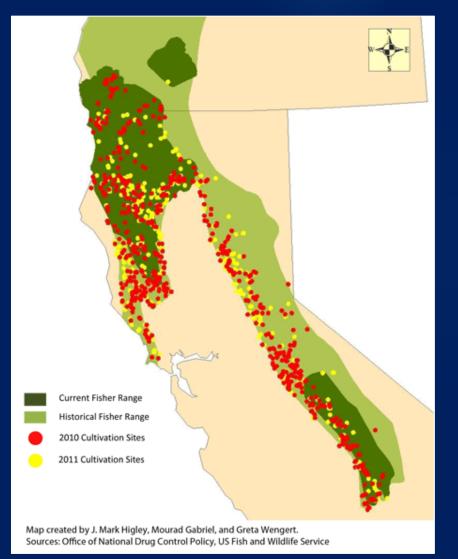
Passive Sampling of Surface Waters in the Sierra Region of Northern California for Pesticides used in *Cannabis* and Timber Cultivation

M.M.MCWAYNE^{1,2}, J.L. ORLANDO¹ AND M.L.HLADIK ¹ ¹USGS CALIFORNIA WATER SCIENCE CENTER, SACRAMENTO, CA ²CALIFORNIA STATE UNIVERSITY SACRAMENTO

Problem

- Illegal and "legal" cannabis grows are occurring throughout the Sierra Nevada foothills.
- Documented widespread use of pesticides (including compounds not available in CA)
- Grows are sited in watersheds that are critical habitat for listed salmonids.
- ► Timing of use is uncertain.
- Additional use of pesticides in commercial forestry in these same watersheds.
- No current program to monitor for pesticides in these watersheds.

Goal


To develop an effective, cost-efficient method/tool to monitor the occurrence of cannabis and forestry pesticides in small, critical habitat, streams in the Sierra Nevada foothills.

Unique Pesticide Concerns

Figure 2. Map of California Forest and Rangeland

http://frap.fire.ca.gov/projects/frap_veg/methods/Meth ods_Development_Habitat_Data_02_2.pdf

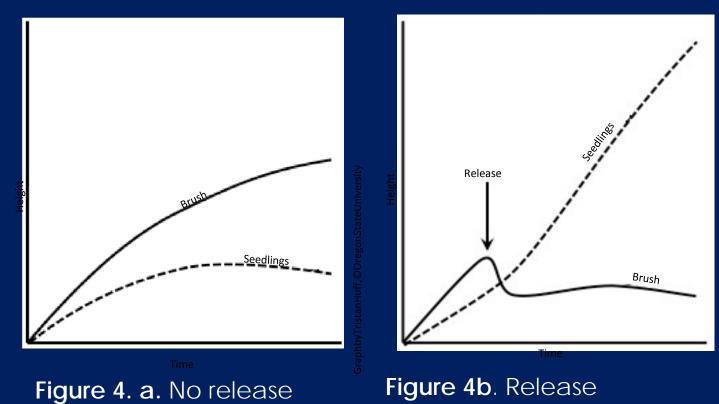
4

Figure 3. Map of know Cannabis cultivation sites.

http://www.motherjones.com/bluemarble/2014/10/marijuana-fisher-threatened-rat-poison

Environmental Impacts of Pesticide Use in Forested Areas

Sensitive forest ecosystem
Water quality
Sensitive species



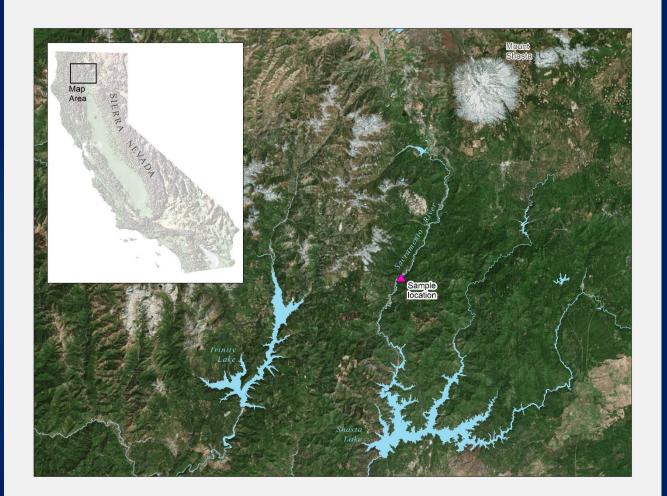
Native vegetation growing in a clearcut, killed by herbicides http://www.cnps.org/cnps/conservation/forestry/herbicides/herbicide s_on_nonfederal_forests.php

Timber Production and Pesticides

- Herbicides are typically aerially applied to prevent competition of grasses and shrubs with desired hardwood conifers
- They are applied during site preparation and conifer release

Huff, Tristan, Mike Cloughesy, and Ralph E. Duddles. *Introduction to conifer release*. Corvallis, Or.: Extension Service, Oregon State University, 2014.

6


Cannabis and Pesticide Use

- Cannabis can be negatively affected by mildew, fungus, insects and animal pests, therefore, a broad range of pesticides are applied
- Banned substances are potentially applied
- Applications are not tracked
- Quantities may be hazardous to non-target plants and animals

Chemicals and trash found at illegal marijuana grow site in California's Shasta-Trinity National Forest. Credit: USFS Region 5

Study Location- Upper Sacramento River Watershed

Fed by snowmelt and rainfall year-round that originates from Shasta (north) and Klamath (west) mountains

8

- Watershed contains more than 250,000 acres of forested area
- Downstream of timber
 and *Cannabis* cultivation

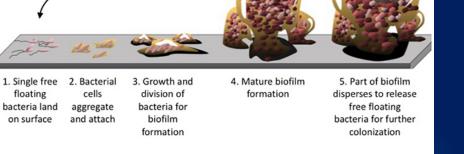
Figure 1. Map of Upper Sacramento River Site

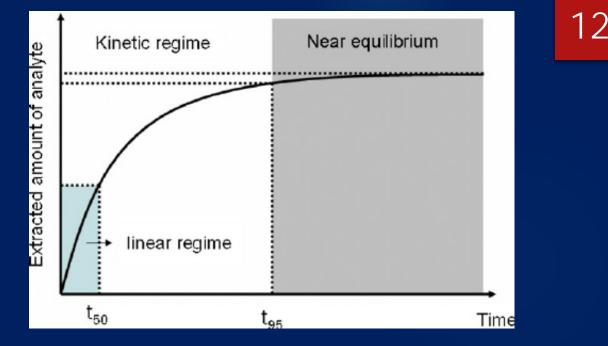
Field Study

Utilizes Passive Sampling
Fall (flush) and summer (base flow) sampling events
24 hr deployment no DLM
30 day deployment with DLM

Upper Sac River Fall Sampling Event

Benefits of Passive Samplers


In situ sampling
 Extended sampling times
 Concentration of analytes
 Good strategy for episodic pulses

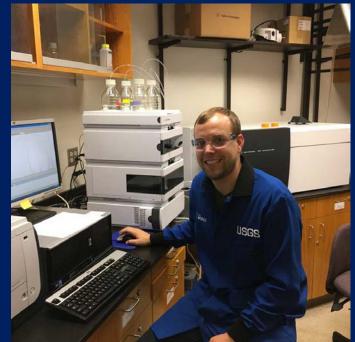

Limitations of Passive Sampling Time weighted average concentrations are not "true" concentrations ► Theft ► Water levels ► Extrinsic factors 6. Cycle repeats Fluctuating hydrodynamics

Chemcatchers®

- Kinetic sampling
 Benefits of solid phase extraction
- Multiple sorbents
- In house extraction
- Diffusion Limiting Membranes (DLMs)

Lab Elution-Current Work

- Oasis HLB-hydrophilic lipophilic balanced copolymer
- Empore SDB-RPS-Polystyrenedivinylbenzene Reverse Phase Sulfonated
- Drying
- Elution
- Concentration



Analysis by Gas and Liquid Chromatography Mass Spectrometry

14

 Extracts will be analyzed for a large suite (>150) of current-use pesticides and pesticide degradates

Unexpected Problems

Extreme winter/spring flowsDisk drying

Pesticide Detects to Date

First deployment (10/17/16-10/18/16)
 Hexazinone and Thiabendazole

Second deployment (10/26/16-10/27/16)
 Trifluralin, Dithiopyr, DCPA, Hexazinone, and Imazalil.

- Uncharacteristic water year
- Spring deployment moved to a summer deployment

Future Work

- Build on results of current pilot project
- Approx. 200K project with current cooperator to further current development work and expand to additional watersheds with more deployments.

Acknowledgements

- Pesticide Fate Research Group at the USGS California Water Science Center
- Daniel Whitley at the Central Valley Regional Water Quality Control Board

	Field ID	Trifluralin Results	Dithionyr Posults	DCPA Posults	n n'-DDF Results	Hevezinone Results	Imazalil Results	Thiabendazole Results
Name		Final Conc.	Final Conc.	Final Conc.	Final Conc.	Final Conc.	Final Conc.	Final Conc.
MS1003 EMP	101716-101816							6
MS1004 EMP	101716-101816					18		
MS1021 HLB	102616-102716		11				33	
MS1022 HLB	102616-102716	13	14		12			
MS1023 EMP	102616-102716	20	10	9	9	18		
MS1024 EMP	102616-102716	16	12		11	21		