

San Diego

Andrew P. Fichthorn Executive Vice President and General Manager

500 SeaWorld Drive • San Diego, California 92109 (619) 226-3802 • FAX: (619) 226-3933 Andrew.Fichthorn@SeaWorld.com

November 28, 2007

VIA HAND DELIVERY

John R. Odermatt Senior Engineering Geologist California Regional Water Quality Control Board San Diego Region 9174 Sky Park Court, Suite 100 San Diego, California 92123-4340

Î....

Re: Reference No. 12-00083.01: Tentative Addendum No. 1 to Order No. R9-2005-0091, NPDES No. CA0107336; For the Discharge of Waste from Sea World Aerial Fireworks Displays to San Diego Mission Bay, San Diego

Dear Mr. Odermatt:

This letter provides Sea World's comments on the draft Tentative Addendum No. 1 to Order No. R9-2005-0091 (herein, "draft Order"). In addition, we have enclosed a redlined version of the draft Order that contains some of our suggested changes:

1. <u>Recital No. 1</u>:

There is a typographical error in the date of December 7, 2007. It should be December 7, 2006 (see our redline of the draft Order).

2. <u>Recital No. 2</u>:

This recital does not include a description of the dimensions of the shells – generally 3inch and 4-inch – and it does not include the mass of the fireworks used at Sea World. The average total weight of firework related materials that are used in the daily shows at Sea World is only 129 kilograms ("kg") and the annual July 4th show is only 993 kg. Our daily fireworks shows are relatively small compared to other productions in Southern California and even our

4th of July show is small compared to other 4th of July fireworks shows¹. Our redline of the draft Order contains those additional descriptions.

3. <u>Recital No. 3</u>:

This recital includes perchlorate as a "typical fireworks constituent," even though it was not referenced that way on page 2-2 of the Report of Waste Discharge ("ROWD"). It is true that for some fireworks, potassium perchlorate is the oxidizer, but for others it is not. For example, potassium nitrate is a more common oxidizer in Sea World fireworks than potassium perchlorate. *See*, Appendix A to *An Analysis of the Fireworks Used at Sea World/San Diego*, by John Conkling (January 10, 2007) and attached to our January 18, 2007 submittal to the Regional Board (hereafter, "Conkling Report").

There is also a typographical error and the word "water" should be added in front of "quality" in the second paragraph (see our redline of the draft Order).

4. <u>Recital No. 4</u>:

In addition to the use of hand held fishnets to collect any floating firework debris after the show, there is a boom with a net off the bow of the boat that is also used to collect debris. A description of this is included in our redline of the draft Order.

5. <u>Recital No. 5</u>:

We suggest slight word changes to this recital in the attached redline of the draft Order.

6. <u>Discharge Prohibitions Paragraph I</u>:

This discharge prohibition appears to suggest that even a *de minimis* amount of "settleable material or substances" could be prohibited from being discharged. Yet, very small amounts of fireworks debris will undoubtedly be discharged into Mission Bay despite the recovery efforts of the sweeps after each show. We anticipate these discharges will be very minor in mass and consist of small particles of uncombusted paper and some deposition of the products of combusted fireworks. *See, e. g.*, the attached report prepared by Brown and Caldwell, *Air Quality Dispersion Modeling analysis of Chemical Residues from the Fireworks*

¹ Just by way of comparison, our 4th of July show is less than a tenth of the size of the Boston Pops Fourth of July show over the Charles River (at some 8,000 kg), and it is miniscule compared to the annual Macy's Fourth of July show over the East River (some 35,000 12 inch diameter-plus shells) and the Thunder over Louisville, annual Fourth of July Kentucky Derby show of some 60 tons of fireworks (around 55,000 kg).

displays at Sea World of San Diego (Sea World), California (November 20, 2007) (hereafter, the "Brown and Caldwell Dispersion Report").

We understand this prohibition to be focused on any degradation of benthic communities or aquatic life given that the monitoring program that is in the draft Order is designed to evaluate whether there is any degradation of benthic communities or aquatic life. If no such degradation is found, then we presume this condition is met even though there are small amounts of material that settle in Mission Bay.

7. <u>Discharge Prohibitions Paragraph J</u>:

This prohibition would limit fireworks shows to Easter through Labor Day and New Year's Eve, and not to exceed 150 days per year. Sea World already operates with a 150 day per year restriction that was part of its Master Plan approval by the City of San Diego in 2001. However, under that approval, Sea World is not limited to only evenings between Easter and Labor Day plus New Year's Eve. Sea World typically allocates some of its 150 days per year for evenings during the Spring Break time period, which generally predates Easter. There should be no different water quality impact due to firework shows before or after Easter (or Labor Day for that matter), so we request that this restriction be changed to be consistent with the provisions in the Sea World Master Plan approval, which would permit shows up to 150 days per year, but would not restrict the time of the year that those shows could take place. Our redline of the draft Order would accomplish that.

8. Monitoring and Reporting Program Paragraph F.1. (years of sampling):

Sea World's understanding of this paragraph is that it requires a three year extensive monitoring effort for calendar years 2008, 2009 and 2010, but that the monitoring program will cease after those three years. We understand that the point of the extensive monitoring program is to further study the effects, if any, of Sea World's fireworks shows on the water quality of Mission Bay. However, if the results of this three year monitoring program demonstrate that there is no degradation of the water quality in Mission Bay, then our understanding is that this extensive monitoring program will stop. Please advise us if that understanding is incorrect.

9. <u>Monitoring and Reporting Program Paragraph F.2. (water quality sampling locations):</u>

Sea World's understanding of Paragraph F. 2. is that it provides a generic description of where the Regional Board wants water and sediment sampling points, but that the specific sampling locations that will satisfy this general criterion are contained in the other paragraphs of Section F. In other words, we do not read this paragraph to require any sampling locations other than those that are specified elsewhere in the draft Order. Please advise us if that understanding is incorrect.

10. <u>Monitoring and Reporting Program Paragraph F.3. (water quality sampling locations)</u>:

This section of the draft Order identifies four water quality sampling locations, with RSW-001R being the "Reference Station." The three other sampling locations are located in reference to the "Fireworks Deposition Zone" which is defined as "the aerial extent of fireworks particles and/or debris created by a single fireworks display within the tidal influence of Mission Bay waters." The enclosed Brown and Caldwell Dispersion Report contains the results of dispersion modeling of the deposition of various firework constituents and shows that under standard meteorological conditions, most of the predicted post combustion fireworks particles will deposit on land to the northeast (Fiesta Island) and southeast (mainland along South Mission Drive) of the barge where the fireworks are shot from. Therefore, we suggest that the specific locations for all four sample points be identified, with GPS coordinates, in advance of any sampling after discussion between the Regional Board's staff, Sea World and Brown and Caldwell and that this identification be done at the beginning of each of the three calendar years, 2008, 2009, and 2010. That will allow the parties to relocate any sample point that may need to be moved based on historical experience. Note that for RSW-002, it suggests that this sampling location is to be in the "center of the deposition zone as determined after each event." Since sampling is only going to occur semiannually, there is no need to make a daily determination of the center of the deposition zone after each event and we suggest that this language be stricken from the draft Order. We have done so in the attached redline.

11. Monitoring and Reporting Program Paragraph F.4.:

The list of water quality constituents in Table X^2 , as well as the list for sediment quality constituents in the next section F. 5 of the draft Order, is very long and contains many compounds that were identified only as potential and/or trace ingredients in fireworks, but were either not detected by Sea World in its water and sediment monitoring prior to submitting the ROWD, or were only detected in trace concentrations in just a few samples. Further, many of these compounds can come from multiple alternative sources other than fireworks and can be found in most water bodies located in or near developed areas. Finally, the Brown and Caldwell Dispersion Report confirms that the likely deposition of fireworks related materials will range from non-detectable to trace levels of only those firework constituents present in the highest concentrations. For these reasons, water and sediment samples should not be analyzed for certain compounds – previous water and sediment sampling has shown little or no presence of

 ² Table X is Water Quality Monitoring Requirements and is found under section F. 4. Section F. 5. contains sediment sampling requirements and contains what appears to be an identical table but it is not labeled.

combustion; and (2) the EPA-approved Open Burn/Open Detonation Model ("OBODM") recommended by EPA for modeling the emission from ground-level explosions of lift charges or aerial propellants. Both models predict rates of deposition given model inputs about the source emissions profile, and other physical parameters.

The result of the Brown and Caldwell Dispersion Report analysis is that deposition of metals and other compounds from both elevated aerial firework displays and the ground level propelling charges range from below the threshold limits that the model can even predict to very low amounts. Just by way of example, the conservative (i.e. overestimating) ISCST3 model predicts that for a regular summer evening fireworks show, only something like a total of 9 *grams* of potassium perchlorate³ would be deposited over the ground within a quarter mile radius of the center of the fireworks show (note that some of that 9 grams would be deposited upon land – either Fiesta Island or the mainland). For the metal compounds like copper, magnesium, and titanium, the conservatively predicted amounts are even less and in some cases far less reflecting the smaller amounts of metals in a fireworks show when compared to the mass of the oxidizers. The bottom line is that the model predictions of very small to immeasurable amounts of deposited fireworks residue onto land or water are consistent with the five years of data collected by SAIC from sediment and water samples, and the more recent Brown and Caldwell data indicating that one can find almost no trace of fireworks related metals or other compounds in either water or sediment in and around Mission Bay.

As a result of the already extensive data collected and modeling already completed – both of which tell a very consistent story that Sea World's aerial fireworks displays have no impact on the water quality of Mission Bay – we question why three more years of extensive water and sediment chemistry data collection and analysis should be required. The list of analytes in the draft Order contains nearly every compound referenced anywhere in the ROWD as a possible ingredient in fireworks whether or not (1) it actually exists in the fireworks used by Sea World; (2) it is only present in trace or non-detectable amounts in the fireworks debris collected; (3) has ever been found in elevated levels in water or sediments in or around the fireworks deposition area; or (4) it is believed to be a toxic pollutant. This massive data collection effort is

³ This was calculated by starting from Appendix A of the Conkling Report which indicated that in a typical daily show, potassium perchlorate makes up some 15.5% of the total mass of fireworks materials. Conkling estimated that the total mass of a daily fireworks show is around 284 pounds (page 2). Therefore, the total amount of potassium perchlorate in a daily fireworks show is only about 44 pounds (.155 x 284 pounds). The Brown and Caldwell Dispersion Report predicts that around .05%, or .0005 of the potassium perchlorate is deposited within a quarter mile of the source (Table 4). Therefore, only about 9 grams of potassium perchlorate is predicted to be deposited (.0005 x 44 poundsx454 grams per pound) within a quarter mile of the source in a daily show.

sediment chemistry data collection and analysis should be required. The list of analytes in the draft Order contains nearly every compound referenced anywhere in the ROWD as a possible ingredient in fireworks whether or not (1) it actually exists in the fireworks used by Sea World; (2) it is only present in trace or non-detectable amounts in the fireworks debris collected; (3) has ever been found in elevated levels in water or sediments in or around the fireworks deposition area; or (4) it is believed to be a toxic pollutant. This massive data collection effort is unwarranted given the already substantial amount of information which only confirms that the fireworks do not have even a detectable, much less adverse, effect on Mission Bay water and sediment quality.

The first category of compounds that should be deleted from both water and sediment quality monitoring are the semi-volatile organic compounds ("SVOCs"):

BIS (2-Ethylhexyl) Phthalate	Di-N-Butylphthalate
Di-N-Octylphthalate	Diethylphthalate
Dimethylphthalate	Phenol
Naphthalene	2,4-Dinitrotoluene

^{2,6-}Dinitrotoluene

None of these SVOCs are present in Sea World's fireworks in any substantial amounts. Appendix A to the Conkling Report makes clear that none of these compounds are present in Sea World fireworks at percentages greater than one tenth of one percent, if they are present at all. The ROWD in Appendix E, Table 2 indicated that only trace amounts of just *some* of these compounds (typically, just the BIS (2-Ethylhexyl) Phthalate and the Di-N-Butylphthalate) were found in the recovered fireworks debris and none of the grab or composite water samples taken in the fireworks deposition zone was ever found to have any of these compounds except nearly undetectable levels of BIS (2-Ethylhexyl) Phthalate found in only two composite and one grab water sample. It makes no sense to continue to collect substantial quantities of data for compounds for which there is no demonstrated nor anticipated expectation of their being present in the water or sediments⁴ as a result of Sea World's fireworks shows.

⁴ Note that for the sediment samples collected as part of the ROWD, only one sample had a detectable level of one of the SVOCs, Sample SS-3, and that value was reported to be between the method detection limit and the reporting limit and therefore just barely detectable and only an estimated value.

The second category of compounds that should be deleted from water and sediment quality monitoring are the explosives:

2,6-DNT	2,4,6-Trinitrotoluene
Nitrobenzene	Tetryl

RDX

None of the explosives are present in Sea World's fireworks in any substantial amounts as Appendix A to the Conkling Report makes clear. Further, Table 3, Appendix E to the ROWD shows that most of these explosive compounds were not detected in the fireworks debris collected after the shows. Finally, *none* of these compounds was found in *any* grab or composite water samples taken in the fireworks deposition zone after the fireworks shows, nor in any of the sediment samples taken.

The third category of compounds that should be deleted from both water and sediment quality monitoring are the following metals:

Beryllium	Cadmium
Mercury	Molybdenum
Selenium	Silver
Thallium	Tin

Again, none of these metals are present in Sea World's fireworks in any substantial amounts (reported in Appendix A to the Conkling Report), they have not been detected in any substantial concentration in the analyses of fireworks debris (reported in Table 3, Appendix E to the ROWD), nor are they standard aerial fireworks chemicals (reported in Table 2.1 of the ROWD). There is therefore no basis for testing for these metals as if they were somehow related to Sea World's fireworks. For example, if molybdenum were found in water or sediment samples, that finding could not be related to Sea World's fireworks, so there is no reason to include it in the monitoring program.⁵

Finally, and for the same reasons, "total nitrogen" should be deleted from both water and sediment quality monitoring. Nitrogen has not been identified as an ingredient in fireworks in

⁵ Note that even if the monitored metals are found in water or sediment samples, that does not necessarily mean they are from Sea World's fireworks.

general, or a chemical of concern related to Sea World's fireworks in particular. There is therefore no reason to include it in the monitoring program.

Therefore, Sea World requests that the SVOCs, the explosive compounds, the identified metals, and total nitrogen be deleted from the monitoring requirements for both water quality and sediments.

12. Monitoring and Reporting Program Paragraph F.5.:

See our comments in Section 11 immediately above.

13. Monitoring and Reporting Program Paragraph F.6. (infauna monitoring):

As a general matter, there does not appear to be any basis for including the benthic infauna monitoring plan. The apparent (although not explicit) purpose of collecting this data is to test the hypothesis that deposition of chemicals from Sea World's fireworks may have adversely affected benthic infauna in Mission Bay. Yet, if that were the hypothesis, it would have to be based upon some evidence that the levels of fireworks chemical constituents are elevated in the water or sediments in the fireworks deposition zone as compared with other areas in Mission Bay. The available data do not support this assumption, as noted in Finding No. 5. While Sea World is willing to conduct some additional water and sediment sampling to confirm whether its fireworks have caused a meaningful difference in water or sediment quality, that step must be taken first before any valid study of the affect of fireworks on benthic infauna can be designed, much less conducted. If there is no material difference in water or sediment quality as a result of fireworks related chemical deposition into Mission Bay, then there would be no basis for a benthic infauna study -i.e., we would not be able to define suitable study and control areas for further comparison. Any measured difference among benthic infauna in Mission Bay would be descriptive only and could not be linked to Sea World's fireworks. On the other hand, if one or more differences are found in water or sediment quality that are believed to be caused by Sea World's fireworks, then that may serve as a basis for studying whether there are any resulting differences in the benthic infauna in those areas as well that could be related to the chemical differences.

The proposed monitoring plan in the draft Order reflects the fact that there is no basis for a study of potential affects of fireworks on benthic infauna. We presume that the requirement of sampling from ten "randomly selected" locations is intended to provide a control group to be used for comparison against the samples taken from the fireworks deposition zone. However, given the available data showing no adverse impact on sediments or water quality, it isn't clear whether any randomly selected locations would provide a valid control group for study. Accordingly, any measured difference will not necessarily be due to fireworks, and such a conclusion could not be made. Also, the locations are to be selected using the United States Environmental Protection Agency's ("USEPA") Probability Environmental Monitoring and

Assessment Program. The objectives of that program may not be sufficient to select proper control groups for answering questions regarding possible affects from fireworks. Further research and information, including the additional water and sediment sampling plan results, are necessary to identify the relevant variables, if any, that should be taken into account in the selection of control locations – a necessity for a valid study. Once that information is known, it may be necessary to alter the method for selecting sample locations to be used as controls.

For these reasons, Sea World recommends completing the three-year water and sediment quality monitoring and reporting programs set forth in Paragraphs F.4 and F.5, and then evaluating whether there is any basis for conducting a study of potential affects of fireworks on benthic infauna. Without any evidence that there is a difference in the water or sediment quality in the fireworks deposition area - which is the case today - then any measured difference in the benthic infauna in that area could not be attributed to fireworks, which defeats the purpose of doing the study in the first place. There certainly is no basis to simply have Sea World collect benthic infauna data, which is all that would be accomplished given what is currently known.

In addition to these general comments, and in the event that the Regional Board does not change the current benthic infauna monitoring in the draft Order, we offer the following specific comments to address some of the ambiguities in this part of the draft Order. The benthic infauna monitoring plan requires sampling at three locations within the fireworks deposition zone and in the "area of greatest potential impact." The text then suggests that those three locations will be sampled twice per year, but it is not completely clear that it is the same three locations. We have added clarifying language in the redline of the draft Order to avoid that ambiguity.

The benthic infauna monitoring plan further requires that ten additional locations be sampled once per year. As discussed above, while the draft Order does not state that the objective of the sampling is to compare the parameters of the benthic community in the "area of greatest potential impact" beneath the fireworks deposition zone with the ten randomly selected locations, we presume that is the intent. If so, then the ten randomly selected locations must not include the fireworks deposition zone. We have added language in the redline of the draft Order to make that clear. We have also changed the terminology of "station" to "location" for internal consistency.

Similarly, we presume that some sort of statistical analysis will be used to determine whether there is a statistically significant increase or decrease in the parameters being measured between the benthic organisms beneath the "area of greatest potential impact" and the other randomly selected locations, but that methodology is not identified in the draft Order. We presume that Sea World's technical consultants will be expected to perform the required statistical analysis using appropriate methods. If that is not the case, the methods the Regional Board intends to use should be made available for comment.

Finally, according to the draft Order, the selection of the ten locations is to be done each year by USEPA using its Probability Environmental Monitoring and Assessment Program. It is not clear from the wording of the draft Order whether the Regional Board actually intends for USEPA to undertake this effort each year. We understand from discussions with staff that the intent is for Sea World to run the program and to provide the output to the Regional Board for their approval and that we will not need to involve staff at USEPA. We have redlined the attached draft Order accordingly to make that clear.

14. Monitoring and Reporting Program Paragraph F.8.:

This section suggests that an 8 1/2 " by 11 " aerial map "shall be prepared for each sampling event." Since Sea World will only be sampling semiannually, just twice per year, it makes no sense to prepare a fireworks deposition map for every event. The Brown and Caldwell Dispersion Report provides a far more accurate prediction of the likely deposition of fireworks combustion products and should be used to help Sea World, the Regional Board staff and Brown and Caldwell to come up with a likely Fireworks Deposition Zone and related sampling locations on an annual basis as suggested above.

Very truly yours,

OP Filt

Andrew Fichthorn

AF/hhk Enclosure

cc: Douglas Eberhardt, USEPA Nancy Yoshikawa, USEPA Region IX Kevin Carr, Sea World San Diego Ellen Lirley, California Coastal Commission

100338344_2.DOC

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION

TENTATIVE ADDENDUM NO. 1 TO ORDER NO. R9-2005-0091, NPDES NO CA0107336 FOR THE DISCHARGE OF WASTE FROM SEA WORLD AERIAL FIREWORKS DISPLAYS TO SAN DIEGO MISSION BAY SAN DIEGO

The California Regional Water Quality Control Board, San Diego Region (hereinafter Regional Board) finds that:

- On October 26, 2006, Brown and Caldwell submitted an incomplete report of waste discharge (RWD) on behalf of SeaWorld, San Diego for the discharge of waste to Mission Bay associated with their fireworks program. Additional information was requested on December 7, 2006 and received on January 19, 2007 to make the application complete.
- 2. The RWD indicates that nightly displays of fireworks occur during the summer months between April and September and other times during the year. Under the current Sea World Master Plan update, approved by the California Coastal Commission in 2001, Sea World may present up to 150 fireworks shows per year, with an anticipated average between 110 and 120 shows per year.

The fireworks are launched from a barge located in the Pacific Passage Zone of Mission Bay, between Fiesta Island and the Sea World Shorelines. The average fireworks show lasts 5 to 6 minutes and dispenses approximately 250 shells (3-inch and 4-inch); special events, such as the 4th of July and New Year's Eve, may dispense between 1,000 and 1,750 shells (mostly 3-inch and 4-inch and some larger). The average total weight of firework related materials that are used in the daily shows at Sea World is only 129 kilograms ("kg") and the annual July 4th show is only 993 kg. These shows are relatively small compared to other productions in Southern California.

Sea World subcontracts the logistics of fireworks, operations, transportation, setup, ignition and cleanup and currently subcontracts that to Fireworks America, a licensed pyrotechnics company based in Lakeside, CA.

3. Typical fireworks constituents include aluminum, magnesium, strontium, barium, sodium, potassium, iron, copper, sulfate, nitrate and perchlorate. These constituents have a potential to adversely impact and/or contribute to degradation of water and sediment quality within Mission Bay.

In addition, debris from unexploded shells as well as paper, cardboard, wires and fuses from exploded shells can also adversely impact water quality within

Deleted: 7

Formatted: Font: (Default) Arial

Formatted: Font: (Default) Arial Formatted: Font: (Default) Arial

Formatted: Font: (Default) Arial

Deleted: the

-2-

Mission Bay. The area affected by these debris can vary depending on wind speed and direction, size of the shells, and other environmental and anthropogenic factors.

4. After each aerial fireworks display, crews conduct sweeps to gather floating debris from spent fireworks using handheld fishnets and a boom with a net off the bow of the boat. In addition, the fireworks barge is swept immediately after each show to prevent solid waste and debris from being swept into the water by the wind. Unexploded fireworks are disposed of by the fireworks subcontractor, who is currently Fireworks America. Fireworks debris deposited on Fiesta Island mainland is collected from the shorelines each morning following the aerial fireworks display. Solid waste typically consists of paper, paperboard or cardboard shells, and marginal amounts of wires and fuses.

Data for wet and dry debris retrieved by Sea World staff since 2002 was reviewed and it was determined that, on average, 11 pounds of fireworks related wet debris were collected each evening and 8 pounds of wet debris each morning.

- 5. Sea World conducted annual fireworks related monitoring of sediment and water quality parameters between 2001-2006. The final monitoring report prepared for Sea World, by Science Applications International Corporation, concluded that there were no significant spatial or temporal patterns <u>of key firework-related</u> <u>metals</u> concentrations in sea water or sediments in Mission Bay. It was also concluded that there is no indication of fireworks residue accumulation in the water or sediment of Mission Bay.
- 6. This action is exempt from the provisions of the California Environmental Quality Act (Public Resources Code, Section 21100 Et seq.) in accordance with California Water Code Section 13389.
- 7. This Regional Board has notified the Discharger and all known interested parties of the intent to amend Order No. R9-2005-0091.
- 8. This Regional Board in a public meeting has heard and considered all comments pertaining to the proposed discharge from the Sea World fireworks displays to Mission Bay.

IT IS HEREBY ORDERED, that Order No. R9-2005-0091 is amended as follows:

The following shall be added to Section III Discharge Prohibitions:

Deleted: in

Deleted: of critical metals

H. The discharge of waste from the aerial fireworks display shall not cause or contribute to the degradation of water or sediment quality in Mission Bay.

-3-

- I. The discharge of waste from the aerial fireworks display shall be free of settleable material or substances that may form sediments, which will degrade benthic communities or other aquatic life.
- J. Fireworks aerial displays shall be limited to a maximum of 150 fireworks aerial displays per calendar year.

The following shall be added to Attachment A-Definitions:

Fireworks Deposition Zone: The aerial extent of fireworks particles and/or debris created by a single fireworks display within the tidal influence of Mission Bay waters.

The following shall be added to Section IX of the Monitoring and Reporting Program:

- F. Fireworks Related Water Quality and Benthic Monitoring
 - 1. Beginning in April 2008, the Discharger shall implement a fireworks monitoring program that will continue until September 2010.
 - 2. To determine the level of impact to the receiving water and underlying sediment, the monitoring program shall document conditions of the vicinity of the receiving water discharge points, at reference stations, and at areas beyond the immediate vicinity of the discharge points where discharge impacts might reasonably be expected.
 - 3. The following shall constitute the water quality monitoring locations:

Station Number	Location
RSW-001R	Area south of crown point shore and north of Vacation Isle shore
	Reference Station
RSW-001	Pacific Passage, 20 feet from the fireworks barge and
	in the direction of the fireworks deposition zone
RSW-002	Pacific Passage, center of the deposition zone,
RSW-003	Pacific Passage, the outermost area of the fireworks
	deposition zone, at a point farthest away from the
	barge

4. Water quality analysis shall be conducted at all stations for the following constituents:

Deleted: the following dates: Easter through Labor Day and New Year's Eve of each year and shall not to exceed

Deleted: as determined after each event

.

,

-4-

Table X. Water Quality Monitoring Requirements

Constituent	Units	Type of	Frequency ¹
		Sample	
BIS (2-Ethylhexyl) Phthalate	mg/l	Grab	Semiannually
di-N Butylphthalate	m ğ /l	Grab	Semiannually
di-N Octylphthalate	mg/l	Grab	Semiannually
Diethylphthalate	mg/l	Grab	Semiannually
Dimethylphthalate	mg/l	Grab	Semiannually
Phenol	mg/l	Grab	Semiannually
Constituent	Units	Type of	Frequency ¹
		Sample	
Naphthalene	mg/l	Grab	Semiannually
2,4-Dinitrotoluene	mg/l	Grab	Semiannually
2,6-DNT	mg/l	Grab	Semiannually
2,4,6-Trinitrotoluene	mg/l	Grab	Semiannually
Nitrobenzene	mg/l	Grab	Semiannually
Tetryl	mg/l	Grab	Semiannually
RDX	mg/l	Grab	Semiannually
Aluminum ²	mg/l	Grab	Semiannually
Antimony ²	mg/l	Grab	Semiannually
Arsenic ²	mg/l	Grab	Semiannually
Barium ²	mg/l	Grab	Semiannually
Beryllium ²	mg/l	Grab	Semiannually
Cadmium ²	mg/l	Grab	Semiannually
Chromium ²	mg/l	Grab	Semiannually
Cobalt ²	mg/l	Grab	Semiannually
Copper ²	mg/l	Grab	Semiannually
Iron ²	mg/l	Grab	Semiannually
Lead ²	mg/l	Grab	Semiannually
Manganese ²	mg/l	Grab	Semiannually
Mercury	mg/l	Grab	Semiannually
Molybdenum ²	mg/l	Grab	Semiannually
Nickel ²	mg/l	Grab	Semiannually
Potassium ²	mg/l	Grab	Semiannually
Selenium ²	mg/l	Grab	Semiannually
Silver ²	mg/l	Grab	Semiannually
Strontium ²	mg/l	Grab	Semiannually
Thallium ²	mg/l	Grab	Semiannually
Tin ²	mg/l	Grab	Semiannually
Titanium ²	mg/l	Grab	Semiannually
Vanadium ²	mg/l	Grab	Semiannually

-5-

Zinc ²	mg/l	Grab	Semiannually
Perchlorate	mg/I	Grab	Semiannually
Total Nitrogen	mg/l	Grab	Semiannually
Phosphorus	mg/l	Grab	Semiannually
Sulfate	mg/l	Grab	Semiannually

Samples shall be collected and analyzed in January and July of each year. Semiannually means at least once during the months of January and July.
 All metals shall be reported as total and dissolved. Hardness as CaCO₃ shall also be

² All metals shall be reported as total and dissolved. Hardness as CaCO₃ shall also be analyzed.

5. Sediment Characteristics. The Discharger shall prepare a monitoring plan that identifies the locations of sediment monitoring. A minimum of 3 locations representative of the area of greatest potential impact and within the fireworks deposition zone shall be selected ("the sediment monitoring locations"). All sediment monitoring locations shall be approved by the Regional Board.

Sediment samples for chemical analysis shall be collected from the top 2 centimeters of the grab. Samples shall be analyzed for the constituents listed in table below. Sediment chemistry ambient monitoring may be conducted using USEPA approved methods, or methods developed by NOAA's National Status and Trends for Marine Environmental Quality. For chemical analysis of sediment, samples shall be reported on a dry weight basis.

Constituent	Units	Type of Sample	Frequency ¹
BIS (2-Ethylhexyl) Phthalate	mg/kg	Core	Semiannually
di-N Butylphthalate	mg/kg	Core	Semiannually
di-N Octylphthalate	mg/kg	Core	Semiannually
Diethylphthalate	mg/kg	Core	Semiannually
Dimethylphthalate	mg/kg	Core	Semiannually
Phenol	mg/kg	Core	Semiannually
Naphthalene	mg/kg	Core	Semiannually
2,4-Dinitrotoluene	mg/kg	Core	Semiannually
2,6-DNT	mg/kg	Core	Semiannually
2,4,6-Trinitrotoluene	mg/kg	Core	Semiannually
Nitrobenzene	mg/kg	Core	Semiannually
Tetryl	mg/kg	Core	Semiannually
RDX	mg/kg	Core	Semiannually
Aluminum ²	mg/kg	Core	Semiannually
Antimony ²	mg/kg	Core	Semiannually
Arsenic ²	mg/kg	Core	Semiannually

-6-

Barium ²	mg/kg	Core	Semiannually					
Beryllium ²	mg/kg	Core	Semiannually					
Cadmium ²	mg/kg	Core	Semiannually					
Chromium ²	mg/kg	Core	Semiannually					
Cobalt ²	mg/kg	Core	Semiannually					
Copper ²	mg/kg	Core	Semiannually					
Iron ²	mg/kg	Core	Semiannually					
Lead ²	mg/kg	Core	Semiannually					
Manganese ²	mg/kg	Core	Semiannually					
Mercury	mg/kg	Core	Semiannually					
Molybdenum ²	mg/kg	Core	Semiannually					
Constituent	Units	Type of	Frequency ¹					
		Sample						
Nickel ²	mg/kg	Core	Semiannually					
Potassium ²	mg/kg	Core	Semiannually					
Selenium ²	mg/kg	Core	Semiannually					
Silver ²	mg/kg	Core	Semiannually					
Strontium ²	mg/kg	Core	Semiannually					
Thallium ²	mg/kg	Core	Semiannually					
Tin ²	mg/kg	Core	Semiannually					
Titanium ²	mg/kg	Core	Semiannually					
Vanadium ²	mg/kg	Core	Semiannually					
Zinc ²	mg/kg	Core	Semiannually					
Perchlorate	mg/kg	Core	Semiannually					
Total Nitrogen	mg/kg	Core	Semiannually					
Phosphorus	mg/kg	Core	Semiannually					
Sulfate		the second s						
Sulfate mg/kg Core Semiannually								

Samples shall be collected and analyzed in January and July of each year. Semiannually means at least once during the months of January and July. $^2\,$ All metals shall be reported as total and dissolved. Hardness as CaCO_3 shall also be

analyzed.

6. Infauna. The Discharger shall prepare a monitoring plan that identifies the locations of benthic infauna monitoring. A minimum of 3 locations representative of the area of greatest potential impact and within the fireworks deposition zone shall be selected ("the infauna monitoring locations"). All infauna monitoring locations shall be approved by the Regional Board.

For analysis of benthic infauna, two replicate samples of bottom sediment shall be collected and analyzed in January and July from the infauna monitoring Jocations. The benthic infaunal samples shall be collected

Deleted: a minimum of 3

-7-

using a 0.1-square meter modified Van Veen gran sampler. These grab samples shall be separated from those collected for sediment analyses. The samples shall be sieved using a 1.0 millimeter mesh screen. The benthic organisms retained on the sieve shall be fixed in 15 percent buffered formalin, and transferred to 70 percent alcohol within 2 to 7 days of storage. These organisms may be stained using Rose Bengal to facilitate sorting. Infaunal organisms, obtained during benthic monitoring shall be counted and identified to as low a taxon as possible.

- a. Number of species per 0.1-square meter
- b. Total number of species per station
- c. Total numerical abundance
- d. Benthic Response Index (BRI)
- e. Swartz's 75 percent dominance index
- f. Shannon-Weiner's diversity index
- g. Pielou eveness (J)

In addition to the community parameters, an annual evaluation shall be performed that includes more detailed statistical comparisons including community, temporal, and spatial analyses. Methods may include, but are not limited to, various multivariates, such as cluster analysis, ordination, and regression. Additionally analyses shall also be conducted, as appropriate, to elucidate temporal and spatial trends in the data.

An additional array of 10 randomly selected <u>locations outside of the</u> <u>fireworks deposition zone</u> shall be sampled and analyzed annually for sediment chemistry and benthic fauna. The same procedures must be followed as outlined in F.5 and F.6, with the exception of the number of samples collected at each <u>location</u>. Only one sample is required from each of the 10 randomly selected <u>locations</u>. The <u>locations</u> shall be reselected each year by <u>Sea World</u> using the methods set forth in USEPA's probability-based Environmental Monitoring and Assessment Program. The area shall extend throughout the Pacific Passage. <u>All</u> randomly selected locations shall be approved by the Regional Board.

The random benthic sampling requirement may be suspended as part of a resource exchange agreement to allow for participation in the Southern California BIGHT Regional Monitoring Surveys at the discretion of the Executive Officer. The benthic sampling may only be canceled for the year in which the BJGHT Survey is conducted.

7. The following information shall also be recorded during each sampling event: wind direction and speed; weather (cloudy, rainy, etc); tidal

Deleted: stations

Deleted: station
Deleted: stations
Deleted: stations
Deleted: USEPA

Deleted: R

conditions; any other noteworthy water condition.

-8-

8. An aerial 8 ½ x 11 map that clearly outlines the fireworks deposition zone shall be prepared by Sea World each year and approved by the Regional Board.

Deleted: for each sampling event

This addendum becomes effective on the date of adoption by the Regional Board.

I, John H. Robertus, Executive Officer, do hereby certify the foregoing is a full, true and correct copy of an Addendum adopted by the California Regional Water Quality Control Board, San Diego Region, on December 12, 2007.

TENTATIVE JOHN H. ROBERTUS Executive Officer

Date

201 North civic Drive Walnut Creek, CA 94596

Tel: 925-937-9010 Fax: 925-937-9026 www.brownandcaklwell.com

November 20, 2007

BROWN AND CALDWELL

Mr. Kevin Carr, Environmental Director Sea World Environmental 500 Sea World Drive San Diego, CA 92109

130872-005

Subject: Air Quality Dispersion Modeling Analysis of Chemical Residues from the Fireworks Displays at Sea World of San Diego (Sea World), California

Dear Mr. Carr:

Brown and Caldwell (BC) is pleased to present Sea World of San Diego (Sea World) our summary report for the air quality dispersion modeling analysis at Sea World of San Diego, California (the "Site"). The objective of this study was to examine the fate of the principal chemical residues created by commercial aerial fireworks displays at the Site. Specifically, the air quality dispersion modeling analysis was performed to evaluate if the chemical residues are deposited in Mission Bay or on land.

Background and Project Description

Sea World holds daily fireworks displays during Spring break and the summer months, with a special display for the July 4th holiday. The bulk of the fireworks (or aerial "shells") are launched from the fireworks barge located in Mission Bay on the southwestern side of Fiesta Island. Based on review of data included in two previous reports prepared by BC and an application for waste discharge for fireworks constituents, the California Regional Water Quality Control Board (RWQCB) had questioned whether chemical residues, particularly metals, were deposited in portions of Mission Bay adjacent to the barge. As part of the second report prepared by BC, a study from pyrotechnics expert Dr. John Conkling concluded that there is minimal deposition of chemical residues in the vicinity of the barge. Based on Dr. Conkling's professional opinion, most of the residues are transported long distances by the prevailing winds. To provide more definitive and quantitative estimates of chemical residue transport or deposition in the vicinity of the barge, Sea World commissioned BC to perform air dispersion modeling for representative particulate plumes created by the fireworks shows.

Mr. Kevin Carr, Environmental Director November 20, 2007 Page 2 of 7

Modeling Approach

Our literature search for potentially relevant or similar studies did not identify useful information in terms of prior precedents for the air dispersion modeling of fireworks displays. Thus, BC developed the following dispersion modeling approach based on our prior modeling experience and discussion with regulatory modeling experts at local and state environmental agencies and the United States Environmental Protection Agency (US EPA).

The Industrial Source Complex – Short Term (ISCST3) Model, a previously-EPA-approved air dispersion model, was chosen to simulate the deposition of metal residues from aerial shell explosions. Although the AERMOD model was originally proposed for the study, AERMOD-ready meteorological data were not available, and thus ISCST3 was selected for the study. The Open Burn/Open Detonation Model (OBODM) was recommended by EPA for modeling the emission from ground-level explosions of lift charges or aerial propellants. Both models predict rates of deposition given model inputs about the source, emissions profile, and other physical parameters.

Sources

ISCST3 Model

For each scenario – the daily show and the July 4th show – there are numerous aerial fireworks shells fired, of differing types/colors. To simplify the modeling process, the shells were grouped by height of explosion. That is, all aerials set to explode at a certain height throughout a given show were combined into one equivalent shell. As indicated in Dr. Conkling's report, an aerial display shell will travel approximately 100 feet per inch-diameter of the shell (for example, a 3-inch diameter shell is designed to burst at approximately 300 feet in the air). Thus, 4 sources were modeled for the daily show and 8 sources were modeled for the July 4th show, corresponding to the number of different shell diameter sizes present for each show.

Each source was modeled as a volume source. A volume source assumes that there is no velocity component associated with a uniform discharge of emissions from the source. Although each source was assumed to be 100 feet in diameter, ISCST3 cannot model spherical sources. Thus, each source was modeled as a square block 100 feet on each side.

OBODM

For ground-level lift charges, all explosions were modeled as a single equivalent, instantaneous explosion, since all explosions occur at ground level. However,

Mr. Kevin Carr, Environmental Director November 20, 2007 Page 3 of 7

because OBODM can only model one pollutant at a time, the model was run once for each pollutant for each show.

Emissions Data

ISCST3 Model

The air pollutants modeled consisted of the metals presented in Dr. Conkling's report, using the most inclusive definition. Thus, the metals and compounds modeled included potassium (K) in the form of potassium perchlorate (KClO4) and potassium nitrate (KNO₃); barium (Ba) in the form of barium nitrate (BaNO3); copper (Cu) in the form of copper(II) oxide (CuO); magnesium (Mg) and aluminum (Al) in the form of magnalium (Mg/Al), a magnesium-aluminum alloy; Al its pure metal form; strontium (Sr) in the form of strontium carbonate (SrCO3); and titanium (Ti) in its pure metal form.

These emission constituents were modeled as particles as opposed to gases. It is because of this that modeling of deposition by gravitational settling (also termed dry deposition) is possible. Deposition is a function of the particle diameter, size distribution, and particle density, all of which contribute to the deposition velocity of a modeled particle.

Emissions data were taken from Dr. Conkling's report. The model's HROFDY flag was set to be "on" for 9 PM for all days and scenarios modeled. When the HROFDY flag is set to be "on," the emissions profile is assumed to occur only at the specified times (in this case, 9 PM to 10 PM) to more accurately designate the meteorological conditions the emissions profile is likely to encounter. See Attachment A for details.

OBODM

The emission modeled with OBODM consisted primarily of constituents of combustion from the propelling charge of black powder -- KNO₃, sulfur (S), and charcoal, per Dr. Conkling's report. See Attachment A for details.

Terrain and Setting

The project site is located in flat terrain in an urban setting.

Mr. Kevin Carr, Environmental Director November 20, 2007 Page 4 of 7

Source Data

Summaries of the source input data for the two models are presented in Tables 1 through 3. The calculation of deposition requires that certain parameters such as particle density be input to the models. To simplify this calculation, for each show an overall particle density was derived by calculating the mass-emissions-weighted average of the density of the pollutants of a given emission profile. See Attachment A for details, including weighted particle density calculations for each show.

	Table 1. Model Input Data for Daily Show, ISCST3										
	Horiz./Vert. Dim.	Release Height	KCIO4	KNO3	Mg/Al	SrCO3	Ba(NO3)2	CuO	Ai	Ti	
Model Run	(ft)	(ft above grade)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	
3-inch Shells	100	300	0.816	1.912	0.449	0.074	0.559	0.17 4	0.028	0.069	
4-inch Shells	100	400	1.326	1.695	0.628	0.162	0.851	0.12 3	0.051	0.057	
5-inch Shells	100	500	1.523	1.843	0.63	0.311	0.485	0.10 2	0.013	0.014	
6-inch Shells	100	600	1.355	0.715	0.146	0.85	0.352	0.04 3	0.024	1.355	

	Table 2. Model Input Data for July 4th Show, ISCST3										
	Horiz./Vert. Dim.	Release Height	KC104	KNO3	Mg/Al	SrCO3	Ba(NO3)2	CuO	Al	Ti	
Model Run	(ft)	(ft above grade)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	
3-inch "salute" Shells	100	300	1.1978	0	0.9839	0	0	0	0.2139	0	
3-inch Shells	100	300	6.945	2.1607	4.1413	0.8488	3.7812	1.800 6	0.2829	0.6431	
4-inch Shells	100	400	3.672	1.1424	2.1896	0.4488	1.9992	0.952	0.1496	0.34	
5-inch Shells	100	500	3.06	0.952	1.8247	0.374	1.666	0.793 3	0.1247	0.2833	
6-inch Shells	100	600	3.6975	1.1503	2.2048	0.4519	2.0131	0.958 6	0.1506	0.3424	
8-inch Shells	100	800	0.78	0.2427	0.4651	0.0953	0.4247	0.202 2	0.0318	0.0722	

Mr. Kevin Carr, Environmental Director November 20, 2007 Page 5 of 7

	Table 2. Model Input Data for July 4th Show, ISCST3										
	Horiz./Vert. Dim.	Release Height	KCIO4	KNO3	Mg/Al	SrCO3	Ba(NO3)2	CuO	AI	Ti	
Model Run	(ft)	(ft above grade)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	(g/s)	
10-inch Shells	100	1,000	0.5513	0.1715	0.3287	0.0674	0.3001	0.142 9	0.0225	0.051	
12-inch Shells	100	1,200	0.9675	0.301	0.5769	0.1183	0.5268	0.250 8	0.0394	0.0896	

	Table 3. Model Inp	ut Data for OBODM	
	KNO3 (g/s)	Sulfur (g/s)	Charcoal (g/s)
Daily Show	24,446	3,260	4,889
July 4th Show	122,895	16,386	24,579

Receptor Locations

In both ISCST3 and OBODM, a receptor grid at a node density of 500 meters was used. Coverage of the modeling domain spans approximately 3,000 to 5,000 meters in all directions from the source.

Meteorology

Meteorological data for 1993 through 1995 from the Lindbergh Field (surface data from Lindbergh, Station 23188 and upper air data from Miramar, Station 93107) were selected based on consultation (anonymous) with the San Diego Air Pollution Control District (SDAPCD's) meteorology department. Three years instead of five years of meteorological data were modeled based on the discussions with SDAPCD. SDAPCD recommended that, based on their experience, a 3-year modeling period was sufficient and acceptable for health-risk analyses submitted to the SDAPCD.

Mr. Kevin Carr, Environmental Director November 20, 2007 Page 6 of 7

Model Results

Model results from ISCST3 and OBODM are tabulated in Tables 4 and 5, respectively. For a given pollutant, percent deposition is calculated by multiplying the area of a one-quarter-mile-radius circle by the maximum predicted rate of deposition, then dividing by the total emissions. Figures in Attachment C graphically show the deposition rates of metal compounds from aerial shells from the daily show and July 4th show, respectively, as predicted by ISCST3. Detailed sample calculations as well as model run outputs may be found in Attachment D. As the data demonstrate, deposition of metals from both elevated aerial firework displays and the ground-level propelling charges range from below model threshold limits to very low amounts. Note that these values represent a conservative upper-bound or over-estimate, as oftentimes the point of predicted maximum deposition rate falls outside of the ¹/₄ -mile radius. Refer to Attachment D for maximum modeled deposition rates by pollutant for each show.

					le Radius of y Pollutant,			
	KCIO4	KNO3	Mg/Al	SrCO3	Ba(NO3)2	CuO	AI	Ti
Daily Show	0.05%	0.06%	0.06%	0%	0.05%	0%	0%	0%
July 4 th Show	0.07%	0.07%	0.07%	0.06%	0.07%	0.06%	0.14%	0.08%

Notes: (1) 0% denotes that the rate of deposition modeled is below the threshold limit of the model. (2) For a given pollutant, percent deposition is calculated by multiplying the area of a ¼-mile-radius circle by the maximum predicted rate of deposition, then dividing by the total emissions. Note that these values represent a conservative upper-bound or over-estimate, as often times the point of predicted maximum deposition rate falls outside of the ¼ mile radius.

	able 5. Deposition within Percent of Total Emission		
	KNO3	Sulfur	Charcoal
Daily Show	3.8%	1.8%	1.1%
July 4 th Show	1.1%	1.0%	0.5%

Note: For a given pollutant, percent deposition is calculated by multiplying the area of a ¼-mile-radius circle by the maximum predicted rate of deposition, then dividing by the total emissions. Note that this represents a conservative upper-bound or over-estimate, as often times the point of predicted maximum deposition rate falls outside of the ¼ mile radius.

Mr. Kevin Carr, Environmental Director November 20, 2007 Page 7 of 7

Summary

In summary, air quality dispersion modeling analysis was performed to assess if the chemical residues from Sea World's fireworks displays are deposited in Mission Bay or on land. Specifically, two models – ISCST3 and OBODM – were used to provide more definitive and quantitative estimates of transport of metals and their deposition in the vicinity of the fireworks launching barge. Conservative estimates show that very little chemical residue is deposited in the bay within a one-quarter-mile radius of the launch site.

If you have any questions, please call me at (925) 210-2453.

Very truly yours,

BROWN AND CALDWELL

wyit

Wynn Yin Project Engineer

James M. Laughtin

Jim Laughlin Project Manager

WY:dem

Attachments: A. Mass Emission and Particle Density Calculations

- B. Particle Depositon Calculations
- C. Figures (1-16)
- D. Sample OBODM KN₀3 Daily Output (15 pages)

Limitations:

This document was prepared solely for Sea World Environmental in accordance with professional standards at the time the services were performed and in accordance with the contract between Sea World Environmental and Brown and Caldwell dated August 21, 2006. This document is governed by the specific scope of work authorized by Sea World Environmental; it is not intended to be relied upon by any other party except for regulatory authorities contemplated by the scope of work. We have relied on information or instructions provided by Sea World Environmental and other parties and, unless otherwise expressly indicated, have made no independent investigation as to the validity, completeness, or accuracy of such information.

Air Quality Dispersion Modeling Analysis of Chemical Residues from the Fireworks Displays at Sea World of San Diego (Sea World), California

ATTACHMENT A

Mass Emission and Particle Density Calculations

BROWNANDCALDWELL

Mass Emission Calculations, Daily Fireworks Show, 3" Shells, in grams **ATTACHMENT A**

	n În	0	0	0 66	0	0	0 250	0	0	0	0	0	0	99 250		28 0.069
																0.028
	760	260	0	0	0	108	0	0	0	0	0	0	0	628		0.174
	5	0	0	407	0	0	0	0	1357	0	250	0	0	2014		0.559
<	o	0	0	0	180	17	0	0	0	20	0	0	0	267		0.074
	195	120	0	110	375	06	0	0	460	140	125	0	0	1615		0.449
Š	5	195	0	536.25	731.25	438.75	2518.75	0	1121.25	341.25	318.75	0	682.5	6883.75		1.912
	172G	0	0	297	600	360	0	0	230	301	0	0	630	2938		0.816
	Blue	Crackling	Glitter	Gold	Red	Purple	Kamuro	Green	Silver	Yellow	White	Whistle	Brocade	TOTAL (g):	g/s (spread over	3600 s):

<u>Notes:</u> KClO4 = potassium perchlorate

KNO3 = potassium nitrate

Mg/Ai = magnesium/alluminum alloy ("magnalium")

SrCO3 = Strontium carbonate

Ba(NO3)2 = barium nitrate CuO = copper(II) oxide

AI = aluminum metal Ti = titanium metal

grams
.⊆
4" Shells,
4
s Show,
£
r Firewo
÷
å
Calculations, I
Emission
Mass

1

Shell Type	KCIO4	KNO3	Mg/Al	SrC03	Ba(NO3)2	CuO	AI	Ξ
Blue	306	0	114.75	Ô	0	153	0	0
Crackling	0	06	76.5	0	0	165.75	0	0
Glitter	0	0	0	0	0	0	0	0
Gold	550.8	720	204	0	754.8	0	183.6	0
Red	1326	1170	828.75	397.8	0	0	0	0
Purple	408	360	102	132.6	0	122.4	0	0
Kamuro	0	1780.8	0	0	0	0	0	204
Green	1020	180	117.3	0	204	0	0	0
Silver	357	1260	714	0	2106.3	0	0	0
Yellow	219.3	180	102	51	0	0	0	0
White	0	0	0	0	0	0	0	0
Whistle	357	180	0	0	0	0	0	0
Brocade	229.5	180	0	0	0	0	0	0
TOTAL (g):	4773.6	6100.8	2259.3	581.4	3065.1	441.15	183.6	204
g/s (spread over								
3600 s):	1.326	1.695	0.628	0.162	0.851	0.123	0.051	0.057

<u>Notes:</u> KClO4 = potassium perchlorate KNO3 = potassium nitrate Mg/AI = magnesium/alluminum alloy ("magnalium") SrCO3 = Strontium carbonate Ba(NO3)2 = barium nitrate

CuO = copper(II) oxide

AI = aluminum metal Ti = titanium metal

JS
an
26
in gram
iii (
Å,
ŝ
în 🛛
ĺ.
2
ເ
ks
Ъ
Ň
Ĩ,
і.
£.
õ
Ś
n
Ĩ
п
Ū
ပီ
ç
<u></u> .
ŝ
Ε
ш
SS
Ма

Shell Type	KCI04	KNO3	Mg/AI	SrC03	Ba(NO3)2	CuO	AI	Ξ
Blue	612	0	229.5	0	0	306	0	0
Crackling	0	0	0	0	0	0	0	0
Glitter	0	453.75	51	-	51	0	0	0
Gold	137.7	198.75	51	0	188.7	0	45.9	0
Red	1632.	1590	1020	489.6	0	0	0	0
Purple	204	198.75	51	66.3	0	61.2	0	0
Kamuro	0	463.95	0	0	0	0	0	51
Green	0	0	0	0	0	0	0	0
Silver	255	993.75	510	0	1504.5	0	0	0
Yellow	219.3	198.75	102	51	0	0	0	0
White	0	550.5255	255	510	0	0	0	0
Whistle	357	198.75	0	0	0	0	0	0
Brocade	2065.5	1788.75	0	0	0	0	0	0
TOTAL (g):	5482.5	6635.7255	2269.5	1117.9	1744.2	367.2	45.9	51
g/s (spread over 3600 s):	1.523	1.843	0.630	0.311	0.485	0.102	0.013	0.014

<u>Notes:</u> KClO4 = potassium perchlorate

KNO3 = potassium nitrate

Mg/AI = magnesium/alluminum alloy ("magnalium") SrCO3 = Strontium carbonate Ba(NO3)2 = barium nitrate

CuO = copper(II) oxide AI = aluminum metal Ti = titanium metal

Sea World Fireworks Modeling Project No. 130872-005 ATTACHMENT A

0.024 0 0 0000850000 0 85 ١., 0.043 53 0000 0 0 0 0 0 0 53 A 552.5 1266.5 0.352 510 204 0 0 0 000000 0 CuO 85 629 0.850 2006 3060 0 340 0 0 0 Ba(NO3)2 0.146 306 221 0 0 0 000 Ó 0 527 SrCO3 0.715 382.5 170 637.5 195.5 680 2575.5 255 85 170 0 0 Mg/AI 1.355 292.5 171.25 585 877.5 585 734.5 292.5 1170 4878.25 170 0 0 0 KN03 459 1020 680 1020 ö Ö 0 1700 340 1530 6749 1.875 Ö ō Ö KCI04 g/s (spread over Shell Type TOTAL (g): Crackling 3600 s): Kamuro Brocade Whistle Yellow Purple Green Glitter Silver White Gold Red Blue

Mass Emission Calculations, Daily Fireworks Show, 6" Shells, in grams

Notes:

KCIO4 = potassium perchlorate

KNO3 = potassium nitrate

Mg/AI = magnesium/alluminum alloy ("magnalium")

SrCO3 = Strontium carbonate

Ba(NO3)2 = barium nitrate

CuO = copper(II) oxide

AI = aluminum metal Ti = titanium metal

Mass Emission Calculations, July 4th Fireworks Show, in grams

	KCIO4	KNO3	Mg/AI	SrCO3	Ba(NO3)2	CuO	AI	iΞ
3-in salute	4312	0	3542	0	0	0	1022	0
3-in	25002	7778.4	14908.6	3055.8	13612.26482	6482	1018.6	2315
4-in	13219.2	4112.64	7882.56	1615.68	7197.12	3427.2	538.56	1224
5-in	11016	3427.2	6568.8	1346.4	5997.6	2856	448.8	1020
6-in	13311	4141.2	7937.3	1626.9	7247.1	3451	542.3	1232.5
8-in	2808	873.6	1674.4	343.2	1528.8	728	114.4	260
10-in	1984.5	617.4	1183.35	242.55	1080.45	514.5	80.85	183.75
12-in	3483	1083.6	2076.9	425.7	1896.3	903.	141.9	322.5
TOTAL:	75136	22034	45774	8656	38560	18362	3655	6558

Emission Rate (spread over 60 min), g/s

	KCIO4	KN03	Mg/Al	SrCO3	Ba(NO3)2	CuO	AI	ij
3-in salute	1.1978	0.0000	0.9839	0.0000	0.000	0.0000	0.2139	0.0000
3-in	6.9450	2.1607	4.1413	0.8488	3.7812	1.8006	0.2829	0.6431
4-in	3.6720	1.1424	2.1896	0.4488	1.9992	0.9520	0.1496	0.3400
5-in	3.0600	0.9520	1.8247	0.3740	1.6660	0.7933	0.1247	0.2833
6-in	3.6975	1.1503	2.2048	0.4519	2.0131	0.9586	0.1506	0.3424
8-in	0.7800	0.2427	0.4651	0.0953	0.4247	0.2022	0.0318	0.0722
10-in	0.5513	0.1715	0.3287	0.0674	0.3001	0.1429	0.0225	0.0510
12-in	0.9675	0.3010	0.5769	0.1183	0.5268	0.2508	0.0394	0.0896
Total (g/s):	20.87	6.12	12.71	2.40	10.71	5.10	1.02	1.82

Notes:

KClO4 = potassium perchlorate KNO3 = potassium nitrate

Mg/Ai = magnesium/alluminum alloy ("magnalium") SrCO3 = Strontium carbonate

Ba(NO3)2 = barium nitrate

CuO = copper(II) oxide

AI = aluminum metal Ti = titanium metal

Particle Density Calculations

Daily Show

	KCI04	KN03	Mg/Al	SrCO3	Ba(NO3)2	CuO	AI	Ĩ
Total Mass Emitted (g)	19,943	24,499	8,719	2,493	9,883	2,703	482	590
Density (g/cm3)	2.52	2.11	2	3.7	3.24	9	2.7	4.506
Total Mass Emitted x Density	50,257	51,692	17,439	9,225	32,022	16,217	1,300	2,659
Weighted Density (g/cm3)				2.61	51			

<u>July 4th Show</u>

	KCI04	KNO3	Mg/AI	SrC03	Ba(NO3)2	CuO	AI	Ξ
Total Mass Emitted (g)	75,136	22,034	45,774	8,656	38,560	18,362	3,655	6,558
Density (g/cm3)	2.52	2.11	2	3.7	3.24	9	2.7	4.506
Total Mass Emitted x Density	189,342	46,492	91,548	32,028	124,933	110,170	9,870	29,549
Weighted Density (g/cm3)				2.90	0			

<u>Notes:</u> KClO4 = potassium perchlorate

KNO3 = potassium nitrate

Mg/Al = magnesium/alluminum alloy ("magnalium") SrCO3 = Strontium carbonate Ba(NO3)2 = barium nitrate

CuÓ = copper(II) oxide Al = aluminum metal Ti = titanium metal

Sea World Fireworks Modeling Project No. 130872-005 ATTACHMENT A

² MassFrac, or mass fraction, represents the fractional contribution of a given pollutant compared to the sum of all lift/break charge emissions on a mass basis.

charcoal	126.75	39	0	107.25	146.25	87.75	243.75	0	224.25	68.25	48.75	0	136.5	1228.5	0.15
sulfur	84.5	26	0	71.5	97.5	58.5	162.5	0	149.5	45.5	32.5	0	91	819	0.1
KNO3	633.75	195	0	536.25	731.25	438.75	1218.75	0	1121.25	341.25	243.75	0	682.5	6142.5	0.75
Shell Type	Blue	Crackling	Glitter	Gold	Red	Purple	Kamuro	Green	Silver	Yellow	White	Whistle	Brocade	Sum (g): ¹	MassFrac: ²

Lift/Break Charge Mass Emission Calculations, Daily Fireworks Show, 3" Shells, in grams

¹ Sum represents the total mass emissions of a given pollutant from all shell types.

Lift/Break Charge Mass Emission Calculations, Daily Fireworks Show, 4" Shells, in grams

charcoal	54	18	0	144	234	72	144	36	252	36	0	36	36	1062	0.15
sulfur	36	12	0	96	156	48	96	24	168	24	0	24	24	708	0.1
KN03	270	06	0	720	1170	360	720	180	1260	180	0	180	180	5310	0.75
Shell Type	Blue	Crackling	Glitter	Gold	Red	Purple	Kamuro	Green	Silver	Yellow	White	Whistle	Brocade	Sum (g): ¹	MassFrac: ²

¹ Sum represents the total mass emissions of a given pollutant from all shell types.

² MassFrac, or mass fraction, represents the fractional contribution of a given pollutant compared to the sum of all lift/break charge emissions on a mass basis.

Lift/Break Charge Mass Emission Calculations, Daily Fireworks Show, 5" Shells, in grams

0.15	0.1	0.75	MassFrac: ²
1311.75	874.5	6558.75	Sum (g): ¹
357.75	238.5	1788.75	Brocade
39.75	26.5	198.75	Whistle
79.5	53	397.5	White
39.75	26.5	198.75	Yellow
198.75	132.5	993.75	Silver
0	0	0	Green
39.75	26.5	198.75	Kamuro
39.75	26.5	198.75	Purple
318	212	1590	Red
39.75	26.5	198.75	Gold
39.75	26.5	198.75	Glitter
0	0	0	Crackling
119.25	79.5	596.25	Blue
charcoal	sulfur	KN03	Shell Type

¹ Sum represents the total mass emissions of a given pollutant from all shell types.

² MassFrac, or mass fraction, represents the fractional contribution of a given pollutant compared to the sum of all lift/break charge emissions on a mass basis.

Lift/Break Charge Mass Emission Calculations, Daily Fireworks Show, 6" Shells, in grams

charcoal	175.5	58.5	9 58.5	117	175.5	117	-	9 58.5	234	0	0	0	234	1287	0.15
sulfur	117	39	39	78	117	78	39	39	156	0	0	0	156	858	0.1
KN03	877.5	292.5	292.5	585	877.5	585	292.5	292.5	1170	0	0	Ō	1170	6435	0.75
Shell Type	Blue	Crackling	Glitter	Gold	Red	Purple	Kamuro	Green	Silver	Yellow	White	Whistle	Brocade	Sum (g): ¹	MassFrac: ²

¹ Sum represents the total mass emissions of a given pollutant from all shell types.

² MassFrac, or mass fraction, represents the fractional contribution of a given pollutant compared to the sum of all lift/break charge emissions on a mass basis.

Lift/Break Charge Mass Emission Calculations, July 4th Fireworks Show, in grams

	KNO3	sulfur	charcoal
3-in salute	7507.5	1001	1501.5
3-in	45142.5	6019	9028.5
4-in	17280	2304	3456
5-in	15900	2120	3180
6-in	16965	2262	3393
8-in	6600	880	1320
10-in	5062.5	675	1012.5
12-in	8437.5	1125	1687.5
SUM:	122895	16386	24579
MassFrac:	0.75	0.1	0.15

¹ Sum represents the total mass emissions of a given pollutant from all shell types.

² MassFrac, or mass fraction, represents the fractional contribution of a given pollutant compared to the sum of all lift/break charge emissions on a mass basis.

Sea World Fireworks Modeling Project No. 130872-005 ATTACHMENT A

Air Quality Dispersion Modeling Analysis of Chemical Residues from the Fireworks Displays at Sea World of San Diego (Sea World), California

ATTACHMENT B

Particle Deposition Calculations

BROWNANDCALDWELL

В

Use of contents on this sheet is surject to the imitations specified at the end of this document

Particle Deposition Calculations

Daily Show

	KCI04	KNO3	Mg/Al	g/Al SrCO3 Ba(NO3)2	Ba(NO3)2	CuO	AI	
Total Mass Emitted	19943.1	24498.5255	8719.3	2493.3	9883.3	2702.85	481.5	590
Max Deposition Rate per ISCST3 [g/m2]	0.00002	0.0003	0.00001	0	0.00001	0	0	0
Fractional Deposition in 1/4-mile radius	0.05%	0.06%	0.06%	0	0.05%	0	0	0

July 4th Show

	KCIO4	KNO3	Mg/AI	SrCO3	Ba(NO3)2	CuO	AI	E
Total Mass Emitted	75136	22034	45774	8656	38560	18362	3655	6558
Max Deposition Rate per ISCST3 [g/m2]	0.0001	0.0003	0.0006	0.00001	0.00005	0.00002	0.00001	0.00001
Fractional Deposition in 1/4-mile radius	0.07%	0.07%	0.07%	0.06%	0.07%	0.06%	0.14%	0.08%

Notes:

¹ Max. deposition occurred in model year 1995.

² Fractional deposition in 1/4-mile radius computed by multiplying the area of a circle 1/4-mile in diameter by the max. deposition rate and dividing by the total mass emitted. Note that this represents an absolute upper bound, as the point at which the max. deposition rate occurs does not necessarily fall within the first 1/4 mile radius of the source. Sea World Fireworks Modeling Project No. 130872-005 ATTACHMENT B

Calculations for Particle Deposition from Lift/Break Charges

Daily Show

	KN03	sultur	charcoal
Total Mass Emitted	24,446	3,260	4,889
Max Deposition Rate per OBODM [ug/m2]	1833	116	106
Fractional Deposition in 1/4-mile radius	3.81%	1.81%	1.10%

July 4th Show

	KNO3	sulfur	charcoal
Total Mass Emitted	122,895	16,386	24,579
Max Deposition Rate per ISCST3 [ug/m2]	2571	322	238
Fractional Deposition in 1/4-mile radius	1.06%	1.00%	0.49%

Notes:

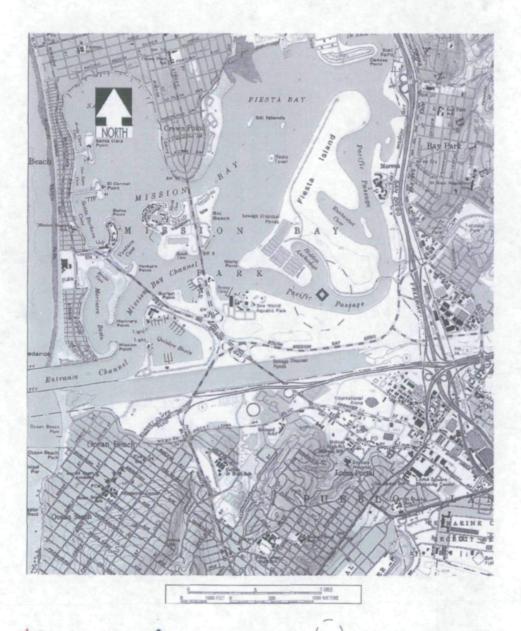
¹ Max. deposition occurred in model year 1995.

² Fractional deposition in 1/4-mile radius computed by multiplying the area of a circle 1/4-mile in diameter by the max. deposition rate and dividing by the total mass emitted. Note that this represents an absolute upper bound, as the point at which the max. deposition rate occurs does not necessarily fall within the first 1/4 mile radius of the source. Sea World Fireworks Modeling Project No. 130872-005 ATTACHMENT B

Air Quality Dispersion Modeling Analysis of Chemical Residues from the Fireworks Displays at Sea World of San Diego (Sea World), California

ATTACHMENT C

Figures 1-16


BROWNAND CALDWELL

С

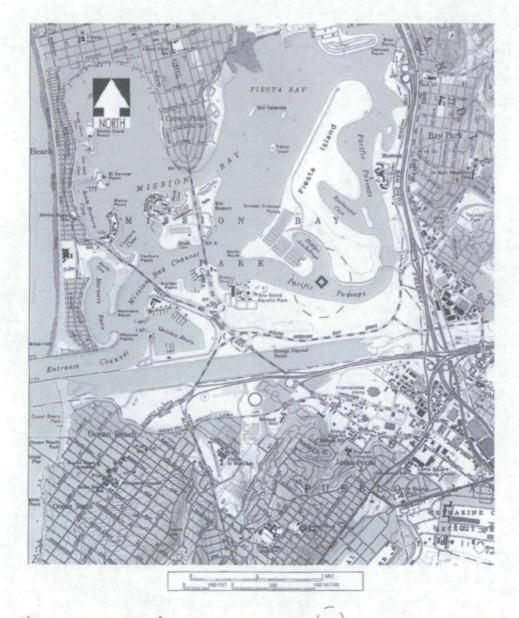
Use of contents on this sheet is subject to the limitations specified at the end of this document

Deposition of Aluminum (AI) in g/m² Daily Show (Deposition Rate Below Model Limits)

I

A Point of max. deposition 🔷 Location of fireworks discharge (Sphere of influence, 1/4-mile radius

Deposition of Barium Nitrate (Ba(NO3)2) in g/m² Daily Show


☆ Point of max. deposition ♦ Location of fireworks discharge

I

I

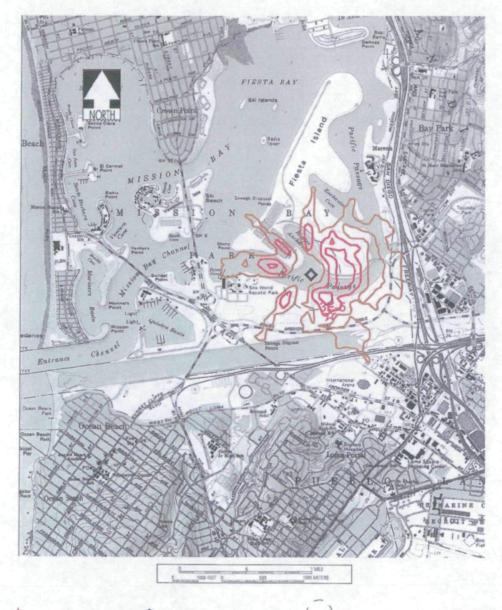
I


Deposition of Copper(II) Oxide (CuO) in g/m² Daily Show (Deposition Rate Below Model Limits)

A Point of max. deposition 🔷 Location of fireworks discharge () Sphere of influence, 1/4-mile radius

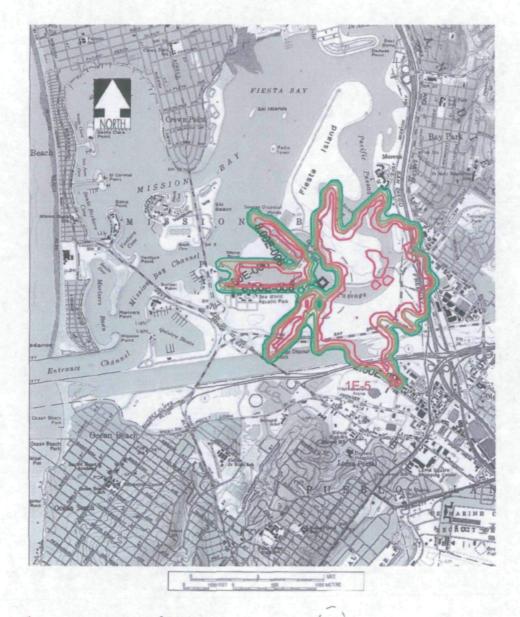
Deposition of Potassium Perchlorate (KClO4) in g/m² Daily Show

1

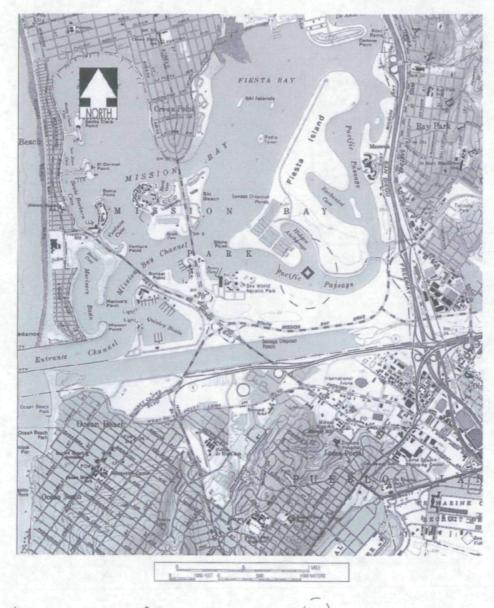


☆ Point of max. deposition ♦ Location of fireworks discharge (

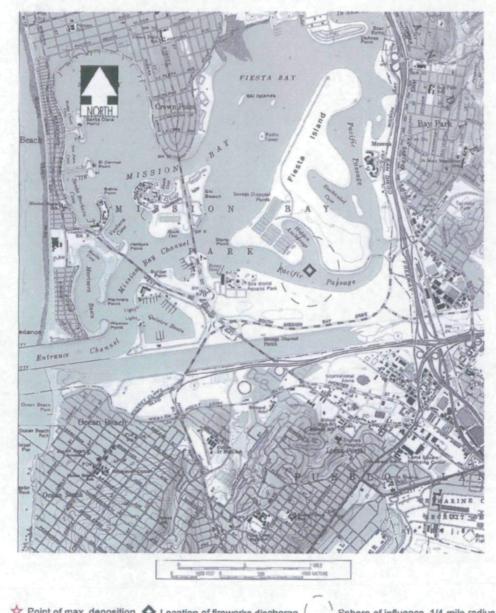
Deposition of Potassium Nitrate (KNO3) in g/m² Daily Show


I

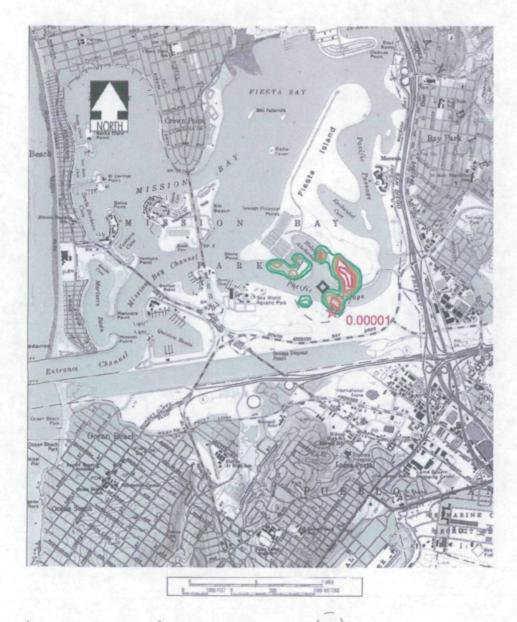
۱


Point of max. deposition 🔷 Location of fireworks discharge () Sphere of influence, 1/4-mile radius

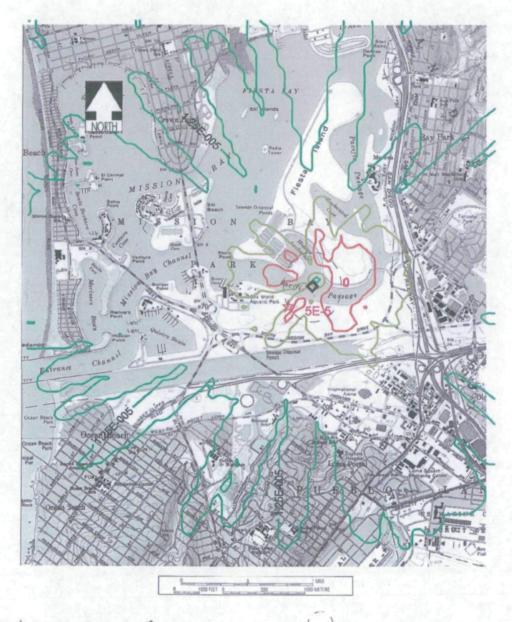
Deposition of Magnalium (Mg/Al) in g/m^2 Daily Show


☆ Point of max. deposition ♦ Location of fireworks discharge

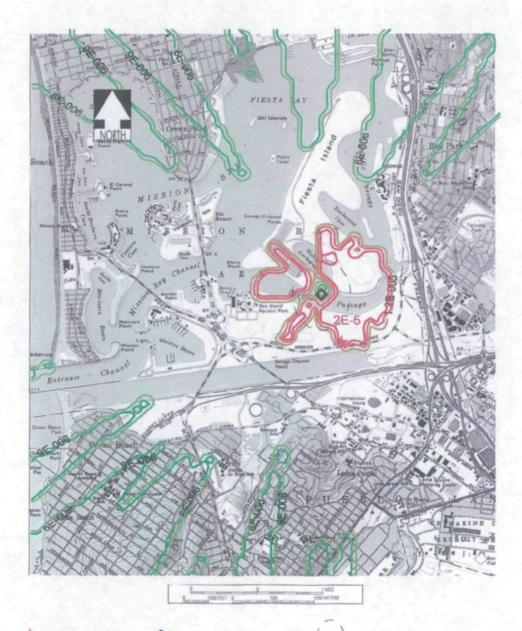
Deposition of Strontium Carbonate (SrCO3) in g/m² Daily Show (Deposition Rate Below Model Limits)


☆ Point of max. deposition ♦ Location of fireworks discharge

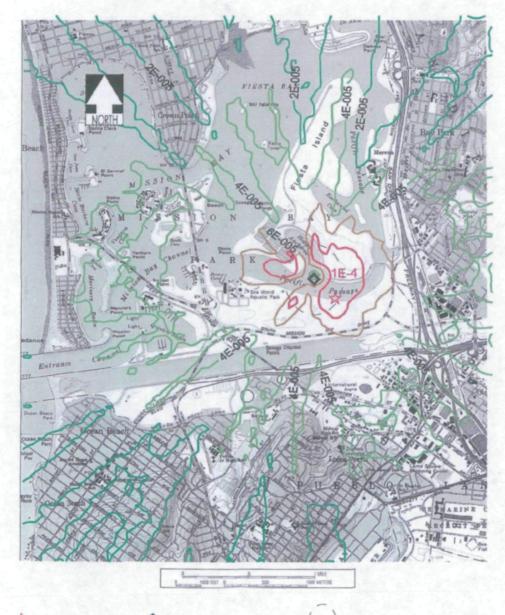
Deposition of Titanium (Ti) in g/m^2 Daily Show (Deposition Rate Below Model Limits)


Point of max. deposition 🔷 Location of fireworks discharge (

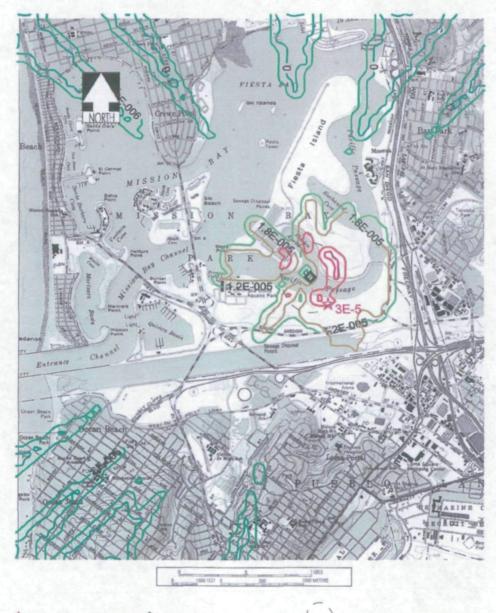
Deposition of Aluminum (Al) in g/m² July 4th Show


☆ Point of max. deposition ♦ Location of fireworks discharge (

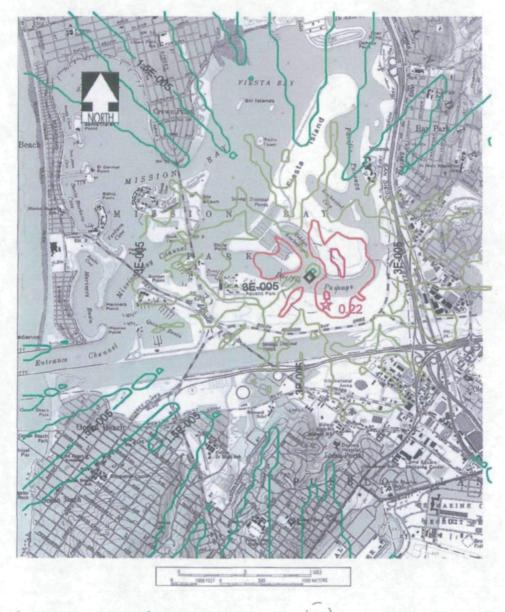
Deposition of Barium Nitrate (Ba(NO3)2) in g/m² July 4th Show


Point of max. deposition Location of fireworks discharge

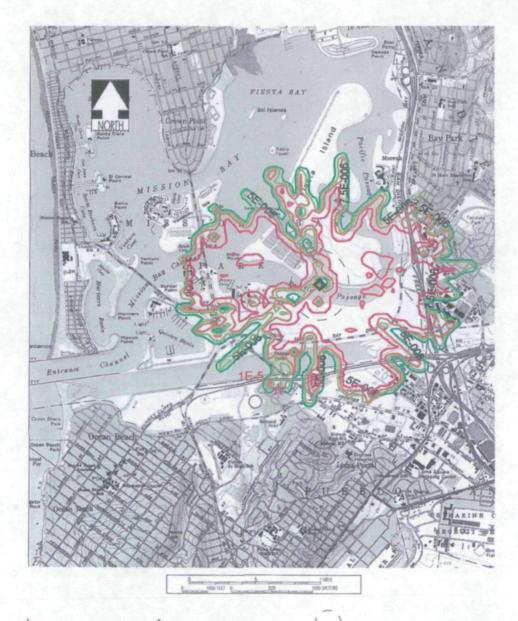
Deposition of Copper(II) Oxide (CuO) in g/m² July 4th Show


☆ Point of max. deposition ♦ Location of fireworks discharge

Deposition of Potassium Perchlorate (KClO4) in g/m² July 4th Show


☆ Point of max. deposition ♦ Location of fireworks discharge () Sphere of influence, 1/4-mile radius

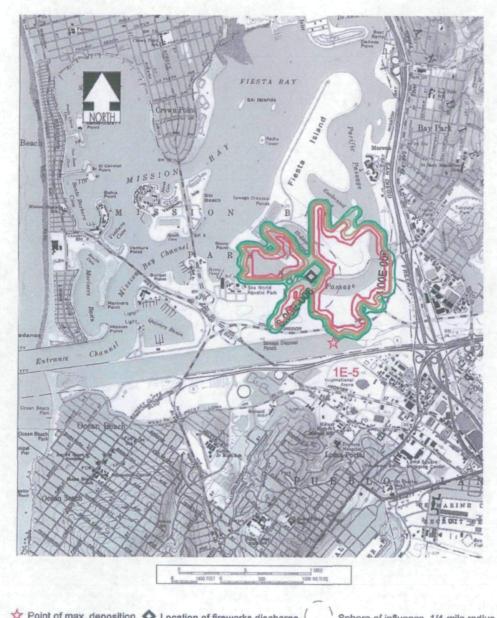
Deposition of Potassium Nitrate (KNO3) in g/m² July 4th Show


A Point of max. deposition 🔷 Location of fireworks discharge

Deposition of Magnalium (Mg/Al) in g/m² July 4th Show

A Point of max. deposition 🔷 Location of fireworks discharge () Sphere of influence, 1/4-mile radius

Deposition of Strontium Carbonate (SrCO3) in g/m^2 July 4th Show



☆ Point of max. deposition ♦ Location of fireworks discharge (

Deposition of Titanium (Ti) in g/m^2 July 4th Show

1

1

Point of max. deposition 🔷 Location of fireworks discharge (

Air Quality Dispersion Modeling Analysis of Chemical Residues from the Fireworks Displays at Sea World of San Diego (Sea World), California

ATTACHMENT D

Sample OBODM KN₀3 Daily Output - 15 pages

BROWNANDCALDWELL

DLYKN03.OUT Daily Show - KNO3

OBODM 1.3

Table 1

- Program Input Data -

- Program Models Selected -

- Gravitational deposition

- Using final cloud rise ht. for all calc. distances. - Flat terrain is assumed.

- Print Output Options -

Print and save data using Summary processing mode
 Print highest and second highest at each receptor
 Print table of maximum 50 receptors
 Print deposition output units ------ Micrograms/Square Meters

- Receptor Grid System Geometry -

Grid system orientat	tion angle	(Degrees)			0
Receptor X coordinat	ce units				Meters
x origin					.00
Y origin					.00
X Axis of the grid s				.00,	200.00,
		800.00,	1000.00,	1200.00,	1400.00,
	1800.00,		2200.00,	2400.00,	2600.00,
	3000.00,		3400.00,	3600.00,	3800.00,
4000.00,	4200.00,	4400.00,	4600.00,	4800.00,	5000.00,
Y Axis of the grid s	system (Deg	rees)		.00,	30.00,
60.00,	90.00, [–]	120.00,	150.00,	180.00,	210.00,
240.00,	270.00,	300.00,	330.00,	360.00,	

- Source Geometry/Emission Strength -

Material or fuel/explosive ------ Fireworks Black Charge Pollutant/species ------ KNO3 Total number of sources ----- 1

Source Number	Ident		Reference System	Source Type	Emission Type
1 Black OBODM 1.3	Powder Charge	Daily Show - KNO3	Polar		Instantaneous 24/2007 pg 2

Table 1 (cont.)

- Program Input Data -

- Source Geometry/Emission Strength -Page 1

Source X Y Z Releas Number Coordinate Elevation Heigh	se Emission 1t Strength
1 .0 m .0 d .0 m 3. ~ Means the value is defaulted for each hour of met. d	
Source Rect. Expan. Dist. / Reference Dist. /Air Ent Number Crosswind Vertical/Crosswind Vertical/ment Co	train-/Dispersion Coeff. Deff. /Crosswind Vertical
1 50.00 m 50.00 m .00 m .00 m .	.640 1.000 1.000
Source Fuel Heat Fuel Burn Fuel Burn Number Content Rate Time	Initial Diameter
1 1000.0 ca/g 9778.4 g/s 2.5 s ~ Means the value is defaulted for each hour of met. c	
Source Hours in which source is burned or de Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	etonated 17 18 19 20 21 22 23 24
1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	YYYYYYYY
- Pollutant/Species Material Characterist	rics -
Pollutant/species name Pollutant/species is	Particulate infinite 2.11 ies 2.11 ies 75 140, .960, .820, 960, .820, .690, 1.00000 07467, .24420, 0001, .0001, 958061, .962447,
- Meteorological Data - ([#-#] min-max limits)	
Year [1900-2099] Month [1-12]	1995 7 4 2200 0 185 870.00 .00 9999.00

DETRIOUT
Net radiation index [-2- 4] 2. Pasquill stability category [A-F] C
Pasquill stability category [A-F] C
Wind speed reference height (m) 10.00
Surface roughness length (cm) [.00-100.00]500
Vertical grad. of pot. temp. (C/m) [-5.000- 5.000]0
Reference wind speed (m/s) [1.0- 50.0] 2.000 Minimum (at 2m) wind speed (m/s) 1.450
Minimum (at 2m) wind speed (m/s) 1.450 Air temperature (C) [-60.0- 60.0] 20.000
Air temperature (C) [-60.0- 60.0] 20.000 Standard dev. of wind direction angle (d) [1.0000-80.0000] 16.0000
Standard dev. wind elevation angle (d) [1.0000-50.0000] 6.0000 Longitudinal turbulence intensity (d) [1.0000-106.4000] 21.2800
Measurement time for std. dev. wind dir. angle (s) [2.5-3600.0]- 600.00
Air humidity (%) $(.0-100.0)$ 50.0
Standard dev. of wind direction angle is adjusted for roughness length to
8.7885 (d)
Standard dev. of wind elevation angle is adjusted for roughness length to
3.2957 (d)
Longitudinal turbulence intensity is adjusted for roughness length to
11.6887 (d)
Surface mixing layer height (m) [1.0-20000.0] 1200.00
Wind direction (From) (deg) [.0- 360.0] 270.0
wind-direction shear (d/m) [-45.0- 45.0]
Wind-speed power law exponent [.000-5.000]
Wind-speed shear (m/s) [.00- 20.00] Compute

- Other Required Data -

Days calcu Month 1234		Month	Day of Month 1234567890123456789012345678901
Mar [YYYY May [YYYY Jul [YYYY Sep [YYYY	YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYY	Apr Jun Aug Oct Dec	[YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY [YYYYYYY

Table 1 (cont.)

- Program Input Data -

- Meteorological Data -([#-#] min-max limits)

Input save data file name DLYKNG Output save data file name DLYKNG Print solution output file name DLYKNG Graphics/solution input/output file DLYKNG Hourly meteorological input data file sdo956 Sigma plot output solution file DLYKNG	D3.INP D3.OUT D3.SOL db.asc
Total data hours readTotal data hours processedTotal non-excluded/non-missing data hours (calculated)Total missing data hours (includes calms)Total calm wind speed (< 1.0 m/s) hours	8760 8760 7301 1459 1459 0 0 pg 5

Table 2 Maximum 50 1-hour Total KNO3 Gravitational Deposition (Micrograms/Square Meter)

Deposition	X (Meters)	y (Degrees)	Year	Month	Day	Julian day	Hour
1833.22 1740.32	200.0 200.0	180.0 180.0	1995	01 03	04 10	004 069	1900 2300
1656.21	200.0	180.0	1995	01	04	004	2000
1636.08	200.0	210.0 180.0	1995 1995	03 03	11 10	070 069	0200 2000
1635.12 1635.12	200.0	180.0	1995	03	10	069	2400
1567.11	200.0	180.0	1995	ŎĨ	04	004	1700
1543.18	200.0	180.0	1995	01	04	004	1800
1449.59	200.0	300.0	1995	01	15	015	1900
1418.43 1388.85	$\begin{array}{c} 200.0\\ 20$	300.0 180.0	1995 1995	04	16	106	1500
1372.43	200.0	300.0	1995	01 01	04 15	004 015	1600 1700
1365.58	200.0	210.0	1995	03	05	064	2200
1352.49	200.0	300.0	1995	04	18	108	1600
1343.00	200.0	210.0	1995	02	14	045	0600
1339.55	200.0	300.0	1995	01	05	005	1300
1338.65 1325.92	200.0	300.0 270.0	1995 1995	03 05	21 05	080 125	1100 0200
1308.07	200.0	330.0	1995	04	22	112	1600
1307.08	200.0	210.0	1995	Ŏĺ	10	$\overline{0}\overline{1}\overline{0}$	2200
1303.35	200.0	150.0	1995	01	04	004	1400
1301.69	200.0	240.0	1995	03	11	070	1300
1296.12 1293.81	200.0	240.0 240.0	1995 1995	03 03	11 05	070 064	1200 2100
1286.41	200.0	210.0	1995	03	10	069	1400
1286.41	200.0	330.0	1995	04	21	111	1700
1283.46	200.0	240.0	1995	03	11	070	1500
1283.46	200.0	300.0	1995	01	05	005	0600
1280.96	200.0	270.0	1995	01	05	005	1400
1280.96 1274.28	200.0	270.0 300.0	1995 1995	01 04	25 16	025 106	2200 1600
1269.84	200.0	300.0	1995	01	05	005	1200
1263.53	200.0	270.0	1995	04	16	106	1300
1202.01	200.0	210.0	1995	03	10	069	1900
1260.00	200.0 200.0 200.0	30.0	1995	02	19	050	1900
1259.77 1259.77		300.0 210.0	1995 1995	01 02	15 14	015 045	1300 0800
1257.74	200.0	270.0	1995	04	16	106	1100
1257.74	200.0	270.0	1995	Ŏ5	0č	126	1200
1256.65	200.0	90.0	1995	02	19	050	1300
1256.39	200.0	270.0	1995	01	25	025	2000
1256.39	200.0 200.0 200.0	270.0	1995	05	05	125	1200
1253.11 1247.14	200.0	270.0 270.0	1995 1995	05 01	05 15	125 015	0900 1600
1247.14	200.0	300.0	1995	01	15	015	2200
1238.76	200.0	270.0	1995	ŏī	05	005	0100
1238.59	200.0	150.0	1995	03	11	070	0100
1235.39	200.0	300.0	1995	01	05	005	0400
1235.39 ОВОДМ 1.3	200.0	330.0 ом – кмоз	1995	03	14	073)/24/20(1600
	Darry Sh	UW - NUJ			ц	7/24/200	n hà

6

Table 2 (cont.) Maximum 50 1-hour Total KNO3 Gravitational Deposition (Micrograms/Square Meter)

Deposit	tion (Me	x eters) ((y Degrees)	Year Month	Day Julian Hour day	•
1235.13 OBODM 1.3	}	200.0 Daily Show	240.0 - KNO3	1995 03	05 064 1900 10/24/2007 pc) 17
Highest 1-hou Meter)	• Total KNO	Ta Gravitatio	able 3 onal Depos	ition (Micro	ograms/Square	
	(Maximum	= 1833.2 at	x = 200.	00, Y = 180.	00	
Y Axis (Degre	.(es))00 Mo/Dy/Yi	(Meters) r Jdy Hr vitational	200.0 Deposition	000 Mo/Dy/Yr Jdy 	/ Hr
$\begin{array}{c} 360.000\\ 330.000\\ 300.000\\ 270.000\\ 240.000\\ 210.000\\ 180.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\\ .000\\ \end{array}$.000000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .00000 .000000	00/00/00 00/00/00 00/00/00 00/00/00 00/00/	0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000 0 000 0000	1308.07 1449.59 1325.92 1301.69 1636.08 1833.22 1303.35 1179.39 1256.65 1150.89 1260.00	04/23/95 113 04/22/95 112 01/15/95 019 05/05/95 129 03/11/95 070 01/04/95 004 03/11/95 070 02/19/95 050 12/20/95 354 02/19/95 050 04/23/95 113	<pre>1600 1900 0200 1300 1300 1300 1900 1400 0300 1300 1300 1300 1300 1300 13</pre>
′Axis (Degre	400.(es)	- X Axis 100 Mo/Dy/Yr - Grav	Jdy Hr	- 600.0 Deposition	00 мо/Dy/Yr Jdy _	/ Hr
$\begin{array}{c} 360.000\\ 330.000\\ 300.000\\ 270.000\\ 240.000\\ 210.000\\ 180.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\\ \end{array}$	631.786 752.777 790.853 766.725 745.375 773.528 885.421 749.843 661.608 746.436 704.079 657.502 631.786	04/22/99 01/15/99 05/05/99 03/11/99 03/11/99 01/04/99 03/11/99 03/11/99 02/19/99 12/20/99 07/16/99	5 113 1700 5 112 1600 5 015 1900 5 125 0200 5 070 1300 5 070 0200 5 004 1900 5 004 1400 5 004 1400 5 070 0300 5 050 1300 5 354 1700 5 197 1000 5 113 1700	399.322 408.388 405.623 394.900 397.442 429.025 397.674 366.892 400.406 385.616 371.028	04/23/95 113 04/22/95 112 01/15/95 015 05/05/95 125 03/11/95 070 01/10/95 010 01/04/95 004 01/03/95 003 02/19/95 050 12/20/95 354 07/16/95 197 04/23/95 113	<pre>1600 1900 1900 2200 1200 2200 1900 1400 0600 1300 1700 1000</pre>
Axis (Degre	800.0 es)	100 Mo/Dy/Yr		- 1000.0 Deposition	00 Mo/Dy/Yr Jdy	Hr
360.000 330.000 300.000 270.000 BODM 1.3	220.242 226.720 228.384 230.210	04/22/95 01/15/95	i 113 1700 i 112 1600 i 015 1900 i 025 2000 - KNO3 Page 5	138.705 138.705	04/23/95 113 03/14/95 073 01/05/95 009 01/25/95 029 10/24/2007 pg	1600 0400 2000

Table 3 (cont.) Highest 1-hour Total KNO3 Gravitational Deposition (Micrograms/Square Meter)

(Maximum = 1833.2 at x = 200.00, Y = 180.00)

Y Axis (Degree	800.00 es)	- X Axis (Meters) 0 Mo/Dy/Yr Jdy Hr - Gravitationa	1000.000 Deposition -	Mo/Dy/Yr	Jdy	Hr
$\begin{array}{c} 240.000\\ 210.000\\ 180.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\end{array}$	225.357 225.518 234.338 225.745 218.315 228.512 222.973 218.291 220.242	03/05/95 064 1900 01/10/95 010 2200 03/10/95 069 2000 01/04/95 004 1400 01/03/95 003 0600 02/19/95 050 1300 12/20/95 354 1700 07/16/95 197 1000 04/23/95 113 1700) 138.331) 140.431) 138.576) 137.434) 140.032) 137.827) 136.422	06/01/95 01/07/95 02/13/95 01/03/95 01/03/95 02/19/95 12/20/95 07/16/95 04/23/95	007 044 023	1300 1200 1300
Y Axis (Degree	1200.00	- X Axis (Meters 0 Mo/Dy/Yr Jdy Hr - Gravitationa		Mo/Dy/Yr	Jdy	Hr
360.000 330.000 300.000 270.000 240.000 210.000 180.000 150.000 120.000 90.000 60.000 30.000 .000	92.4577 91.2966 91.2966 92.6545 91.2966 91.2966 92.5990 91.2035 91.2966 92.3986 91.2966 90.1120 92.4577	04/23/95 113 1700 08/29/95 241 1900 01/13/95 013 1300 08/21/95 233 1000 04/15/95 105 1200 01/11/95 011 1200 01/23/95 023 1500 01/08/95 008 1000 12/24/95 358 0300 02/18/95 049 0600 01/30/95 030 1400 02/26/95 057 1200 04/23/95 113 1700	0 64.0086 0 64.0086 0 64.0086 0 64.0086 0 64.8404 0 64.8404 0 63.9883 0 64.0086 0 64.0086 0 64.0086 0 64.0086 0 64.0086 0 64.0086 0 64.0086	05/29/95 03/08/95 02/02/95 05/10/95 01/10/95 01/02/95 01/02/95 01/08/95 02/03/95 10/08/95 02/26/95 05/29/95	067 077 033 130 010 116 002 008 034 281 057	2000 1200 1600 0700 0300 0800 0900 2300 0700 1000 1200
Y Axis (Degree	1600.00	- X Axis (Meters) 0 Mo/Dy/Yr Jdy Hr - Gravitationa	1800.000	Mo/Dy/Yr	Jdy	Hr
360.000 330.000 270.000 240.000 210.000 180.000 150.000 OBODM 1.3 Highest 1-hour Meter)		06/30/95 181 0300 03/08/95 067 2000 03/18/95 077 1200 05/25/95 145 0600 05/10/95 130 0700 01/10/95 010 0300 01/21/95 021 0700 07/13/95 194 0200 aily Show - KNO3 Table 3 (con Gravitational Depos	35.2692 35.2692 35.7517 35.2692 35.2692 35.6855 35.2182	07/13/95 07/13/95 10/24/2007	067 077 145 130 010 021 194 ' pg	2000 1200 0600 0700

(Maximum = 1833.2 at x = 200.00, Y = 180.00Page 6

Ī

Y Axis (Degrees)	1600.000	- X Axis Mo/Dy/Yr - Grav	(Meters) Jdy Hr itational	- 1800.000 Deposition -	Mo/Dy/Yr	Jdy	Hr
120.000 46 90.000 47 60.000 46 30.000 46 .000 47	5.8867 4890 5.8867 5.8867 4890	01/08/95 01/01/95 10/08/95 02/26/95 06/30/95	008 2300 001 2300 281 1000 057 1200 181 0300	35.2692 35.7517 35.2692 35.2692 35.7517	01/08/95 01/01/95 10/08/95 02/26/95 06/30/95	001 281 057	2300 1000 1200
Y Axis (Degrees)	2000.000	Mo/Dv/Yr	(Meters) Jdy Hr itational			Jdy	Hr
330.000 27 300.000 27 270.000 27 240.000 27 210.000 27 180.000 27 150.000 27 120.000 27 90.000 27 60.000 27 30.000 27	2.5326 1443 5326 1443 1443 1443 1443 1043 1443 5326 1443 1443 1443 5326	03/08/95 03/18/95 05/25/95 05/10/95 01/10/95 01/21/95 01/08/95 01/01/95 10/08/95 02/26/95	1810300067200007712001450600130070001003000210700194020000823000012300281100005712001810300	21.3082	06/30/95 03/08/95 03/18/95 05/25/95 05/10/95 01/10/95 01/10/95 01/08/95 01/01/95 10/08/95 02/26/95 06/30/95	067 077 145 130 010 021 194 008 001 281 057	2000 1200 0600 0700 0300 0700 0200 2300 2300 2300 1000 1200
Y Axis (Degrees)	2400.000	Mo/Dy/Yr	(Meters) Jdy Hr itational	- 2600.000 Deposition -	Mo/Dy/Yr	Jdy	Hr
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.9911 0.0167 0.2749 0.0167 0.0167	03/08/95 03/18/95 05/25/95 05/10/95 01/10/95 01/21/95 07/13/95 01/08/95 01/01/95	145 0600 130 0700 010 0300 021 0700 194 0200 008 2300 001 2300 281 1000 057 1200	13.7953 14.0088 13.7953 13.7953	06/30/95 03/08/95 03/18/95 05/25/95 05/10/95 01/10/95 01/21/95 01/21/95 01/08/95 01/01/95 10/08/95 02/26/95 L0/24/2007	067 077 145 130 010 021 194 008 001 281 057	2000 1200 0600 0700 0300 0700 0200 2300 2300 2300 1000
Highest 1-hour Tot Meter)	al KNO3 Gr	Table avitatior	3 (cont 1al Deposi	:.) ition (Microgra	ams/Square	2	
(M				00, Y = 180.00			
Y Axis (Degrees)	2400.000	MO/DY/Yr	(Meters) Jdy Hr tational	2600.000 Deposition -	Mo/Dy/Yr	Jdy	Hr
.000 17	.2749	06/30/95	181 0300 Page 7	14.0088	06/30/95	181	0300

		BEINNOS				
Y Axis (Degree	2800.000	- X Axis (Meter Mo/Dy/Yr Jdy F - Gravitatior	s) - r 3000.000 al Deposition -	Mo/Dy/Yr	Jdy	Hr
360.000 330.000 300.000 270.000 240.000 210.000 180.000 150.000 120.000 90.000 60.000 30.000 .000	11.5109 11.3327 11.3327 11.5109 11.3327 11.3327 11.4878 11.3153 11.3153 11.3327 11.5109 11.3327 11.3327 11.5109	06/30/95 181 03 03/08/95 067 20 03/18/95 077 12 05/25/95 145 06 05/10/95 130 07 01/10/95 010 03 01/21/95 021 07 07/13/95 194 02 01/08/95 008 23 01/01/95 001 23 10/08/95 281 10 02/26/95 057 12 06/30/95 181 03	00 9.41961 00 9.41961 00 9.56963 00 9.41961 00 9.41961 00 9.55033 00 9.40506 00 9.41961 00 9.56963 00 9.41961 00 9.41961	06/30/95 03/08/95 03/18/95 05/25/95 05/10/95 01/10/95 01/21/95 07/13/95 01/08/95 01/01/95 10/08/95 02/26/95 06/30/95	067 077 145 130 010 021 194 008 001 281 057	2000 1200 0600 0700 0300 0700 0200 2300 2300 2300 1000 1200
Y Axis (Degree	3200.000 s)	- X Axis (Meter) Mo/Dy/Yr Jdy H - Gravitatior	r 3400.000	Mo/Dy/Yr	Jdy	Hr
360.000 330.000 300.000 270.000 240.000 210.000 180.000 150.000 120.000 90.000 60.000 30.000 .000 0BODM 1.3		01/15/95 015 19 05/25/95 145 06 05/10/95 130 07 01/10/95 010 03 03/10/95 069 20 07/13/95 194 02 01/08/95 008 23 01/01/95 001 23 10/08/95 281 10 02/26/95 057 12 06/30/95 181 03 aily Show - KNO3 Table 3 (c	00 6.71033 00 8.29741 00 6.81931 00 6.71033 00 7.15680 00 8.18635 00 6.69984 00 6.71033 00 6.81931 00 6.71033 00 6.71033 00 6.81931 ont.)	06/30/95 03/08/95 01/15/95 05/25/95 05/10/95 03/05/95 03/10/95 07/13/95 01/08/95 01/08/95 10/08/95 02/26/95 06/30/95	067 015 145 130 064 069 194 008 001 281 057 181 pg	2000 1900 0600 0700 2200 2000 2300 2300 2300 2300 1000 1200
Highest 1-hour Meter)		Gravitational Dep	-	-	!	
Y Axis (Degree 	3600.000	1833.2 at x = 20 - X Axis (Meter) Mo/Dy/Yr Jdy H - Gravitation	s) -		Ĵdy	Hr
360.000 330.000 300.000 270.000 240.000 210.000 180.000 150.000 120.000 90.000 60.000	5.83652 5.74257 8.27955 6.58656 5.74257 7.10971 8.20127 5.88226 5.74257 5.83652 5.74257	06/30/95 181 03 03/08/95 067 20 01/15/95 015 19 01/05/95 005 14 05/10/95 130 07 03/05/95 064 22 03/10/95 069 20 03/11/95 070 01 01/08/95 008 23 01/01/95 001 23 10/08/95 281 10 Page	00 4.95823 00 8.41958 00 6.65461 00 5.19630 00 7.20823 00 8.37757 00 5.93196 00 4.95823 00 5.57871 00 4.95823	06/30/95 03/08/95 01/15/95 03/11/95 03/05/95 03/10/95 03/11/95 01/08/95 02/19/95 10/08/95	067 015 005 070 064 069 070 008 050	2000 1900 1400 2200 2000 0100 2300 1600

30.000 .000		DLYKNO3.OUT 02/19/95 050 1900 5.89623 02/19/95 050 06/30/95 181 0300 5.03980 06/30/95 181	
Y Axis (Degree	4000.000 es)	- X Axis (Meters) - 0 Mo/Dy/Yr Jdy Hr 4200.000 Mo/Dy/Yr Jdy - Gravitational Deposition -	/ Hr
$\begin{array}{c} 360.000\\ 330.000\\ 300.000\\ 270.000\\ 240.000\\ 210.000\\ 180.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\\ \end{array}$	4.39204 4.32070 8.64497 6.80386 5.29647 7.38877 8.64079 6.05911 4.32070 5.69101 4.32070 6.02789 4.39204	06/30/9518103003.8661306/30/951803/08/9506720003.8033103/08/950601/15/9501519008.9013001/15/950101/05/9500514006.9890701/05/950003/11/9507010005.4330703/11/9507003/05/9506422007.6030503/05/9506403/10/9506920008.9346403/10/950603/11/9507001006.2224603/11/9507001/08/9500823003.8033101/08/9500402/19/9505016005.8399002/19/9505010/08/9528110004.2331802/19/9505002/19/9505019006.1950802/19/9505006/30/9518103003.8661306/30/95181	2000 1900 1400 1000 2200 2000
Y Axis (Degree	4400.000 es)	- X Axis (Meters) - 0 Mo/Dy/Yr Jdy Hr 4600.000 Mo/Dy/Yr Jdy - Gravitational Deposition -	/ Hr
360.000 330.000 300.000 270.000 OBODM 1.3	3.44188 3.44625 9.15581 7.17751 Da	06/30/95 181 0300 3.10378 06/30/95 183 04/24/95 114 1500 3.32858 04/24/95 114 01/15/95 015 1900 9.37730 01/15/95 015 01/05/95 005 1400 7.35431 01/05/95 009 aily show ~ KNO3 10/24/2007 pg	0300 1500 1900 1400 12
		Table 3 (cont.) Gravitational Deposition (Micrograms/Square	
	(Maximum =	1833.2 at $x = 200.00$, $Y = 180.00$	
Y Axis (Degree	4400.000	- X Axis (Meters) - O Mo/Dy/Yr Jdy Hr 4600.000 Mo/Dy/Yr Jdy - Gravitational Deposition -	/ Hr
$\begin{array}{c} 240.000\\ 210.000\\ 180.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\end{array}$	5.57879 7.82068 9.22458 6.39184 3.38620 5.99657 4.34243 6.36779 3.44188	03/11/9507010005.7191903/11/9507003/05/9506422008.0142703/05/9506403/10/9506920009.4787103/10/9506903/11/9507001006.5525103/11/9507001/08/9500823003.0541001/08/9500802/19/9505016006.1463902/19/9505002/19/9505016004.4511202/19/9505002/19/9505019006.5313002/19/9505006/30/9518103003.1037806/30/95181	2200 2000 0100 2300 1600 1600 1900
Y Axis (Degree		- X Axis (Meters) - D Mo/Dy/Yr Jdy Hr 5000.000 Mo/Dy/Yr Jdy - Gravitational Deposition -	/ Hr
360.000 330.000 300.000	2.83938 3.28499 9.55458	06/30/95 181 0300 2.63825 06/30/95 182 04/24/95 114 1500 3.29911 04/24/95 114 01/15/95 015 1900 9.68172 01/15/95 015 Page 9	1500

270.000	7.49736	01/05/95 005 1400	7.60388	01/05/95 005 1400
240.000	5.83705	03/11/95 070 1000	5.92829	03/11/95 070 1000
210.000	8.17249	03/05/95 064 2200	8.28915	03/05/95 064 2200
180.000	9.68501	03/10/95 069 2000	9.83726	03/10/95 069 2000
150.000	6.68480	03/11/95 070 0100	6.78524	03/11/95 070 0100
120.000	2.79479	01/08/95 008 2300	2.59801	01/08/95 008 2300
90.000	6.27086	02/19/95 050 1600	6.36619	02/19/95 050 1600
60.000	4.54556	02/19/95 050 1600	4.62115	02/19/95 050 1600
30.000	6.66606	02/19/95 050 1900	6.76862	02/19/95 050 1900
.000	2.83938	06/30/95 181 0300	2.63825	06/30/95 181 0300
OBODM 1.3		Daily Show - KNO3		10/24/2007 pg 13

Table 4 Second Highest 1-hour Total KNO3 Gravitational Deposition (Micrograms/Square Meter)

(Maximum = 1740.3 at x = 200.00, Y = 180.00)

- X Axis (Meters) -

Y Axis (Degrees)	- X Axis (Meters) .000 Mo/Dy/Yr Jdy Hr - Gravitational	200.000	Mo/Dy/Yr	Jdy	Hr
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	945.309 1286.41 1418.43 1280.96 1296.12 1365.58 1740.32 1238.59 1052.97 1199.63 1124.30 1017.02 945.309	01/30/95 04/21/95 04/16/95 03/11/95 03/05/95 03/10/95 03/11/95 01/04/95 02/19/95 01/30/95 01/30/95	111 106 025 070 064 069 070 004 050	1700 1500 2200 1200 2200 2300 0100 1100 1400
400 Y Axis (Degrees)	- X Axis (Meters)).000 Mo/Dy/Yr Jdy Hr - Gravitational	600.000	Mo/Dy/Yr	Ĵdy	Hr
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 04/21/95 111 1700 7 04/16/95 106 1500 4 01/25/95 025 2000 4 03/11/95 070 1200 4 01/10/95 010 2200 3 03/10/95 069 2300 0 01/23/95 023 1300 0 01/04/95 004 1100	394.169 394.169 402.994 394.556 391.016 429.024 387.612 363.546 376.659 373.262 356.012	01/20/95 03/14/95 01/05/95 03/125/95 03/10/95 03/10/95 01/23/95 01/24/95 02/19/95 01/30/95 07/16/95 01/20/95	073 005 025 070 069 023 024 050 030 197	1600 0400 2000 1300 2300 1300 2200 1700 1500 0700
800 Y Axis (Degrees)	- X Axis (Meters)).000 Mo/Dy/Yr Jdy Hr - Gravitationa]	- 1000.000 Deposition -	Mo/Dy/Yr	Jdy	Hr
360.000 214.70	5 01/20/95 020 0300 Page 10	136.640	01/20/95	020	0300

330.000 300.000 270.000 ОВОДМ 1.3 Second Highd	230.210 Dai	DLYKNO3.007 03/14/95 073 1600 01/05/95 005 0400 05/05/95 125 1200 ly Show - KNO3 Table 4 (cont al KNO3 Gravitatio	138.548 138.408 141.155	10/21/2007	112 085 125 7 pg	1600 1400 1200 14
(Mrcrogram.	y square meeer	,				
	(Maximum = 1	.740.3 at $x = 200.0$	0, Y = 180.00			
Y Axis (Degree	800.000	X Axis (Meters) Mo/Dy/Yr Jdy Hr - Gravitational	1000.000	Mo/Dy/Yr	Jdy	Hr
$\begin{array}{c} 240.000\\ 210.000\\ 180.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\end{array}$	223.788 234.338 224.157 215.634 219.276 219.576 211.289	06/01/95 152 1400 01/07/95 007 1300 03/10/95 069 2400 01/23/95 023 1300 12/24/95 358 0300 11/27/95 331 2100 01/30/95 030 1500 07/16/95 197 0700 01/20/95 020 0300	138.576 138.331 140.282 138.382 136.871 138.454 137.222 133.889 136.640	06/16/95 03/05/95 03/10/95 01/07/95 12/24/95 11/27/95 01/30/95 04/10/95 01/20/95	064 069 007 358 331 030 100	1200 2000 0900 0300 2100 1500 0500
Y Axis (Degree	1200.000	X Axis (Meters) Mo/Dy/Yr Jdy Hr - Gravitational	1400.000	Mo/Dy/Yr	Jdy	Hr
$\begin{array}{c} 360.000\\ 330.000\\ 300.000\\ 270.000\\ 240.000\\ 240.000\\ 150.000\\ 150.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\\ \end{array}$	91.2596 91.2966 92.6545 91.2596 91.2966 92.4577 91.1497 91.1556 92.3986 90.5634 90.1120	05/29/95 149 0200 01/27/95 027 1200 02/07/95 038 1400 10/11/95 284 1500 01/25/95 025 1600 02/13/95 044 1500 07/28/95 209 1000 01/24/95 024 0500 01/03/95 003 0600 12/18/95 352 0500 01/30/95 030 1500 07/16/95 197 0800 05/29/95 149 0200	64.8404 64.0086 64.8404 64.0086 64.0086 64.0086 64.8404 63.9883 64.0086 64.8404 63.9468 64.8404 63.9468 64.8404	11/17/95 04/29/95 06/21/95 06/01/95 09/15/95 06/25/95 07/24/95 04/22/95 02/19/95 02/20/95 07/16/95 11/17/95	119 172 107 152 258 176 205 112 050 051 197	0100 2000 2100 2200 0900 0500 0200 2000 2000 0400 0800
Y Axis (Degree	1600.000	X Axis (Meters) Mo/Dy/Yr Jdy Hr - Gravitational		Mo/Dy/Yr	Jdy	Hr
360.000 330.000 270.000 240.000 210.000 180.000 150.000 0BODM 1.3	46.8867 46.8867 47.4890 46.8867 46.8867 47.4037 46.8202	07/14/95 195 2400 04/29/95 119 0100 06/21/95 172 2000 07/28/95 209 0700 06/01/95 152 2100 09/15/95 258 2200 04/02/95 092 0900 12/13/95 347 0200 1y Show - KNO3 Table 4 (cont		07/14/95 04/29/95 06/21/95 07/28/95 06/01/95 09/15/95 04/02/95 12/13/95 10/24/2007	119 172 209 152 258 092 347	0100 2000 0700 2100 2200 0900
Table 4 (cont.) Second Highest 1-hour Total KNO3 Gravitational Deposition Page 11						

Page 11

(Micrograms/Square Meter)

(Maximum = 1740.3 at x = 200.00, Y = 180.00)

120.000 46.8867 04/22/95 112 0200 35.2692 04/22/95 12 90.000 47.4890 01/01/95 001 2400 35.7517 01/01/95 00 60.000 46.8867 07/16/95 197 0800 35.2592 07/16/95 19 .000 47.4890 07/14/95 195 2400 35.7517 07/14/95 19 2000.000 Mo/Dy/rr Jdy Hr 2200.000 Mo/Dy/rr Jd Y Axis (Degrees) - Gravitational Deposition - 360.000 27.5326 07/14/95 195 2400 21.6233 07/14/95 19 300.000 27.1443 04/29/95 119 0100 21.3082 04/29/95 11 270.000 27.1443 04/29/95 119 0100 21.3082 04/29/95 11 2000.000 27.1443 04/29/95 119 0100 21.3082 04/29/95 11 2000.000 27.1443 04/29/95 119 0100 21.3082 04/21/95 12 200.000 27.1443 04/29/95 120 000 21.6233 07/14/95 19 240.000 27.1443 09/15/95 258 2200 21.3082 09/15/95 22 180.000 27.1443 09/15/95 258 2200 21.3082 09/15/95 22 180.000 27.1443 09/15/95 195 2400 21.6233 07/14/95 19 10.000 27.1443 09/15/95 197 0200 21.3082 04/22/95 11 90.000 27.1443 04/22/95 112 0200 21.3082 04/22/95 11 90.000 27.1443 04/22/95 112 0200 21.3082 04/22/95 11 90.000 27.1443 04/22/95 120 020 21.3082 04/22/95 11 90.000 27.1443 04/22/95 120 020 21.3082 04/22/95 11 90.000 27.1443 07/16/95 197 0800 21.2874 02/20/95 05 30.000 27.1179 02/20/95 051 0400 21.2874 02/20/95 05 30.000 27.1179 02/20/95 051 0400 21.2874 02/20/95 05 30.000 17.0167 04/29/95 119 0100 13.7953 04/29/95 11 2000 07.5326 07/14/95 197 0800 21.3082 07/16/95 15 2400.000 Mo/Dy/rr Jdy Hr 2600.000 Mo/Dy/rr Jd Y Axis (Degrees) - Gravitational Deposition - - x Axis (Meters) - 2400.000 Mo/Dy/rr Jdy Hr 2600.000 Mo/Dy/rr Jd Y Axis (Degrees) - Gravitational Deposition - - X 000 17.0167 04/29/95 119 0100 13.7953 04/29/95 11 300.000 17.0167 04/29/95 119 0100 13.7953 04/29/95 11 210.000 17.0167 06/01/95 152 2100 13.7953 06/21/95 52 120.000 17.0167 06/21/95 152 2100 13.7953 06/21/95 52 120.000 17.2749 07/14/95 195 2400 14.0088 07/14/95 195 210.000 17.2749 07/14/95 195 2400 13.7953 06/21/95 52 120.000 17.2167 04/22/95 112 0200 13.7953 06/21/95 52 120.000 17.0167 04/22/95 197 0800 13.7953 07/16/95 15 210.000 17.0167 04/22/95 197 0800 13.7953 07/16/95 15	/ Hr				
2000.000 Mo/Dy/Yr Jdy Hr 2200.000 Mo/Dy/Yr Jd Y Axis (Degrees) - Gravitational Deposition - 360.000 27.5326 07/14/95 195 2400 21.6233 07/14/95 19 300.000 27.1443 04/29/95 119 0100 21.3082 04/29/95 11 300.000 27.1443 06/21/95 172 2000 21.3082 06/21/95 12 270.000 27.5326 07/28/95 209 0700 21.6233 07/28/95 20 240.000 27.1443 06/01/95 152 2100 21.3082 06/01/95 19 210.000 27.1443 09/15/95 258 2200 21.3082 09/15/95 25 180.000 27.4805 04/02/95 092 0900 21.5816 04/02/95 09 150.000 27.1043 12/13/95 347 0200 21.2764 12/13/95 34 120.000 27.1443 04/22/95 112 0200 21.3082 04/22/95 11 90.000 27.5326 01/01/95 001 2400 21.6233 01/01/95 00 60.000 27.1179 02/20/95 051 0400 21.2874 02/20/95 09 30.000 27.5326 07/14/95 197 0800 21.3082 07/16/95 19 .000 27.5326 07/14/95 195 2400 21.6233 07/14/95 19 - X Axis (Meters) - 2400.000 Mo/Dy/Yr Jdy Hr 2600.000 Mo/Dy/Yr Jdy Y Axis (Degrees) - Cravitational Deposition -					
- X Axis (Meters) - 2400.000 Mo/Dy/Yr Jdy Hr 2600.000 Mo/Dy/Yr Jd Y Axis (Degrees) - Gravitational Deposition -	2400				
- X Axis (Meters) - 2400.000 Mo/Dy/Yr Jdy Hr 2600.000 Mo/Dy/Yr Jd Y Axis (Degrees) - Gravitational Deposition -) 0100 2000 0700 2100 2200 2000 20200 20200 2400 2400				
360.00017.274907/14/95195240014.008807/14/9519330.00017.016704/29/95119010013.795304/29/9511300.00017.016706/21/95172200013.795306/21/9517270.00017.274907/28/95209070014.008807/28/9520240.00017.016706/01/95152210013.795306/01/9515210.00017.016709/15/95258220013.795309/15/9525180.00017.241104/02/95092090013.981004/02/9509					
150.000 16.9911 12/13/95 347 0200 13.7743 12/13/95 347 120.000 17.0167 04/22/95 112 0200 13.7743 12/13/95 34 90.000 17.2749 01/01/95 001 2400 14.0088 01/01/95 00 60.000 17.0001 02/20/95 051 0400 13.7818 02/20/95 05 30.000 17.0167 07/16/95 197 0800 13.7953 07/16/95 19 0BODM 1.3 Daily Show - KNO3 10/24/2007 10/24/2007 10/24/2007	2400 0100 2000 2100 2100 2200 2200 20200 2400 0400 0				
Table 4 (cont.) Second Highest 1-hour Total KNO3 Gravitational Deposition (Micrograms/Square Meter)					

(Maximum = 1740.3 at x = 200.00, Y = 180.00)

- X Axis (Meters) -2400.000 Mo/Dy/Yr Jdy Hr 2600.000 Mo/Dy/Yr Jdy Hr Page 12

Y Axis (Degree	es)	DLYKNO3.OUT - Gravitational Deposition -
.000	17.2749	07/14/95 195 2400 14.0088 07/14/95 195 240
Y Axis (Degree	2800.000	- X Axis (Meters) -) Mo/Dy/Yr Jdy Hr 3000.000 Mo/Dy/Yr Jdy Hr - Gravitational Deposition -
360.000 330.000 300.000 270.000 240.000 180.000 150.000 120.000 90.000 60.000 30.000 .000	11.5109 11.3327 11.5109 11.327 11.3327 11.3327 11.3327 11.4878 11.3153 11.3153 11.3327 11.5109 11.3215 11.3327 11.5109	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Y Axis (Degree	3200.000	- X Axis (Meters) -) Mo/Dy/Yr Jdy Hr 3400.000 Mo/Dy/Yr Jdy Hr - Gravitational Deposition -
360.000 330.000 270.000 240.000 240.000 180.000 150.000 120.000 90.000 60.000 30.000 .000 0BODM 1.3	8.03967 7.91231 8.11183 8.03967 7.91231 7.91231 8.42637 7.90001 7.91231 8.03967 7.90446 7.91231 8.03967 Da	07/14/9519524006.8193107/14/95195240004/29/9511901006.7103304/29/95119010004/16/9510615007.8420704/16/95106150007/28/9520907006.8193107/28/95209070006/01/9515221006.7103306/01/95152210009/15/9525822006.7103301/10/95010030003/10/9506924008.1863503/10/95069240012/13/9534702006.6998412/13/95347020004/22/9511202006.7103304/22/95112020001/01/9500124006.8193101/01/95001240002/20/9505104006.7036502/20/9505104007/16/9519708006.7103307/16/95197080007/14/9519524006.8193107/14/95195240001/yshow - KNO310/24/2007pg1
	st 1-hour To /Square Mete	Table 4 (cont.) otal KNO3 Gravitational Deposition er)
		1740.3 at $x = 200.00$, $Y = 180.00$
Y Axis (Degree	3600.000	- X Axis (Meters) -) Mo/Dy/Yr Jdy Hr 3800.000 Mo/Dy/Yr Jdy Hr - Gravitational Deposition -
240.000	5.83652 5.74257 7.81260 6.58656 5.74257 6.47654 8.20127	07/14/95 195 2400 5.03980 07/14/95 195 240 04/29/95 119 0100 4.95823 04/29/95 119 010 04/16/95 106 1500 7.93629 04/16/95 106 150 01/25/95 025 2200 6.65461 01/25/95 025 220 06/01/95 152 2100 4.95823 05/10/95 130 070 03/11/95 070 0200 6.61968 03/11/95 070 020 03/10/95 069 2400 8.37757 03/10/95 069 2400 Page 13

$150.000 \\ 120.000 \\ 90.000 \\ 60.000 \\ 30.000 \\ .000$	5.83652 5.73682 5.74257 5.83652	07/13/95 194 04/22/95 112 01/01/95 001 02/20/95 051 02/26/95 057 07/14/95 195	2400 5.03980 0400 4.95322 1200 4.95823 2400 5.03980	07/13/95 1 04/22/95 1 01/01/95 0 02/20/95 0 02/26/95 0 07/14/95 1	L12 0200 001 2400 051 0400 057 1200	
Y Axis (Degree	4000.000	- X Axis (Me Mo/Dy/Yr Jdy - Gravitat	ters) - Hr 4200.0 ional Deposition	00 Mo/Dy/Yr : 	Jdy Hr	
360.000 330.000 300.000 270.000 240.000 180.000 150.000 120.000 90.000 60.000 30.000 .000	8.64079 4.31380 4.32070 4.39204 4.31629 4.32070 4.39204		01003.8033115008.3841222006.9890707003.8033102007.0960824008.9346402003.7971602003.8033124003.8661304003.8192612003.8061324003.86613	04/29/95 1 04/16/95 1 01/25/95 (05/10/95 1	119 0100 106 1500 025 2200 130 0700 070 0200 069 2400 112 0200 001 2400 050 1900 057 1200	
Y Axis (Degree	4400.000	- X Axis (Me Mo/Dy/Yr Jdy - Gravitat	ters) - Hr 4600.00 ional Deposition	00 Mo/Dy/Yr 3	Jdy Hr	
360.000 330.000 300.000 270.000 OBODM 1.3	3.44188 3.42374 8.62437 7.17751 Da	07/14/95 195 03/14/95 073 04/16/95 106 01/25/95 025 ily show - KN	2400 3.10378 1600 3.31225 1500 8.83518 2200 7.35431 03	07/14/95 1 03/14/95 0 04/16/95 1 01/25/95 0 10/24/2007	L95 2400)73 1600 L06 1500)25 2200 pg 18	
Table 4 (cont.) Second Highest 1-hour Total KNO3 Gravitational Deposition (Micrograms/Square Meter)						
	•		200.00, Y = 180.0	00		
Y Axis (Degree	4400.000	- X Axis (Me Mo/Dy/Yr Jdy - Gravitat	ters) - Hr 4600.00 ional Deposition	00 Mo/Dy/Yr : 	Jdy Hr	
$\begin{array}{c} 240.000\\ 210.000\\ 180.000\\ 150.000\\ 120.000\\ 90.000\\ 60.000\\ 30.000\\ .000\end{array}$	3.47651 7.34744 9.22458 3.47651 3.38620 3.44188 3.91999 3.38620 3.44188	06/01/95 152 03/11/95 070 03/10/95 069 01/23/95 023 04/22/95 112 01/01/95 001 02/19/95 050 02/26/95 057 07/14/95 195	0200 7.58014 2400 9.47871 1300 3.35870 0200 3.05410 2400 3.29847 1900 4.02109 1200 3.05410	06/01/95 1 03/11/95 (03/10/95 (01/23/95 (04/22/95 1 02/19/95 (02/19/95 (02/26/95 (07/14/95 1	070 0200 069 2400 023 1300 112 0200 050 1300 050 1900 057 1200	
Y Axis (Degrees	4800.000	Mo/Dy/Yr Jdy	ters) - Hr 5000.00 ional Deposition	00 Mo/Dy/Yr J -	dy Hr	
		Pag	je 14			

1

360.000	2.83938	07/14/95 195 2400	2.63825	07/14/95 195 2400
330.000	3.27528	03/14/95 073 1600	3.29636	03/14/95 073 1600
300.000	9.00529	04/16/		