Essential Concepts in Atmospheric Deposition

February 9, 2006 State Air Resources Board & State Water Quality Control Board California Environmental Protection Agency

Jim Pederson

Atmospheric Processes Research Section Research Division, Air Resources Board

Pollutant Transport Pathways to Waterbodies

Framework for Assessing Deposition

Deposition Rate = Air Concentration x Deposition Velocity

> Air Concentration
> Deposition processes
> Measurement approaches
> Modeling deposition

Local and Regional Concentrations

Comparison of PM10, PM2.5, and Ultrafine PM

Human Hair (60 μm diameter)

Relative size of particles

Particle Size Distributions

0

Measured Particle Concentrations Downwind of a Highway

Particle Size by Source Type

Factors that Influence Air Concentrations

Proximity to sources > Wind speed and direction Barriers to vertical mixing Chemical reactions > Removal processes

Factors that Influence Dry Deposition

- > Size of molecule or particle
 - Molecular diffusion, Brownian motion
- Fine texture of surface
- > Affinity of surface and pollutant
 - "Stickiness", solubility, reactivity
- > Turbulent transport (vertical)
 - Wind speed
 - Roughness of landscape
 - Thermal stratification

Terminal velocity of large particles

• Particle density and diameter

Surface Conductance

Aerodynamic Conductance

Gravitational Settling

Deposition Velocity & Particle Size

Wet Deposition

> Wet deposition

- Rainout (soluble gases and fine particles)
- Washout interception by falling droplets
- > Highly variable spatially
- > Higher concentrations at beginning of storm
- > Wet deposition measurement
 - May not be proportional to precipitation volume
 - More reliably measured than dry deposition
 - Less affected by spurious turbulence (than dry)

Dry Deposition Measurement Methods

Simpler to deploy

Surrogate Surfaces
Mass Balance
Profile or Flux Gradient
Eddy Covariance or Accumulation
Dual Tracer Plume Depletion

More reliable results

Eddy Covariance

- Measure vertical velocity and concentrations of updraft and downdraft
- Sampling rate must be ~10 Hertz or faster
- Product of vertical velocity and concentration is flux
- Orient instruments to predominant wind direction
- Strict criteria for wind direction acceptance angles
 Uniform upwind surface

Surrogate Surfaces

Literature cautions (e.g., Hicks & Wesely, 2000)

- Easy to deploy
- Integrated sample for chemical analysis
- Relative measure
- OK for wet deposition and largest particles
- Increases turbulence
- May not mimic natural surfaces
- Easily contaminated

Modeling Deposition

Approach I

- Measure concentrations
- Model deposition velocities
- Uses meteorological data
- Unable to access source attribution

Approach II

- Estimate emissions
- Model concentrations
- Model deposition velocities
- Uses meteorological data
- Greater uncertainty in concentration estimates
- Source attribution possible
- Higher cost
- Longer schedule

Both require extensive measurements or data -- winds, surface roughness, thermal stability, surface texture, particle size distribution, surface affinity.

Conclusions and Summary

- Deposition rate depends on emissions, transport/mixing, surface type, pollutant solubility/reactivity & particle size
- Fine Particles (0-2.5 µm)
 - greatest health relevance (increased disease and premature death)
 - low deposition rates and mass contribution
 - long transport distances
- Coarse Particles (2.5-10 µm)
 - health relevant (increased disease and premature death)
 - moderate deposition rates and mass contribution
 - shorter transport distances
- Large Particles (>10 µm)
 - not health relevant (not inhalable) so relatively sparse data
 - high deposition rates and mass contribution
 - short transport distances
- Measuring dry deposition is complex
- Deposition estimates and models are uncertain

Thank You