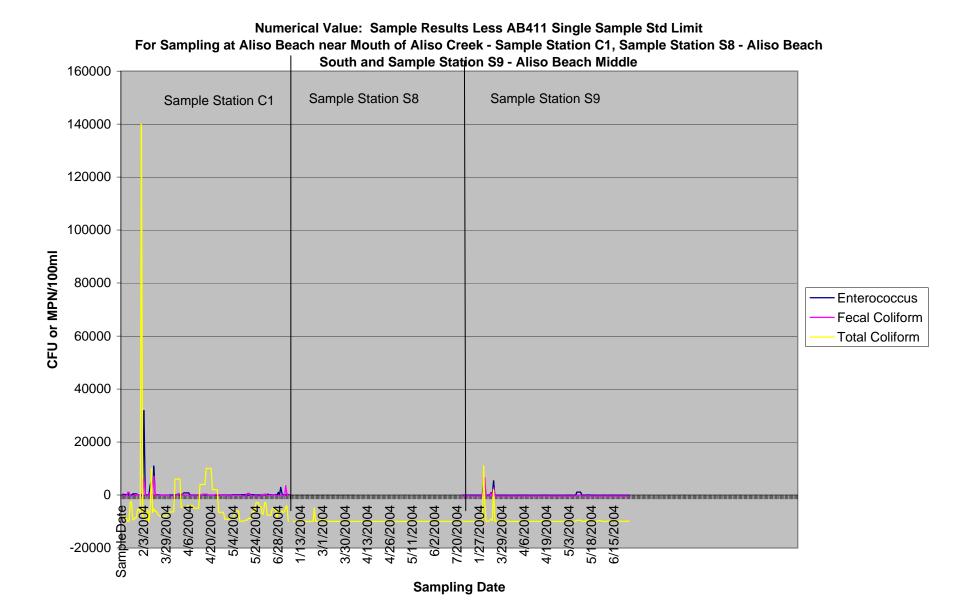
PERFORMANCE ANALYSIS OF THE CCS TREATMENT SYSTEM AS A BEST MANAGEMENT PRACTICES AT THE SPRINGDALE STORM DRAIN INSTALLATION

	J01P2	8 CCS Influe	ent	J01P28	CCS Ef	fluent	J01P	28 15' U/S	J01	J01 25	' U/S J0	1P28	J01 25	' D/S J0	1P28
Date and Time	ТС	FC	Ent	ТС	FC	Ent	ТС	FC	Ent	ТС	FC	Ent	ТС	FC	Ent
4/6/04 9:45							9200	3400	30	6500	1090	1110	9000	4300	970
4/9/04 7:40	>200,000	>200,000	96,000	1,550	240	20	126,000	16,200	1,220	13900	470	1260	6100	1900	1460
4/14/04 9:25	167,000	129,000	4,400	2,110	1,040	<10	9,100	4,600	160	1500	590	1130	1400	820	260
4/20/04 10:25	>200,000	>200,000	38,000	36,000	3,500	1,560	>200,000	>200,000	34,000	4300	2000	840	11600	3200	970
4/22/04 8:00	95,000	21,000	45,000	2,000	700	180	120,000	72,000	4,800	2900	2100	1060	1630	880	790
4/29/04 8:45	>200,000	129,000	15,700	190	30	50	110	10	130	3900	2400	1410	2600	1750	1050
5/5/04 8:35	>200,000	>200,000	34,000	110	20	<10	10,200	5,000	1,900	7200	1140	1940	17600	8400	1820
5/14/04 9:42	184,000	129,000	16,900	260	20	340	1,400	1,050	960	1360	150	530	3300	1200	840
5/19/04 8:50	116,000	75,000	18,600	30	10	10	1,350	1,040	500	1590	620	270	1510	560	350
5/26/04 9:05	>200,000	168,000	17,400	1,890	760	860	1,600	940	360	440	210	370	4500	1390	890
5/28/04 8:20	18,300	14,000	11,400	1,460	690	1,480	1,390	1,010	620	1540	860	410	5600	1270	1580
6/2/04 10:15	171,000	102,000	41,000	560	150	210	1,280	980	300	1430	450	620	1390	1200	500
6/10/04 10:04	192,000	33,000	71,000	5,800	1,520	1,340	4,300	1,240	1,690	3800	2200	890	2500	990	480
6/18/04 10:20	139,000	101,000	11,300	1,370	900	800	660	470	340	1160	770	1010	1230	410	1180
6/23/04 10:40	31,000	14,400	4,800	1,540	1,270	680	1,720	1,080	340	6300	1000	1380	640	300	470
6/29/04 10:00	129,000	69,000	49,000	12,700	3,300	4,600	87,000	32,000	17,400	980	310	390	2800	1380	1730
Qtrly. Mean	149,487	105,627	31,633	4,505	943	810	35,957	21,314	4,047	3,675	1,023	914	4,588	1,872	959
Qtrly. Geomean	127,030	77,413	22,454	1,160	317	213	5,474	2,575	796	2,524	765	794	3,075	1,300	831

Date	Time	Inlet FC	Outlet FC	Conf FC	U/S FC	D/S FC	Date	log Inlet	log Outlet	log Conf	log U/S	log D/S
04/06/04				3400	1090	4300	04/06/04			3.53	3.04	3.63
4/9/2004	7:40	>200,000	240	16,200	470	1,900	4/9/2004	5.30	2.38	4.21	2.67	3.28
4/14/2004	9:25	129,000	1,040	4,600	590	820	4/14/2004	5.11	3.02	3.66	2.77	2.91
4/20/2004	10:25	>200,000	3,500	>200,000	2,000	3,200	4/20/2004	5.30	3.54	5.30	3.30	3.51
4/22/2004	8:00	21,000	700	72,000	2,100	880	4/22/2004	4.32	2.85	4.86	3.32	2.94
4/29/2004	8:45	129,000	30	10	2,400	1,750	4/29/2004	5.11	1.48	1.00	3.38	3.24
5/5/2004	8:35	>200,000	20	5,000	1,140	8,400	5/5/2004	5.30	1.30	3.70	3.06	3.92
5/14/2004	9:42	129,000	20	1,050	150	1,200	5/14/2004	5.11	1.30	3.02	2.18	3.08
5/19/2004	8:50	75,000	10	1,040	620	560	5/19/2004	4.88	1.00	3.02	2.79	2.75
5/26/2004	9:05	168,000	760	940	210	1,390	5/26/2004	5.23	2.88	2.97	2.32	3.14
5/28/2004	8:20	14,000	690	1,010	860	1,270	5/28/2004	4.15	2.84	3.00	2.93	3.10
6/2/2004	10:15	102,000	150	980	450	1,200	6/2/2004	5.01	2.18	2.99	2.65	3.08
6/10/2004	10:04	33,000	1,520	1,240	2,200	990	6/10/2004	4.52	3.18	3.09	3.34	3.00
6/18/2004	10:20	101,000	900	470	770	410	6/18/2004	5.00	2.95	2.67	2.89	2.61
6/23/2004	10:40	14,400	1,270	1,080	1,000	300	6/23/2004	4.16	3.10	3.03	3.00	2.48
6/29/2004	10:00	69,000	3,300	32,000	310	1,380	6/29/2004	4.84	3.52	4.51	2.49	3.14

TABLE No. 5-2 Source Data Table 5

Date	log Inlet	log Outlet
4/9/2004	5.30	2.38
4/14/2004	5.11	3.02
4/20/2004	5.30	3.54
4/22/2004	4.32	2.85
4/29/2004	5.11	1.48
5/5/2004	5.30	1.30
5/14/2004	5.11	1.30
5/19/2004	4.88	1.00
5/26/2004	5.23	2.88
5/28/2004	4.15	2.84
6/2/2004	5.01	2.18
6/10/2004	4.52	3.18
6/18/2004	5.00	2.95
6/23/2004	4.16	3.10
6/29/2004	4.84	3.52


Anova: Single Factor	In vs. Out Yes					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	15	73.33222	4.888815	0.167444	77413	
Column 2	15	37.51975	2.501317	0.721436	317	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	42.75111	1	42.75111	96.19091	1.47501E-10	4.195982
Within Groups	12.44433	28	0.44444			
Total	55.19544	29				
Anover Cingle Foster						
Anova: Single Factor	Yes					
SUMMARY	Tes					
Groups	Count	Sum	Average	Variance		
Column 1	15	37.51975	2.501317	0.721436	317	
Column 2	15	51.0406	3.402706	1.077641	2528	
	10	01.0400	0.402700	1.077041	2320	
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	6.093777	1	6.093777	6.774338	0.014621555	4.195982
Within Groups	25.18708	28	0.899538			
•						
Total	31.28085	29				

Date	log Outlet	log Conf
4/9/2004	2.38	4.21
4/14/2004	3.02	3.66
4/20/2004	3.54	5.30
4/22/2004	2.85	4.86
4/29/2004	1.48	1.00
5/5/2004	1.30	3.70
5/14/2004	1.30	3.02
5/19/2004	1.00	3.02
5/26/2004	2.88	2.97
5/28/2004	2.84	3.00
6/2/2004	2.18	2.99
6/10/2004	3.18	3.09
6/18/2004	2.95	2.67
6/23/2004	3.10	3.03
6/29/2004	3.52	4.51

Appendix A - 11

Date	log U/S	log D/S
04/06/04	3.04	3.63
4/9/2004	2.67	3.28
4/14/2004	2.77	2.91
4/20/2004	3.30	3.51
4/22/2004	3.32	2.94
4/29/2004	3.38	3.24
5/5/2004	3.06	3.92
5/14/2004	2.18	3.08
5/19/2004	2.79	2.75
5/26/2004	2.32	3.14
5/28/2004	2.93	3.10
6/2/2004	2.65	3.08
6/10/2004	3.34	3.00
6/18/2004	2.89	2.61
6/23/2004	3.00	2.48
6/29/2004	2.49	3.14

Anova: Single Factor						
	No					
SUMMARY						
Groups	Count	Sum	Average	Variance		
Column 1	16	46.13943	2.883714	0.132135	765	
Column 2	16	49.82177	3.113861	0.13338	1300	
ANOVA Source of Variation	SS	df	MS	F	P-value	F crit
	-		<i>MS</i> 0.423739		<i>P-value</i> 0.084117992	<i>F crit</i> 4.17088
Source of Variation	SS	df		F		

APPENDIX B Excerpt of 13th Quarterly Report to the SDRWQCB Entire Report found on http://www.ocwatershed.com/watersheds/Aliso_reports_studies.asp

QUARTERLY REPORTING FORM FOR ALISO CREEK WATERSHED MS4 PERMITTEES

Group monitoring data to be posted electronically monthly. Assessment of group monitoring data to be submitted each annual report.

City/County County of Orange Period of Report Thirteenth Quarter, April 1 – June 30, 2004

I. EFFORTS TO IDENTIFY CAUSES OF EXCEEDANCES

- A) Results from monitoring within the drainage areas (local data for priority drains)
- i) Is local data provided as attachment or electronically?
- The County conducts the regional monitoring program on behalf of the Watershed Permittees.

ii) Was dry-weather data collected? Yes Was wet-weather data collected? No

iii) Assessment of local data, if applicable.

- An assessment of regional monitoring data for the past quarter is included in Appendix B of this report.
- Local monitoring is conducted to evaluate the effectiveness of the Clear Creek treatment plant at J01P28. The results from the past quarter are attached as **Table 1** and are discussed in **Section IIB** below.
- B) Results of JURMP facility inspections

i) Description of facilities inspected during the quarter (e.g., number, activity, land use, etc.)

The County's unincorporated areas within the Aliso Creek watershed do not contain drainage areas with urban land use or JURMP facilities.

ii) Findings (e.g., were suspected sources of bacteria observed? Were BMPs being implemented?) -N/A

iii) Which BMPs were required as a result of inspections?- N/A

C) Results from other inspections/investigations.

- N/A

II. EFFORTS TO DETERMINE BMP EFFECTIVENESS

A) Assessment of local data for BMP analyses (e.g., was local data able to assess BMP efforts?) The Clear Creek System (CCS) at J01P28 recommenced operation at the beginning of April 2004 after being shut down for the storm season. Bacteria indicator sampling also recommenced on the J01P28 discharge before it enters the system (influent), immediately after it is processed (effluent), and approximately 15 feet before it reaches Aliso Creek. Sampling at Aliso Creek also continued 25 feet upstream and downstream of its confluence with J01P28 as part of the Directive monitoring program, and these data were also used to evaluate the effectiveness of the Clear Creek System. These data are presented in **Table 1**. Results from BMP evaluation studies conducted during the quarter:

Results from the CCS effluent were compared to results from the CCS influent to determine if the treatment system was successful in reducing bacteria levels during the quarter. The fecal coliform geomean of the effluent, 317 CFU/100mL, was found to be statistically significantly lower (ANOVA α = 0.05) than the fecal coliform geomean of the influent, 77,414 CFU/100mL, with a 99.6% reduction.

The fecal coliform levels of the CCS effluent immediately after treatment were compared to fecal coliform levels of the effluent 15 feet before it meets Aliso Creek. The fecal coliform geomean of the effluent 15 feet before Aliso Creek, 2,575 CFU/100mL, was found to be statistically significantly higher (ANOVA $\alpha = 0.05$) than the effluent immediately after treatment, 317 CFU/100mL. The water enters a ponded area after it is released from the CCS, then flows for approximately 30 feet in a natural ditch into Aliso Creek. There are no inputs to the channel between the treatment plant and its confluence with Aliso Creek. This area is shaded. Regrowth may be a possible factor in the increase in bacteria levels between the two points.

Comparisons were conducted of fecal coliform levels in Aliso Creek upstream and downstream of its confluence with J01P28 to determine if there was an impact from J01P28. There was no significant difference (ANOVA α = 0.05) found between the quarterly geomean of levels upstream, 765 CFU/100mL, and the quarterly geomean of levels downstream, 1300 CFU/100mL. Thus there was no significant impact from the J01P28 input during the quarter, for the first spring quarter (April-June) in the four years of Directive monitoring.

C) Assessments from follow up inspections:

The County continues to operate and maintain the Clear Creek system and evaluate its performance. Due to over-discharge from the backwash system to Moulton Niguel Water District (MNWD), the CCS was reconfigured to return the discharge to the retention basin during an automatic backwash. This has resulted in elevated bacteria levels in the influent to the CCS (fecal coliform geomean of 77,414 CFU/100mL). The system is manually backwashed weekly to MNWD.

The retention basin upstream of the CCS was cleaned out during the quarter. The organo clay media in two of the five filtration tanks of the CCS were replaced at the end of July 2004. These practices should reduce the frequency of automatic backwashing and reduce the levels of bacteria in the influent.

III. DID THE PERMITTEE EVALUATE FEASIBILITY OF BMPS THIS QUARTER?

A) Description of results.

B)

- The new design of the Munger sand filter project is 90% complete. In this design, the discharge from J01P01 (Munger Drain) would be diverted into a sedimentation basin and pumped up to the sand filter located on top of the left bank. The treated discharge would then be released via gravity flow into Aliso Creek. Construction is expected to begin in October 2004.

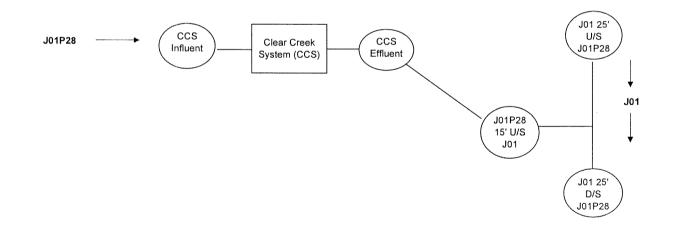
IV. FUTURE CONTROL ACTIONS

A) Number of planned JURMP inspections for next 6 months. – *N/A: See B.i. above.*

- B) Planned structural BMP implementation for next 6 months.
- The County will continue to evaluate the performance of the J01P28 CCS. Construction of the Munger stormdrain sand filter is expected to begin in October 2004.
- C) Planned non-structural BMP implementation for next 6 months
- The County will continue to implement the countywide Public Education program.
- D) Expectations for bacteria levels over next 6 months.
- Bacteriological concentration levels are expected to follow the seasonal pattern of increasing during the dry weather seasons (spring and summer) and decreasing during the wet weather seasons (fall and winter). However, it is expected that bacteria levels in each season will decrease from levels from the same season of the year before as the Watershed Permittees continue activities to abate or eliminate sources.
- E) Planned MS4 maintenance over next 6 months.
- Scheduled maintenance of MS4 facilities will continue in unincorporated areas of the County and in regional Flood Control District facilities.

V. CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am/aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.


Date 7-30-00 Signature Fron

Name Larry McKenney

Position Division Manager, Watershed and Coastal Resources

Table 1J01P28 Bacteria Monitoring

	J01P28 CCS Influent			J01P28 CCS Effluent			J01P28 15' U/S J01			J01 25' U/S J01P28			J01 25' D/S J01P28		
Date and Time	тс	FC	Ent	TC	FC	Ent	TC	FC	Ent	TC	FC	Ent	TC	FC	Ent
4/6/04 9:45							9200	3400	30	6500	1090	1110	9000	4300	970
4/9/04 7:40	>200,000	>200,000	96,000	1,550	240	20	126,000	16,200	1,220	13900	470	1260	6100	1900	1460
4/14/04 9:25	167,000	129,000	4,400	2,110	1,040	<10	9,100	4,600	160	1500	590	1130	1400	820	260
4/20/04 10:25	>200,000	>200,000	38,000	36,000	3,500	1,560	>200,000	>200,000	34,000	4300	2000	840	11600	3200	970
4/22/04 8:00	95,000	21,000	45,000	2,000	700	180	120,000	72,000	4,800	2900	2100	1060	1630	880	790
4/29/04 8:45	>200,000	129,000	15,700	190	30	50	110	10	130	3900	2400	1410	2600	1750	1050
5/5/04 8:35	>200,000	>200,000	34,000	110	20	<10	10,200	5,000	1,900	7200	1140	1940	17600	8400	1820
5/14/04 9:42	184,000	129,000	16,900	260	20	340	1,400	1,050	960	1360	150	530	3300	1200	840
5/19/04 8:50	116,000	75,000	18,600	30	10	10	1,350	1,040	500	1590	620	270	1510	560	350
5/26/04 9:05	>200,000	168,000	17,400	1,890	760	860	1,600	940	360	440	210	370	4500	1390	890
5/28/04 8:20	18,300	14,000	11,400	1,460	690	1,480	1,390	1,010	620	1540	860	410	5600	1270	1580
6/2/04 10:15	171,000	102,000	41,000	560	150	210	1,280	980	300	1430	450	620	1390	1200	500
6/10/04 10:04	192,000	33,000	71,000	5,800	1,520	1,340	4,300	1,240	1,690	3800	2200	890	2500	990	480
6/18/04 10:20	139,000	101,000	11,300	1,370	900	800	660	470	340	1160	770	1010	1230	410	1180
6/23/04 10:40	31,000	14,400	4,800	1,540	1,270	680	1,720	1,080	340	6300	1000	1380	640	300	470
6/29/04 10:00	129,000	69,000	49,000	12,700	3,300	4,600	87,000	32,000	17,400	980	310	390	2800	1380	1730
Qtrly. Mean	149,487	105,627	31,633	4,505	943	810	35,957	21,314	4,047	3,675	1,023	914	4,588	1,872	959
Qtrly. Geomean	127,030	77,413	22,454	1,160	317	213	5,474	2,575	796	2,524	765	794	3,075	1,300	831

