

RIVERSIDE COUNTY FLOOD CONTROL and WATER CONSERVATION DISTRICT

Low Impact Development (LID) Testing & Demonstration Facility

Jason Uhley General Manager – Chief Engineer & Ava Moussavi

RIVERSIDE COUNTY FLOOD CONTROL and WATER CONSERVATION DISTRICT

Project Outline
Sampling
Lessons Learned
Results
Conclusions

1. Project Overview – Map

1. Project Overview – Map

1. Project Overview

- Genesis: SAWPA Prop 84 grant (~\$500K)
- Total project cost = \$2.5M
- Completed: 2012
- Goal:
 - Demonstrate LID and Water Conservation
 - Optimize LID for semi-arid environments
 - Simplify and standardize design
 - Resilient to real world operations
 - Maximize water quality benefits

1. Why this Project is Important

- One of oldest LID Testing Facilities in CA
- Built for monitoring and demonstration
- Designed to test and optimize worst-case (impermeable soils) LID functionality
 - Hydromodification
 - Treatment capabilities
- Will inform future LID design manuals and Permits

1. Challenges

- Retrofit site
- Rain and Mobilization
 - 11 sampling sites
- Designed to test and optimize worst-case (impermeable soils) LID functionality

1. Project Overview – Porous Concrete

1. Project Overview – Porous Asphalt

1. Project Overview – Planter Box

1. Project Overview – Porous Pavers

1. Project Overview – Awards

- 2011-2012 ASCE Civil Engineering Project Improvement Award
- 2012 ASCE Los Angeles Section Honorable Mention
- 2012 APWA Project of the Year
- 2012 Excellence in Communications Awards Special Recognition
- 2012 CSAC California State Association of Counties Challenge Award
- 2012 ASCE Region 9 Outstanding Stormwater Management Project
- 2013 Clair A. Hill Award Finalist
- 2016 NAFSMA Stormwater Management Green Infrastructure Awards for Top Overall Project

2. Sampling – Storm Events

Storm Events Sampled:

- 3/17/2012
- 4/26/2012
- 1/25/2013
- 2/28/2014
- 12/2/2014
- 12/22/2015
- 1/19/2017

~5 additional storms gave us a false start

2. Sampling – Storm Events

Representative Event: Between 0.27" in 6 hours and 0.81" in 18 hours, when possible

Not all storms were sampled-Hard to predict rainfall and mobilize equipment

2. Sampling – Equipment

YSI multiparameter sondes

ISCO Refrigerated Auto-sampler

Thel-Mar Weirs

3. Lessons Learned – Design

- Clean vs washed aggregate
- Plant selection
- Plant placement
 - Inundation zones

"Washed" number 57 stone

3. Lessons Learned – Maintenance

Bioretention Basin

- Native grasses planted February 2017
- Animal burrowing causing water to short circuit

3. Lessons Learned – Maintenance

Porous Pavement

- Difficult finding local vacuum sweeper
- Original void fill for pavers no longer available
- Some pavement clogged
 - Cores of pavement indicate clogging is only at surface

4. Results – Water Quality The 32 constituents sampled fall into 3 categories relating to Water Quality Objectives (WQOs)

California Toxics Rule

Santa Margarita Basin Plan California Toxics Rule

4. Results – Water Quality

Below WQOs

Santa Ana Basin Plan

- Hardness
- Total Dissolved Solids
- Total Suspended Solids

Santa Margarita Basin Plan

- Dissolved Chromium
- Dissolved Iron
- Dissolved Manganese
- Total Arsenic
- Total Cadmium
- Total Chromium
- Total Copper
- Total Lead
- Total Zinc

California Toxics Rule

- Dissolved Arsenic
- Dissolved Zinc

Undetermined WQOs

- Dissolved Cadmium
- Dissolved Copper
- Dissolved Lead
- Dissolved Nickel
- Dissolved Organic Carbon
- Ammonia
- Nitrite
- TKN
- Oil & Grease
- Ortho Phosphorus
- Total Nickel
- Total Organic Carbon

Above WQOs

Santa Ana Basin Plan

• E. coli*

Santa Margarita Basin Plan

- Total Iron
- Total Manganese
- Nitrate
- Total Phosphorus

*Our sampling wells are great habitats for animals!

4. Results – Hydromod Benefits

Results indicate that porous pavement reduces peak flow and increases lag time

4. Results – SMC CLEAN Planter Box

SMC CLEAN: Stormwater Monitoring Coalition California LID Evaluation & Analysis Network

Results indicate that the planter box reduces volume during storms

Storm Events	% Volume Reduction	
4/26/2012	86.8	
1/25/2013	55.8	
2/28/2014	42.6	
12/22/2015	73.1	
Average	64.6	

4. Results – Planter Box Percent Load Reductions

Load = Concentration x Volume

Total Zinc	86	Diss
Dissolved Zinc	89	Diss
Total Arsenic	-126	Diss
Solids, Total Dissolved (TDS)	-124	Dis
Dissolved Arsenic	-122	Dis
Nitrogen, Nitrate (as N)	-75	E. C
Dissolved Nickel	-5	Har
Total Nickel	-2	Nit
Total Iron	17	Oil
Total Chromium	21	Soli
Dissolved Organic Carbon	26	Tot
Phosphorus, ortho (as P)	27	Tot
Phosphorus (Total)	28	
Organic Carbon, total (TOC)	29	
Dissolved Copper	34	
Total Copper	36	
Total Lead	45	
Nitrogen, Total Kjedahl	56	

86	Dissolved Cadmium	
89	Dissolved Chromium	
-126	Dissolved Iron	
-124	Dissolved Lead	
-122	Dissolved Manganese	
-75	E. Coli	
-5	Hardness as CaCO3	
-2	Nitrogen, Ammonia (as N)	
17	Oil & Grease	
21	Solids, Total Suspended (TSS)	
26	Total Cadmium	
27	Total Manganese	
28		

Nondetects

Significant Decrease in Load

Insignificant Change*

Significant Increase in Load BUT Below WQOs

Significant Increase in Load & Above WQOs Insignificant reductions are most likely because our concentrations are already so low

- "Determining Urban Storm Water BMP Effectiveness" Eric Strecker, ASCE, 2001

*Insignificant if % load reduction < 70%

- "A Review of Applicability and Effectiveness of Low Impact Development/Green Infrastructure Practices in Arid/Semi-Arid United States" Yan Jiang et al, EPA, 2015

5. Conclusion

- 1. One of oldest purpose-built LID monitoring facilities
- 2. Focused on collecting worst case performance data
- Need to continue collecting and analyzing data in order to make conclusions regarding LID effectiveness and design
- 4. Soil based BMPs retain significant runoff
- 5. Porous pavements with subsurface storage can assist with hydromod mitigation