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10.2 CONCEPTS OF SPECIES DIVERSITY ’ 329

most cases acologists worry about species diversiry, but there is no reason why generic .
diversity or subspecific diversity could not be analyzed as well. Within the classification -
system, all the individuals assigned 10 a particular class are assumed to be identical.
This can cause problems. For example, males may be smaller in size than females—
should they be grouped wogether or kept as two groups? Should larval stages count the '
same as an adult stage? This sort of variation is usually ignored in species diversity
studies.
Most measures of diversity assume that the classes (species) are all equally dif-
ferent. There seems to be no ¢casy way around this limitation.
Diversity measures require an estimate of species importance in the community.
The simple choices are numbers, biomass, cover, or productivity. The decision will
depend in part on the question being asked. Numbers are used in most cases, although
Dickman (1968) found that with lake samples of plankton the best measure was pro-
¥ ductivity.
N A rtelated question is how much of the community we should include in our
B sampling. We must define precisely the collection of species we are trying to describe.
*, Most authors pick one segment—bird species diversity or wee species diversity. Rarely
‘ do diversity measures cross trophic levels, and only rarely are they applied 10 whole
cormmunities. Colwell (1979) argues convincingly that ecologists should concentrate
their analyses on parts of the community that are functionally interacting, the guilds
of Root (1973). These guilds, or networks, often cross trophic levels and include tax-
F onomically unrelated species in them. The choice of what 10 include in a “community”
is critical to achieving ecological understanding, yet no rules are available 10 help you
j make this decision. The functionally interacting networks can be determined only by

; detailed natural history studies of the species in a community. :
8
'3
10.2 CONCEPTS OF SPECIES DIVERSITY ,%
! 5
s Early naturalists very quickly observed that tropical areas contained more species of ; ,”
*  plants and animals than did temperate areas. But as ecological ideas matured and o ¢
: ideas of quantitative measurement were introduced, it became clear that the idea of
species diversity contains two quite distinct concepts.
10.2.1 Species Richness E
This is the oldest and the simplest concept of species diversity—the number of species *

|
i
v

[

in the community. McIntosh (1967) coined the name species richness to describe this
concept. The basic measurement problem is that it is often not possible 1o enumerate
all of the species in a natural community.

10.2.2 Heterogeneity B4

If a community has 10 equally abundant species, should it have the same diversity as
another community with 10 species, one of which makes up 99% of the total individ-
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' uals? No, answered Simpson (1949), who proposed a second concept of diversity
. which combines two separate ideas, species richness and evenness. In a forest with 10
e equally abundant tree species, two trees picked at random are likely 1o be different
o species. But in a forest with 10 species, one of which is dominant and contains 99%
; e of all the individuals, two wrees picked at random are unlikely 10 be different species.
5y Figure 10.1 illustrates this concept.
a3 The term heterogeneity was first applied to this concept by Good (1953), and
Wy

. for many ecologists this concept is synonymous with diversiry {Hurlbert, 1971). The
e popularity of the heterogeneity concept in ecology is due partly to the fact that it is
relatively easily measured.

3%* ‘ 10.2.3 Evenness

. ' Since heterogeneity contains two separate ideas—species richness and evenness—it
L was only natural 10 try 1o measure the evenness component separately. Lloyd and
i, Ghelardi (1964) were the first 1o suggest this concept. For many decades field ecologists
ol had known that most communities of plants and animals contain a few dominant

species and many species that are relatively uncommon. Evenness measures atiempt
10 quantify this unequal representation against a hypothetical community in which
all species are equally common. Figure 10.1 illustrates this idea.

10.3 SPECIES RICHNESS MEASURES

Some communities are simple enough 10 permit a complete count of the number of
species present, and this is the oldest and most simple measure of species richness.
Complete counts can often be done on bird communities in small habitat blocks,
mammal communities, and temperate and polar communities of higher plants, reptiles,
amphibians, and fish. But it is often impossible 10 enumerate every species in com-
munities of insects, intertidal invertebrates, soil invertebrates, or tropical plants, fish,
or amphibians. How can we measure species richness when we have only a sample of
the community’s total ichness? The larger the sample, the greater the expected number

of species. Three approaches have been used in an anempt to solve this sampling
problem.

10.3.1 Rarefaction Method

One problem that frequently arises in comparing community samples is that they are
based on different sample sizes. One way 10 overcome this problem is 10 standardize
all samples 10 a common size. Sanders (1968) proposed the rarefaction method for
achieving this goal. Rarefaction is a statistical method for estimating the number of
species expected in 2 random sample of individuals taken from a collection. Rarefaction
answers this question: if the sample had consisted of n individuals (n < N), whar
number of species (s5) would likely have been seen? Note that if the total sample has S
species and N individuals, the rarefied sample must always have n < Nand 5 < §.
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Figure 10.)  Concepts of species diversity. (a) Species richness:
community A has more species than community B and thus
) higher species richness. (b) Helerogeneity: community A has
; the same number of species as community B but the relative
. abundances are more even, so by a heterogeneity mcasure A
| is more diverse than B. Community C has the same abundance
| pattern as B but has more spedies, so it is more diverse than
B. (¢) Evenness: when all species have equal abundances in the
community, evenness is maximal.
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% 332 10/SPECIES DIVERSITY MEASURES
ﬁ Sanders’ (1968) rarefaction algorithm was wrong, and it was correcied indepen-
j! denily by Hurlbert (1971) and Simberloff (1972) as follows:
x N- N,)
i . "
ESH)=2 |1 =-—— (10.1)
el to} N 1
i n
t where E(S,) = Expected number of species in a random sample of n individuals
b S = Total number of species in the entire collection
3.: : N, = Number of individuals in species ¢
T N = Tortal number of individuals in collection = T N,
hind n = Value of sample size (number of individuals) chosen for standard-
" ization (n < N) :
_ Number of combinations of n individuals that can be chosen from
(n " a set of NV individuals = M/n!(N ~ n)!
The large-sample variance of this estimate was given by Heck er al. (1975) as |
. (N - N') '
3
- - i IN—=N; n
wsr= (| 507 - -
n -\ on (N ) |
n |
(N - N,)(N -~ N,) ’
-1 S - - n n
+23% 3 (N 1\; N’)— (10.2) |
=1 jmitt N
" i
where var(S,) = Variance of the expected number of species in a random sample of ;
- n individuals
4 and a)l other terms are defined above.
25 Box 10.1 illustrates the calculation of the rarefaction method for some rodent
?5: darta. Because these calculations are so tedious, a computer program should normally
7: be used for the rarefaction method. Program RAREFACT in Appendix 10.1 will do |
1: these calculations. It is modified from the program given by Simberloff (1978). '
o There are important ecological restrictions on the use of the rarefaction method.
"' Since rarefaction is not concerned with species names, the samples 1o be compared '
o by rarefaction should be taxonomically similar. As Simberloff (1979) points out, if
N the larger sample is primarily butterflies and 1he smaller sample is mostly moths, no :

calculations are necessary 10 tell you that the smaller sample might not be a random '
. sample of the larger set.

; Sampling methods must also be similar for two samples to be compared by
rarefaction (Sanders, 1968). For example, you should not compare inscct light trap
’ samples with insect sweep net samples, since whole groups of species are amenable 10 .
capture in one technique but not available 10 the other. ‘
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10.3 SPECIES RICHNESS MEASURES _ 333

BOX 10.1 CALCULATION OF EXPECTED NUMBER OF SPECIES
BY THE RAREFACTION METHOD

|
A sample of Yukon rodents produced four species in a collection of 42 individuals. ]'
The species abundances were 21, 16, 3, and 2 individuals. We wish to calculate : 1
the expected species richness for samples of 30 individuals. 1

Expected Number of Species -

From equation (10.1)

| N—N.)'

E(S,) = 2 1- N

E] T 9] [ (%)

BSo = | 1= |+ |1 | 1 -
l (S30) 42) 42 42
] 30 30 30
(42 - z)
' 30
+]1-
(42 o~
30 £
a2 -21\ 21 i
( ) - ( ) =0  (bydefinition) ‘{'
30
- 10
( ) 30'(42 30)| = 1.1058 X 10 Ee
42 =16 | 3
( ) = ( ) =0 (by definition) R
30
a2-3 e
| _ P = tap
: ( 10 ) 30'(39 oy - 21192 X 10 i
| £
} 8 )‘;;.
| ( 30 ) 30'(40 30 - 4766 X 10 i
i 2.1192 x 10° 8.4766 X 10° i
c ) _2192x10* _ 8.4766 X 10° Y
(S} =1+ 1+ (1 11058 X 105°) ( T.1058 X 1o'°) '

1 +1+0981 +0923

3.90 species
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334
Large Sample Variance of the Expected Number of Species

From equation (10.2)

val'(S-n)=(I:)-‘ i(N;N’)l-( )

=l

.-H(N”,)(“)(")

+23% 3

1=} jwie]

w3 ,

39 40
€ U ol (i° |
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§
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10.3 SPECIES RICHNESS MEASURES 335

e *(;)3() -
+ (42—3—2)_( 3;(‘);(3)30 )

30
Note that for this particular example almost all of the terms are zero.

var($y) = (1.1058 x 107'°)[2.0785 X 10° + 7.8268 X 10°
Lk (2)(~5.9499 X 10%))

= 0.0885
Standard deviation of ($y) = Vvar(Sio)

= Y0.0885 = 0.297

These tedious | calculations are done by Program RAREFACT (see
Appendix 10.1).

Sanders (1968) argued that rarefaction should be used only on samples from the
same or similar habitats, since everyone knows that different habitats—coniferous
forest versus deciduous|forest, for example—have different species diversities.

Rarefaction curves cannot be extrapolated beyond the number of individuals in
the large sample. The o:nly way one can extrapolate beyond the limits of the samples
is by assuming an under]ying statistical distribution, like the log-series or the lognormal.

One assumption that rarefaction does make is that all individuals in the com-
munity are randomly dispersed with respect 10 other individuals of their own or of
different species. In practice, most distributions are clumped (see Chapter 3) within a
species and there may be positive or negative association between species. Fager ( 1972)
used computer simulations to investigate the effect of clumping on rarefaction estimates
and observed that the mlore clumped the populations are, the greater the overestimation
of the number of specics by the rarefaction method. The only way to reduce this bias
in practice is 10 use large samples spread widely throughout the community.

The variance of the expected number of species (equation 10.2) is appropnate
only with reference to/the sample under consideration. Suppose you wish to ask a
related question: given a sample of N individuals from a community, how many species
would you expect to ﬁtf‘xd in a second, independent sample of n (n < N) individuals?
Smith and Grassle (197|7) give the variance estimate appropriate for this more general
question and have a computer program for gencrating these variances. Simberloff
(1979) showed that the variance given in equation (10.2) provides estimates only
slightly smaller than the Smith and Grassle (1977) estimator.
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Figure 10.2 Rarefaction curve for the diatom community
daa from Patrick (1968). There were 4874 individualsin 112
species in this sample (“Box §8"). Original data in Table 10.1.

Figure 10.2 illustrates a rarefaction curve for the diatom community data in l
Table 10.1. James and Rathbun (1981) provide examples from bird communities.

10.3.2 Jackknife Estimate

When quadrat sampling is used 10 sample the community, it is possible 1o use another i
nonparametric approach, the jackknife,® to estimate species richness. This estimate |
is based on the observed frequency of rare species in the community and is obtained l
as follows (Helishe and Forrester, 1983a). Data from a series of random quadrats are

tabulated in the form shown in Table 10.2, recording only the presence (1) or absence l
(0) of the species in each quadrat. Tally the number of unigue species in the quadrats i
sampled. A unique species is defined as a species that occurs in one and only one
quadrat. Unique species are spatially rare species and are not necessarily numerically !
rare, since they could be highly clumped. From Helishe and Forrester (1983b) the
Jackknife estimate of the number of species is X

- . -1 k
i S=s+(n ) (10.3) ,
L. n !
’ where S = Jackknife estimate of species richness
' s = Observed 101al number of species present in n quadrats
} n = Total number of quadrats sampled

k = Number of unique species

® For a gencral discussion of jackknife estimates. sce Chapter 13,
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TABLE 10.1 TWO SAMPLES OF A DIATOM COMMUNITY OF A SMALL CREEK
IN PENNSYLVANIA IN 1985*

-———

Numbers of Numbers of
individuals individuals ’
Box  Box Box Box :
Species 8 7 Species 8 7 ‘
Nitzschia frustulum v. perminuta .. . ... 1486 1570 | Melosira italicav.valida ... ....... . 6 15 L
Synedr: parasitica v. subconstricta . . 456 455 | Navicula cryptocephala v. veneta .. .. .. [ 6 t
Nuavicula cryptocephala ............ . 450 455 | Cymbella turgide ................... s 8 o
Cyclotella stelligera . . ....... . ... 330 295 | Fragilaria intermedia ..., ......... ~ S s ]
Navicula minima . . ... ....... ... K 308 ( Gomphonema angustarum v. obesa . . . . . S 16 (~
! N. secreta v. apiculata ... ....... . ... 306 206 | G. angustatum v, producta .. .......... s 4 Y
i Nitzschiapalea . ................... 270 225 | G. longiceps v. subclavata ... ..... .. .. s 9
N frustubum ... ..., .., e 162 325 | Meridion circulare .................. s 4
Navicula luzonensis ........ ... . ... 132 78 | Melosiraambigua ................ .. 5 —
Nitzschia fastulum v, indica ... ... .. 126 180 | Nitsschia acicularis . ............. . S —
Melosira varians .. .. ........ .. ... 118 140 | Synedra rumpens v. familiaris .. ...... 5 37
Nitzschia amphibia ... . .. . ...... 9 95 | Cyclotella meneghiniana ........... .. 4 8
Achnanthes lanceolata .. ... .. . ... 75 275 | Gyrosigma spencerii ... ............ .. L} 2
Stephanodiscus hantzschii . ... ... .. .. 74 $9 | Fragilaria construens v. venter . ... ... .. 3 —
Navicula lanceolata . ... . ...... ... 65 245 | Gomphonema gracile ... ............. 3 10
Novirdula .............. . .. 68 72 | Navieulacincta . ...... .......... .. 3 2
Rhoicosphenia curvata v. minor . ... ... 6} 121 | M. gracilisfo.minor . ...... ... ... ... 3 -_—
Navicula minima v. atomoides . .. .. ... 59 47 | Maviewla decussis ... ........... ..., 3 2
N.pelliculosa .... .. ... ..... .. .. 33 19 | N.pupulav.capitata .. ............. k] 10
Melosira granulata v. angustissima . . .. S4 73 | N.symmetrica ........... ... A 3 —_ :
Navicula seminulum ... . .. ... . §2 36 | Nitzschia dissipata v. media ... .. ... . 3 4 -
N. gregarla ... ... . e a0 34 | N uyblionellav. debilis ... ...... .. 3 1
Nitzschia capitellata ..., ... .... 40 16 | N. sigmoidea ...... .. ... ......... k) - )
Achnanthes subhudsonis v. kraeuselll 39 51 | Anomoeoneis exilis .. .. ... .. .. .. 2 -— ? ;
) A mimissima ..o o 35 61 | Caloneishyaling .......... ......... 2 2 i
: Nitzschia disena . ... ... ... ... .. 3$ 53 | Digtoma vulgare .. ..... ... .. .. 2 - 5
Amphora ovalis v. pediculus ... . ... 33 53 | Eunotia pectinalis v. minor ... ........ 2 ! ot
Cymbella tumida ... ... . ... ... . ... 29 95 | Fragilaria leptosiauron e 2 3 -
Synedra parasitica .. ....... ..... . . 24 42 | Gomphonema constrictum ... ... ..., . 2 - N
Cymbella ventricosa . ... ...... ... .. 21 27 | G intricatum v. pumila ... ... .. ... .. 2 10 .-
Navicula paucivisitata . ... ., ... .. 20 12 | Mavicula hungarica v. capitata . ... ..., 2 5 -
Nitzschia kutzingiana ... .. ... .. 15 70 | Moprotracta .. ............. ... .. . 2 3 R2d
. Gomphonema parvutum ... . ... .. .. 18 66 | Synedra acus v. angusiissima .. ... 2 - . “!
! Rhoicosphenia curvata . . . . ..., 18 22 | Bacillaria paradoxa . .. .. R 1 - ; i
Synedra uina L 18 36 | Cyclotella kutzingiana ... ... . .. .. 1 - 87
‘.‘ Surirella angustata .. .. ... ..., .. ., 17 11 | Cymbella triongulum ... ... . 1 - e
' Synedra ulna v. danica 17 37 | Cocconeissp. ...... ...... e ) - X3
: Navicula pupula ... . .. 17 27 | Caloneis bacillum .. ... ... . ... .. .. 1 3 %3
l Achnanihes biperoma ... .. ... 16 32 | Fragilaria bicapitata . ........... .. .. 1 — o
Stephanodiscus astraea v. minutula 16 21 | Frustulia vulgaris ..... .. .. . 1 —_ - 2 .
Navicula germainii . 13 19 | Gomphonema carolinense ... ... } t %3
1 Denticula elegans e 12 4 | G sp. [MH 1V Ridley) ... 1 -
Gomphonema sphaerophorum ... . . .. 1 40 | Navicula copitata v. hungarica . ... .. 1 1 )
l Synedra rumpens .. ... 1 13 | M. conentaf biceps ................. | 1 s
" S vaucherige . . ... " 14 | N. cincta v. rostrata 1 — o
(cont:nyoc overioal) .‘
'
A
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TABLE 10.1 (Continued)
g Numbers of Numbers of
x individusts individusis
’FE: Box  Box Box  Box
W Species 8 7 Specles 8 7 -
2‘. Cocconeis placenqula v, ewglypta .. ... .. 10 St Namericangd ........ .. .coovne... t -—
o Navicula menisculus ... .............. 10 s | Mitzschia hungarica ........... o 1 - :
i Nitzschia linearis . .................. 10 18 | N.sinuata v.1abularia ............... ] - |
- Stephanodiseus invisitatus .. .......... 10 22 | Noeomfimis ..o i 1 5
O Amphora ovalis .. ... ... ... .... 9 16 | Synedra pulchellav. lacerata .. ... .. ... 1 I
E Cymbellasinuata ................... 9 S | Surirellaovata ........... . ] 3 :
b5 Gyrosigma wormleyii ... ... ........ 9 S | Achnamthescleveii .......... .. ... - 2 :
her Nitzschia fonticola .................. 9 6 { Amphora submontana ............... —_ 1
N.bacata ......... e e 9 7 | Caloneis siliculs v, veniricosa . ...... .. — 3 ‘
Synedra rumpens v. meneghiniana . . .. . 9 17 | Eunotiglunaris . ........ . ........ ... —_ 2
Cyclotelia meneghiniana small .. ... ... 8 4 | E tenella e - 1 1
Nitzschia gracills v. minor ... ... . . 8 10 | Fragllariapinnata .. ................ - 3
N. frustulum v, subsalina ... ... .. .. 7 10 | Gyrosigma scalproides .. ... ... ..... —_— 3
Nosubulis ......... ... ... . ... 7 16 | Gomphonema sparsisiriata . .. ..... .. —-— —
Cymbellagfhnis ..... ... ...... ... 6 3 | Meridion circulare v. constricta .. ... ... —_ 3 l
Cocconeis placemula v, lineata .. .. ... 6 13 | MNaviculatenera ...... ....... ... ... - 3
N.omissa .. - 1
N.overalis ......... e - ) '
Nomutica ......................... —_— l
Nosp(LL30) covoveenen .. R — 1
N.muticav.cohnii ................ .. - 1
Nitzschia brevissima ......... ....... — 1
Nfreqguens . ...................... -— 1

* The aumbers of individuals settling on glass tlides were counted. Dau from Patnick (1968).

TABLE 10.2 QUADRAT SAMPLING DATA SUMMARIZED
IN A FORM NEEDED FOR THE JACKKNIFE
ESTIMATE OF SPECIES RICRNESS®

Queorat

Row
sum

>

Specles

Q
m
mn

OO ~3 ONW & WA e
—FO O~ O - O -
-—_O O~~~ —0 |
O—0D—~0-w00 0O
S oer O e O o O -
[ Y -
—-—Oo~0O0O0COo
b P = OO N e W

“ Only presence-absence asw are required. Unigue specics are thase whose row sums are | (specics
2and 6 10 this example). 0 = abaent; | = present.
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10.3 SPECIES RICHNESS MEASURES 339 -

The variance of this jackknife estimate of species richness is given by

. (n=-W\& . K2
var(§) = (*—)LZ U - —] (10.4)
n o n
where var(§) = Variance of jackknife estimate of Sp;cies richness

f; = Number of quadrats containing j unique species (j = 1, 2, 3,

ey $)
k = Number of unique species
n = Total number of quadrars sampled

UL R LENRIRI

P IR

! This variance can be used to oblain confidence limits for the jackknife estimator as

follows: ,—
$x e, Vvar($) (10.5)
where $ = Jackknife estimator of species richness (equation 10.3)
1, = Student's r value for n — 1 degrees of freedom for the appropriate

_ valueofa
var($) = Yariance of S from equation (10.4)

Box 10.2 gives an example of these calculations.

The jackknife estimator of species richness tends to have a positive bias, that is,

it tends 1o overestimate the oumber of species in a community (Heltshe and Farrester,
1983b). This bias is usually less than the negative bias of the observed number of
species {S), which as g rule is always less than the true value of species richness in the
) community.
. Note from equation (10.3) that the maximum value of the jackknife estimate
of species richness is twice the observed number of species. Thus this approach cannot
be used for communities with exceptionally large numbers of rare species or com-
munities that have been sampled 100 little (so that S is low).

=
q
"-.

10.3.3 Bootstrap Procedure

Oy - b

An alternatve method of estimating species richness from quadrat samples is 10 use
the bootstrap procedure (Smith and van Belle, 1984). The bootstrap method® is related
to the jackknife, but it requires simulation on a computer 1o obtain estimates. The
essence of the bootstrap procedure is as follows: given a set of data on species presence-
absence in a series of ¢ quadrats (like Table 10.2):

1. Draw a random sampie of size n from the g quadrats within the computer,
using sampling wirh replacement; this is the “‘bootstrap sample.”

. 2. Calculate the estimate of species richness from the equation (Smith and van

o Belle, 1984)

'h_ 1
il o

BS$)=S+Z(=p) (10.6)

* See Chapter |3 for more discussion of the bootstrap method.
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Box 10.2 JACKKNIFE ESTIMATE OF SPECIES RICHNESS
FROM QUADRAT SAMPLES

Ten quadrats from the benthos of a coastal creek were analyzed for the abundance
of 14 species (Heltshe and Forrester, 1983a). For a sample taken from a subtidal
marsh creek, Pettaquamscutt River, Rhode Island, April 1978.

Quadrat !
Species 1 2 3 4 5 6 7 8 9 10
Streblospio benedicti 13 2] 14 S 22 13 4 4 27
Nerels succines 2 2 4 L} 1 1 1 1 6
Polydora ligni 1 1
Scoloplos robustus 1 1 2 6 | 2
Eteone heteropoda 1 2 1 1
Reteromasius fliformis 1 ] 2 ) 1 ) 5
Capilella capitaia® 1 i
Scolecolepides viridis® 2 ,
Hypaniola grayi* 1 i
Branis clavara® ] !
Macoma balthica k! 2 ;
Ampelisca abdiia S 1 2 3 '
Neopanope 1exana® )
Tubifocodies sp. 8 36 14 19 3 22 6 8 s 41

NOTE: Blank entrics in table arc absent (rom quadrst.

Five species (marked with ») occur in only one quadrat and are thus defined as '
unigue species. Thus, from equation (10.3),

§=S+("‘1y !

n

. 9
5-14+(wy$ ,
= 18.5 species
The vanance, from equation (10.4), is - ‘
N 2 |

var($) = (£=) [2 () - i]
n o n

From the table we 1ally:

No. ot quadrats containing
No. of unique Spp.. j J unique specles. f, i 10.4 |

3 (i.e.. quadrats 2, 3. and 8)
1 (i.c., quadral i) |

0

AW —

0




10.4 HETEROGENEITY MEASURES 341

Thus,

" 52
var(§) = (%)[(1)’(3) +2(1) - B]

= 4.05

For this small sample, for 95% confidence ¢, = 2.26, and thus the 95% confidence
interval would be approximately

18.5 % (2.26XV4.05)

or 13.9 to 23.1 species.
Program RICHNESS (Appendix 10.2), does these calculations for quad-
rat data.

where B(S) = Bootstrap estimate of species richness
S = Observed number of species in original data
D, = Proportion of the n bootstrap quadrats that have species {
present

3. Repeat steps | and 2 N times in the computer, where N is between 50
and 200.

The vanance of this bootstrap estimate is given by

var{B(S)) = ZQ=-prl = =py)

+ 22 {q; - (1 = pY(1 = p)1} (10.7)
inj
where var(8(S)] = Variance of the bootstrap estimate of species richness
n. p,. p; = As defined above
g; = Proportion of the n bootstrap quadrats that have both species
and species j absent

Smith and van Belle (1984) recommend the jackknife estimator when the number of
quadrats is small and the bootstrap estimator when the number of quadrats is large.
The empirical meaning of “large” and “small” for natural communities remains un-
clear; perhaps n = 20 quadrats is a rough division for many community samples, but
this is only a guess.

10.4 HETEROGENEITY MEASURES

The measurement of diversity by means of heterogeneity indices has proceeded along
two relatively distinct paths. The first approach is to use statistical sampling theory to
investigate how communities are structured. The logarithmic series was first applied
by Fisher et al. (1943) 10 a variety of community samples. Presion (1948, 1962) applied

1
:
4
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the lognormal distribution to community samples. Because of the empirical nature
of these statistical distributions, other workers looked to information theory for ap-
propriate measures of diversity. Arguments continue about the utility of both of these
approaches since they are not theoretically justified (Washington, 1984; Hughes, 1986).
But both approaches are widely used in diversity studies, and it would be premature
1o dismiss any index because it lacks comprehensive theoretical justification.

10.4.1 Logarithmic Series

One very characteristic feature of communities is that they contain comparatively few
species that are common and comparatively large numbers of species that are rare.
Since it is relatively easy to determine for any given area the number of species on the
area and the number of individuals in each of these species, a great deal of information .
of this type has accumulated (Williams, 1964). The first attempt 10 analyze these data
was made by Fisher et al, (1943).

In many faunal samples the number of species represented by a single specimen
is very large, species represented by two specimens are less aumerous, and so on until
only a few species are represented by many specimens. Fisher et al. (1943) plotted the
data and found that they fitted a “hollow curve” (Figure 10.3). They concluded that
the data available were best fitted by the logarithmic series, which is a series with a
finite sum whose terms can be written as a function of two paramerers:

ax, — ,—,— . ... (10.8)

where  ax = Number of species in the total catch represented by one individual
2

> = Number of species represented by two individuals, and so on

1 10 20 30 40
Number of individuals represented in sample

40'_-

4

g 30} Rare species Common species

% .

s 20{f

gt |

[ 10 41 '

2 v

= 0 Al e P 1
]
i

Figure 10.3 Relative abundance of Lepidoptera (butterflies and i
moths) captured in a light trap a1t Rothamsted, England. in [935. \
Not all of the abundant species are shown. There were 37 species
represented in the catch by only a single specimen (rare species)
one very common species was represented by 1799 individuals
in the catch. A total of 6814 individuals were caught, representing
197 species. Six common species made up S0 percent of the
total catch. (Source: Williams, 1964.)
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The sum of the termns in the series is equal to —a log, () — x), which is the total number
of species in the catch. The logarithmic series for a set of data is fixed by two variables,
the number of species in the sample and the number of individuals in the sample. The
relationship between these is .

N
S=a« log,(l + ;) (10.9)

where S = Number of species in sample
N = Number of individuals in sample
a = Index of diversity

-

The constant a is an expression of species diversity in the community. It is low when
the number of species is low and high when the number of species is high.

There are several methods of fitting a logarithmic series to a set of species abun-
dance data (Williams, 1964, Appendix A). Only two variables are needed to fit a i
logarithmic series: the total number of species in the sample (S) and the total number '
of individuals (N). Williams (1964, p. 311) and Southwood (1978, p. 431) provide
nomograms from which « may be read directly from values of N and S. A more
accurate procedure is 10 estimate an approximate value of x from Table 10.3 and then
solve the following equartion iteratively for a more accurate value of x:

et

wosi

.
E

.,

T

S_l-x _ _
-ﬁ- . [-log (1 — x)} (10.10)

where S = Total number of species in the sample ?
N = Total number of individuals in the sample -
x = Parameter of logarithmic series (equation 10.8)

TABLE 10.2 RELATION BETWEEN VALUES OF x AND THE
AVERAGE NUMBER OF UNITS PER GROUP (N/S)
IN SAMPLES FROM POPULATIONS DISTRIBUTED

ACCORDING TO THE LOGARITHMIC SERIES g
x NS 1 x NS x NIS X
0.50 1.443 0.97 9.214 0.9990 144.6 :
' 0.60 1.637 0.980 12.53 0.9992 175.1 ¢
l 0.70 1.938 0.985 15.63 0.9994 224.5 e
0.80 2.483 0.950 2147 0.9996 319.4 %
0.85 2.987 0.991 23.38 0.9958 $86.9 £
¢ . 0.90 3.909 0.992 25.68 0.999%0 1086.0 o
s 0.51 4.198 0.993 28.58 0.99995 2020 ke |
i 0.92 4.581 0.994 32.38 0.999990 8696 kK
! 0.93 4995 0.995 37.48 0.999955 16.390 2
} 0.94 $.567 0.996 45.11 0.9999990 71,430 i
0.95 6.350 0.997 51.21 - - :
. 0.96 7.458 0.998 80.33 — - @
E Source: Williams, 1964, p. 308. At
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Trial values of x are used until this equation balances. Given this estimate of x, we

obtain a from

N1 —x)
x

a= (10.11)
where & = Index of diversity from logarithmic series
N = Total number of individuals in sample

Program LOGSERIE (Appendix 10.3) does these calculations. Given « and x, the .
thearetical values of the entire logarithmic series can be calculated from equa-
tion (10.8).

The large-sample variance of the diversity index a was given by Anscombe (1950)
as the equation

3 =
var(a) Tios(l = %) (10.12) ‘

where all terms are defined as above, Taylor et al. (1976) pointed out that many
authors (including Williams, 1964) have used the wrong formula to calculate the
variance of alpha.

To analyze any set of empinical community data, the first thing you should do ﬂ
15 10 plot a species abundance curve. Species abundance curves can be plotted in three
different ways (May, 1975); on arithmetic or log scales: ]

y axis: Relative abundance, density, cover, or some measure of the im- ‘

P portance of a species
'_ x axis: Rank of the n species from L (most abundant species) Lo n (most ! -
§s¢ rare species)
By taking logs of the y or the x axis you can vary the shape of the resulting curves.
v Figure 10.4 illustrates a standard plot of species abundances, after Whittaker (1965).
* I call these Whittaker plots and recommend that the standard species abundance plot
93 utilize log relative abundance-species ranks. The expected form of this curve for the
=

logarithmic series is nearly a straight line and is shown in Figure 10.4.
The theoretical Whitiaker plot for a logarithmic series (e.g., Figure 10.4a) can
be calculated as indicated in May (1975) by solving the following equation for n:

I
DI 2

R= aE,[n log,(l + %)] (10.13)

where R = Species rank (x axis, Figure 10.4) i.e, 1,2, 3,4,..., 5
a = Index of diversity calculated in equation (10.11)
n = Number of individuals expected for specified value of R ( y axis of Figure
- 10.4)
: N = Total number of individuals in sample
E, = Standard exponential integral (Abramowitz and Stegun, 1964, Chap-
ter S)
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Figure 10.4 Whinaker plots of species abundance
data. (a) Theoretical plots. The logarithmic series pro-
duces & nearly straight line, while the lognormal dis-
tribution predicts a reverse S-shaped curve. (b) Ob-
served data. The relative abundances of 11 species of
Gyninids from Mount Tremblant Park, Quebec (Lake
Des Fammes), is quite well described by the logarith-
mic serics (dats from Williams, 1964, p. 271). The
relative abundances of 79 species of birds from Quaker
Run Valley, New York, is betier described by the log-
normal distribution (data from Willisms, 1964, p. 49).
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By salving this equation for n using integer values of R you can reconstruct the expected
Whittaker plot and compare it to the original data. Program LOGSERIE (Appendix
10.3) has an option 1o calculate these theoretical values for a2 Whittaker plot.

There is considerable disagreement in the ecological literature about the usefulness
of the logarithmic series as 2 measure of heterogeneity. Taylor et al. (1976) analyzed
light trap caiches of Macrolepidoptera from 13 sites in Britain, each site with 6 10 10
years of replicates. They showed that the logarithmic series parameter a was the best ]
measure of species diversity for these collections. Hughes (1986), by contrast, examined
222 samples from many taxonomic groups and argued that the loganthmic series was
a good fit for only 4% of these samples. May (1975) attempted 10 provide some theo-
retical justification for the logarithmic series as a description of species abundance
patterns, but in most cases the logarithmic series is treated only as an empirical de-
scription of a sample from a community. Wolda (1983) concluded that alpha of the
logarithmic series was the best measure of species diversity available.

Box 10.3 illustrates the calculation of the logarithmic series for a community of
rodents.

The goodness of fit of the logarithmic series to a set of community data can be l
tested by the usual chi-square goodness-of-fit 1est (Taylor et al., 1976). But this chi- ]
square test is of low power. and thus many samples are accepted as fitting the loga- !
rithmic series when it is in fact not a good fit (Routledge, 1980b). Thus, in most cases
the decision on whether 10 use the logarithmic series 10 describe the diversity of a data
set must be made on ecological grounds (Taylor et al., 1976; Hughes, 1986) rather
than statistical goodness-of-fit criteria.

Koch (1987) used the logarithmic series to answer a critical methodological
qQuestion in paleoecology: If two samples are taken from the same community, how
many species will be found in both data sets and how many species will appear to be
unique to one data ser? Sample size effects may be critical in paleoecological studies,
since absent species are typically classed as extinct. Koch (1987) used the logarithmic
series and simple probability theory to predict the expected number of unique species
in large samples from paleocommunities. These predictions can serve as a null model
10 compare with observed differences between samples. Figure 10.5 illustrates that the
percentage of “unique species” can be very large when samples differ in size, even
when the samples are 1aken from the same community. Rare species are inherently
difficult 1o study in ecological communities, and sample size effects should always be
evaluated before differences are assumed between two collections.

10.4.2 Lognormal Distribution ;

The logarithmic series implies that the greatest number of species has minimal abun-
dance, that the number of species represented by a single specimen is always maximal.
This is not the case in all communities. Figure 10.6 shows the relative abundance of
breeding birds in Quaker Run Valley, New York. The greatest number of bird species
is represented by 10 breeding pairs, and the relative abundance pattern does not fit
the hollow-curve patern of Figure 10.3. Preston (1548) suggested expressing the X
axis (number of individuals represented in sample) on a geometric (loganthmic) scale
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Box 10.3 FITTING A LOGARITHMIC SERIES TO SPECIES
ABUNDANCE DATA

Krebs and Wingate (1976) sampled the small-mammal community in the Kluane
region of the southern Yukon and obtained these results:

No. of Individuals

Dcer mouse 498
Northern red-backed vole 495
Mecadow vole 1
Tundra vole 61
Long-tailed vole 45
Singing vole 40
Heather vole 23
Northern bog lemming S
Meadow jumping mouse s
Brown lemming 4

N= 1287

S=10
NS = 1287

From Table 10.3, an approximate estimate of x is 0.999. From equation (10.10)
using this provisional estimate of x:

S { -x
3= (5 irtoed = 0
10 /1-059
1287 ( 0.995 )H°g‘“ = 0.599)]

0.007770 = 0.006915

Since the term on the right side is 100 small, we reduce the estimate of x. Try
0.99898:

1 — 0.99898
0.99898

= 0.007033
The right side of the equation is still 100 small, so we reduce x 1o 0.99888:

1 —0.99888
0.99888

= 0.0076183

Tpe nght side of the equation is still slightly t0o small, so we repeat this calculation
with x = 0.998854 1o obtain, using equation (10.10):

0.007770 = 0.007769

0.007770 = ( )[—log,(l — 0.99898))

0.007770 = ( )[—log.(l ~ 0.99888)]
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We accept 0.998854 as an estimate of the parameter x of the logarithmic series.
From equation (10.11):

b - N(l - X)
[ e
= X

¥ . 1287(1 = 0.998854)
- 0.998854

1.4766

o The variance of this estimate of « is, from equation (10.12), {

v
1]

o ) i

- ) o=

- 1.4766

—-log.(1 — 0.998854) '

0.2181 !

‘ | The individual 1erms of the logarithmic series are given by equation (9.8):
ax® ax?

ax, ==, "2,

2 "3

No. of species represanieq |
i by / Indiviguals I

1.475
0.737
0.451 .
0.367 t
0.254 ‘
0.244
0.209 !
!

RN I - WV S PU W

The sum of the terms of this series is the number of species in the sample :
(S =10).

Program LOGSERIE (Appendix 10.3) does these calculations. ]

i

rather than an arithmetic scale. One of several geometnc scales can be used, since
they differ only by a constant multiplier; a few scales are indicated in Table 10.4.

When this conversion of scale is done, rclative abundance data 1ake the form of
a bell-shaped, normal distribution, and because the X axis is expressed on a geometric
or logarithmic scale, this distribution is called lognormal. The lognormal distribution
has been analyzed comprehensively by May (1975). It is completely specified by two
parameters, although, as May (1975) shows, there are several ways of expressing the
equation:

- 772454
.- ST=L‘-3——SU (10.14)
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Figure 10.5 Use of the loganthmic series to predict the percentage
of unique species in the larger of two data sets from the same
biological community. Three values of o, the diversity parameter
of the logarithmic serics, are plonted. The larger data set is assumed
to have a sample size of 10,000 individuals. These curves illustrate
how difficult it is to sample the rare species in a diverse biological
community. (Source: Koch, 1987.)
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Figure 10.6 Relative abundance of nesting bird species in
Quaker Run Valley, New York. The lower figure shows the dis-
tribution on an arithmetic scale, and the upper figure shows the
same data on a geometric scale with X3 size groupings (1, 2-4,
§-13, 1440, 41-121, ete.). (Source: Williams, 1964.)
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TABLE 10.4 GROUPINGS OF ARITHMETIC SCALE UNITS
INTO GEOMETRIC SCALE UNITS FOR .
THREE TYPES OF GEOMETRIC SCALES®

Arithmatic numbers grouped according to:

Geometric
" scale no. X2 Scae® X3 Scale® Xx10 Scale”

. 1 1 1-2 1-9 .
) 2 2-3 3-8 10-99

3 4-7 9-26 100-999

4 8-15 27-80 1,000-9,999

5 16-31 81-242 10,000-99,999

6 32-63 243-728 100,000-999,99%

7 64-127 729-2,186 -

8 128-255 2,187-6,560 -—

9 256-511 6,561-19,682 —_

¢ This type of grouping is used in Figure 10.5.

? Ocuave scale of Prenion {1968), equivalent 1o log: scale.
‘ Equivalent 1o Jog, scale.

¢ Equivalent 10 log,, 3cale. j

where  S; = Toual number of species in the community
a = Parameter measuning the spread of the lognormal distribution

So = Number of species in the largest class

The lognormal distribution fits a variety of data from surprisingly diverse communites
(Preston, 1948, 1962). ;

The shape of the lognormal curve is supposed to be characteristic for any par- '
ticular community. Additional sampling of a community should move the lognormal
curve 10 the right along the abscissa but not change its shape. Few communities have
been sampled enough to test this idea. Figure 10.7 shows some data from moths caught
in light traps which suggest that additional sampling moves the curve out 1oward the
right. Since we cannot collect one-haif or one-quarter of an animal, there will always \
be some rare species that are not represented in the catch. These rare species appear
only when very large samples are taken.

Preston (1962) showed that data from lognormal distributions from biclogical
communities commonly took on a particular configuration that he called the canonical
distribution. Preston showed that for many cases a ~ 0.2 so that the entire lognormal
distribution could be specified by one parameter:

Sy =5.11422S, (10.15)

where Sy = Total number of species in the community
So = Parameter measuring number of species in the modal (largest) class of
the lognormal as defined above

Note that when the species abundance distribution is lognormal, it is possible
1o estimate the total number of species in the community, including rare species not
yet collected. This is done by extrapolating the bell-shaped curve below the class of
minimal abundance and measuring the area. Figure 10.8 illustrates how this can be
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Figure 10.7 Lognormal distributions of the relative abundances Ry
of Lepidoteran insects captured in light traps at Rothamsted : 1’-
Experimental Station, England, in peniods ranging from govs
: (a) 1/8 years to (b) | year 1o (¢) 4 years. Note that the lognormal LR
! distnbution slides W the right as the sample size is increased. -1
i — (Source: Williams, 1964.) A
‘ done. This can be a useful property for communities where all the species cannot K
: readily be seen and tabulated. e -
1 Although the lognormal distribution is an antractive mode! for species abundance
I relationships, in practice it 1s a very difficult distnbution to fit 10 ecological data (Hughes, .
.g: ~
1
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Figure 10.8 Species abundances in a collection of moths !
caught in a light trap. Data from Preston (1948). The lognormal i
distribution is truncated at the point where species are repre-
sented by a single individual. More intensive sampling would
cause the distribution to move 10 the right and to unveil the
hidden sector of rare species. (Source: Preston, 1948.)

1986). A sample should in practice be described by a truncated lognormal only if there

is some evidence of a mode or maximum in the species abundance curve (e.g., Figures

10.6 and 10.8). Many authors have calcuwlated a lognormal distribution from data like

those in Figure 10.6a, which have no mode, but this should not be done. Hughes

(1986) showed that parameter estimates from artificial lognormal distributions that

did not include the mode were wildly inaccurate. The shape of the “true” lognormal

distribution cannot be calculated from small samples, unless you have independent

evidence that the first octave of your sample is close to the true mode for that com- \

munity.

i The lognormal distribution is a continuous statistical distribution, but species ’

= abundance daw are discrete in terms of individuals. Strictly speaking, the species

abundance data should be treated as Poisson variates, and one should fit the Poisson i

lognormal (= discrete lognormal) 10 most community data (Pielou, 1975, p. 49; Bulmer, :

1974). The Poisson lognormal is difficult to compute, and Bulmer (1974) has discussed |

methods of evaluating it. For practical purposes the ordinary lognormal is usnally

fitted 10 species abundance data, using the maximum likelihood methods devised by

Cohen (1959, 1961) and described by Pielou (1975, pp. 50-53). Gauch and Chase

(1974) discussed a nonlinear regression method for fitting the lognormal distribution

to species abundance data, but Hansen and Zeger (1978) showed that this regression

method was not appropriate for species abundance data and recommended the method X

of Cohen. '
To fit 2 lognormal distribution 1o species abundance data by the methods of !

Cohen (1959, 1961), proceed as follows: i

1. Transform all the observed data (number of individuals, biomass, or other
measure of species importance) logarithmically:

X, = log n; (1016)
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where n; = Observed number of individuals of species i in sample
i = Species counter (i = 1,2,3, ..., S)*
x; = Transformed value for lognormal distribution

Any base of logarithms can be used as long as you are consistent. Here, I will use log

base 10.
i 2. Calculate the observed mean and variance of x; by the usual statistical formulas ‘ ’
(see Appendix 1). Sample size is Sp, the observed number of species. '}
: 3. Calculate the parameter y: !
2 .
5
T m—— 10.17
Y= &= xr (10.19

where  y = Parameter of lognormal distribution
5% = Observed variance (calculated in step 2)
X = Observed mean (calculated in step 2)
Xo = log(0.5) = —0.30103 if using log,o

4. From Table 10.5 obrain the estimate of 8 corresponding 10 this estimate
of y.

S. Obrain corrected estimates of the mean and variance of the lognormal dis-
tibution from the equations

i = % = 8% = xo) (10.18)
& =5+ 6(X — %) (10.19)
| where i = Estimate of true mean of the lognormal

X, s? = Observed mean and variance from step 2

8 = Correction factor from Table 10.5 (step 4)
f xp = Truncation point of observed data = log(0.5)
a* = Estimate of true variance of the lognormal

6. Calculate the standardized nommal deviate corresponding to the truncation

where  S; = Estimated number of species in the community (including those to the
left of the veil line, e.g., Figure 10.8)

point:
Xo — P
2= =2 - E (10.20) 14
rla
K
' 7. From tables of the standard normal distribution (e.g., Rohlf and Sokal, 1981, v
! p. 78), find the area (po) under the tail of the normal curve to the left of z5. Then: v
! . S i3
:‘ Sr= = 7 (10.21)
3

AL IR et 1o
;}.};ﬁ‘-")‘.la:y

So = Observed number of species in sample pe
Po = Area of standard normal curve to left of z, =
*® To avoid confusion but maintain traditional symbols. 1 use S; for the number of species obscrved @

g‘_ and s for the standard deviation.
i
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TABLE 10.5 VALUES OF THE ESTIMATION FUNCTION 8 CORRESPONDING
TO VALUES OF y OBTAINED IN EQUATION (10.17)

10/SPECIES DIVERSITY MEASURES

R

001

002

.00

.004

005

008

.007

.008

y .000 14
0.0  .00000 00000 00000 .00001 00001 00001 .00001 00001 .00002 00002  0.05
0.06  .00002 00003 00003 ,00003 00004 00004 .000035 .00006 00007 00007 0,06
0.07  .00008 00009 .00010 00011 00013 00014 .00016 00017 00019 00020 0.0
0.08  .00022 00024 .00026 .00028 00031 00033 .00036 .00039 00042 00045 0.08
0.09 00048 00051 00055 00059 .00063 00067 00071 00075 00080 00085  0.09
0.10  .00090 00095 00101 00106 00112 00118 00125 00131 00138 00145 0.10
ol 00153 00160 00168 00176 00184 00193 00202 00211 00220 00230 0.t
0.12 00240 00250 .00261 00272 00283 00294 .00305 00317 00330 00342 0.2
0.13 00335 00369 00382 00396 00410 00423 00440 00455 00470 00486 0.3
014 00503 00519 00536 00553 .00571 00589 00608 00627 00646 00665 0.4
0.15 00685 00708 00726 .00747 00765 00791 .0081) .0083% 00858 00882 0.5
016  .00%06 .00930 00953 00980 .01006 01032 01058 01085 01142 01140 0.6
0.17 01168 01197 01226 01256 01286 01316 01347 01378 01410 01443 017
0.18 01476 .0150% 01543 01577 D161 01646 01682 017118 01788 01792 0.13
016 .01830 01868 01907 01945 01986 .02026 02067 02108 02150 02193 0.19
020  .02236 02279 02323 02368 02413 02458 02504 02551 02599 02647 0.20
0.2 02695 02744 02794 02844 02895 02946 02998 .03050 03103 03157 0.2)
0.22 03 03266 03322 03278 03435 03492 03530 .0360% 03668 03728 0.22
023  .03788 .03849 03911 03973 04036 04100 04168 04230 .04296 04362 023
0.24 04429 04497 04565 Na83e .04704 04774 04845 04917 04989 05062  0.24
0.25 05136 05211 05286 08362 05439 05516 05594 05673 05753 .0$834 025
0.26  .05%15 05997 06080 06163 06247 06332 06418 06504 06591 06679  0.26
0.27 06768 06858 06548 07039 07131 07224 0717 07412 07507 07603 027
0.28 07700 07797 07896 07935 08095 08196 08358 .08401 08504 .0B50% 0.28
0.29  .08714 08820 08927 05038 09144 09254 09364 09476 .09588 09700 0.29
0.30  .09815 .09930 10046 10163 .10281 .10400 .10520 10641 10762 10885 Q.30
0.31 1101 a3 126 138 1151 1164 2177 1150 1203 1216 0.0
032  .1230 1243 1287 1270 1284 1298 1312 1326 1340 1355 0.32
0.33  .1369 1383 .1398 141) 1428 1443 1458 1473 1488 .1503 0.33
034 1519 1534 1550 1566 1582 L1598 1614 .1630 1647 1663 0.34
0.35  .1680 1697 A714 BRAN 1748 1768 1782 1800 1817 L1835 0.3§
036  .1853 1871 .1889 .1907 1926 %44 1963 1982 2001 2020 0.36
037 2039 .2058 2077 2097 21 2136 2156 2176 2197 <207 0.37
0.8  .2238 2258 2279 2300 2321 2342 2364 2385 2407 2429 0.38
039 2481 2473 .249§ 25811 .2540 2562 2585 .2608 2631 .2658 0.39
0.40 2678 .2702 2726 2750 2774 2798 2822 2847 2871 2896 0.40
0.41 2921 2947 2972 .29%8 3023 .3049 3075 K3[1V] 3128 RIER) 0.4}
0.42 3181 3208 323§ 3283 3290 38 3346 .33%4 .3402 3430 0.42
0.43 3459 _.3487 L3516 3548 .35758 .3604 3634 3664 3694 3724 0.43
0.44 37ss 3785 3816 3847 L3878 3910 3941 3973 .4005 4038 0.44
0.45 .4070 4103 4136 4165 4202 .4.2!6 4269 4303 4338 4312 0.45
0,46 4407 4442 4477 4512 4547 4583 4619 4655 4692 47128 0.46
0.47 4765 L4802 4840 4877 4915 4953 4992 .5030 5069 .5108 0.47
048  .5148 5187 L2227 5267 .5307 5348 5389 .5430 5471 5513 0.48
0.4% 5555 5597 5639 L5682 5728 5768 5812 5856 .5900 5944 0.49
0.50 5939 6034 6079 6124 6170 8216 £263 6309 6356 6404 0.50
0.51 6451 .64%9 6547 6596 6645 6694 6743 6793 6843 L6893 0.51
0.52 6944 6995 7046 .7098 150 7202 7255 .7308 7361 7415 0.52
0.53 \7469 1524 2578 1613 7689 71748 7801 587 314 7972 0.53
054 8029 .8087 8146 8204 8263 R3PXI 8383 .Baa} 8504 BS6S 0.54
0.58 $627 8689 8751 8613 8576 8940 9004 5068 9133 9198 0.55
0.5¢ 9264 9330 9396 946 9530 959§ 9666 9735 .9504 9874 056
0.57 9544 1.001 1.009 1.016 1.023 1.030 1.03? 1.045 1052 1.060 0.57

s~
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TABLE 10.5 (Continved)

y .000 .00% 002 003 .004 .005 .006 007 .008 009 y
0.58  1.067 1.07§ 1.082 1.090 1.097 1.108 1.1 112} 1.129 L 0.58
0.59 1.145 1.153 1.161 1.169 LI 1.188 1,194 1.202 1.211 1.21% 0.59
060 1.228 1.236 1.245 1.254 1.262 1.27M 1.280 1.289 1.298 1.307 0.60
0.6} 1.316 1.326 1335 1.344 1.353 1.363 1.373 1.382 1.392 1.402 0.61
0462 1411 1.421 1.43] 1.44) 1451 1461 1.472 1.482 1.492 1.503 0.62
063 1513 1.524 1.4 1.545 1.556 1.567 1.578 1.589 1.600 1.611 0.63
0.64 1.622 1.634 1.645 1.657 1.668 1.680 1.692 1.704 1.716 1.728 0.64
0.65 1,740 1.752 1.764 1177 1.78% 1.802 1.814 1.827 1.840 1.853 0.6
0.66 1.366 1.879 1.892 1908 1919 1.932 1.946 1.960 197« 1.988 0.66
0.67 2002 2016 2030 2.044 2.059 2.0Mm3 2.088 2.103 2118 2133 0.67
0.68 2.148 2163 2,179 2.1%4 2.210 12058 2.24) 2287 2213 2.290 0.68
0.69 2.306 2322 2339 2356 2373 2,390 2.407 2,424 2.441 2459 0.69
0.70  2.477 2495 2.512 2.5 2.549 2.5617 2.586 2.608 2.62) 2.642 0.70
0.71  2.662 2.681 2.701 2.120 2740 2.760 2.780 2.500 2.821 2.842 0.71
0.72 2863 2.884 2.905 2926 2.948 2.969 2.951 301 1.036 3.058 0.72
0.73  3.081 3.104 a7 1.150 3173 3197 Jaan 3,245 3270 3.29¢ 0.73

0.7¢ 3319 3344 3.369 3.394 1420 1446 3.412 1,498 3.528 ).552 0.74
075  3.579 1.606 J.634 3.662 3.6%0 ing 3,747 316 3.808 3.824 0.75

0.76  3.864 1.854 1924 3.955 3.986 4017 4.048 4.080 4012 4144 0.76
0.77 4. 4210 4.243 .27 431 4.345 4,380 4415 4450 4486 oM
078 452 4.56 4.60 463 4.67 471 4.5 479 482 486 0.78
0.79 490 4.94 4.99 5.03 5.07 sn 518 5.20 5.24 5.28 0.79
0.30 533 5.37 S.a2 5.46 5.51 $.56 5.61 5.65 5.70 575 0.80
0.81 580 5.85 590 5.95 6.01 6.06 61 6.17 6.22 6.28 0.81
0.82 633 6.39 6.45 6.50 6.56 6.62 6.68 6.74 6.81 6.87 0.82
083 693 7.00 7.06 .13 7.9 1.26 2.33 1.40 7.47 1.54 0.83
0.84 7.6 7.68 7.6 7.83 29 7.98 8.06 8.14 8.22 8.30 0.834
035 839 £.47 5.55 §.64 £73 8.52 8.91 9.00 5.09 9.8 085

® These values are used 10 fit the lognormal distribuvion to specic: sbundsnce data.
Suurce: Cohen, 1961.

In the notation of equation (10.14), note that

|
d= ﬁ (10.22)
a

where 4 = Parameter measuring the spread of the lognormal distribution
@ = True variance of the lognormal (equation 10.19)

The variance of these estimates of the parameters of the lognormal distribution
can be estimared, following Cohen (1961), as

a2
K1 e

var(g) = (10.23)

So
where var(s) = Esumated variance of mean of the lognormal
#1 = Constant from Table 10.6
&* = Estimate of true variance of lognormal (equation 10.19)
5o = Observed number of species in sample
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?,{ " TABLE 10.8 FACTORS FOR ESTIMATING THE VARIANCE o
ig-.-, OF THE MEAN AND STANDARD DEVIATION ]
- OF A LOGNORMAL DISTRIBUTION®
‘& For truncated samples For truncated sampies
2o B [ Zy Hu M2
£ —-4.0 1.00054 502287 0.0 22,1875 4.03126
fee ~3.5 1.00313 510366 0.1 27.1403 a.46517
i -30 1.01460 536283 0.2 33.1573 4.93678
‘ -2.5 1.05738 602029 0.3 40,4428 5.48068 .
. ~2.4 1.07437 622786 04 49.2342 6.07169 t
-23 1.09604 646862 0.5 59.8081 6.72512
-2 1.12365 674663 0.6 72.4834 7.44658
, =21 1.15880 706637 0.7 §7.6276 8.24204 |
: -20 1.20350 743283 0.8 105.66 9.1178 -
- -19 126030 785158 0.9 121.07 10.081 l
-18 1.33246 832880 1.0 152.40 11.138
-17 1.42405 887141 11 182.29 12298
-1.6 1.54024 948713 1.2 217.42 13.567
-15 1.68750 1.01846 13 158.61 1a.934
-1.4 1.87398 1.09734 1.4 306.78 16.471
-1.3 2.10982 1.18642 1.5 362.91 18.124
-1.2 2.40764 1.28690 1.6 428.11 19.922
-1l 278311 1.40009 1.7 503.57 21874
-1.0 3.25557 1.52746 1.5 391.03 24.003
-09 3.84879 1.67064 1.9 651.78 26.311
-0.8 4.59189 1.83140 2.0 807.71 28.813
-0.7 5.52036 2.01172 2.1 940.38 31511
-0.6 §.67730 2.21376 22 1051.4 34.405 f
: -0,5 8.11482 2.43990 2.3 1265.4 37.578 |
-0.4 9.89562 26921 24 1458.6 40.858
1 ~0.3 12.0949 2.97504 2.8 16778 44.392
I -0.2 14,8023 3.28997
% -0.1 18.1244 3.64083
1 0
- * The table i3 entered with a value of 2o #$ calculated in cquauon (10.20),
’,"f~ Source: Cohen, 1961,

The variance of the standard deviation of the lognormal is given by

=2
Hnd

So

var(e) = (10.24)
where var(d) = Variance of estimated standard deviation of the lognormal {
u22 = Constant from Table 10.6 ;
3% = True variance of lognormal '

5o = Observed number of species in the sample

These two variances may be used 1o set confidence limits for the mean and standard
deviation in the usual way. The goodness of fit of the calculated lognormal distribution
can be determined by a chi-square test (example in Pielou, 1975, p. 51) or by a non- .
parametric Kolmogorov-Smirnov test, !
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Unfortunately, no estimate is available of the precision of Sy (equation 10.21),
and this is the parameter of the lognormal we are most interested in (Pielou, 1975;
Slocomb and Dickson, 1978). Simulation work on anificial diatom communities by
Slocomb and Dickson (1978) showed that unreliable estimates of Sy were a serious
problem unless sample sizes were very large (> 1000 individuals) and the number of
species in the sample was 80% or more of the total species in the community. Such

large-scale sampling is rare in thé most species-Tich communities that we might wish i
; to fit with the lognormal distribution. o
! Program LOGNORM (Appendix 10.4) fits a truncated lognormal distribution

) 10 species abundance data and calculates an expected distribution, using the approach

outlined in Pielou (1975).
Box 10.4 illustrates these calculations for a lognormal distribution.

Partly because of the complexity of the logarithmic seri¢s and the lognormal distribution
and the lack of a theoretical justification for these statistical approaches, ecologists
have turned to a vanety of nonparametric measures of heterogeneity that make no
] assumnptions about the shape of species abundance curves. The first nonparametric
l measure of diversity was proposed by Simpson (1949). Simpsan suggested that diversity

I 10.4.3 Simpson’s Index

is inversely related 10 the probability that two individuals picked at random belong
to the same species. For an infinite population this is given by

D=73p} (10.25)

where D = Simpson’s index
p: = Proportion of species { in the community

To convert this probability 10 a measure of diversity, most workers have suggested Y
using the complement of Simpson’s original measure: T

Probability of picking two
Simpson's index of diversity = organisms at random that
are different species

: ¥

Probability of picking two &}

=1-1{ organisms that are the e

same species) i};
Thus, 5
1-D=1-3(p) (10.26) 3'

where | — D = Simpson’s index of diversity - "

p. = Proportion of individuals of species i in the community

: Striculy speaking, this formula can be used to estimate Simpson’s index only for an
i infinite population. Pielou (1969) showed that for a finite population the appropriate )
b estimator is 3
. L nin; = 1) I
}-D=1- _ 8 .
Z[MN_I)] (10.27) o5

-1
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Box 10.4 FITTING A TRUNCATED LOGNORMAL TO SPECIES
ABUNDANCE DATA

Kempron and Taylor (1974) provided moth data for site 49, Fort Augustus,
Scotland, in 1969; 4534 individuals were collected in 165 species:

Individuals per Midpoint of interval, Observed no. of

spocios x specles, f,
1 1 24
2-3 25 22
4-7 s.5 30
8-1§ 11.5 22
16-31 238 30
32-63 47.5 21
64-127 99.5 9
128-255 191.5 7

1. Calculare the mean and variance of the transformed data (log base 10) using
the formulas for grouped data:

2
2 fx

- (log 1)(24) + (log 2.5)(22) + (log 5.5(30) + - - -
24 +22+30+22+30+21+9+7

_164.5991
165

= 0.99757
e Z xMx = (2 xfx)*/n

n—1
= (0.41642

2. Estimate the parameter y from equation (10.17):
2

X=

=
(X = xof?
- 0.41642
[0.99757 — (~0.30103))?
= 0.24693
3. From Table 10.5, interpolating between y of 0.246 and 0.247,
6 = 0.04912

y

4. Correct the observed mean and variance for the effects of truncation from
equauons (10.18) and (10.15):

HeoUIHIND 1=4¢1 r.33744 £-cod
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B=X=8(x - x)

= 0.99757 — (0.04912)[0.99757 — (-0.30103))

| = 093378
‘ 5 = 52+ B(F - xo)? ‘.
' Te
| = 0.41642 + (0.04912)[0.99757 — (~0.30103))’ -
i = 0.49925
i 5. Calculate the standard normal deviate corresponding 1o the truncation point
! from equation (10.20):
: _%0 - I
2o = 7
_ —0.30103 - 0.93378
¥0.49925
= —].7476

6. From Table 11 of Rohlf and Sokal (198!) obtain the area under the normal
curve 1o the left of z;:

Ps = 0.02005

7. From equation (10.21) calculate the esimated number of species in the
whole community:

: s

%’ Sr= 2 n

by 1 =D

E 165

;i 1 —- 0.02005 .
t LA
E_ = 168.4 species ‘_g
5;,, Kempton and Taylor (1974) cautioned that this fitting procedure may give JS}
ij" inexact parameter estimates compared with Bulmer's (1974) procedure, ,d}
7 Lx
e 3

where 7, = Number of individuals of species / in the sample
N = Total number of individuals in the sample = Z n;
5 = Number of species in the sample

Y Y, Sy g
e

BArsR

Note that this formula (10.27) can be used only when there are counts of individuals
in the samples. When cover, biomass, or productivity is used as the measure of species
- imponance, the previous equation (10.26) must be used. In practice, with a large
; sample there is almost no difference between these two equanons.

There is some confusion in the literature over what should be called “*Simpson’s
index.” Washington (1984) argues strongly for maintaining Simpson’s original for-

18
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mulation, in which case equations (10.26) and (10.27) are the complement of Simpson’s
diversity. To confuse matters further, Willlams (1964) and MacArthur (1972) used
the reciprocal of Simpson’s original formulation:

11 (10.28)
D 3T p;

-

where 1/D = Simpson’s reciprocal index (= Hill's N3)
pi = Proportion of species / in the community

Hill (1973) called this reciprocal N,.

Simpson’s index (1 — D) ranges from 0 (low diversity) to almost | (1 — 1/s).
The reciprocal of Simpson’s original formulation (1/D) varies from 1 10 s, the number
of species in the sample. In this form, Simpson’s diversity can be most ¢asily interpreted
as the number of equally common species required 10 generate the observed hetero-
geneity of the sample.

Diversity is almost always measured by a sample from a community, and it is
virtually impossible for an ecologist 10 obwin a simple random sample (Pielou, 1969;
Routledge, 19802, 1980b). One way around this problem is to treat the community
sample as a collection, or a complete statistical “universe,” and make inferences about
this finite collection (Pielou, 1966). Another approach is to use sampling units such
as quadrats for plants or nets for insects and estimate diversity using a jackknife
procedure. Zahl (1977) was the first 1o propose using this procedure to provide con-
fidence estimates for Simpson’s diversity measure. Routledge (1980a) showed that
small samples (<30 quadrats) could give biased estimates for Simpson's diversity
() = D is underestimated), especially when fewer than 10 quadrats were counted.
Heltshe and Forrester (1985) suggested that the jackknife estimate of confidence limits
for Simpson's diversity (1 — D) was 100 large when applied 10 clumped populatons,
causing excessively wide confidence limits when more than 40 quadrats were sampled
in their antificial populations. This overestimation depended on the exact shape of the
species abundance curves.

Jackknife procedures for estimating Simpson’s index of diversity and its confi-
dence limits from quadrat samples are outlined clearly in Routledge ( 19802). Lyons
and Hutcheson (1986) proposed an aliernative method for estimating confidence limits
for Simpson’s diversity using Pearson curves, but there was little improvement over
the jackknife procedure.

Peet (1974) recognized 1wo categonies of diversity indices. Type I indices are
most sensitive to changes in the rare species in the community sample. The Shannon-
Wiener index is an example of a type I index. Type 11 indices are most sensitive to
changes in the more abundant species. Simpson's index is an example of a type 11
index. The choice of heterogeneity measure 1o use on your data should be made on
this basis—are you more interested in emphasizing the dominant or the rare species
in your community?

Program DIVERS (Appendix 10.5) calculates Simpson’s index of diversity from
species abundance data.
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10.4.4 Shannon-Wiener Function

The most popular measures of species diversity are based on information theory. The
main objective of information theory is 1o try 10 measure the amount of order (or
disorder) contained in a system (Margalef, 1958). Four types of information might be
collected regarding order in the community: (1) the number of species, (2) the number
of individuals in each species, (3) the places occupied by individuals of each species,
and (4) the places occupied by individuals as separate individuals. In most community
work only data of types | and 2 are obtained.

Information theory, Margatef suggested, provides one way to escape some of the
difficulties of the lognormal curve and the logarithmic series. We ask the question:
How difficult would it be 10 predict correctly the species of the next individual collected?
This is the same as the problem faced by communication engineers interested in
predicting correctly the name of the next letter in a message. This uncertainty can be
measured by the Shannon-Wiener function:*

H = 2 (piXiog: p)) (10.29)
1=

where H' = Information content of sample (bits/individual)
= Index of species diversity

. $ = Number of species

p: = Proportion of total sample belonging to i1h species

Information content is a measure of the amount of uncertainty, so the larger the value
of H’, the greater the uncertainty. A message such as bbbbbbb (or a community with
only one species in it) has no uncertainty in it, and H' = 0. Any base of logarithms
can be used for this index, since they are all convertible 1o one another by a constant
multiplier:

H' (base 2 logs) = 3.321928 H’ (base 10 logs)
H' (base e logs) = 2.302585 H" (base 10 logs)

Xf base 2 logs are used, the units of H' are bits per individual; if base e logs, nits; and
if base 10 logs, decis.

Stnctly speaking, the Shannon-Wiener measure of information content should
be used only on random samples drawn from a large community in which the total
number of species is known (Pielou, 1966). For most community samples this is not
the case, and Pielou (1966) thus recommends using the more appropriate Brillouin
index.

The Shannon-Wiener measure H' increases with the number of species in the

- community and in theory can reach very large values. In practice, for biological com-
munities A’ does not seem 10 exceed 5.0 (Washington, 1984). The theoretical maximum
value is log(S), and the minimum value (when N » S) is log{N/(N — S)] (Fager, 1972).

* This funciion was derived independently by Shannon and Wiencr and is sometimes muslabeled the
Shannon-Weaver function.
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Many workers have used H' as a measure of species diversity, but the information
theoretic approach has been heavily criticized by Hurlbert (1971) and by Washington
(1984). The decision 10 use H'as a measure of species diversity should be made more
on empirical grounds than on theoretical grounds. For example, Taylor et al. (1976)
showed that « of the loganithmic series was a berner diversity statistic than H' because
a vaned less in replicate samples of moths taken at the same site over several years,

Sampling distributions for the Shannon-Wiener index H' have been determined
by Good (1953) and Basharin (1959), but these standard ervors of H” are valid only
if you have a simple random sample from the community. This is never the case in
field data when nets, traps, quadrats, or wransects are used for sampling (Kempton,
1979). Adams and McCune (1979) showed that estimates of H' from field data are
usually biased, with the observed H’less than the true ', and that the jackknife
technique could be used to reduce this bias and 10 estimate standard errors for H' so
that confidence limits might be calculated. Zahl (1977) and Routledge (1980a) presented
jackknife estimators for the Shannon-Wiener function when data are collected by
quadrat sampling. Adams and McCune (1979) have prepared a computer program
for jackknifing the Shannon-Wiener function.

The Shannon-Wiener index may be expressed in another form (MacArthur,
1965).

N, = et (10.30)

where e¢=2.71828
H’ = Shannon-Wiener function (calculated with base e logs)
N, = Number of equally common species which would produce the same
diversity as H'

If a different base of logarithms is used, replace e with the base used. Hill (1973)
recommends using NV, rather than H’ because the units (number of species) are more
clearly understandable to ecologists. Peet (1974) recommends N, as the best type 1
heterogeneity measure.

Program DIVERS (Appendix 10.5) calculates the Shannon-Wiener function for
species abundance data.

10.4.5 Brlllouin Index

Many community samples should be treated as collections rather than as a random
sample from a Jarge biological community, according to Piclou (1966). In any case in
which the data can be assumed 10 be 2 finite collection and sampling is done without

replacement, the appropriate information theoretic measure of diversity is Brillouin’s
formula:

Hejopf M X
TN ogm!n:!n,y...) (10.31)

where K = Brillouin's index
N = Total number of individuals in entire collection
n, = Number of individuals belonging to species |
n; = Number of individuals belonging 10 species 2 (etc.)

pog
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Any base of logarithms may be used, as with the Shannon function. If base 2 logs are
used, the units of A are bits per individual. Margalef (1958) was the first to propose
using Brillouin’s index as a measure of diversity.

There is much argument in the literature about whether the Brillouin index or
the Shannon-Wiener function is a betier measure of species diversity (Peet, 1974;
Washington, 1984). In practice, this argument is irrelevant 1o ficld ecologists because
H and H' are nearly identical for most ecological samples (when N is large). Legendre
and Legendre (1983) also point out that Brillouin’s index cannot be used when biomass,
cover, or productivity is used as a measure of species importance in a community.
Only the aumber of individuals can be used in equation (10.31).

If the Brillouin index is applied to quadrats, the mean and standard ervor of the
Brillouin index can be estimated by the jackknife procedure (Heltshe and For-
rester, 1985).

The Brillouin index is like the Shannon function in being most sensitive to the
abundances of the rare species in the community. It is thus a type [ index (Peet, 1974).

Program DIVERS (Appendix 10.5) calculates the Brillouin index from species
abundance data (counts of individuals),

Box 10.5 illustrates the calculation of Simpson’s index, the Shannon-Wiener
function, and Brillouin's index for a forest community.

10.5 EVENNESS MEASURES

S erea v el

Many different measures of evenness (or equirabiliry) have been proposed. The most
common approach has been 1o scale one of the heterogeneity measures relative 1o its
maximal value when each species in the sample is represented by the same number
of individuals. Two formulations are possible:

Evenness =
DMAX
D — Dyin
Evenness = —————
Dyax ~ Dmm
where D = Observed index of species diversity
Dumax = Maximum possible index of diversity, piven S species and N indi-

: viduals
g Dyyn = Minimum possible index of diversity, given S and N
These two measures (labeled V' and V by Hurlbert, 1971) are convergent for large
samples, and evenness measures of the first type (V') are most commonly used in the
literature. All evenness measures range from 0 1o 1.

For Simpson's measure of heterogeneity, maximum diversity is obtained when
all abundances are equal (2 = 1/5), so in a very large population:

(10.32)

Duax =

l—

AP 572 | L AGNPNGRY SOOI 71T gy Ay
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Box 10.5 CALCULATION OF SIMPSON'S INDEX, THE SHANNON- /
WIENER FUNCTION, AND BRILLOUIN'S INDEX OF
SPECIES DIVERSITY

Hough (1936) tallied the abundance of large wees in a virgin forest in Pennsyl-
vania:

No. of inglviduals. Proportional abunaance,

Tree spocies n, P:
Hemlock 1940 0.521
Beech 1207 0.324
Yellow birch 17 0.046
Sugar maple 134 0.036
Black birch 97 0.026
Red maple 93 0.025
Black cherry 34 0.009
Whitc ash 22 0.006
Basswood 15 0.004
Ycliow poplar 7 0.002
Magnolia _4 0.001
Towal 3724 1.000

Simpson’s Index
From equation (10.25):
D=3p

= 0.521° + 0.324? + 0.046% + 0.036% + - - -

= 0.381
The wwo indices of diversity follow from equations (10.26) and (10.28):

1-D=1-0.381
= 0.619

This measure is the probability that two individuals chosen at random will be
different species.

1
81
2

le A

3
=26

3 species

This is the number of equally common species required to produce the observed
value of D.

Note that with this large sample the finite-population formula (cquation
10.27) gives results identical 10 equation (10.26).
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Shannon-Wiener Function
From equation (10.29):
H = =3 pilog:
= (0.521)(logy 0.521) + (0.324)log; 0.324)
+ (0.046)(logy 0.046) + - - -

= 1.829 bits per individual
From equation (10.30):

N = e (base e logs)
=2’ (base 2 logs)

- 2!.‘29

= 3,55 species

Briilouin's Index
From equation (10.31)

- 1 N!
H= NIOg(n,!nz!n;! v ‘)

_ 37241
3724 °&’(194ouzo7u71!134!97!- -
= |.818 bits per individual

i This is virtually identical 10 &". 4
: Note that loga(x) = 3.321981 log)o{x). Ll
: Program DIVERS (Appendix 10.5) does these calculations.

where Dyax = Maximum possible value for Simpson's index (equation 10.25) =k
S = Number of species in the sampie ﬁ
i

Given this value, the maximum values of the complement (equations 10.26 and
10.27) and the reciprocal (equation 10.28) of Simpson’s index can be obtained. Note
J that the maximum possible value of the reciprocal 1/D is always equal 10 the number

of species observed in the sample. i
When dealing with a finite population it may be desirable to use equarion (10.27) Ry
to estimate Simpson's diversity. In this case, calculations are slightly more complex: ‘- §

1. Calculate N/S = I + J/S where I and J are two integers and J is less than S. ' "...,;;
2. Then: ;

. 127 + SU - 1) )
;

e

Duax = __AT(V—_IS— (10.33)




