Amended 2015

Report of Waste Discharge

CARLSBAD DESALINATION PROJECT

Submitted in Application for Renewal of NPDES CA0109223

September 2015

September 4, 2015

David Gibson
Executive Officer
California Regional Water Quality Control Board, San Diego Region
2375 Northside Drive, Suite 100
San Diego, CA 92108-2700

Dear Mr. Gibson:

Subject: Submittal of Amended Report of Waste Discharge

Renewal of NPDES CA0109223 Carlsbad Desalination Project (CDP)

Regional Water Quality Control Board (Regional Water Board) Order No. R9-2006-0065 (NPDES CA0109223) establishes requirements for the discharge of reverse osmosis (RO) concentrate and pretreatment backwash flows from the Carlsbad Desalination Project (CDP) into the Pacific Ocean via the Encina Power Station (EPS) effluent channel. In accordance with the requirements of the Order, Poseidon Resources (Channelside) LP (Poseidon) filed a Report of Waste Discharge on March 29, 2011 in application for renewal of NPDES CA0109223. The March 29, 2011 Report of Waste Discharge proposed no changes to the CDP operational conditions that were addressed within Order No. R9-2006-0065, which included:

- co-located operational conditions when EPS power generation activities generate sufficient cooling water flows for CDP intake and effluent blending needs, and
- temporary stand-alone conditions when EPS cooling water flows are insufficient, and EPS circulates non-cooling flows for the benefit of CDP.

The March 29, 2011 Report of Waste Discharge also proposed no changes in the discharge flows or effluent concentration standards established within Order No. R9-2006-0065.

Submittal of Amended Report of Waste Discharge. Attached in electronic format is an Amended Report of Waste Discharge submitted in application for renewal of NPDES CA0109223. The attached Amended Report of Waste Discharge amends project descriptions and requested permit provisions that were previously presented within Poseidon's March 29, 2011 Report of Waste Discharge. The Amended Report of Waste Discharge:

Order No. R9-2006-0065 does not establish any mass emission standards or performance goals for CDP operations. Almost all of the constituent mass within the CDP intake flow (except for a small quantity that remains within the RO product water) is returned back to the ocean.

- Requests that existing NPDES CA0109223 requirements governing co-located and temporary stand-alone CDP operations be continued.
- Addresses CDP compliance with May 2015 amendments to the *Water Quality Control Plan, Ocean Waters of California* (Ocean Plan) that establish requirements governing operations and discharges from seawater desalination facilities.
- Requests that the Regional Water Board establish requirements governing CDP operations under permanent stand-alone conditions (defined within the 2015 California Ocean Plan as an expanded project²). Permanent stand-alone operations would be implemented when the EPS once-through cooling discharge is permanently terminated.
- Requests that the Regional Water Board modify allowable effluent flow limits and discharge salinity limits that govern CDP operations under permanent stand-alone conditions, in accordance with 2015 Ocean Plan amendments.
- Presents an update on CDP construction, operational testing, and scheduled implementation.
- Describes the pretreatment process selected for implementation at CDP.
- Presents an update on California Environmental Quality Act (CEQA) compliance.
- Documents that existing entrainment mitigation measures implemented for the currently regulated co-located and temporary stand-alone operations are adequate to address proposed permanent CDP stand-alone operating conditions.

Report of Waste Discharge Components. To address these issues, this Amended Report of Waste Discharge is comprised of:

- EPA Form 1,
- EPA Form 2D³,
- supplemental figures and water quality tables,
- State of California Form 200,
- NPDES and Regional Board Contributions Disclosure Certifications, and
- technical appendices that address a variety of intake, discharge, and compliance issues.

No Requested Changes in Water Quality Standards for Currently Permitted Operations.

As part of this Amended Report of Waste Discharge, Poseidon does not request any changes in the effluent or receiving water standards established in Order No. R9-2006-0065 under either colocated or temporary stand-alone operations. Co-located or temporary stand-alone operations described in Order No. R9-2006-0065 remain valid, with only three minor clarifications:

² Section III.M.1.b(2) of the 2015 California Ocean plan establishes that seawater desalination projects that are transitioning from co-located operating conditions to permanent stand-alone conditions are defined as "Expanded Projects."

³ EPA Form 2D (new discharge sources) is presented in lieu of EPA Form 2C (existing discharge sources). While construction of CDP facilities is nearing completion and initial onsite CDP process testing has begun which involves the discharge of process test water, CDP full-scale plant production, the co-located CDP discharge, and potable water deliveries are not scheduled to begin until later in 2015.

- Order No. R9-2006-0065 allows for two potential pretreatment technologies: granular media filtration or microfiltration. CDP has been constructed using the granular media filtration method of pretreatment.
- Order No. R9-2006-0065 indicates that backwash from the granular media filtration units
 will be clarified (treated), blended with RO concentrate, and discharged to the EPS
 effluent channel. In addition to this ocean discharge method for treating and handling
 granular media filter backwash, CPD processes have been designed to also allow plant
 operators (at their discretion) to divert the backwash to the CDP headworks for
 retreatment.
- Order No. R9-2006-0065 indicates that under typical operations, 12 of the 13 RO banks will be in operation, and that all 13 RO banks will be simultaneously operated only in rare circumstances. As constructed, the CDP has 14 RO banks. Under actual operating conditions, CDP will produce approximately 56,000 acre-feet/year of potable supply but to allow for operational flexibility and accommodate the San Diego County Water Authority demand requirements, it is possible that all 14 RO banks will be continuously operated with production capacities varying from 48 million gallons per day (mgd) to 54 mgd in order to achieve the annual average daily production of 50 mgd.

In addition to these clarifications, Poseidon also requests that the renewed NPDES CA0109223:

- Acknowledge that Poseidon has completed all special study requirements of Section VI.C of Order No. R9-2006-0065 that were required prior to startup of the CDP.
- Acknowledge that biological performance standards established in the March 27, 2009 Minimization Plan (submitted pursuant to Section VI.C.2 of the Order) are no longer applicable, as (1) subsequent to the adoption of Order R9-2009-0038 establishing the biological performance standards, Poseidon agreed to increase the size of the Marine Life Mitigation Plan from 55.4 acres to 66.4 acres to ensure that the project related impingement impacts are fully mitigated, thereby eliminating the need for the biological performance standards, and (2) the destructive nature of the biological performance tests would result in adverse impacts to wetlands habitat and organisms.
- Eliminate as unnecessary the daily monitoring provisions established within footnote 15 of Table 4, Section IV.A of the Monitoring and Reporting Program for discharges of filtered seawater and RO product water, as monitoring to date has demonstrated no impacts to receiving water quality or toxicity from such filtered seawater and RO product water discharges.
- Authorize the discharge of dewatering flows of up to 1 MGD during the construction of the intake/discharge structures needed for transition of the CDP to stand-alone operations. Such dewatering flow would be commingled with the other discharges from the CDP.

Permanent Stand-Alone Operations. In addition for allowing continuation of the currently-permitted co-located and temporary operation modes, Poseidon requests that NPDES

CA0109223 be modified to allow for permanent stand-alone operations that would be implemented upon the permanent termination of EPS power operations. NRG Energy, the owner of EPS, has notified Poseidon of its intent to permanently terminate operation of EPS once-through cooling water pumps by June 1, 2017. When this occurs, the existing co-located operations or temporary stand-alone operations addressed within Order No. R9-2006-0065 will be terminated, and permanent stand-alone CDP operations will be initiated which will include:

- A dedicated CDP intake structure for supplying seawater to the RO pumps. The RO intake structure will feature 1 millimeter screens that are hydraulically designed to ensure that through-screen velocities are less than 0.5 foot per second.
- The discharge of RO concentrate (and granular media backwash when it is not being recirculated to the CDP headworks) to a discharge channel where it is blended with diverted lagoon water.
- A second dedicated CDP intake/discharge structure for supplying flow augmentation (blending) seawater to the discharge channel. This second intake/discharge structure features Ocean Plan-compliant 1-millimeter screens that are hydraulically designed to ensure that through-screen velocities are less than 0.5 foot per second. The structure also features fish-friendly, low-impact pumps for lifting diverting lagoon water into the discharge channel.
- The diversion of a small portion (up to 1 mgd) of the intake flow back into the lagoon via a short dedicated line to return any fish or organisms that are rinsed off the intake screens back into the lagoon.
- Implementing flow augmentation to maintain salinity concentrations within the existing EPS discharge pond⁴ (Monitoring Location M-002) at 42 parts per thousand (ppt) or less to ensure that (per new Ocean Plan requirements) receiving water salinity concentrations are less than 2 ppt above ambient at the edge of a 200-meter (656 feet) Brine Mixing Zone (BMZ) under virtually all hydrodynamic conditions.

Requested Increase in CDP Production Capacity. As an additional operational change under permanent stand-alone operations, Poseidon has determined that desalination facilities and equipment installed at the CDP site is capable of achieving a maximum potable water production capacity of 60 mgd. To reflect conditions under which such maximum potable water production is achieved, Poseidon requests that NPDES CA0109223 be amended to allow permanent standalone operations that result in:

- average annual potable water production of 60 mgd,
- average annual RO concentrate discharges of up to 60 mgd,

⁴ Through agreement with NRG Energy, CDP under permanent stand-alone operations will have permanent use of the existing EPS discharge pond (Monitoring Location M-002, as designated within Order No. R9-2006-0065) and the existing EPS effluent discharge channel for discharging blended RO concentrate to the Pacific Ocean.

- clarified (treated) granular media backwash flows of up to 7 mgd, with the option (at the discretion of plant operators) to recycle backwash flows into CDP pretreatment processes in lieu of discharging the clarified backwash flow to the ocean,
- intake and discharge structures screen rinsing and fish return flows of 1 mgd, and
- intake and discharge of bypassed lagoon water (flow augmentation) of up to 171 mgd when filter backwash flows are discharged to the ocean and up to 178 mgd when backwash flows are recycled back to the plant headworks.

The total CDP discharge under this maximum production scenario would be 239 mgd, regardless of whether clarified filter backwash flows are discharged to the ocean or recycled to the plant headworks. When clarified backwash is discharged to the ocean, the 239 mgd total CDP discharge flow would be comprised of 68 mgd of wastewater streams and 171 mgd of bypassed intake flow used to dilute the RO concentrate. When backwash is recycled back to the plant headworks, the 239 mgd CDP discharge flow would consist of 61 mgd of wastewater streams and 178 mgd of bypassed intake flow. Proposed flows would insure that receiving water salinities are maintained at less than 2 ppt above ambient at a discharge distance of 656 feet (200 meters) unless the Regional Water Board approves a facility-specific receiving water limit.

Table 1 (page 6) summarizes flows for proposed CDP permanent stand-alone operations. The table also presents a comparison with the currently permitted co-located and temporary stand-alone operations. As shown in Table 1, the 239 mgd CDP discharge flow is less than the combined CDP/EPS flows allowed under existing co-located and temporary stand-alone conditions.

California Ocean Plan Amendments. The State Water Resources Control Board on May 5, 2015 adopted revisions to the Ocean Plan that established requirements governing operations and ocean discharges from seawater desalination facilities. Key 2015 Ocean Plan amendments, in part:

- Require that receiving water salinity is not to exceed 2 ppt above ambient at the edge of the Brine Mixing Zone (BMZ) unless the Regional Board authorizes a facility-specific receiving water salinity limitation.
- Establish requirements under which Regional Water Boards may consider and approve a facility-specific receiving water salinity limitation of more than 2 ppt above ambient.
- Establish BMZ dimensions at a distance of 100 meters (328 feet) from the discharge point for new projects, and establish BMZ dimensions at a distance of 200 meters (656 feet) for expanded projects.⁵

⁵ Section III.M.3.d of the 2015 Ocean Plan establishes that desalination facility owners or operators may seek approval for a BMZ that extends 200 meters (656) feet from the discharge point, provided that (1) flow augmentation technology is proposed for ensuring compliance with receiving water salinity standards, (2) the facility has received an existing Water Code Section 13142.5 determination, and (3) the facility is 80 percent constructed by the effective date of the 2015 Ocean Plan. The CDP qualifies under these requirements for such a 200-meter BMZ.

Table 1 Summary of CDP Production and Discharge Flows Existing Permitted Discharge and Proposed Discharge

		(to be continued through coo	Proposed Revised Discharge (When EPS discharge is terminated)			
Parameter		Co-Lo Operating (Stand-Alone Conditions ⁷	Permanent Stand- Alone Operating Conditions ⁸
		Average Daily Flow	Maximum Average Daily Flow Daily Flow		Maximum Daily Flow	Annual Average Flow
Potable water production capacity		50 mgd	54 mgd	50 mgd	54 mgd	60 mgd
CDP Intake	Intake from EPS Effluent Channel	104 mgd	114 mgd	104 mgd	114 mgd	
Flows	Intake from CDP Lagoon Intake Structure					299 mgd
	Granular Media Filtration Backwash	4 mgd	6 mgd	4 mgd	6 mgd	7 mgd
	RO concentrate	50 mgd	54 mgd	50 mgd	54 mgd	60 mgd
Wastewater	Screen wash/fish return from CDP Intake	NA	NA	NA	NA	1 mgd
discharge components	CDP stand-alone intake flows bypassed ⁹	NA	NA	NA	NA	171 mgd ⁹
	Total CDP discharge flow	54 mgd	60 mgd	54 mgd	60 mgd	239 mgd
	Minimum EPS discharge flow required to achieve salinity standard ¹⁰	200 mgd ¹⁰	210 mgd ¹⁰	200 mgd ¹⁰	210 mgd ¹⁰	NA

- 6 Existing permitted conditions under Regional Water Board Order No. R9-2006-0065 (NPDES 0109223), as amended by Order No. R9-2009-0038. The NPDES Report of Waste Discharge submitted by Poseidon on March 29, 2011 proposed continuation of these requirements. The Amended 2015 Poseidon Report of Waste Discharge presented herein requests continuation of these existing NPDES requirements as long as the EPS once-through cooling water discharge remains in operation. Once EPS is permanently taken out of operation, the CDP would be operated in permanent stand-alone operating mode (per the far right hand column).
- For conditions under which EPS is discharging sufficient power plant cooling water flows to the EPS effluent channel (pursuant to EPS NPDES discharge permit requirements), Order No. R9-2006-0065 authorizes the CDP to discharge water into the EPS effluent channel (downstream from the co-located CDP intake point) where it is blended with sufficient flow from the EPS to meet the blended effluent salinity requirements prior to discharge to the EPS discharge pond (Monitoring Location M-002). For conditions under which EPS is not discharging sufficient power plant cooling water flows to meet the blended effluent salinity requirements prior to discharge, Order No. R9-2006-0065 authorizes the EPS to run the cooling water pumps under such "temporary stand-alone" conditions for CDP's benefit to meet the blended effluent salinity requirements prior to discharge to the EPS discharge pond (Monitoring Location M-002).
- 8 Conditions under which EPS operations are terminated and the CDP is operated in permanent stand-alone mode. Under such stand-alone conditions, CDP influent flows are withdrawn from the lagoon via a new stand-alone CDP intake system, a portion of the withdrawn flows are directed to CDP for desalination, and remaining withdrawn intake flows are blended back into the CDP RO concentrate and filter backwash streams prior to discharge to the final effluent pond (Monitoring Location M-002).
- 9 Intake water flows under stand-alone CDP operations that bypass CDP and are directed into the effluent channel for blending with CDP RO concentrate and filtration backwash (when backwash is not being recycled to CDP pretreatment). At the discretion of plant operators, however, filter backwash may instead be recycled to the plant headworks. When backwash flows are being recycled to the CDP pretreatment processes rather than discharged to the ocean, a commensurate increase in the bypass flow rate will be required to ensure that effluent pond salinities are maintained at 42 ppt or less and receiving water salinities 200 meters from the discharge point are less than 2 ppt above ambient. Total CDP intake flows would remain at 299 mgd and total CDP discharge flows would remain at 239 mgd regardless of whether filter backwash is discharged to the ocean or recycled back to the headworks. When filter backwash is recycled to the headworks, 178 mgd of the 299 mgd intake flow would be bypassed.
- Minimum EPS discharge flow (over and above CDP intake requirements) under EPS/CDP co-located operations required to ensure that the combined EPS and CDP discharges achieve a blended salinity equal to or lower than the average daily salinity standard. To the extent that backwash flows are being recycled to the front of the CDP pretreatment rather than discharge to the ocean (see footnote #9), the reduction in the discharge flow rate will require an equivalent increase in the minimum EPS discharge flow to replace initial dilution of the RO concentrate discharge that would have been accomplished through commingling the RO concentrate with the filter backwash water.

- Require use of the best available site, design, technology, and mitigation measures feasible to minimize the intake and mortality of all forms of marine life.
- Establish monitoring and reporting requirements for assessing receiving water, benthic communities, and sediments to ensure that brine discharges do not cause adverse effects to marine life outside of the brine mixing zone.

Proposed Brine Mixing Zone Dimensions. As documented with Technical Appendix A of this Amended Report of Waste Discharge, the CDP qualifies with applicable Ocean Plan Section III.M.3.d provisions that allow designation of a BMZ that extends 200-meters (656 feet) outward from the existing end of the effluent discharge channel jetty. In accordance with the 2015 Ocean Plan amendments, Poseidon requests that NPDES CA0109223 be revised to reflect such a 200-meter BMZ.

Potential for Facility-Specific Receiving Water Salinity Requirements. In lieu of the standard that receiving water salinity not exceed 2 ppt above ambient at the edge of the brine mixing zone, Section III.M.3.c of the Ocean Plan amendments establishes criteria under which the Regional Water Board may establish a facility-specific receiving water salinity standard. Toxicity studies conducted to date (see attached Technical Appendices G and H) suggest that a facility-specific receiving water salinity standard of 3 ppt above ambient at the edge of the brine mixing zone may be (1) consistent with Ocean Plan requirements, and (2) fully protective of marine life and beneficial uses. Accordingly, Poseidon requests that NPDES CA0109223 identify future research, studies and monitoring required to evaluate and identify a project-specific receiving water salinity limit for the CDP discharge.

Summary of Requested NPDES Permit Modifications. Table 2 (page 8) summarizes requested modifications within NPDES CA0109223 prior to the retirement of EPS. Table 3 (page 8) summarizes requested NPDES permit provisions governing proposed permanent standalone operating conditions after EPS retirement.

No changes are proposed in the existing performance concentration goals established within Table 10 of Order No. R9-2006-0065. It is proposed that these performance goals be maintained and apply to CDP operations under both (1) co-located and temporary stand-alone conditions, and (2) permanent stand-alone conditions. ¹¹

¹¹ Table 10 of Order No. R9-2006-0065 establishes effluent concentration performance goals for receiving water parameters regulated under Table 1 of the California Ocean Plan.

Table 2
Summary of Requested NPDES Permit Modifications
Co-located or Temporary Stand-Alone Operations Prior to EPS Retirement

Category	Proposed Revision in NPDES CA0109223
Changes in Water Quality Limits or Standards	None
	 Update the CDP project description to acknowledge that: Granular media filtration is to be used for RO pretreatment. Granular media filter backwash may be either discharged to the CDP headworks or to the effluent discharge channel. All 14 RO banks may be simultaneously operated with production rates varying from 48 mgd to 54 mgd, to achieve an annual average production of 50 mgd.
Other Proposed Changes	Acknowledge completion of Special Study Provisions (Section VI.C of Order No. R9-2006-0065).
	Acknowledge that the biological performance standards established within the March 27, 2009 CDP Minimization Plan are no longer applicable.
	Eliminate Footnote 15 of Table 4, Section VI.A of Monitoring and Reporting Program R9-2006-0065.

Table 3
Summary of Requested NPDES Permit Modifications
Permanent Stand-Alone Operations After EPS Retirement

Category	Proposed Revision in NPDES CA0109223							
Changes in Water	Establish an effluent salinity standard of 42 ppt at the existing effluent pond (Monitoring Location M-002) under permanent stand-alone operations.							
Quality Limits or Standards	Establish a BMZ dimension of 200 meters (656 feet) from the end of the effluent discharge channel jetty (per the 2015 Ocean Plan), and establish an receiving water salinity of standard of 2 ppt above ambient at the edge of the BMZ.							
Other Proposed Changes	 Reflect permanent stand-alone operations that involve: up to 60 mgd of potable water production. the discharge of up to 60 mgd of RO concentrate. the discharge of up to 7 mgd of treated (clarified) filter backwash (or at the discretion of plant operators, recycling the filter backwash to the CDP headworks). 1 mgd of intake fish return to the lagoon. 171 mgd of flow augmentation (blending) intake when clarified backwash is discharged to the ocean, and up to 178 mgd of flow augmentation when clarified backwash is recycled back to the CDP headworks. Identify future special studies or investigations (per 2015 Ocean Plan revisions) required for supporting the development of a facility-specific receiving water salinity standard. 							

Amended Report of Waste Discharge Technical Appendices. Table 4 (pages 9 and 10) identifies technical appendices presented in support of this Amended Report of Waste Discharge and summarizes key conclusions. As shown within the attached technical appendices:

- The Ocean Plan preferred technology of subsurface intakes is not feasible.
- The proposed CDP RO feedwater intake complies with Ocean Plan requirements for surface intake screen sizes (1 millimeter or less) and through-screen velocities (0.5 feet per second or less).
- CDP qualifies for designation of a BMZ that extends 200 meters (656 feet) beyond the end of the existing EPS discharge channel.
- The Ocean Plan preferred discharge technologies of commingling brine with wastewater is not available, and discharging to the ocean through multiport diffusers is not the best available technology feasible to minimize the intake and mortality of all forms of marine life.
- The use of high-velocity multi-port diffusers would result in a greater degree of individual and cumulative impacts on marine life than the proposed CDP use of flow augmentation (dilution) and the existing EPS effluent discharge channel.
- The proposed CDP intake will comply with Ocean Plan requirements for flow augmentation (dilution) discharge technology that (1) mandates use of low turbulence intakes and conveyance pipes, and (2) requires that conveyance facilities must minimize thermal, shear, and osmotic stress.
- The proposed discharge pond salinity limit of 42 ppt is consistent with (1) achieving compliance with the Ocean Plan receiving water salinity standard, (2) preventing acute and chronic toxicity beyond the brine mixing zone, and (3) ensuring protection of marine organisms.
- Under proposed permanent stand-alone operating conditions, minimum month initial
 dilutions achieved within the 200 meter (656 foot) BMZ are projected to be significantly
 in excess of the dilution required to achieve compliance with the Ocean Plan receiving
 water salinity standard.

Adequacy of Existing Mitigation. As noted within Poseidon's March 29, 2011 Report of Waste Discharge, Poseidon has complied with applicable requirements of Special Provision VI.C.2.e of Order No. R9-2006-0065 that required Poseidon to prepare and submit a Flow, Entrainment and Impingement Minimization Plan (Minimization Plan) that:

- assessed alternative sites, design features, and technology to minimize entrainment and impingement effects,
- quantified potential impingement and entrainment effects, and
- established a Marine Life Mitigation Plan (MLMP) to mitigate against potential impingement and entrainment effects.

Table 4
Summary of Amended Report of Waste Discharge Technical Appendices

Appendix	Study	Key Conclusions/Findings
Appendix A	Compliance with Ocean Plan Amendments	Proposed CDP operations are in compliance with all applicable provisions of the 2015 Ocean Plan, including requirements governing receiving water salinity; use of best available site, design, technology and mitigation; and consideration of preferred technologies. Subsurface intake alternatives were determined to be infeasible. The multiport diffuser is not the best technology measure feasible to minimize the intake and mortality of all forms of marine life.
Appendix B	Intake/Discharge Feasibility Report	Poseidon has considered the feasibility of all intake and discharge technologies as well as the Ocean Plan preferred technology requirements in developing an intake and discharge plan that provides the best combination of the best available site, design, technology, and mitigation feasible to minimize the intake and mortality of all forms of marine life.
Appendix C	Hydrodynamic Discharge Study	The existing discharge structure provides for significant additional dilution through a range of hydrodynamic conditions. Actual initial dilutions are projected to be in excess of the dilution credits assigned within Order No. R9-2006-0065.
Appendix D	Coastal Process Effects of Reduced Intake	Reduced intake flows under permanent stand-alone operations will not create any significant adverse impacts on either the lagoon environment or local beaches, and will result in environmental benefits resulting from the reduced frequency of required lagoon maintenance dredging.
Appendix E	Resolution No. R9-2011-0028	The Resolution approves selection of the Otay River Floodplain wetlands restoration site for mitigating entrainment and impingement effects that may be caused by operation of the CDP.
Appendix F	Water Circulation in Agua Hedionda Lagoon	The location of the fish return system takes into account lagoon mixing that occurs as a result of tidal actions and other hydrodynamic drivers.
Appendix G	Acute Toxicity Study	The proposed salinity discharge standard of 42 ppt within the effluent pond will ensure that the CDP discharge will comply with Ocean Plan acute toxicity standards.
Appendix H	Chronic Toxicity Study	The proposed salinity discharge standard of 42 ppt within the effluent pond will ensure that the CDP discharge will comply with Ocean Plan chronic toxicity standards.
Appendix I	Brine Dilution Salinity Tolerance	The proposed salinity discharge standard of 42 ppt within the effluent pond is consistent with Ocean Plan requirements to minimize osmotic shock and consistent with ensuring protection of marine species.
Appendix J	Fish-Friendly Pumping	The proposed fish-friendly flow augmentation pumps are consistent with the Ocean Plan requirements to minimize turbulence and shear stress on marine organisms.
Appendix K	Intake/Discharge Entrainment Analysis	Entrainment effect associated with the proposed CDP flow augmentation system are less than impacts that result from a multiport diffuser discharge.
Appendix L	CFD Modeling of Flow Augmentation System	Computational fluid dynamics (CFD) modeling using particle tracking was utilized to estimate exposure times of marine organisms in the CDP intake flow under permanent stand-alone conditions.
Appendix M	Antidegradation Analysis	Proposed CDP production rates, discharge flows, and effluent pond salinities are in keeping with Tier I antidegradation requirements for the protection of beneficial uses and maintenance of existing high quality receiving water.
Appendix N	Life Cycle Cost Analysis	Life cycle costs for CDP facilities demonstrate the economic superiority of surface intake with flow augmentation and surface discharge as the preferred intake/discharge alternative.

Table 4
Summary of Amended Report of Waste Discharge Technical Appendices

Appendix	Study Study	Key Conclusions/Findings						
Appendix O	NPDES Order No. R9-2009-0038	Order No. R9-2009-0038 makes certain findings pursuant to Water Code Section 13142.5(b), approves the March 27, 2009 Minimization Plan submitted by Poseidon, and modifies NPDES CA0109223 to acknowledge Minimization Plan approval and to establish performance standards for Minimization Plan implementation.						
Appendix P	Flow, Entrainment and Impingement Minimization Plan	The Minimization Plan implements Water Code 13142.5(b) requirements and establishes the best available site, design, technology, and mitigation feasible to minimize CDP intake effects associated operations under colocated and temporary stand-alone conditions.						
Appendix Q	Final EIR	CDP facilities and operations under co-located and temporary stand-alone conditions are in compliance with requirements of the California Environmental Quality Act (CEQA).						
Appendix R	California Coastal Commission Approval of Marine Life Mitigation Plan	California Coastal Commission findings and habitat restoration requirements for mitigating against potential CDP entrainment and impingement effects.						
Appendix S	Hydrogeologic Investigation SDG&E Encina Power Plant, Carlsbad, CA	Prior hydrogeologic assessment of EPS site has identified opportunities and limitations associated with developing onsite groundwater supplies.						
Appendix T	Drought Proofing Through Desalting, the SDG&E Approach	Prior SDG&E assessment has identified opportunities and limitations at the EPS site for developing power plant water supplies through desalination of pumped groundwater.						
Appendix U	Huntington Beach Desalination Project, ISTAP Phase I & II Reports	An Independent Scientific Technical Advisory Panel evaluated alternatives for subsurface intakes for the Huntington Beach Desalination Project.						
Appendix V	U.S. Fish and Wildlife Service MOU	The Memorandum of Understanding establishes responsibilities for Poseidon and U.S. Fish and Wild Life Service in restoring and enhancing habitat in the San Diego Bay National Wildlife Refuge.						
Appendix W	SDCWA 2010 Urban Water Management Plan and 2013 Facilities Master Plan Update	The San Diego County Water Authority (SDCWA) plans identify the importance of seawater desalination in meeting projected regional water supply demands and enhancing regional water supply reliability.						
Appendix X	Construction Cost Estimates for Intake/ Discharge Alternatives	Construction cost estimates for intake/discharge alternatives considered in developing a recommended intake and discharge plan that provides the best combination of best available site, design, technology, and mitigation feasible to minimize the intake and mortality of all forms of marine life.						
Appendix Y	Implementation Schedules for Intake/Discharge Alternatives	Permitting and construction schedules for intake/discharge alternatives considered in developing a recommended intake and discharge plan that provides the best combination of the best available site, design, technology, and mitigation feasible to minimize the intake and mortality of all forms of marine life.						
Appendix Z	Proposed Monitoring and Reporting Plan	The proposed CDP monitoring and reporting plan incorporates enhanced receiving water sediment, benthic, and water column monitoring in order to comply with monitoring provisions established within Section III.M.4 of the 2015 Ocean Plan amendments.						

Regional Water Board Order No. R9-2009-0038 (adopted on May 13, 2009) conditionally approved the Minimization Plan and MLMP, and directed Poseidon to develop a mitigation proposal. In accordance with the provisions of the MLMP, Poseidon on July 28, 2010 submitted a preliminary wetlands restoration plan to restore a 66 acre site in the Lower Otay River Floodplain.

Poseidon's proposed mitigation site and restoration plan were approved by the California Coastal Commission on February 9, 2011. Regional Water Board approval of the proposed site and restoration plan occurred on March 9, 2011 with the adoption of Regional Board Resolution No. R9-2011-0028. In accordance with the MLMP and site restoration plan, Poseidon has continued to coordinate with the California Coastal Commission, Regional Water Board, and other agencies in the development and implementation of the final wetlands restoration plan for the selected Otay River Valley Floodplain site.

As documented within this Amended Report of Waste Discharge, intake and entrainment effects associated with proposed CDP permanent stand-alone operations are projected to be less than those associated with currently permitted co-located or temporary stand-alone operations and impingement effects have been eliminated through installation of improved technology (per the 2015 Ocean Plan amendments). As a result, the previously approved mitigation is adequate for both (1) the existing exiting co-located and temporary stand-alone operations and flows, and (2) the proposed permanent stand-alone CDP operations and flows.

Conformance with Anti-Backsliding Provisions. As noted, when the CDP is operated under permanent stand-alone conditions, Poseidon requests that a 42 ppt (average day) effluent concentration standard be imposed at Monitoring Location M-002 (effluent pond). While the 42 ppt daily average limit for permanent stand-alone operations is less stringent than the current 40 ppt daily average limit established within Order No. R9-2006-0065 for co-located and temporary stand-alone operations, such a 42 ppt effluent limit is consistent with federal anti-backsliding provisions established within Section 402(o)(2) of the Clean Water Act (CWA), as

- no change is proposed in the existing salinity standards of 44 ppt (maximum hour) and 40 ppt (average day) that regulate co-located and temporary stand-alone operations,
- the 42 ppt effluent salinity standard is protective of beneficial uses and is consistent with achieving the Ocean Plan receiving water salinity standard at the edge of the BMZ,
- CDP permanent stand-alone facilities and operations proposed herein represent a material and substantial alteration of conditions addressed within co-located and temporary standalone conditions addressed within Order No. R9-2006-0065 (as amended), and

• CWA Section 402(o)(2) allows for establishing less stringent effluent standards where material and substantial alterations or additions to the permitted facility have occurred after NPDES permit issuance.

Antidegradation Compliance. As noted, this Amended Report of Waste Discharge does not request any changes in the effluent performance goals for constituents regulated under Table 1 of the Ocean Plan. Additionally, proposed CDP operations do not result in adding any pollutant mass emissions to the ocean, as the same mass of constituents taken out of the ocean are returned to the ocean. Further, while an increase in potable water production is proposed, the 239 mgd total CDP discharge flow proposed under permanent stand-alone operations (see Table 1 on page 6) is less than combined discharge flows currently allowed under Order No. R9-2006-0065 under co-located and temporary stand alone conditions. As a result, total discharge flows withdrawn from the lagoon and returned to the ocean would be reduced under proposed 60 mgd production operations in permanent stand-alone mode.

Compliance with the 2015 Ocean Plan receiving water salinity standard (see Appendix C) can be achieved under virtually all hydrodynamic conditions if the effluent pond salinity is 42 ppt or less. While the 42 ppt effluent pond concentration limit proposed by Poseidon for permanent stand-alone operating conditions is higher than the 40 ppt daily average limit established within Order No. R9-2006-0065 for co-located and temporary stand-alone operations, hydrodynamic modeling indicates that proposed discharge conditions (compared to the currently regulated discharge) will not result in any significant difference in:

- receiving water salinity concentrations, or
- the area of benthic habitat within the BMZ that is subjected to receiving water salinity concentrations in excess of 2 ppt above ambient.

As a result, proposed CDP operations will not result in a lessening of water quality compared to existing permitted discharge conditions. Proposed increases in CDP production rates, discharge flows, and effluent pond salinities are in keeping with Tier I antidegradation requirements for the protection of beneficial uses and the maintenance of existing high quality receiving water. Further, as documented within Appendix M, proposed CDP permanent stand-alone facilities and operations are consistent ensuring maximum benefit to the people of the State of California and are necessary to support important economic and social development in the San Diego Region. Existing and proposed CDP operations are in compliance with antidegradation provisions of State Water Board Resolution No. 68-16 and antidegradation regulations promulgated by EPA within Title 40, Section 131.12 of the Code of Federal Regulations (40 CFR 131.12).

¹² A small amount of the salinity within the intake flow remains within the RO product water. As a result, CDP operations result in slightly more salinity mass being withdrawn from the ocean than is returned in the CDP discharge. The proposed increase in CDP production rate to 60 mgd thus results in a slight reduction in net salinity mass emissions, compared to a 50 mgd production rate.

Proposed Monitoring and Reporting Program. Provision III.M.4 of the 2015 Ocean Plan amendments require desalination owners or operators to submit a Monitoring and Reporting Plan (MRP) to monitor effluent and receiving water quality and assess impacts to all forms of marine life. Poseidon's proposed MRP builds on effluent and receiving water monitoring requirements established within Order No. R9-2006-0065, and incorporates additional receiving water monitoring to address impacts under existing permitted co-located and temporary stand alone conditions and permanent stand-alone conditions. Additional monitoring proposed (see Appendix Z) includes water quality monitoring, sediment quality monitoring, and benthic biota monitoring at proposed new monitoring stations along the edge of the BMZ and beyond.

California Environmental Quality Act (CEQA) Compliance. Subsequent to the adoption of Order No. R9-2006-0065, minor modifications to the CDP site design were addressed in four Addenda to the original project Environmental Impact Report (EIR). Table 5 (page 15) summarizes CEQA compliance actions completed since the adoption of the Order. Poseidon has initiated a CEQA evaluation of CDP operations under permanent stand-alone conditions. CEQA certification of the CDP stand-alone operation is scheduled for completion in 2016 in advance of the Regional Water Board's consideration of adoption of the NPDES permit.

Submittal of Additional Information. This Amended Report of Waste Discharge is being submitted electronically in Portable Document Format (PDF) in accordance with Regional Water Board policies that encourage paperless submittal. After receipt of your review comments, we will (if requested) provide your office with updated copies of this Amended Report of Waste Discharge that incorporate any additional information or revisions requested by your staff.

Please contact me at (760) 655-3999 (email: <u>PMacLaggan@Poseidon1.com</u>) if you have any questions.

Thank you for your assistance.

Sincerely,

Peter M. MacLaggan Senior Vice President

Table 5
Summary of CEQA Compliance

Compliance Document	Scope	Lead Agency	Certification Date
Environmental Impact Report (EIR)	Construction and operation of CDP under co-located and temporary stand-alone operations. Construction and operation of associated product water conveyance facilities.	City of Carlsbad	June 13, 2006
First EIR Addendum	Relocation and resizing of select treatment processes and conveyance facilities within the EPS site.	City of Carlsbad	August 15, 2009
Second EIR Addendum	Minor modifications to potable water conveyance facilities.	San Diego County Water Authority	November 29, 2012
Third EIR Addendum	Minor modifications to potable water conveyance facilities.	San Diego County Water Authority	August 26, 2013
Fourth EIR Addendum	Minor modifications to potable water conveyance facilities.	San Diego County Water Authority	July 9, 2014
Supplemental EIR (proposed)	Permanent stand-alone operation of CDP, and associated stand-alone facilities and operations, including CDP stand-alone intake structures and onsite conveyance modifications. Minor increase in plant capacity to capture improved efficiencies in reverse osmosis membranes.	San Diego County Water Authority	2016 (projected)

Amended Report of Waste Discharge

Renewal of NPDES CA0109223
Carlsbad Desalination Project

Table of Contents

Letter of Transmittal

EPA Form 1

EPA Form 2D

EPA Form 2D - Effluent Characteristics

EPA Form 2D - Figures and Graphics

State of California Form 200

Certification Statements

Technical Appendices:

Appendix A	Compliance with California Ocean Plan Amendments
Appendix B	Intake Discharge Feasibility Report
Appendix C	Hydrodynamic Discharge Study
Appendix D	Coastal Process Effects on Reduced Intake
Appendix E	Order No. R9-2011-0028 (Approval of Wetlands Restoration Site)
Appendix F	Water Circulation in Agua Hedionda Lagoon - Fish Return
Appendix G	Acute Toxicity Study
Appendix H	Chronic Toxicity Study
Appendix I	Brine Dilution Salinity Tolerance
Appendix J	Fish-Friendly Pumping
Appendix K	Intake Discharge Entrainment Analysis
Appendix L	CFD Modeling of Flow Augmentation System
Appendix M	Antidegradation Analysis
Appendix N	Life Cycle Cost Analysis
Appendix O	Order No. R9-2009-0038 (Water Code 13142.5(b) Determination)
Appendix P	Flow, Entrainment, Impingement Minimization Plan
Appendix Q	Final EIR
Appendix R	California Coastal Commission Approval of Marine Life Mitigation Plan
Appendix S	Hydrogeologic Investigation, SDG&E Encina Power Plant
Appendix T	Drought Proofing through Desalting, the SDG&E Approach
Appendix U	Huntington Beach Desalination Project, ISTAP Phase I & II Reports
Appendix V	U.S. Fish & Wildlife Service Memorandum of Understanding
Appendix W	SDCWA 2010 Urban Water Management Plan and
	2013 Facilities Master Plan Update
Appendix X	Construction Cost Estimates for Intake/Discharge Alternatives
Appendix Y	Implementation Schedules for Intake/Discharge Alternatives
Appendix Z	Proposed Monitoring and Reporting Plan

List of Abbreviations

BMZ brine mixing zone

BOD biochemical oxygen demand

CDP Poseidon Resources Carlsbad Desalination Project

CEQA California Environmental Quality Act

CFD computational fluid dynamics (computer model)

COD chemical oxygen demand

Commission California Coastal Commission
EIR Environmental Impact Report

EPA United States Environmental Protection Agency

EPS Encina Power Station

ISTAP Independent Scientific Advisory Panel

lb/day pounds per day
ml/l milliliters per liter
mgd million gallons per day
mg/l milligrams per liter

ML Minimum Level (sample detection reporting level)

MLMP Marine Life Mitigation Plan
MRP Monitoring and Reporting Plan
NA not applicable or not available

NPDES National Pollutant Discharge Elimination System

NTU Nephelometric Turbidity Units

Ocean Plan Water Quality Control Plan, Ocean Waters of California

ppt parts per thousand

RWQCB California Regional Water Quality Control Board, San Diego Region

RO reverse osmosis

SDCWA San Diego County Water Authority

SDG&E San Diego Gas & Electric

SWRCB State of California Water Resources Control Board

TOC total organic carbon
TSS total suspended solids
TUa acute toxicity units
TUc chronic toxicity units

µg/l micrograms per liter

USFWS Unites States Fish and Wildlife Service

ZID zone of initial dilution

EPA Form 1

Renewal of NPDES CA0109223
Carlsbad Desalination Project

	pe in the unshad						Form Approved. OMB No. 2040-0086.					
FORM		U.S. ENVIRO	I. EPA I.D. NUMBER									
1	\$EPA				FORMATermits Prog		F S				T/A	С
GENERAL		(Read the "	1 2			13	14	D 15				
	I	GENERAL								ISTRUCTIONS		
LABEL	ITEMS		If a preprinted label has been p designated space. Review the inform is incorrect cross through it and ent									
I. EPA I.D.	NUMBER						is inco	rect, cross through it and ent	ter the	correct	data in	the
								riate fill-in area below. Also, if ent (the area to the left of				
III. FACILITY NAME PLEASE PLACE LABEL IN THIS						SPACE	informa	ation that should appear), plea	se prov	∕ide it in	the pro	per
V. FACILITY MAILING							fill-in area(s) below. If the label is complete and correct, you need not complete Items I, III, V, and VI (except VI-B which					
ADDRESS								e completed regardless). Con en provided. Refer to the ins				
VI FACILITY	/ LOCATION		descrip	tions and for the legal author								
1	LOCATION						data is	collected.				
II. POLLUTANT	II. POLLUTANT CHARACTERISTICS											
submit this form	n and the suppler o" to each questio	mental form listed in the pare	enthesis	s follov forms bold-f	wing the quest. You may a faced terms	y permit application forms to t estion. Mark "X" in the box in answer "no" if your activity is 6.	the third	d column if the supplemer	ital for	m is a	ttached n C of	d. If
		YES	Mark NO	FORM				YES	Mark NO	"X" FORM	M	
	SPECIFIC QU	IESTIONS			ATTACHED	SPECIFIC	C QUES	TIONS			ATTACH	
		ned treatment works which ers of the U.S.? (FORM 2A)	16	17	18	B. Does or will this facility include a concentrated aquatic animal product discharge to waters of the	animal	I feeding operation or cility which results in a	19	20	21	
C Is this a fac	ility which curren	tly results in discharges to	+	\ /		D. Is this a proposed facility		·		i		_
C. Is this a facility which currently results in discharges to waters of the U.S. other than those described in A or B above? (FORM 2C) See Note Below			22	23	24	or B above) which will res the U.S.? (FORM 2D)			25	26	27	
F Does or w	ill this facility to	reat store or dispose of	- 22	23	24	F. Do you or will you inje	ect at t	his facility industrial or	25	20	21	
E. Does or will this facility treat, store, or dispose of hazardous wastes? (FORM 3)				X			pelow the lowermost stratum			\times		
			containing, within one									
0. Danis		- f11t	28	29	30	underground sources of d			31	32	33	
		s facility any produced water brought to the surface in					H. Do you or will you inject at this facility fluids for spec processes such as mining of sulfur by the Frasch proce			1		
or other fluids which are brought to the surface in connection with conventional oil or natural gas production				\times		solution mining of minera	rals, in situ combustion of fossil ermal energy? (FORM 4)			\times		
	inject fluids used for enhanced recovery of oil or natural gas, or inject fluids for storage of liquid hydrocarbons?					fuel, or recovery of geother						
(FORM 4)	ct liuius for stora	ige of liquid hydrocarbons?		34 35 36				07				
	, a proposed stat	ionary source which is one	34	35	36	L le thie facility a propose	od stati	onary source which is	37	38	39	
		ionary source which is one listed in the instructions and		\vee			sed stationary source which is ndustrial categories listed in the					
which will p	otentially emit 10	00 tons per year of any air		\wedge		instructions and which will potentially emit 250 tons p				X		
	ulated under the 0 d in an attainment	Clean Air Act and may affect	40	41	42		regulated under the Clean Air Act located in an attainment area ?		43	44	45	
or be located		arca: (i Ortivi o)				(FORM 5)		1				
III. NAME OF	FACILITY											
C			$\overline{}$	Ι, Ι,		I I I I I I I I I I I I I I I I I I I						
1 SKIP			Caris	sbad	Desalin	ation Project						
15 16 - 29 30									69			
IV. FACILITY	CONTACT											
		A. NAME & TITLE (last	, first,	& title)			B. F	PHONE (area code & no.)				
2	1 1 1 1 1	Peter M. MacLaggar	ı Vic	e Pr	esident		1 1	(760) 655-3999				
15 16		- otor iii iiiaozaggar	.,			45			55			
	ILING ADDRESS	·				40	-10	40 01 02				
V.I ACIETT WA	ILINO ADDICESS	A. STREET OR P	O BC	NY.								
c		A. STREET OR F	.O. BO	''	111							
3		5780 Fleet Stree	∍t, Sı	uite 1	140							
15 16						45						
		B. CITY OR TOWN				C. STATE	D. ZIP	CODE				
С		Carlsbad				T T CA	920	108				
4 40		Odrisbad										
VI. FACILITY	LOCATION				•	40 41 42 47		51				
VI. FACILITY		DEET DOUTE NO OB OTHE	D CDI	CIFIC	IDENTIFIE	D						
С	A. 51R	REET, ROUTE NO. OR OTHE	T	TIT	IDENTIFIE	<u> </u>						
5		4590 Carlsbad	Bou	levai	rd							
15 16						45						
		B. COUNT	/ NAM	E								
		San Di	edo	1								
46		Jan Di	- ugu				70					
		C. CITY OR TOWN			·	D. STATE	E. ZIP	CODE F. COUNTY CO	DDE (i	f know	n)	
С		Carlsbad				T T CA	920					
6		Cansbau				CA	920	INA	L			

CONTINUED FROM THE FRONT		
VII. SIC CODES (4-digit, in order of priority) A. FIRST		B. SECOND
7 4941 (specify) Water Supply	7 (specify)	b. decono
15 10 - 19 C, THIRD	15 16 - 19	D. FOURTH
(specify)	c (specify)	B.100KIII
VIII. OPERATOR INFORMATION	15 10 - tb	
A. NAME Poseidon Resources		B, Is the name listed in Item VIII-A also the owner? ☑ YES □ NO
15 16 C. STATUS OF OPERATOR (Enter the appropriate let	ter into the answer har: if "Other" specify)	D. PHONE (area code & no.)
F = FEDERAL S = STATE P = PRIVATE M = PUBLIC (other than federal or state) O = OTHER (specify)	P (specify)	A (760) 655-3999
E. STREET OR P.O. BOX 5780 Fleet Street, Suite 140		
F. CITY OR TOWN C	55 G. STATE CA	H. ZIP CODE IX. INDIAN LAND 1 1 1 1 Is the facility located on Indian lands? 92008 YES ZINO
X. EXISTING ENVIRONMENTAL PERMITS		
9 N CA0109223 9 P	SD (Air Emissions from Proposed Sources)	
15 16 17 18 B. UIC (Underground Injection of Fluids)	E. OTHE	R (specify)
9 U NA 9	NA NA	(specify)
15 16 17 18 C. RCRA (Hazardous Wastes) 30 15 88 17 18	E, OTHE	R (specify)
9 R NA 9		(specify)
15 10 37 18 30 15 16 17 18 XI MAP		30
Attach to this application a topographic map of the area extending to at location of each of its existing and proposed intake and discharge structure.	res, each of its hazardous waste treatmer	nt, storage, or disposal facilities, and each well where it
injects fluids underground. Include all springs, rivers, and other surface wat XII. NATURE OF BUSINESS (provide a brief description)	ter bodies in the map area. See instruction	s for precise requirements.
All, WHO KE OF BOOMEGO provide a unior descriptiony		
Bassidas Bassussa (Charasalaida) I Bis Na		ul-b-d Decelipation Ducinet
Poseidon Resources (Channelside) LP is the	owner and operator of the Ca	risbad Desalination Project.
XIII. CERTIFICATION (see instructions)		
I certify under penalty of law that I have personally examined and am fam inquiry of those persons immediately responsible for obtaining the informa am aware that there are significant penalties for submitting false information	ation contained in the application, I believe	e that the information is true, accurate, and complete, I
A. NAME & OFFICIAL TITLE (type or print) Peter M. MacLaggan	NATURE	C, DATE SIGNED
Vice President	et Me Jass	a 9/4/5
COMMENTS FOR OFFICIAL USE ONLY		A LANGE TO SERVICE OF THE SERVICE OF
C		201111111

EPA Form 2D

Renewal of NPDES CA0109223
Carlsbad Desalination Project

		pp: 0.000 0.000 1.00 20 10 00001, pp: 0.00 0.000 0.000
	EPA I.D. NUMBER (copy from Item 1 of Form 1)	
Please print or type in the unshaded areas only		

Form	PEPA	areas only	Appli	cati				nd New Disc Pischarge P	chargers rocess Wastewater
I. Outfall Loca	tion								
For each outfa	II, list the latitude	and longitud	le of its loc	ation t	o the	nearest 15 s	econds an	1	e receiving water.
Outfall Numb (<i>list</i>)		Latitude			Longitude		Receiving Wate	er (name)	
(1131)	Deg.	Min.	Sec.	De	eg.	Min.	Sec.		
001	33	8	17	11	117 20 22			Pacific Ocean v	via effluent pond & surface discharge channel
_	Date (When do youter production on	•	-			ial treatment	process te	esting discharges	initiated in spring 2015.
	rces of Pollution						•	0 0	
A. For each wastewate	outfall, provide a	a description and storm	n of: (1) A	ll oper	ation	s contributing	g wastewa contribute	ater to the efflue d by each operat	nt, including process wastewater, sanitary ion; and (3) The treatment received by the
Outfall 1. Operations Contributing Flow 2. Average Flow 3. Treatment Number (List) (Include Units) (Description or List codes from Table 21)							3. Treatment (Description or List codes from Table 2D-1)		
	1	Encina Pov	ver Station						en EPS augments cooling water flows
001	Concentrated se osmosis desalir		reverse		50 mgd average day 54 mgd maximum day				4-A*
001	Filter backwash desalination	from revers	e osmosis		4 mgd average day 6 mgd maximum day				1-U; 4-A*
Proposed D	•	D	! -	 					
Permanent	Concentrated se			'S coc	oling	water discha	arge is pe	rmanently termi	nated
001	osmosis desalir	nation				60 mg	d average	annual	4-A*
001	Filter backwash desalination				7 mgd annual average				1-U; 4-A*
001	Screen wash ar intake structure				1 mgd annual average			verage	4-A*
001	Bypassed seaw structure	rater from CL	DP intake		171 mgd annual average				4-A*
					Neter	A	dia da a con dia co		
						less than the val that backwash fle headworks rathe	ues shown ab ows are recyc er than discha	rged to the ocean, the	* Discharge to the ocean via an effluent pond and effluent surface discharge channel
						reduction in disc equivalent increa dilution provided intoks and disch	ase in bypass by the filter b	flow to replace ackwash. Total	
							oackwash recy	der either mode of ycling to headworks uld be identical.	

effluent, and by showing	e drawing showing the I treatment units labeled average flows between ties), provide a pictoria	d to correspond to the intakes, operations, t	more de	etailed descriptions in tunits, and outfalls.	n Item III-A. Construction If a water balance of	ct a water balance or cannot be determined	the line drawing d (e.g., for certain
· —	torm runoff, leaks, or sp S (complete the followi		charges of	described in Items III		seasonal?	
	C (complete are renew)	ng table)	1. Fred		0.1.11)	2. Flow	
	Outfall Number			b. Months	a. Maximum Daily b. Maximum		
		Per We (specify as		Per Year (specify average)	Flow Rate (in mgd)	Total Volume (specify with units)	c. Duration (in days)
	NA	NA		NA	NA	NA	NA
IV. Production							
production leve	pplicable production-ba l, not design), expressed duction is likely to vary,	ed in the terms and ur	nits used	d in the applicable e	ffluent guideline or I		
Year	A. Quantity Per Day	B. Units Of Measure			eration, Product, Mat	erial, etc. (specify)	
NA	NA	NA			Not applica	able	

CONTINUED FROM THE FRONT	EPA I.D. NUMI	BER (copy from Item 1	of Form 1)	Outfall Number
				001
V. Effluent Characteristics				
A and B: These items require you to repo outfalls. Each part of this item addresses part. Data for each outfall should be on a	a different set of po	llutants and should b	pe completed in a	ne pollutants to be discharged from each of your accordance with the specific instructions for that sary.
for all pollutants in Group A, for all outfalls	ovide an estimated d s, must be submitted which you believe v	unless waived by th	e permitting auth	n pollutants and the source of information. Data ority. For all outfalls, data for pollutants in Group by an effluent limitations guideline or NSPS or
1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)		4. Source (see instructions)
See attached tables				See attached tables

EPA Form 3510-2D (Rev. 8-90) Page 3 of 5 CONTINUE ON REVERSE

CONTINUED FROM THE FRONT	EPA I.D. NUMBER (copy from Item 1 of Form 1)	
discharged from any outfall. For every pollu	Illutants listed in Table 2D-3 of the instructions whit tant you list, briefly describe the reasons you believe	ch you know or have reason to believe will be it will be present.
1. Pollutant	2. Reason for Discharge	
1. Pollutant See attached tables	2. Reason for Discharge See attach	ed tables
VI. Engineering Report on Wastewater Treatn	nent	
A. If there is any technical evaluation conce	erning your wastewater treatment, including engine	ering reports or pilot plant studies, check the
appropriate box below. Report Available	☐ No Report	
	*	accompliant this production facility with respect to
production processes, wastewater constitue	ting plant(s) which, to the best of your knowledge rents, or wastewater treatments.	esembles this production facility with respect to
Name	Location	
Tampa Bay Seawater Desalination Plant (25 mgd operational)	13041 Wyandotte Road Hillsboro County Gibsonton, FL 33534	
Poseidon Huntington Beach Desalination Facility (50 mgd proposed)	21730 Newland Avenue Orange County Huntington Beach, CA 92647	

EPA I.D. NUMBER (copy from Item 1 of Form

VII. Other Information (Optional)		
Use the space below to expand upon an considered in establishing permit limitation	y of the above questions or to bring to the attention of the re ons for the proposed facility. Attach additional sheets if nece	eviewer any other information you feel should be essary.
	See attached technical information and reports	s
VIII. CERTIFICATION		
	ocument and all attachments were prepared under my direc	tion or supervision in accordance with a system
designed to assure that qualified person	mel properly gather and evaluate the information submitted	I. Based on my inquiry of the person or persons
who manage the system, or those per	rsons directly responsible for gathering the information, the difference of the complete. I am aware that there are significant penalties	he information submitted is, to the best of my as for submitting false information, including the
possibility of fine and imprisonment for k		
A. Name and Official Title (type or print)		B. Phone No.
Peter M. N	AacLaggan, Vice President	(760) 655-3999
C. Signature		D. Date Signed
l tot May	Jelle -	9/4/15
EPA Form 3510-2D (Rev. 8-90)	UNIT	PAGE 5 of 5
	UU	

EPA Form 2D Effluent Characteristics

Renewal of NPDES CA0109223
Carlsbad Desalination Project

Summary of Production and Discharge Flows Existing Permitted Discharge and Proposed Discharge Carlsbad Desalination Project (CDP)

Parameter		(to be continued through co	Proposed Revised Discharge (EPS permanently taken out of operation)			
		Co-Located Operating Conditions ²		Temporary Stand-Alone Operating Conditions ²		Stand-Alone Operating Conditions ³
		Average Daily Flow	Maximum Daily Flow	Average Daily Flow	Maximum Daily Flow	Annual Average
Potable water p	roduction capacity	50 mgd	54 mgd	50 mgd	54 mgd	60 mgd
CDP Intake	Intake from EPS Effluent Channel	104 mgd	114 mgd	104 mgd	114 mgd	
Flows Intake from CDP Lagoon Intake Structure						299 mgd
	Granular Media Filtration Backwash	4 mgd	6 mgd	4 mgd	6 mgd	7 mgd
	RO concentrate	50 mgd	54 mgd	50 mgd	54 mgd	60 mgd
Wastewater	Screen wash and fish return from CDP Lagoon Intake Structure	NA	NA	NA	NA	1 mgd
discharge components	CDP stand-alone intake flows bypassed ⁴	NA	NA	NA	NA	171 mgd ⁴
	Total CDP discharge flow	54 mgd	60 mgd	54 mgd	60 mgd	239 mgd
	Minimum EPS discharge flow (in excess of CDP intake) required to achieve salinity standard ⁵	200 mgd ⁵	210 mgd ⁵	200 mgd ⁵	210 mgd ⁵	NA

- Existing permitted conditions under Regional Water Board Order No. R9-2006-0065 (NPDES 0109223), as amended by Order No. R9-2009-0038. The NPDES Report of Waste Discharge submitted by Poseidon on March 29, 2011 proposed continuation of these requirements. The revised 2015 Poseidon Report of Waste Discharge presented herein requests continuation of these existing NPDES requirements as long as the EPS once-through cooling water discharge remains in operation. Once EPS is permanently taken out of operation, the CDP would be operated in permanent stand-alone operating mode (per the far right hand column).
- 2 For conditions under which EPS is discharging sufficient power plant cooling water flows to the EPS effluent channel (pursuant to EPS NPDES discharge permit requirements), Order No. R9-2006-0065 authorizes the CDP to discharge water into the EPS effluent channel (downstream from the co-located CDP intake point) where it is blended with sufficient flow from the EPS to meet the blended effluent salinity requirements prior to discharge to the EPS discharge pond (Monitoring Location M-002). For conditions under which EPS is not discharging sufficient power plant cooling water flows to meet the blended effluent salinity requirements prior to discharge, Order No. R9-2006-0065 authorizes the EPS to run the cooling water pumps under such "temporary stand-alone" conditions for CDP's benefit to meet the blended effluent salinity requirements prior to discharge to the EPS discharge pond (Monitoring Location M-002).
- 3 Conditions under which EPS operations are terminated and the CDP is operated in permanent stand-alone mode. Under such stand-alone conditions, CDP influent flows are withdrawn from the lagoon via a new stand-alone CDP intake system, a portion of the withdrawn flows are directed to CDP for desalination, and remaining withdrawn intake flows are blended back into the CDP RO concentrate and filter backwash streams prior to discharge to the final effluent pond (Monitoring Location M-002).
- 4 Intake water flows under stand-alone CDP operations that bypass CDP and are directed into the effluent channel for blending with CDP RO concentrate and filtration backwash (when backwash is not being recycled to CDP pretreatment). At the discretion of plant operators, however, filter backwash may instead be recycled to the plant headworks. When backwash flows are being recycled to the CDP pretreatment processes rather than discharged to the ocean, a commensurate increase in the bypass flow rate will be required to ensure that effluent pond salinities are maintained at 42 ppt or less and receiving water salinities 200 meters from the discharge point are less than 2 ppt above ambient. Total CDP intake flows would remain at 299 mgd and total CDP discharge flows would remain at 239 mgd regardless of whether filter backwash is discharged to the ocean or recycled back to the headworks. When filter backwash is recycled to the headworks, 178 mgd of the 299 mgd intake flow would be bypassed. When filter backwash is discharged to the ocean, 171 mgd of the 299 mgd intake flow would be bypassed.
- Minimum EPS discharge flow (over and above CDP intake requirements) under EPS/CDP co-located operations required to ensure that the combined EPS and CDP discharges achieve a blended salinity equal to or lower than the average daily salinity standard. To the extent that backwash flows are being recycled to the front of the CDP pretreatment rather than discharge to the ocean (see footnote #4), the reduction in the discharge flow rate will require an equivalent increase in the minimum EPS discharge flow to replace initial dilution of the RO concentrate discharge that would have been accomplished through commingling the RO concentrate with the filter backwash water.

Group A Parameters General Physical/Chemical Constituents

Group A Parameters ¹		Analytical	CDP Wa Strea		Combined CDP Effluent Discharge into EPS Cooling Water Channel		
EPA Form 2D	Units	Method	Treated Backwash Concentration ^{3,4}	RO Concentrate Concentration ³	Concentration ⁵	Mass Emission ⁶ (lbs/day)	
Ammonia (as N)	mg/l	SM 4500 NH3	< 0.1	0.12	< 0.12	< 67	
BOD (biochemical oxygen demand)	mg/l	SM 5210 B	< 10	< 10	< 10	< 5600	
COD (chemical oxygen demand)	mg/l	EPA 410.4	76	< 100	< 98	< 55000	
Temperature (winter)	deg. C		21.77	21.77	21.77		
Temperature (summer)	deg. C		24.77	24.77	24.7 ⁷		
TOC (total organic carbon)	mg/l	SM 5310 C	< 1.3	0.7	< 0.8	< 450	
TSS (Total suspended solids)	mg/l	EPA 160.2	33	< 5	< 8	< 4500	
Oil and Grease	mg/l	EPA 1664	< 5	< 5	< 5	< 2800	
Surfactants	mg/l	SM 5540 C	0.07	0.08	0.08	< 44	
рН	pH Units	SM 4500 H B	7.21	7.49	7.5		

- 1 Group A parameters, as classified by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd.
- Based on EPS cooling water effluent temperatures for November-April (winter) and May-October (summer) which will be characteristic of CDP operations under co-located conditions. Under permanent stand-alone conditions, CDP intake flow would be unheated and at the ambient temperature of the lagoon waters.

Group B Parameters Mineral/Radioactivity/Physical/Metals

Group B Parameters ¹	v Analytical			nstewater ams ²	Combined CDP Effluent Discharge into EPS Cooling Water Channel	
EPA Form 2D	Units	Method	Treated Backwash Concentration ^{3,4}	RO Concentrate Concentration ³	Concentration ⁵	Mass Emission ⁶ (lbs/day)
Boron	mg/l	EPA 200.8	4.1	7.6	7.2	4,000
Bromide	mg/l	EPA 300.0	65	120	114	64,000
Chlorine residual, total	mg/l		< 0.1	< 0.1	< 0.02 ⁶	< 11
Color	Units	EPA 110.2	3.0	3.0	3.0	
Coliforms, fecal ⁷	#/100 ml	SM 9221 E	20^{7}	< 27	< 47	
Fluoride	mg/l	EPA 300.0	< 0.5	2.1	< 2	< 1100
Nitrate (as N)	mg/l	EPA 300.0	< 0.5	< 0.5	< 0.5	< 280
Oil and Grease	mg/l	EPA 1664	< 5	< 5	< 5	< 2800
Phosphorus (as P) Total	mg/l	EPA 365.3	0.44	< 0.05	< 0.1	< 50
Radioactivity - gross alpha	pcuries/l	SM 7110C	6.2	3.4	3.7	
Radioactivity - gross beta	pcuries/l	EPA 900.0	175	765	700	
Radioactivity - radium 226	pcuries/l	EPA 903.0	0.192	0.128	0.13	
Radioactivity - radium 228	pcuries/l	Ra-05	< 0.1	0.123	< 0.12	
Sulfate	mg/l	EPA 300.0	2600	5300	5000	2,800,000
Sulfide	mg/l	SM 4500 S2 D	< 0.1	< 0.1	< 0.1	< 56
Sulfite	mg/l	SM 4500 SO3	< 2	< 2	< 2	< 1100
Surfactants	mg/l	SM 5540 C	0.07	0.08	< 0.08	< 0.04
Aluminum	μg/l	EPA 200.8	850	24	110	62
Barium	μg/l	EPA 200.8	8.4	15	14	8.0
Cobalt	μg/l	EPA 200.8	1.6	2.8	< 2.7	< 1.5
Iron	μg/l	EPA 200.7	8700	< 40	< 950	< 530
Magnesium	μg/l	EPA 200.7	1500	3100	2900	1700
Manganese	μg/l	EPA 200.8	14	17	17	9.3
Molybdenum	μg/l	EPA 200.8	12	28	26	15
Tin	μg/l	EPA 200.8	< 2.5	< 2.5	< 2.5	< 1.4
Titanium	μg/l	EPA 200.7	< 10	< 10	< 10	< 5.6

- 1 Group B parameters, as classified by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd. Values rounded to two significant figures. The listed mass emissions represent mass within intake lagoon water that is recirculated back into the ocean. CDP desalination operations do not result in any of the above constituents being added to the discharge stream.
- 7 Chlorine residual was not detected in the CDP pilot plant testing at a detection limit of 0.1 mg/l.
- Soliform concentrations based on sample results from the February 2003 sampling of CDP pilot plant operations. The February 2003 sampling occurred during non-storm conditions, and is representative of dry weather operations. To characterize lagoon water quality during storm events, Poseidon Resources collected hourly wet-weather coliform samples during two storm events in December 2002 and one storm in January 2005. The wet weather sampling demonstrated that temporarily high coliform concentrations can exist in Agua Hedionda Lagoon during storm periods. CDP treatment facilities are designed to remove all coliform from the influent flow. For the granular media filtration scenario, much of the removed coliform will be concentrated in backwash water solids that are removed from the waste stream discharged back into the EPS channel. As a result, the total number (mass emissions) of coliform organisms in the CDP effluent discharged back into the EPS effluent channel are projected to be less than the total number of coliform organisms in the CDP influent under both normal (dry-weather) and storm conditions.

Group B1 and B2 Parameters Toxic Metals/Cyanide and TCDD

Group B1 & B2 Parameters ¹ EPA Form 2D	Analytical Method	CDP Wa Strea		Combined CDP Effluent Discharge into EPS Cooling Water Channel		
		Treated Backwash Concentration ^{3,4} (µg/l)	RO Concentrate Concentration ³ (µg/l)	Concentration ⁵ (µg/I)	Mass Emission ⁶ (lbs/day)	
Antimony	EPA 200.8	< 5	< 5	< 5.0	< 2.8	
Arsenic	EPA 200.8	10	< 2	< 2.8	< 1.6	
Beryllium	EPA 200.8	< 0.3	< 0.3	< 0.3	< 0.15	
Cadmium	EPA 200.8	< 0.5	< 0.5	< 0.5	< 0.28	
Chromium, total	EPA 200.8	< 4	< 4	< 4	< 2.2	
Copper	EPA 200.8	< 2	< 2	< 2	< 1.1	
Lead	EPA 200.8	< 1	< 1	< 1	< 0.56	
Mercury	EPA 245.1	< 0.2	< 0.2	< 0.2	< 0.11	
Nickel	EPA 200.8	14	19	19	10	
Selenium	EPA 200.8 Hy	< 0.4	< 0.4	< 0.4	< 0.22	
Silver	EPA 200.8	< 0.5	< 0.5	< 0.5	< 0.28	
Thallium	EPA 200.8	< 0.5	< 2.5	< 2.3	< 1.3	
Zinc	EPA 200.8	11	< 10	< 10	< 5.6	
Cyanide	SM 4500 CN E	< 50	< 50	< 50	< 28	
2,3,7,8-TCDD		< 0.001	< 0.001	< 0.001	< 0.00056	

- 1 Group B1 parameters (toxic metals and cyanide) and Group B2 parameters (TCDD), as classified by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd. Values rounded to two significant figures. The listed mass emissions represent mass within intake lagoon water that is recirculated back into the ocean. CDP desalination operations do not result in any discernible concentrations of the above constituents being added to the discharge stream.

Group B3 Parameters Volatile Organic Compounds

Group B3 Parameters ¹			astewater ams ²		Effluent Discharge g Water Channel
Volatile Organic Compounds EPA Form 2D	Analytical Method	Treated Backwash Concentration ^{3,4} (µg/I)	RO Concentrate Concentration³ (μg/l)	Concentration ⁵ (μg/l)	Mass Emission ⁶ (lbs/day)
2-Butanone	524.2	< 5	< 5	< 5	< 2.8
Bromoform	524.2	< 0.5	1.4	< 1.3	< 0.73
All other Group B3 volatile compounds	524.2	Not Detected ⁷	Not Detected ⁷	Not Detected ⁷	Not Applicable

- 1 Group B3 volatile organic compounds, as classified by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd. Values rounded to two significant figures. The listed mass emissions represent mass within intake lagoon water that is recirculated back into the ocean. CDP desalination operations do not result in any of the above constituents being added to the discharge stream.
- 7 All other Group 3 volatile organic compounds were not detected at a Method 524.2 detection limit of 5 μg/l.

Group B3 Parameters Acid Extractable Compounds

Group B3 Parameters ¹ Acid Extractable Compounds EPA Form 2D	Analytical Method		astewater eams ²	Combined CDP Effluent Discharge into EPS Cooling Water Channel	
		Treated Backwash Concentration ^{3,4} (µg/I)	RO Concentrate Concentration³ (μg/l)	Concentration ⁵ (μg/l)	Mass Emission ⁶ (lbs/day)
2-Chlorophenol	EPA 625	< 5	< 5	< 5	< 2.8
4-Chloro-3-methylphenol	EPA 625	< 5	< 5	< 5	< 2.8
2,4-Dichlorophenol	EPA 625	< 5	< 5	< 5	< 2.8
2,4-Dimethylphenol	EPA 625	< 5	< 5	< 5	< 2.8
2,4-Dinitrophenol	EPA 625	< 20	< 20	< 20	< 11
2-Methyl-4,6-dinitrophenol	EPA 625	< 10	< 10	< 10	< 5.6
2-Nitrophenol	EPA 625	< 10	< 10	< 10	< 5.6
4-Nitrophenol	EPA 625	< 10	< 10	< 10	< 5.6
Pentachlorophenol	EPA 625	< 5	< 5	< 5	< 2.8
Phenol	EPA 625	< 5	< 5	< 5	< 2.8
2,4,6-Trichlorophenol	EPA 625	< 10	< 10	< 10	< 5.6

- I Group B3 acid extractable compounds, as classified by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd. Values rounded to two significant figures. The listed mass emissions represent mass within intake lagoon water that is recirculated back into the ocean. CDP desalination operations do not result in any of the above constituents being added to the discharge stream.

Group B3 Parameters Base Neutral Compounds

Group B3 Parameters ¹		CDP Wa Stre		Combined CDP Effluent Discharge into EPS Cooling Water Channel	
Group B3 Parameters' Base Neutral Compounds EPA Form 2D	Analytical Method	Treated Backwash Concentration ^{3,4} (µg/l)	RO Concentrate Concentration ³ (µg/l)	Concentration ⁵ (μg/I)	Mass Emission ⁶ (lbs/day)
Acenaphthene	EPA 625	< 5	< 5	< 5	< 2.8
Acenaphthylene	EPA 625	< 5	< 5	< 5	< 2.8
Anthracene	EPA 625	< 5	< 5	< 5	< 2.8
Benzidine	EPA 625	< 5	< 5	< 5	< 2.8
Benzo(a)anthracene	EPA 625	< 5	< 5	< 5	< 2.8
Benzo(a)pyrene	EPA 625	< 5	< 5	< 5	< 2.8
Benzo(b)fluoranthene	EPA 625	< 5	< 5	< 5	< 2.8
Benzo(g,h,i)perylene	EPA 625	< 5	< 5	< 5	< 2.8
Benzo(k)fluoranthene	EPA 625	< 5	< 5	< 5	< 2.8
Bis (2-chloroethoxy)methane	EPA 625	< 5	< 5	< 5	< 2.8
Bis(2-chloroethyl)ether	EPA 625	< 5	< 5	< 5	< 2.8
Bis(2-chloroisopropyl)ether	EPA 625	< 5	< 5	< 5	< 2.8
Bis(2-ethylhexyl)phthalate	EPA 625	< 5	< 5	< 5	< 2.8
4-Bromophenyl phenyl ether	EPA 625	< 5	< 5	< 5	< 2.8
Butyl benzyl phthalate	EPA 625	< 5	< 5	< 5	< 2.8
2-Chloronaphthalene	EPA 625	< 5	< 5	< 5	< 2.8
4-Chlorophenyl phenyl ether	EPA 625	< 5	< 5	< 5	< 2.8
Chrysene	EPA 625	< 5	< 5	< 5	< 2.8
Dibenzo(a,h)anthracene	EPA 625	< 5	< 5	< 5	< 2.8
1,2-Dichlorobenzene	EPA 625	< 5	< 5	< 5	< 2.8
1,3-Dichlorobenzene	EPA 625	< 5	< 5	< 5	< 2.8
1,4-Dichlorobenzene	EPA 625	< 5	< 5	< 5	< 2.8
3,3'-Dichlorobenzidine	EPA 625	< 5	< 5	< 5	< 2.8
Diethyl phthalate	EPA 625	< 5	< 5	< 5	< 2.8
Dimethyl phthalate	EPA 625	< 5	< 5	< 5	< 2.8
Di-n-butyl phthalate	EPA 625	< 5	< 5	< 5	< 2.8
2,4-Dinitrotoluene	EPA 625	< 5	< 5	< 5	< 2.8
2,6-Dinitrotoluene	EPA 625	< 5	< 5	< 5	< 2.8
Di-n-octyl phthalate	EPA 625	< 5	< 5	< 5	< 2.8
1,2-Diphenyl hydrazine	EPA 625	< 5	< 5	< 5	< 2.8
Fluoranthene	EPA 625	< 5	< 5	< 5	< 2.8
Fluorene	EPA 625	< 5	< 5	< 5	< 2.8

NOTE: Table for Group B3 base neutral compounds is continued on the following page.

Group B3 Parameters Base Neutral Compounds (continued)

Group B3 Parameters ¹ Base Neutral Compounds EPA Form 2D	Analytical Method	CDP Wastewater Streams ²		Combined CDP Effluent Discharge into EPS Cooling Water Channel	
		Treated Backwash Concentration ^{3,4} (µg/I)	RO Concentrate Concentration ³ (µg/l)	Concentration ⁵ (μg/l)	Mass Emission ⁶ (lbs/day)
Hexachlorobenzene	EPA 508	< 0.5	< 0.5	< 0.5	< 0.28
Hexachlorobutadiene	EPA 625	< 5	< 5	< 5	< 2.8
Hexachlorocyclopentadiene	EPA 508	< 1	< 1	< 1	< 0.56
Hexachloroethane	EPA 625	< 5	< 5	< 5	< 2.8
Indeno(1,2,3-c)pyrene	EPA 625	< 5	< 5	< 5	< 2.8
Isophorone	EPA 625	< 5	< 5	< 5	< 2.8
Naphthalene	EPA 625	< 5	< 5	< 5	< 2.8
Nitrobenzene	EPA 625	< 5	< 5	< 5	< 2.8
N-nitrosodi-n-propylamine	EPA 625	< 5	< 5	< 5	< 2.8
N-Nitrosodimethylamine	EPA 625	< 5	< 5	< 5	< 2.8
N-Nitrosodiphenylamine	EPA 625	< 5	< 5	< 5	< 2.8
Phenanthrene	EPA 625	< 5	< 5	< 5	< 2.8
Pyrene	EPA 625	< 5	< 5	< 5	< 2.8
1,2,4-Trichlorobenzene	EPA 625	< 5	< 5	< 5	< 2.8

- 1 Group B3 base neutral compounds, as classified by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd. Values rounded to two significant figures. The listed mass emissions represent mass within intake lagoon water that is recirculated back into the ocean. CDP desalination operations do not result in any of the above constituents being added to the discharge stream.

Group B3 Parameters Chlorinated Pesticides

Group B3 Parameters ¹ Chlorinated Pesticides EPA Form 2D	Analytical Method	CDP Wastewater Streams ²		Combined CDP Effluent Discharge into EPS Cooling Water Channel	
		Treated Backwash Concentration ^{3,4} (µg/l)	RO Concentrate Concentration ³ (μg/l)	Concentration ⁵ (µg/l)	Mass Emission ⁶ (lbs/day)
Aldrin	EPA 508	< 0.075	< 0.075	< 0.075	< 0.042
BHC-alpha	EPA 508	< 0.05	< 0.05	< 0.05	< 0.028
BHC-beta	EPA 508	< 0.05	< 0.05	< 0.05	< 0.028
BHC-delta	EPA 508	< 0.5	< 0.5	< 0.5	< 0.28
BHC-gamma (Lindane)	EPA 508	< 0.2	< 0.2	< 0.2	< 0.11
Chlordane-alpha	EPA 508	< 0.1	< 0.1	< 0.1	< 0.056
Chlordane-gamma	EPA 508	< 0.1	< 0.1	< 0.1	< 0.056
2,4'-DDD	EPA 508	< 1	< 1	< 1	< 0.056
2,4'-DDE	EPA 508	< 1	< 1	< 1	< 0.056
2,4'-DDT	EPA 508	< 1	< 1	< 1	< 0.056
4,4'-DDD	EPA 508	< 0.02	< 0.02	< 0.02	< 0.011
4,4'-DDE	EPA 508	< 0.01	< 0.01	< 0.01	< 0.011
4,4'-DDT	EPA 508	< 0.02	< 0.02	< 0.02	< 0.011
Dieldrin	EPA 508	< 0.02	< 0.02	< 0.02	< 0.011
Endosulfan I	EPA 508	< 0.02	< 0.02	< 0.02	< 0.011
Endosulfan II	EPA 508	< 0.01	< 0.01	< 0.01	< 0.011
Endosulfan sulfate	EPA 508	< 0.05	< 0.05	< 0.05	< 0.028
Endrin	EPA 508	< 0.1	< 0.1	< 0.1	< 0.056
Endrin aldehyde	EPA 508	< 0.05	< 0.05	< 0.05	< 0.028
Heptachlor	EPA 508	< 0.01	< 0.01	< 0.01	< 0.011
Heptachlor epoxide	EPA 508	< 0.01	< 0.01	< 0.01	< 0.011
Polychlorinated biphenyls (PCBs)	EPA 508	< 0.1	< 0.1	< 0.1	< 0.056
Toxaphene	EPA 508	< 1	< 1	< 1	< 0.56

- 1 Group B3 chlorinated pesticides, as classified by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd. The listed mass emissions represent mass within intake lagoon water that is recirculated back into the ocean. CDP desalination operations do not result in any of the above constituents being added to the discharge stream.

Group B3 Parameters Other Compounds

Group B1 & B2 Parameters ¹ Other Hazardous Compounds EPA Form 2D	Analytical Method	CDP Wastewater Streams ²		Combined CDP Effluent Discharge into EPS Cooling Water Channel	
		Treated Backwash Concentration ^{3,4} (µg/l)	RO Concentrate Concentration ³ (µg/l)	Concentration ⁵ (μg/l)	Mass Emission ⁶ (lbs/day)
Benzo(e)pyrene ⁷	EPA 625	< 5	< 5	< 5	< 2.8
Biphenyl hydrazine ⁷	EPA 625	< 5	< 5	< 5	< 2.8
2,6-Dimethylnaphthalene ⁷	EPA 625	< 5	< 5	< 5	< 2.8
Methoxychlor ⁸	EPA 508	< 10	< 10	< 10	< 5.6
1-Methylnaphthalene ⁷	EPA 625	< 5	< 5	< 5	< 2.8
2-Methylnaphthalene ⁷	EPA 625	< 5	< 5	< 5	< 2.8
1-Methylphenanthrene ⁷	EPA 625	< 5	< 5	< 5	< 2.8
Mirex ⁸	EPA 508	< 0.02	< 0.02	< 0.02	< 0.011
Perylene ⁷	EPA 625	< 5	< 5	< 5	< 2.8
2,3,5-Trimethylnaphthalene ⁷	EPA 625	< 5	< 5	< 5	< 2.8
trans-Nonachlor ⁸	EPA 508	< 0.01	< 0.01	< 0.01	< 0.056
Tributyltin		< 0.005	< 0.005	< 0.005	< 0.0028

- 1 Group B3 parameters classified as "other hazardous compounds" by EPA NPDES Application Form 2D. A "<x" value indicates that the parameter was not detected at a Minimum Level (ML) concentration of "x".
- 2 CDP wastewater streams under co-located, temporary stand-alone, or permanent stand-alone operations. Once EPS facilities are permanently shut down, CDP permanent stand-alone operations would also include discharges of 1 mgd of screen wash and fish return flow from the CDP lagoon intake structure and 171 mgd of diverted lagoon water that will be used for diluting salinity from the RO concentrate. Blending flow diverted from the CDP lagoon intake structure will have the same water quality as the intake lagoon water.
- 3 Data from February 12, 2003 sampling of CDP pilot plant waste streams for treated filter backwash and RO concentrate.
- 4 Concentration of treated backwash from granular media filtration pretreatment.
- 5 Concentration of combined filter backwash and RO concentrate discharges.
- 6 Mass emission for CDP wastewater flows (e.g. RO concentrate and filter backwash) are computed on the basis of a RO concentrate flow of 60 mgd and a clarified filter backwash flow of 7 mgd. The listed mass emissions represent mass within intake lagoon water that is recirculated back into the ocean. CDP desalination operations do not result in any of the above constituents being added to the discharge stream.
- 7 Base neutral compound not listed within the EPA Form 2D Group B3 base neutral compounds.
- 8 Pesticide not listed within the EPA Form 2D Group B3 pesticides.

EPA Form 2D Figures and Graphics

Renewal of NPDES CA0109223
Carlsbad Desalination Project

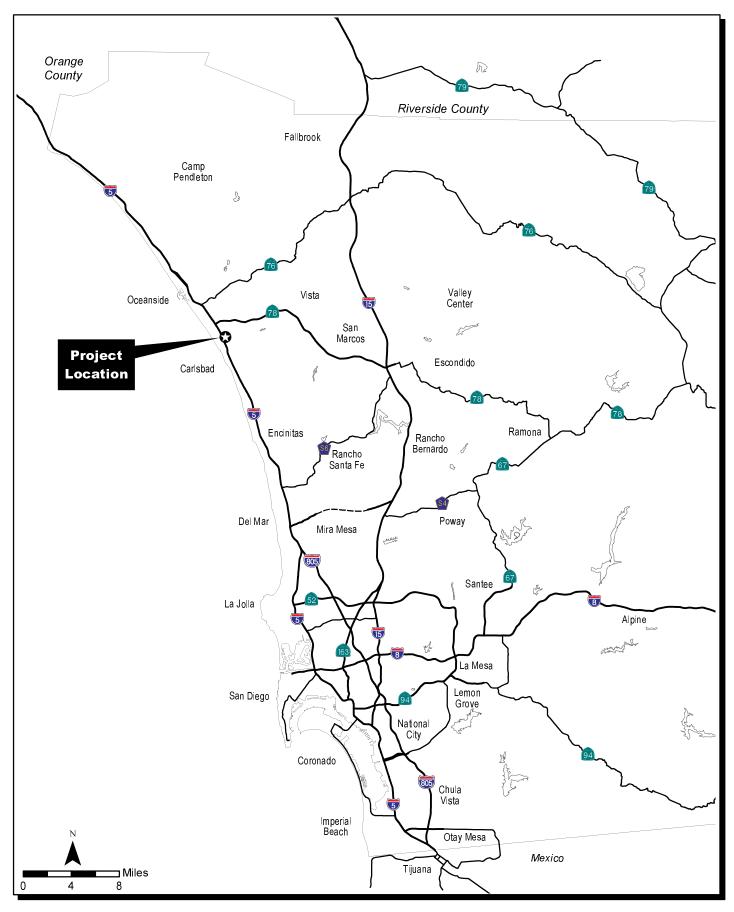
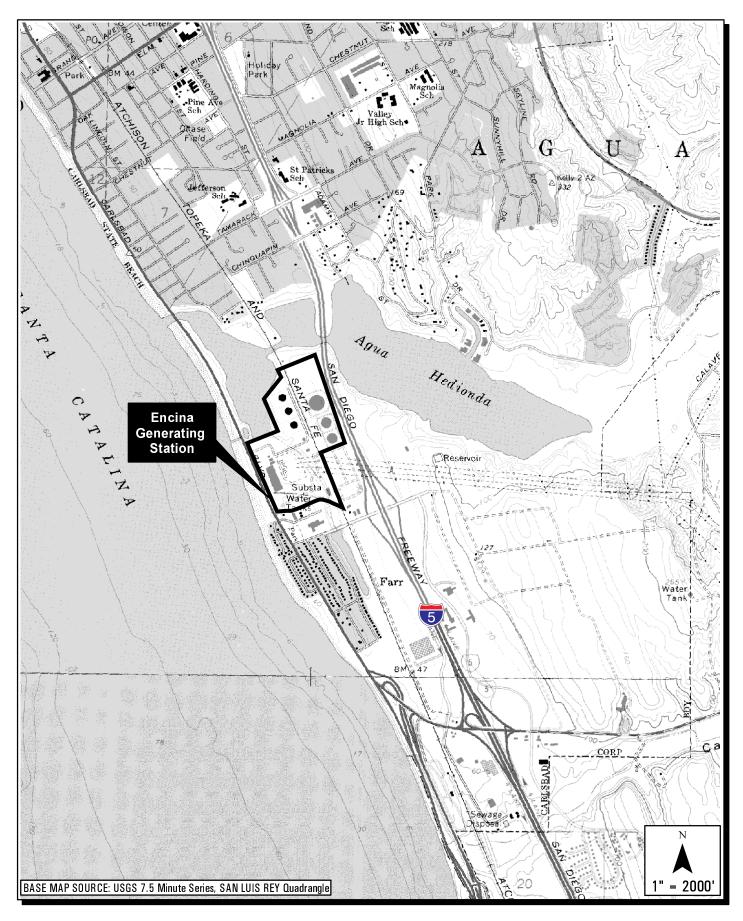
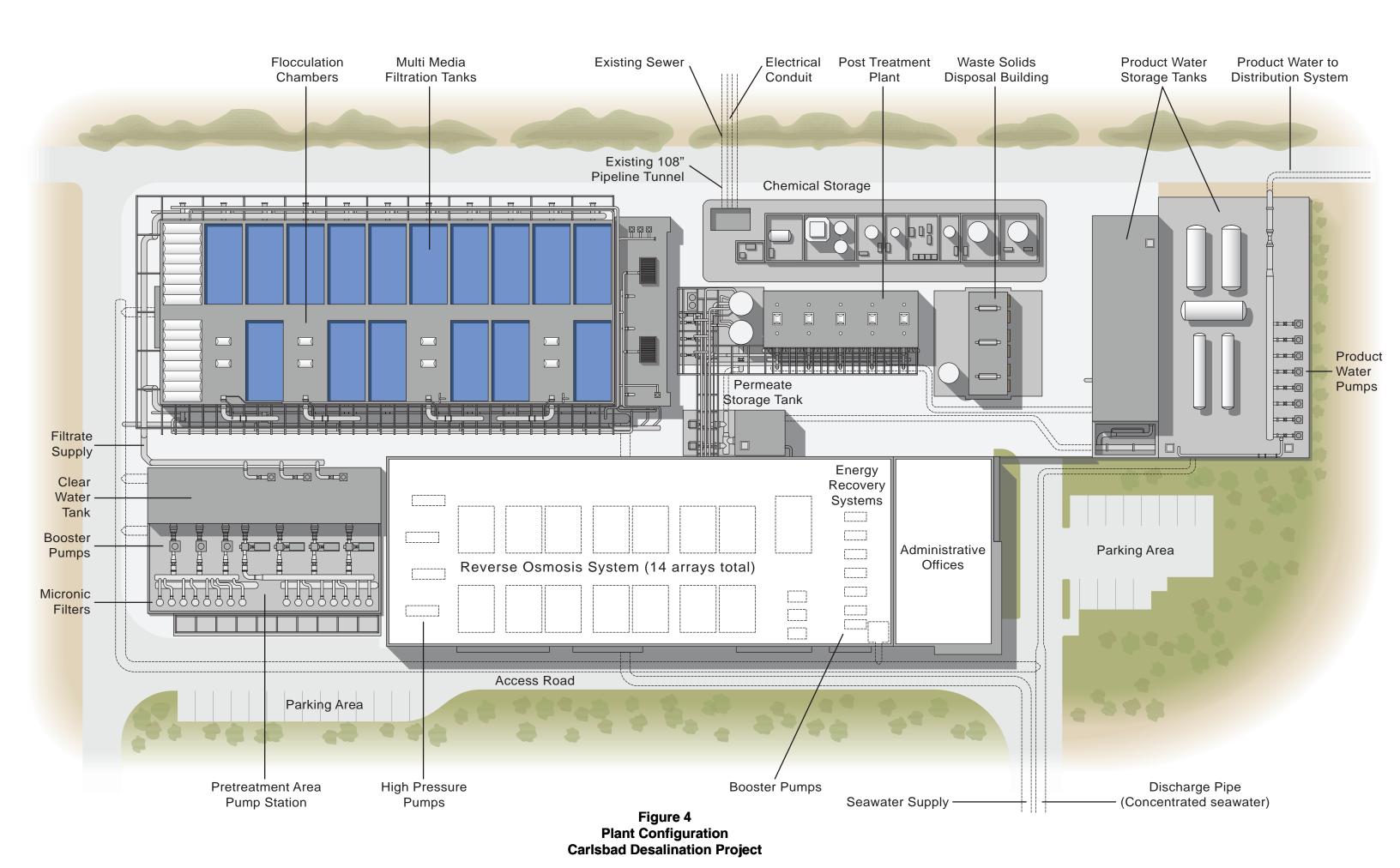
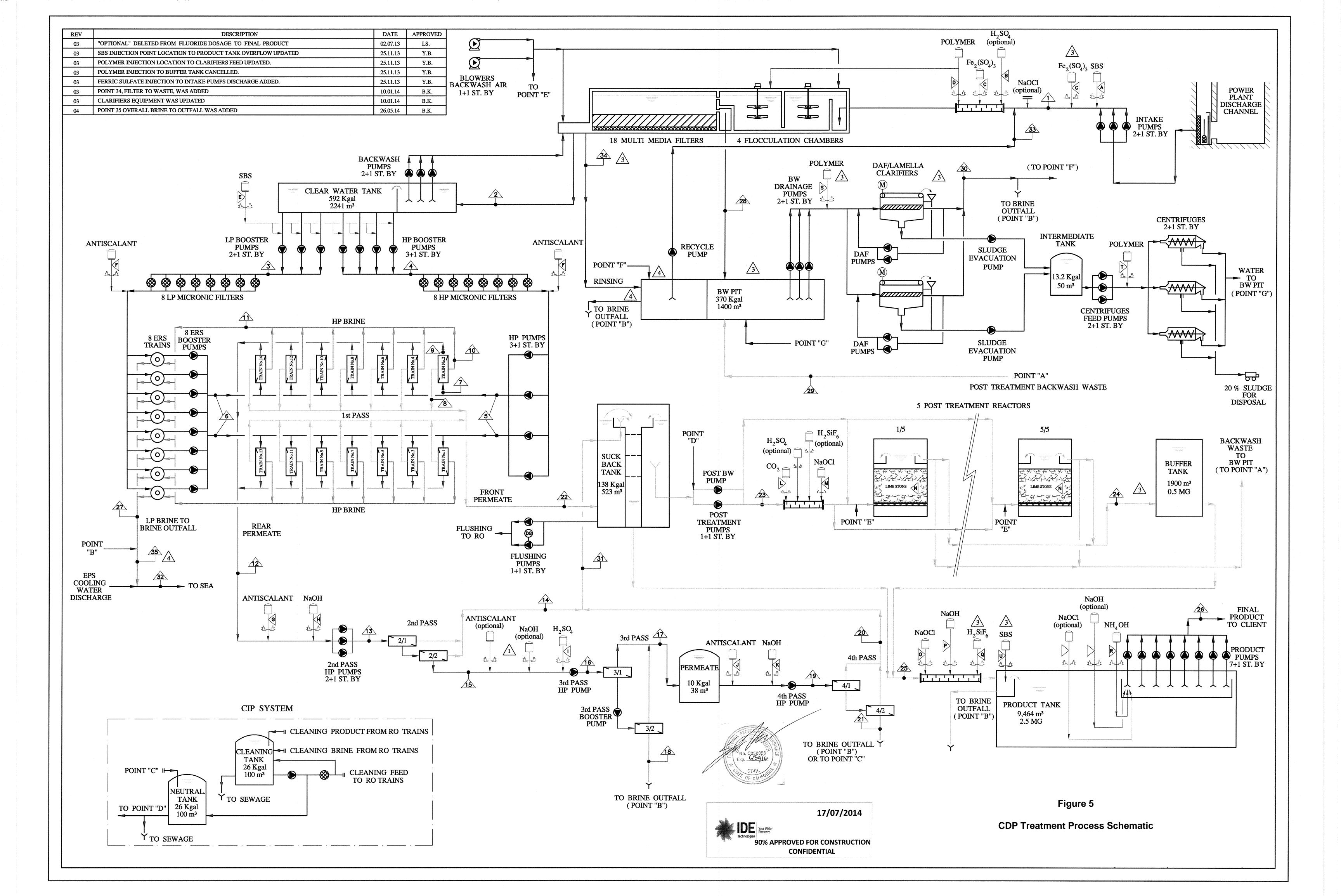
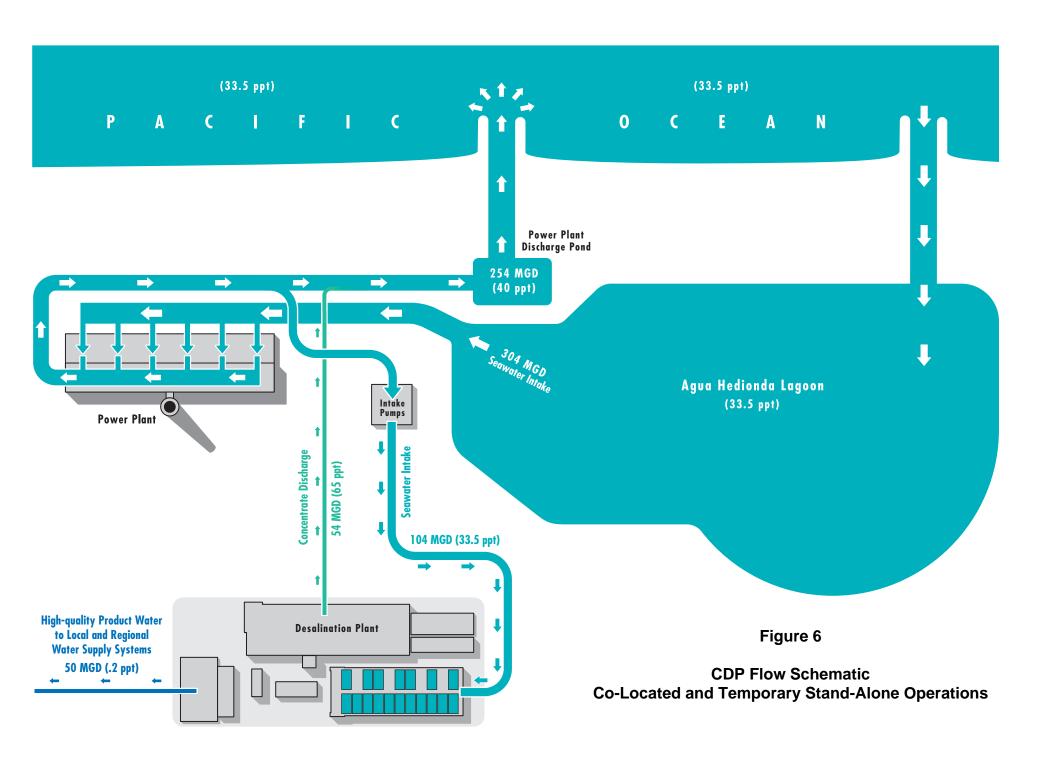


Figure 1
Location Map
Carlsbad Desalination Project


Figure 2
Site Location
Carlsbad Desalination Project and Encina Power Station

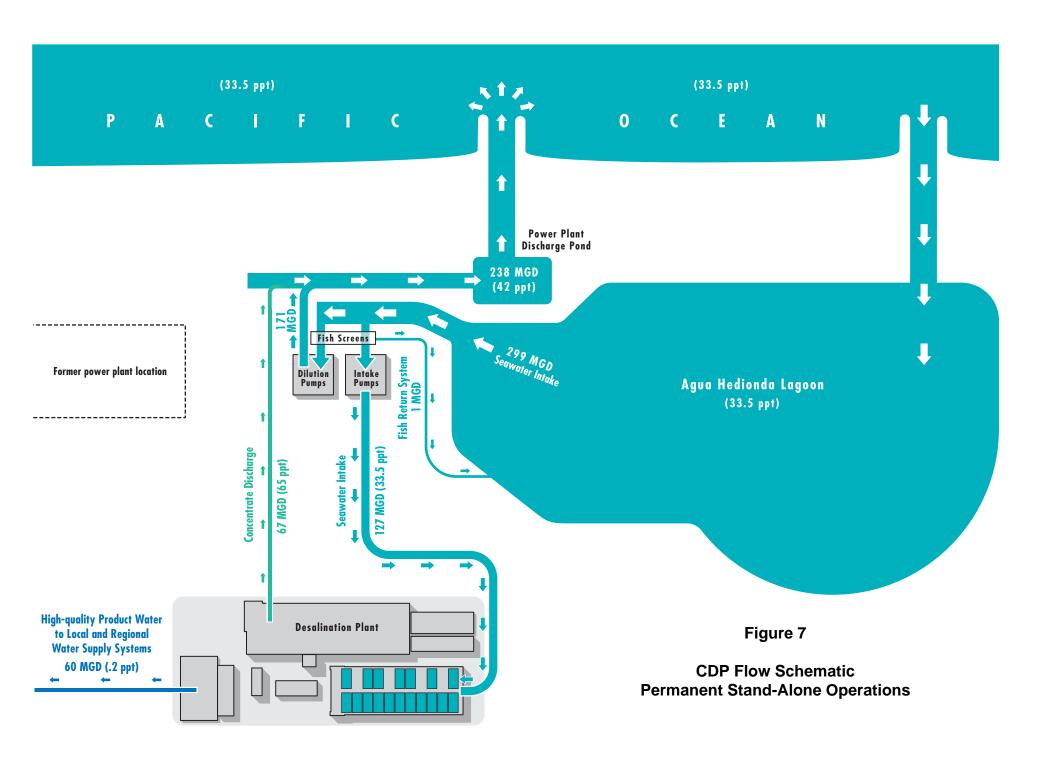


Figure 3 Site Layout Carlsbad Desalination Project

State of California Form 200

Renewal of NPDES CA0109223
Carlsbad Desalination Project

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE **GENERAL INFORMATION FORM FOR**

WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT I. FACILITY INFORMATION A. Facility:

Carlsbad Desalination Project (CDP)			
Address: 4590 Carlsbad Boulevard			
city: Carlsbad	County: San Diego	State: CA	Zip Code: 92008
Contact Person: Peter M. MacLaggan, Vice President			mber: 3999
B. Facility Owner:			
Name: Poseidon Resources (Channelside) LP			Owner Type (Check One) 1.
Address: 5780 Fleet Street, Suite 140			3. Governmental 4. Partnership Agency
city: Carlsbad	state: CA	zip Code: 92008	5. Other:
Contact Person: Peter M. MacLaggan, Vice President		Telephone Numb	
C. Facility Operator (The agency or business, not	the person):		
Name: Poseidon Resources (Channelside) LP			Operator Type (Check One) 1. Individual 2. V Corporation
Address: 5780 Fleet Street, Suite 140			3. Governmental 4. Partnership Agency
city: Carlsbad	State: CA	Zip Code: 92008	5. Other:
Contact Person: Peter M. Maclaggan, Vice President		Telephone Number: (760) 655-3999	
D. Owner of the Land:			
Name: Cabrillo Power I, LLC			Owner Type (Check One) 1. Individual 2. Corporation
Address: 4600 Carlsbad Boulevard		3. Governmental 4. Partnership Agency	
city: Carlsbad	State:	Zip Code:	5. Other:
Contact Person:	CA	92008 Telephone Num	uber:
Sheila Henika		(760) 268-4	4018
E. Address Where Legal Notice May Be Serv	ved:		
Address: Same as Facility Owner	er		
City:	State:	Zip Code:	
Contact Person:		Telephone Num	ber:
F. Billing Address:			
Address: Same as Facility Owner	er		
City:	State:	Zip Code:	
Contact Person:		Telephone Num	ber:

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE **GENERAL INFORMATION FORM FOR** WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

TYPE OF DISCHARGE

TYPE OF DISCHARGE Check Type of Discharge(s) Described in this Application (A or B):					
A. WASTE DISCHARGE TO LA	ND B. WASTE D	ISCHARGE TO SURFACE WATER			
Check all that apply:					
Domestic/Municipal Wastewater Treatment and Disposal Cooling Water Mining Waste Pile Wastewater Reclamation	Animal Waste Solids Land Treatment Unit Dredge Material Disposal Surface Impoundment Industrial Process Wastewater ted seawater from seawater desalination	Animal or Aquacultural Wastewater Biosolids/Residual Hazardous Waste (see instructions) Landfill (see instructions) Storm Water on process and clarified filter backwash			
III. LOCATION OF THE FACILITY Describe the physical location of the facility.					
1. Assessor's Parcel Number(s) Facility: 210-01-43 Discharge Point: NA	2. Latitude Facility: 33 08' 21" N Discharge Point: 33 08' 17" N	3. Longitude Facility: 117 20' 06" Discharge Point: 117 20' 22"			
IV	V. REASON FOR FILING	G			
☐ New Discharge or Facility	Changes in Ownership/Oper	rator (see instructions)			
Change in Design or Operation	Waste Discharge Requireme	ents Update or NPDES Permit Reissuance			
Change in Quantity/Type of Discha	rge Other:				
V. CALIFORNIA E	NVIRONMENTAL QUA	LITY ACT (CEQA)			
Name of Lead Agency: City	of Carlsbad and San Diego Count	ty Water Authority (SDCWA)			
Has a public agency determined that the prop	osed project is exempt from CEQA?	Yes V No			
If Yes, state the basis for the exemption and the Basis for Exemption/Agency:	ne name of the agency supplying the ex Not applicable	emption on the line below.			
Has a "Notice of Determination" been filed un If Yes, enclose a copy of the CEQA document expected type of CEQA document and expected	t, Environmental Impact Report, or Ne ed date of completion.				
Expected CEQA Documents:	First EIR Addendum certif	City of Carlsbad on 6/13/2006 field by the City of Carlsbad on 9/15/2009			

Second EIR Addendum certified by SDCWA on 11/29/2012 Third EIR Addendum certified by SDCWA on 9/26/2013 Fourth EIR Addendum certified by SDCWA on 7/9/2014

EIR

Negative Declaration

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

VI. OTHER REQUIRED INFORMATION

Please provide a COMPLETE characterization of your discharge. A complete characterization includes, but is not limited to, design and actual flows, a list of constituents and the discharge concentration of each constituent, a list of other appropriate waste discharge characteristics, a description and schematic drawing of all treatment processes, a description of any Best Management Practices (BMPs) used, and a description of disposal methods.

Also include a site map showing the location of the facility and, if you are submitting this application for an NPDES permit, identify the surface water to which you propose to discharge. Please try to limit your maps to a scale of 1:24,000 (7.5' USGS Quadrangle) or a street map, if more appropriate.

VII. OTHER Attach additional sheets to explain any responses which need clarification. List attachments with titles and dates below:

See attached maps, schematics, data tables, and technical studies You will be notified by a representative of the RWOCB within 30 days of receipt of your application. The notice will state if your application is complete or if there is additional information you must submit to complete your Application/Report of Waste Discharge, pursuant to Division 7, Section 13260 of the California Water Code. VIII. CERTIFICATION "I certify under penalty of law that this document, including all attachments and supplemental information, were prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment." Peter M. MacLaggan Vice President Print Name: Signature: FOR OFFICE USE ONLY Date Form 200 Received: Letter to Discharger: Check #: Fee Amount Received:

Certification Statements

Renewal of NPDES CA0109223 Carlsbad Desalination Project

CERTIFICATION SUPPLEMENT FOR NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM PERMIT APPLICATION

Legal Name of Applicant:	: Poseidon Resources (Channelside) LP			
Facility:	Poseidon Resources Carlsbad Desalination Project NPDES CA0109223			
my direction or supervision in personnel properly gather and the person or persons who m gathering the information, the belief, true, accurate, and cor	that this document and all attachments were prepared under accordance with a system designed to assure that qualified evaluate the information submitted. Based on my Inquiry of nanage the system, or those persons directly responsible for information submitted is, to the best of my knowledge and mplete. I am aware that there are significant penalties for including the possibility of fine and imprisonment for knowing			
Peter M. MacLaggar Printed Name	Vice President Official Title			
Pet Maclaser Signature	9/4/2015 Date Application Signed			

CONTRIBUTIONS DISCLOSURE STATEMENT

Check the appropriate response:

X	I certify that Poseidon Resou	rces (Channelside) LP name of applicant)			
	has not made contributions a	amounting to \$250 or more to any of			
	the current San Diego Water Board members within 12 months of				
	the date of this application for	or use in federal, state, or local election	٦.		
	I certify that				
	(name of applicant)				
	has made contributions amounting to \$250 or more to the following				
	current San Diego Water Board members within 12 months of the				
	date of this application for use in federal, state, or local election.				
	date of this application for us	e in rederal, state, or local election.			
San Diago I	Nater Board Member	Amount of Contribution			
Jan Dieur	valel buatu Mellibel				

Signature

Name

Peter MacLaggan

Title

Vice President

Date

June 19, 2015

Organization

Poseidon Resources (Channelside) LP

Address

5780 Fleet Street, Suite 140, Carlsbad, CA 92008

Phone Number

760 655-3999