1 2 3 4 5	NORTON ROSE FULBRIGHT US LLP ELIZABETH M. WEAVER LAUREN A. SHOOR (BAR NO. 280788) 555 South Flower Street Forty-First Floor Los Angeles, California 90071 Telephone: (213) 892-9200 Facsimile: (213) 892-9494 elizabeth.weaver@nortonrosefulbright.com lauren.shoor@nortonrosefulbright.com	
6 7	Attorneys for Respondent EXXONMOBIL OIL CORPORATION	
8	BEFORE THE STA	ΓΕ OF CALIFORNIA
9	STATE WATER RESOU	RCES CONTROL BOARD
10		•
11	IN THE MATTER OF THE PETITION OF	Case No.
12	FORMER EXXONMOBIL JALK FEE	PETITION FOR REVIEW AND REQUEST FOR STAY AND HEARING
13	PROPERTY	(Cal. Water Code §§ 13320, 13321; Cal. Code
14	California Regional Water Quality Control	Regs. tit. 23 § 2050 et seq.)
15	Board, Los Angeles Region	
16		·
17		
18	INTROI	DUCTION
19		n ("ExxonMobil" or "Petitioner") respectfully
20	-	s Control Board ("State Board") to review the
21		ageles Regional Water Quality Control Board's
22	("Regional Board")	
23	, ·	f-Site Groundwater Investigations, Pursuant to
24	California Water Code Section 13	3267 Order, and
25	Requirement for Additional Sc	il Vapor and Soil Investigations, Pursuant to
26	California Water Code Section 13	3267 Order.
27		

36979155.2

2	California Code of Regulations ("CCR") Title 23, Section 2050 et seq.
3	<u>PETITION FOR REVIEW</u>
4	I. NAME AND ADDRESS OF PETITIONER
5	ExxonMobil Oil Corporation
6	c/o Len Racioppi, Global Development Area Manager – Manufacturing / Superfund 22777 Springwoods Village Parkway
7	Spring, TX 77389 Telephone: (832) 624-2039
8	Email: len.m.racioppi@exxonmobil.com
9	Elizabeth Weaver
10	Norton Rose Fulbright US LLP 555 South Flower Street
11	41st Floor Los Angeles, CA 90071
12	Telephone: (213) 892-9290
13	Email: Elizabeth.Weaver@nortonrosefulbright.com
14	II. REGIONAL BOARD ACTION FOR WHICH PETITIONER SEEKS REVIEW
15	Petitioner seeks review of the Regional Board's January 12, 2018 Requirement for
16	Additional Off-Site Groundwater Investigations, Pursuant to California Water Code Section 13267
17	Order, and January 19, 2018 Requirement for Additional Soil Vapor and Soil Investigations,
18	Pursuant to California Water Code Section 13267 Order (collectively "Requirements"). A copy of
19	the Requirements are attached hereto as Exhibit 1 and Exhibit 2.
20	III. <u>DATE OF REGIONAL BOARD ACTION</u>
21	The Regional Board issued the Requirement for Additional Off-Site Groundwater
22	Investigations, Pursuant to California Water Code Section 13267 Order on January 12, 2018.
23	The Regional Board issued the Requirement for Additional Soil Vapor and Soil
24	Investigations, Pursuant to California Water Code Section 13267 Order on January 19, 2018.
25	IV. STATEMENT OF REASONS WHY THE ACTION WAS INAPPROPRIATE OR
26	<u>IMPROPER</u>
27	The Regional Board's Requirements are improper because ExxonMobil should not be
28	identified as a Responsible Party. ExxonMobil has been in communication with the Regional

PETITION FOR REVIEW AND REQUEST FOR HEARING AND STAY

ExxonMobil brings this petition pursuant to California Water Code section 13320 and

7

8

11

12

13 14

16 17

15

18

20

19

22

21

23

2425

26

27

28

N RECYCLED PAPER

36979155.2

Board regarding the fact that Continental Heat Treating ("CHT") is the appropriate Responsible Party at the Jalk Fee property, not ExxonMobil. Most recently, ExxonMobil representatives met with the Regional Board on November 15, 2017 and submitted a follow-up summary of the meeting in its Request for Response to Reports Providing Conclusive Evidence that CHT is Sole Discharger of PCE on December 5, 2017, in furtherance of the issue.

ExxonMobil has presented the Regional Board with substantial evidence that chlorinated

solvents migrated from the adjacent CHT property to the Jalk Fee property including information showing: (1) ExxonMobil did not use, store, or discharge chlorinated solvents at the former Jalk Fee property ("Jalk Fee"), (2) CHT owned and operated, and continues to own and operate, a heat treating business adjacent to Jalk Fee that used and stored PCE and generated thousands of gallons of waste PCE, and other chlorinated solvents, in its operations from approximately 1969 to 1995, (3) CHT operated multiple degreasers with documented spills, releases, and even fires in the degreaser on its property as documented by a number of governmental agencies, and CHT was cited for improper waste disposal practices, including the disposal of hazardous waste to unauthorized points, (4) hydrocarbons detected in the soil at the Jalk Fee/CHT property boundary that are co-located with the chlorinated solvent contamination are not crude oil or petroleum fuels such as diesel fuel and most closely resemble a mix of quench oils and mineral oils known to be used in heat treating operations and consistent with the quench oils used in CHT's operations, (5) quench oils are not used in oil and gas production, which formerly occurred at the Jalk Fee property, and (6) CHT's documents establish that CHT's waste contained both PCE and used quench oil. To date, based only on the fact that chlorinated solvents have been found in soil at the Jalk Fee property (and without any evidence or records indicating that ExxonMobil used, stored, or discharged chlorinated solvents at the former Jalk Fee property), the Regional Board has refused to rescind its Section 13267 order and continues to issue new requirements to ExxonMobil. ExxonMobil has not seen or identified any records indicating that it used or stored chlorinated solvents at the Jalk Fee property and has not discharged chlorinated solvents at Jalk Fee. In light of the evidence before the Regional Board, there is no reasonable basis for the Regional Board to suspect that ExxonMobil discharged chlorinated solvents at the Jalk Fee property. Therefore, the Requirements are improper.

V. MANNER IN WHICH PETITIONER IS AGGRIEVED

Despite the lack of evidence that ExxonMobil stored, used, or discharged chlorinated solvents at the Jalk Fee property, the Regional Board is requiring ExxonMobil to (1) prepare a work plan for additional off-site groundwater investigations to adequately delineate the VOCs plume upgradient, downgradient, crossgradient/west, and crossgradient/east by April 9, 2018 and (2) prepare a work plan for additional soil and soil vapor investigations by March 30, 2018. Because ExxonMobil is not a Responsible Party, these requirements are unwarranted, unfair, burdensome and expensive and should be the responsibility of Continental Heat Treating.

VI. ACTION REQUESTED BY PETITIONER

ExxonMobil respectfully requests that the State Board (1) accept this Petition; (2) stay the Requirements pursuant to CCR, Title 23, Section 2053, and (3) rescind the Regional Board's Requirements.

VII. STATEMENT OF POINTS AND AUTHORITIES IN SUPPORT OF PETITION

In order to issue a Water Code section 13267 order, or requirements pursuant to such an order, the Regional Board must have evidence that ExxonMobil discharged, or is suspected of having discharged, chlorinated solvents at the Jalk Fee Property. But, the Regional Board has not provided any evidence that ExxonMobil caused a discharge of chlorinated solvents at the Jalk Fee Property other than the fact that chlorinated solvents have been detected at the Jalk Fee Property. Because there is no evidence that ExxonMobil stored, used, or discharged chlorinated solvents, and no evidence to support even a suspicion that ExxonMobil discharged chlorinated solvents, the Regional Board has improperly issued the Requirement for Submittal of Technical Reports.

As demonstrated in ExxonMobil's March 25, 2015 Request to Name CHT as Discharger (attached hereto as Exhibit 3), February 9, 2017 Report of Additional Evidence in Support of Request to Name CHT as Discharger (attached hereto as Exhibit 4), August 25, 2017 Response to CHT Allegations (attached hereto as Exhibit 5), December 5, 2017 Request for Response to Reports Providing Conclusive Evidence that CHT is Sole Discharger of PCE (attached hereto as Exhibit 6) and during meetings held with the Regional Board on March 3, 2015, July 7, 2016, December 14, 2016, November 15, 2017, ExxonMobil has not used chlorinated solvents during its operations at

36979155.2

-4

DOCUMENT PREPARED ON RECYCLED PAPER the Jalk Fee property or stored chlorinated solvents at the Jalk Fee property. Further, there is substantial evidence that chlorinated solvents were used, stored, *and discharged*, at the adjacent CHT property. Investigations conducted by ExxonMobil in the late fall of 2016 have produced information demonstrating that heat treating quench oils are also present at locations where the highest concentrations of chlorinated solvents have been found, which strongly supports the conclusion that the chlorinated solvents on the Jalk Fee property were directly associated with CHT's heat treating operations and waste management practices. Further CHT's documents demonstrate that its waste stream contained chlorinated solvents and used quench oils. There is simply no reasonable basis to suspect that ExxonMobil discharged chlorinated solvents (or quench oils, for that matter) at the Jalk Fee property.

A. Legal Standard

Pursuant to California Water Code section 13267, the Regional Board may require any person who has discharged, discharges, or is suspected of having discharged or discharging... waste within its region to furnish technical or monitoring program reports. Water Code § 13627(b)(1) (emphasis added). The Regional Board must identify the evidence that supports requiring that person to provide the reports. *Id*.

B. ExxonMobil Has Presented Evidence Establishing That it Has Not Discharged Chlorinated Solvents at the Jalk Fee Property

The Jalk Fee property was used as an oil production field from approximately the 1920s until 1996. It was originally operated by ExxonMobil predecessors, and later leased to, and operated by, Hathaway Oil Company. In the 1990s, ExxonMobil and Hathaway ceased oil production and removed the infrastructure from the property. The Jalk Fee property was redeveloped into an industrial park in 2003, and the current operators are not known to have used

¹ In addition, Water Code section 13304 authorizes the water board to issue "cleanup and abatement" orders requiring a discharger to cleanup and abate waste, take other necessary remedial action, where the discharger "has caused or permitted, causes or permits, or threatens to cause or permit any waste to be discharged or deposited where it is, or probably will be, discharged into the waters of the state and creates, or threatens to create, a condition of pollution or nuisance." Water Code § 13304(a). The Regional Board has not issued a cleanup and abatement order to ExxonMobil, and is proceeding under a Water Code section 13267 investigation order at this time. However, neither 13304 nor 13267 provides any legal basis for requiring ExxonMobil to assess or remediate contamination caused by another party under the facts at the Jalk Fee site, which clearly identify a responsible polluter or discharger (CHT) that can be required to address the contamination resulting from its operations.

chlorinated solvents in their operations. Chlorinated solvents are not standard chemicals used in oil field operations, and ExxonMobil is not aware of any records indicating that ExxonMobil or

Hathaway used chlorinated solvents or that such chemicals were stored or released on the Jalk Fee

property.²

On the other hand, CHT, who operates the adjacent property to the south of the Jalk Fee property, has been, and is, in the business of cleaning metal parts and processing them with heat—a process that often involves placing the metals parts in a vapor degreaser that employs chlorinated solvents, and then using quench oils to cool metal parts after they are heat-treated. CHT used significant quantities of chlorinated solvents (specifically including PCE) and quench oils in its operations for more than 25 years. The record also clearly shows that CHT had poor operational and waste management practices, as documented by various agencies. CHT has had known discharges of chlorinated solvents and quench oil wastes to the ground, and the Regional Board acknowledges that on-site releases of chlorinated solvents and oils occurred at CHT's property as a result of CHT's operations.

Because the Jalk Fee property had a dirt surface and was unpaved until its redevelopment in 2003, and the CHT property was paved with asphalt and concrete surfaces since its construction in 1969, rainwater and/or spills from the CHT property would have migrated to the Jalk Fee property. ExxonMobil presented the Regional Board with a conceptual site model demonstrating that the chlorinated solvents on Jalk Fee migrated from CHT's property, as well as aerial photos showing the paved surfaces at CHT throughout its operations. ExxonMobil's site conceptual model utilized facts from historical records showing CHT releases of PCE and quench oils at the property boundary between CHT and Jalk Fee. The conceptual site model demonstrates that because (1) the Jalk Fee property was unpaved and unfenced during the majority of the period when CHT was using PCE, (2) CHT's property was paved, and (3) there is a migration pathway across the Jalk Fee property due to shallow subsurface low permeability layer(s) dipping to the north from the CHT

36979155.2

² While petroleum-based solvents have sometimes been used in oil production activities, chlorinated solvents

⁽including PCE) have not. Industry standard solvents used in oil production activities would be non-chlorinated hydrocarbon-based, such as mid-distillates, xylenes and other aromatic compounds. This is consistent with ExxonMobil's statements that there is no evidence of PCE use during the oil and gas activities at the site.

20 21

23

22

24

25 26

27

28

DOCUMENT PREPARED

ON RECYCLED PAPER

property onto the Jalk Fee property, the conceptual site model demonstrates how PCE in soil at the Jalk Fee property is attributable to the activities of CHT. ExxonMobil's conceptual site model also demonstrates that chlorinated solvents detected in soil away from the property boundary with CHT are also attributable to releases by CHT, as a result of subsurface soil vapor and liquid transport.

Further, as presented to the Regional Board, chlorinated solvents in soils sampled at the Jalk Fee property, near the boundary between the CHT property and Jalk Fee, are co-located with various hydrocarbons. The hydrocarbons are inconsistent with crude oil such as that produced on Jalk Fee and also inconsistent with other conventional petroleum fuels such as diesel fuel. The soils contain a range of largely de-aromatized hydrocarbons that are consistent with quench oils used in heat treating operations, including the type of quench oil used by CHT according to historical records. CHT documents identify quench oils and mineral oils among the chemicals stored and used at the CHT property. Forensic analysis shows that a mixture of quench oils and mineral oils typically used in heat treating operations accounts for the hydrocarbon fingerprint found in the soil at the property boundary between the Jalk Fee and CHT properties. This evidence further substantiates ExxonMobil's conceptual site model—that waste from the CHT property (chlorinated solvents and a mix of quench/mineral oils) migrated from the CHT property to the Jalk Fee property.

This evidence establishes that ExxonMobil has not discharged, or permitted a discharge of, chlorinated solvents at the Jalk fee property.

The Regional Board Has No Evidence that Chlorinated Solvents Were Used, C. Stored, or Discharged at the Jalk Fee Property

The sole evidence relied upon by the Regional Board to support its contention that ExxonMobil either discharged or is suspected of having discharged chlorinated solvents on the Jalk Fee property is (1) PCE was detected in soil at certain locations on the Jalk Fee property, (2) an EPA report lists "waste solvents" as being generated at some oil production properties, (3) the geologic cross-section generated by the Regional Board indicates a silty surface dips from the Jalk Fee property to the CHT property which could serve as a pathway for contaminants to migrate from the Jalk Fee property onto CHT's property, and (4) that there was a "trucking operation" on the

DOCUMENT PREPARED

ON RECYCLED PAPER

36979155.2

Jalk Fee property. Regional Board Response to ExxonMobil's Request to Name Continental Heat Treating as Discharger Pursuant to California Water Code Section 13267 Order Dated August 24, 2010, issued on July 22, 2016 (attached hereto as Exhibit 7).

First, regarding the "waste solvents" identified in a 2002 EPA publication, this publication does not state the "waste solvents" are chlorinated-based. Petroleum-based solvents are routinely used in oil production activities, but chlorinated solvents (including PCE) are not. Industry standard solvents used in oil production activities would be non-chlorinated hydrocarbon-based, such as mid-distillates, xylenes and other petroleum compounds. This is consistent with ExxonMobil's statements that there is no evidence of PCE use during the oil and gas activities at the site.

Second, regarding the Regional Board's cross-section, the Regional Board used only two data points to develop its cross-section—which is not consistent with industry geologic practice. On the other hand, a Professional Geologist from Cardno developed cross-sections based upon evaluation of the logs of the numerous borings and wells drilled at the two sites, which confirms that the silt layer slopes from the CHT property to the Jalk Fee property—the exact opposite of what is shown in the Regional Board's cross-section.

Third, regarding the alleged "trucking operation" on the property, there are no records of the property being leased by a trucking company, that truck repair activities were present at the Jalk Fee property, or of any trucking operation that utilized PCE or other chlorinated solvents. ExxonMobil and Hathaway's operations on the property were limited to oil and gas operations. In fact a recent review by a retained interpretative aerial photographer indicates a lack of structures of sufficient size to be used for truck repairs. Further, ExxonMobil conducted a soil gas investigation in the former trucking operations area in 1996, and the results indicated that a release of PCE had not occurred in this area. Therefore this area is not a secondary source. And again, there is no evidence of an onsite release of PCE in this vicinity.

Finally, in light of the evidence ExxonMobil presented to the Regional Board regarding the operations at the Jalk Fee and the CHT properties, and based on ExxonMobil's conceptual site model, the mere presence of PCE in soil at certain locations at the Jalk Fee property does not support ExxonMobil being identified as the Responsible Party. The distribution of PCE in soil borings at

DOCUMENT PREPARED

Jalk Fee is consistent with ExxonMobil's conceptual site model, which demonstrated pathways and mechanisms that resulted in PCE migrating laterally away from the CHT source area near the property boundary. The mere presence of PCE in certain soil borings identified by the Regional Board at Jalk Fee alone does not require the assumption of a second release area on the Jalk Fee property.

All of the theories relied on by the Regional Board are mere speculation. No evidence has been presented showing a discharge or release of chlorinated solvents by ExxonMobil, or even of a discharge of chlorinated solvents of which ExxonMobil was aware or which it allowed to occur. While the Regional Board may have presented some evidence—none of which indicated that ExxonMobil discharged or released *or even used* chlorinated solvents on Jalk Fee—in issuing its original Section 13267 Order on August 27, 2010, ExxonMobil has since provided a much more convincing and plausible explanation for the source of the chlorinated solvents found in the soil at the Jalk Fee property. In light of the direct and indirect evidence presented to the Regional Board, there is no reasonable basis for the Regional Board to suspect that ExxonMobil has discharged chlorinated solvents at the Jalk Fee property. Therefore the Requirement for Submittal of Technical Reports must be rescinded.

VIII. STATEMENT THAT COPIES OF PETITION HAVE BEEN SENT TO THE REGIONAL BOARD

A copy of this Petition was transmitted to the Executive Officer of the Regional Board on February 12, 2018.

IX. STATEMENT THAT THE ISSUES RAISED IN THE PETITION WERE PRESENTED TO THE REGIONAL BOARD

The issues raised in this petition were raised before the Regional Board on numerous occasions, including in ExxonMobil's March 25, 2015 Request to Name CHT as Discharger (attached hereto as Exhibit 3), February 9, 2017 Report of Additional Evidence in Support of Request to Name CHT as Discharger (attached hereto as Exhibit 4), August 25, 2017 Response to CHT Allegations (attached hereto as Exhibit 5), December 5, 2017 Request for Response to Reports Providing Conclusive Evidence that CHT is Sole Discharger of PCE (attached hereto as Exhibit 6)

8 9

10

12

11

14

13

16

1.5

17

18 19

20

21

22 23

24

25

26

27

28

DOCUMENT PREPARED

and before the Regional Board during meetings between the Regional Board and ExxonMobil on March 3, 2015, July 7, 2016, December 14, 2016, and November 15, 2017. Regarding any newly discovered information raised in this petition, ExxonMobil was not able to raise them below because ExxonMobil was unaware of them and could not have reasonably been aware of them in time to raise them before the Regional Board.

REQUEST FOR PREPARATION OF THE ADMINISTRATIVE RECORD X.

By copy of this Petition to the Executive Office of the Regional Board, ExxonMobil hereby requests the preparation of the administrative record herein.

XI. REQUEST FOR HEARING

ExxonMobil requests that the State Board hold a hearing in this matter.

XII. **REQUEST FOR STAY**

ExxonMobil requests that the State Board issue a stay of the Requirements as to ExxonMobil as of the date of issuance pursuant to CCR, Title 23, Section 2053, while the State Board is considering this petition. As set forth in the declaration of Len Racioppi, submitted concurrently with this petition, since the State Board has up to 90 days to review an action upon a petition, there will be substantial harm to ExxonMobil from the costs of implementing actions for which it is not liable. Declaration of Len Racioppi ("Racioppi Decl."), ¶ 2. Specifically, ExxonMobil will be required to (1) prepare a work plan for additional off-site groundwater adequately delineate the VOCs plume upgradient, downgradient, investigations to crossgradient/west and crossgradient/east by April 9, 2018, and (2) prepare an additional soil and soil vapor investigation work plan by March 30, 2018. Each of these would need to be completed before the State Board is required to act on ExxonMobil's petition. *Id.* A preliminary estimate by ExxonMobil's environmental consultant, Cardno, indicates that completing the work plans in the Requirements and implementing such work could cost up to \$284,000. Id.

Granting a stay of the Requirements will not cause substantial harm to other interested persons or to the public, because the years that have passed between each of the Regional Board's efforts with regard to the Jalk Fee property demonstrate that the Board does not view this site as presenting near-term risks. Racioppi Decl. ¶ 3. ExxonMobil acknowledges that the delays by the

10 11

13

14

12

15

16

17

18

19 20

21 22

23

24

25

27

DOCUMENT PREPARED

ON RECYCLED PAPER

26

Regional Board in issuing formal directives between November 2014 and November 2016 and January 2018 have been largely due to the discussions taking place between ExxonMobil and the Regional Board in trying to resolve the issue of which party is the appropriate Responsible Party to conduct this work, and not due to the Regional Board's failure to take timely action. ExxonMobil respectfully suggests that resolving the issue of the appropriate discharger has been, and should continue to be, very important to resolve before new directives are undertaken.

ExxonMobil notes the following relevant delays have already occurred: it submitted an amended work plan for indoor air assessment on November 14, 2014. Racioppi Decl. ¶ 4. The Regional Board did not formally approve this work plan until the November 18, 2016 Requirement for Submittal of Technical Reports. Id. ExxonMobil submitted a site assessment report on October 20, 2014. Id. The Regional Board did not formally respond to this site assessment report until the November 18, 2016 Requirement for Submittal of Technical Reports. Id. Finally, ExxonMobil submitted a revised public participation plan on November 14, 2014. Id. The Regional Board did not formally respond to this plan until the November 18, 2016 Requirement for Submittal of Technical Reports. Id. Then, in January 2018, the Regional Board issued the Requirements which are the subject of this Petition.

In summary, the Regional Board waited two years to require ExxonMobil to implement work for which ExxonMobil submitted work plans. The Regional Board similarly waited a further two years to issue the Requirements which are the subject of this Petition despite the fact that ExxonMobil has shown clearly that it is not the discharger or the Responsible Party. Only a stay of these Requirements can prevent ExxonMobil from being unfairly prejudiced by being required to undertake work for which it is not responsible.

As is detailed in this petition, there are substantial questions of law and fact regarding the Regional Board's issuance of the Requirement for Submittal of Technical Reports to ExxonMobil that justify the issuance of a stay. Racioppi Decl. ¶ 5.

XIII. STATEMENT OF ADDITIONAL EVIDENCE

To the extent additional evidence becomes available that was not previously presented to the Regional Board, pursuant to CCR Title 23, Section 2050.6, ExxonMobil will request that it be

1	permitted to supplement the record before	e the State Board, and ExxonMobil will advise the State
2	Board more specifically regarding the na	ature of the evidence and facts to be presented and why
3	such evidence was not previously submit	ted.
4		
5	Dated: February 12, 2018	Respectfully submitted, NORTON ROSE FULBRIGHT US LLP
6		ELIZABETH M. WEAVER LAUREN A. SHOOR
7		
8		
9		By V V V LAUREN A. SHOOR Attorneys for Respondent
11		EXXONMOBIL OIL CORPORATION
12		
13		
14		
15		•
16		
17		
18		
19		
20		
21		
22		
23		
24		,
25		
26		
27		
28		

DOCUMENT PREPARED ON RECYCLED PAPER

36979155.2

- 12 -

1		PROOF OF SERVICE
2	I, Mon	nica Tapia, declare:
3 4	over the age of is 555 South I	citizen of the United States and employed in Los Angeles County, California. I am if eighteen years and not a party to the within-entitled action. My business address Flower Street, Forty-First Floor, Los Angeles, California 90071. On February 12, I a copy of the within document(s):
5		PETITION FOR REVIEW AND REQUEST FOR HEARING AND STAY
7		by transmitting via facsimile the document(s) listed above to the fax number(s) set forth below on this date before 5:00 p.m.
9	×	by placing the document(s) listed above in a sealed envelope with postage thereon fully prepaid, in the United States mail at Los Angeles, California addressed as set forth below.
11 12		by placing the document(s) listed above in a sealed Federal Express envelope and affixing a pre-paid air bill, and causing the envelope to be delivered to a Federal Express agent for delivery.
13 14		by personally delivering the document(s) listed above to the person(s) at the address(es) set forth below.
15	×	by transmitting via e-mail or other electronic transmission the document(s) listed above to the person(s) at the e-mail address(es) set forth below.
16 17 18		mail Water Resources Control Board rqualitypetitions@waterboards.ca.gov
19	Sami	mail and U.S. Mail uel Unger, Executive Officer
20	1	Angeles Regional Water Quality Control Board W. 4th Street, Suite 200
21 22		Angeles, CA 90013 <u>uel.Unger@waterboards.ca.gov</u>
23 24	for mailing. It day with post	eadily familiar with the firm's practice of collection and processing correspondence. Under that practice it would be deposited with the U.S. Postal Service on that same age thereon fully prepaid in the ordinary course of business. I am aware that on party served, service is presumed invalid if postal cancellation date or postage.

motion of the party served, service is presumed invalid if postal cancellation date or postage meter date is more than one day after date of deposit for mailing in affidavit.

I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

27

25

26

28

Executed on February 12, 2018, at Los Angeles, California.

Monica Tapia

EXHIBIT 1

Los Angeles Regional Water Quality Control Board

January 12, 2018

Ms. Marla Madden ExxonMobil Environmental Services Co. 8941 Atlanta Avenue, # 384 Huntington Beach, CA 92646

RETURN MAIL RETURN RECEIPT REQUESTED CLAIM NO. 7017 0190 0000 4172 8599

SUBJECT: REQUIREMENT FOR ADDITIONAL OFF-SITE GROUNDWATER

INVESTIGATIONS, PURSUANT TO CALIFORNIA WATER CODE SECTION

13267 ORDER

SITE: FORMER EXXONMOBIL JALK FEE PROPERTY, 10607 NORWALK

BOULEVARD, SANTA FE SPRINGS, CA (SCP NO. 0203, SITE ID NO. 1848000)

Dear Ms. Madden:

Los Angeles Regional Water Quality Control Board (Regional Board) staff reviewed the August 15, 2017, First Half 2017 Groundwater Monitoring and Status Report (Report), prepared and submitted by Cardno ERI on your behalf for the referenced site. The California Water Code (CWC) section 13267 Order dated August 24, 2010 requires conducting semi-annual groundwater monitoring activities, and submittal of semi-annual reports.

SUMMARY OF THE REPORT

The Report summarizes the first semiannual groundwater monitoring activities of 2017. All on-site and off-site monitoring wells were sampled and analyzed for volatile organic compounds (VOCs), and total petroleum hydrocarbons.

REGIONAL BOARD RESPONSE

Based upon review of the information in the Report and case files, the Regional Board provides the following requirements:

1. The VOCs plume originating from the site requires further delineation in the following locations/directions, with the reason stated below:

As shown in Table 1 below, VOCs concentrations in samples collected from wells MW-7B, MW-11C, MW-4, and MW-8C, indicate that the extent of the VOCs plume originating from the site has not been adequately delineated in the upgradient, downgradient, crossgradient/west, and crossgradient/east, respectively.

Table 1 (Sampling: May 26-28, 2017)

	PCE	TCE	Cis-1,2-DCE	1,1-DCA	1,1-DCE	VC
MW-7B (Upgradient)	100	86	27	11	84	0.39
MW-11C (Downgradient)	3.2	55	65	9.4	82	6.7
MW-04 ¹ (Crossgradient/West)	110	66.6	33.1	15.1	67.1	ND<0.5 ²
MW-8C (Crossgradient/East)	0.42	75	80	1.4	28	9.4

Notes:

1 = Well has been reported dry since November 2014. Data correspond to May 2014

2 = Non-detected above the laboratory reporting limit of 0.5 micrograms per liter

All concentration units are in micrograms per liter

PCE = Tetrachloroethene

TCE = trichloroethene

Cis-1,2-DCE = cis-1,2-dichloroethene

1,1-DCA = 1-1,dichloroethane

1,1-DCE = 1,1-dichloroethe

VC = vinyl chloride

A work plan (technical report) for additional off-site groundwater investigations to adequately
delineate the VOCs plume shall be prepared and submitted to the Regional Board via GeoTracker
by April 9, 2018, for our review and approval.

Due to the comingling of groundwater plumes associated with the Continental Heat Treating (CHT) and ExxonMobil sites, the Regional Board recommends that CHT and ExxonMobil work cooperatively in assessing, monitoring, and cleaning up subsurface media contaminated by releases that have occurred on each of the referenced sites.

The due date for submittal of the technical report constitutes an amendment to the requirements of the CWC section 13267 Order originally dated August 24, 2010 (Order). All other aspects of the Order originally dated August 24, 2010, and the amendments thereto, remain in full force and effect. The required technical report is necessary to investigate the characteristics of and extent of the discharges of waste at the site and to evaluate cleanup alternatives. Therefore, the burden, including costs, of the report bears a reasonable relationship to the need for the report and benefits to be obtained. Pursuant to section 13268 of the CWC, failure to submit the required technical report by the specified due date may result in civil liability administratively imposed by the Regional Board in an amount up to one thousand dollars (\$1,000) for each day the technical report is not received.

If you have any questions, please contact Mr. Luis Changkuon, Project Manager, at (213) 576-6667 or luis.changkuon@waterboards.ca.gov.

Sincerely,

Samuel Unger, P.E.

Executive Officer

cc: Listed on following page

cc: Len Racioppi/Sara Morey, ExxonMobil

James Anderson, Cardno ERI

David Vick

Michelle F. Smith

Thomas Clark, Coast Aluminum and Architectural, Inc.

William Macnider, CSI Electric Contractors, Inc.

James Stull, Continental Heat Treating

Michael Francis, Demetriou, Del Guercio, Springer & Francis, LLP

Ashley Arthur/Howard Schwimmer, Rexford Industrial Realty, LP

Preston Brooks, Cox Castle & Nicholson LLP

Rick Fero, Fero Environmental

Wayne Praskins, United States Environmental Protection Agency

Gene Lucero, Omega Chemical Site Potentially Responsible Parties Organized Group

Elizabeth Weaver, Norton Rose Fulbright US LLP

Los Angeles Regional Water Quality Control Board

January 19, 2018

Ms. Marla Madden ExxonMobil Environmental Services Co. 8941 Atlanta Avenue, # 384 Huntington Beach, CA 92646

RETURN MAIL RETURN RECEIPT REQUESTED CLAIM NO. 7013 1090 0000 7172 5317

SUBJECT: REQUIREMENT FOR ADDITIONAL SOIL VAPOR AND SOIL

INVESTIGATIONS, PURSUANT TO CALIFORNIA WATER CODE SECTION

13267 ORDER

SITE: FORMER EXXONMOBIL JALK FEE PROPERTY, 10607 NORWALK

BOULEVARD, SANTA FE SPRINGS, CA (SCP NO. 0203, SITE ID NO. 1848000)

Dear Ms. Madden:

Los Angeles Regional Water Quality Control Board (Regional Board) staff reviewed the October 30, 2017, *Site Assessment Report* (Report), prepared and submitted by Cardno ERI on your behalf for the referenced site. The Report was required by the Regional Board in the June 20, 2017 amendment to the California Water Code (CWC) section 13267 order originally dated August 24, 2010.

SUMMARY OF THE REPORT

The Report provides the results of a soil and soil vapor investigation conducted at the site in August 2017. Four soil borings (B38 through B41) were advanced in the vicinity of B22 to a total depth of approximately 60 feet below ground surface (bgs). Soil samples were collected at 5-foot intervals from 5 feet bgs to 60 feet bgs, and analyzed for volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH). One permanent multi-depth soil vapor probe (SVP15) was installed, with probes located at approximately 5, 15, 30, 60, and 85 feet bgs. Soil vapor samples were collected and analyzed for VOCs and TPH.

REGIONAL BOARD RESPONSE

Based upon review of the information submitted in the Report and case files, the Regional Board provides the following responses:

- The data collected to date indicate that the extent of VOCs in soil is not fully defined in the vicinity
 of the soil borings described below:
 - a. Tetrachloroethene (PCE) was detected in all soil samples collected from the four soil borings advanced in August 2017 in the vicinity of boring B22. PCE concentrations in soil ranged from 0.3 micrograms per kilogram (μg/kg) to 6,300 μg/kg.
 - The table below summarizes PCE concentrations detected in soil samples collected from soil borings advanced between 1994 and 2014.

IRMA MUÑOZ, CHAIR | SAMUEL UNGER, EXECUTIVE OFFICER

ExxonMobil Environmental Services Co. SCP No. 0203

Borings	Month/Year Advanced	PCE ¹	Distance ²
GP-6, GP-9, GP-10	September 1994	22 - 55,000,000	30 - 50
B7, B8, SVP2	July 2012	15 - 2,470	55 - 70
B18, SVP6, SVP7	September 2012	12 - 1,860	50 - 120
B23	September 2014	45 - 125	140

1 = Detected PCE concentration range in μg/kg Notes:

2 = Approximate distance range from the borings to the southern property boundary in feet

- 2. In September 2014, PCE was detected in soil vapor probe SVP9 at approximately 5 feet, 15 feet, 30 feet, 60 feet, and 85 feet bgs, at concentrations of 6,500 micrograms per cubic meter (µg/m³), 40,000 μg/m³, 210,000 μg/m³, 380,000 μg/m³, and 190,000 μg/m³, respectively. Soil vapor probe SVP9 is located in the northern portion of the site. These results indicate that the extent of VOCs in soil vapor is not fully defined in the vicinity of SVP9.
- 3. A work plan (technical report) for additional soil and soil vapor investigations shall be prepared and submitted to the Regional Board via GeoTracker by March 30, 2018.

The due date for submittal of the technical report constitutes an amendment to the requirements of the CWC section 13267 Order originally dated August 24, 2010 (Order). All other aspects of the Order originally dated August 24, 2010, and the amendments thereto, remain in full force and effect. The required technical report is necessary to investigate the characteristics of and extent of the discharges of waste at the site and to evaluate cleanup alternatives. Therefore, the burden, including costs, of the report bears a reasonable relationship to the need for the report and benefits to be obtained. Pursuant to section 13268 of the CWC, failure to submit the required technical report by the specified due date may result in civil liability administratively imposed by the Regional Board in an amount up to one thousand dollars (\$1,000) for each day the technical report is not received.

If you have any questions, please contact Mr. Luis Changkuon, Project Manager, at (213) 576-6667 or luis.changkuon@waterboards.ca.gov.

Sincerely,

Samuel Unger, P.E.

Executive Officer

Len Racioppi/Sara Morey, ExxonMobil cc:

James Anderson, Cardno ERI

David Vick and Michelle F. Smith

Thomas Clark, Coast Aluminum and Architectural, Inc.

William Macnider, CSI Electric Contractors, Inc.

James Stull, Continental Heat Treating

Michael Francis, Demetriou, Del Guercio, Springer & Francis, LLP

Howard Schwimmer, Rexford Industrial Realty, LP

Preston Brooks, Cox Castle & Nicholson LLP

Rick Fero, Fero Environmental

Wayne Praskins, United States Environmental Protection Agency

Gene Lucero, Omega Chemical Site Potentially Responsible Parties Organized Group

Elizabeth Weaver, Norton Rose Fulbright US LLP

Marla D. Madden ExxonMobil Environmental Services Company Lead Project Manager

18685 Main Street, Suite 101 PMB 601 Huntington Beach, California 92648-1719 marla.d.madden@exxonmobil.com

March 25, 2015

Mr. Arthur Heath
California Regional Water Quality Control Board
Los Angeles Region
320 West 4th Street, Suite 200
Los Angeles, California 90013

SUBJECT Request to Name Continental Heat Treating as Discharger

Former ExxonMobil Jalk Fee Property

10607 Norwalk Boulevard Santa Fe Springs, California

CRWQCB-LAR Case No. 0203; Site I.D. No. 1848000

Mr. Heath:

Enclosed for review is the report which summarizes the evidence presented by ExxonMobil Environmental Services Company (EMES) during the meeting held with representatives of the California Regional Water Quality Control Board – Los Angeles Region (CRWQCB-LAR) on March 3, 2015 regarding the above-referenced site. Cardno ERI prepared this report for EMES, on behalf of ExxonMobil US Production Company (ExxonMobil).

This report presents conclusive evidence that ExxonMobil could not be responsible for the chlorinated solvents present in the soil on the Jalk Fee property because ExxonMobil did not use chlorinated solvents during its operations on the Jalk Fee property, CHT used significant quantities of solvents in its degreasing operations from approximately 1969 to 1995, and CHT had poor operational practices as documented by various agency citations and notices of violation, which resulted in various discharges of solvents and other chemicals to the ground. Additionally, an updated site conceptual model is presented, which demonstrates that preferential pathways exist between the CHT and Jalk Fee properties and explains the migration of the chlorinated solvents from the CHT property to the Jalk Fee property.

Based on the evidence presented in this report, EMES, on behalf of ExxonMobil, requests that the CRWQCB-LAR identify CHT as the discharger and responsible party for the chlorinated solvents identified in the soil on the CHT, Jalk Fee and 10711 Norwalk Boulevard properties; rescind its Order dated August 24, 2010 requiring ExxonMobil to assess and monitor the extent of chlorinated solvents; and formally remove ExxonMobil as the named discharger and responsible party for the chlorinated solvents on the subject properties.

Please call the undersigned at (714) 964-4935 for any questions regarding the content of this document.

Sincerely,

Marla D. Madden Project Manager

Marla 10 Madden

Attachment: Request to Name Continental Heat Treating as Discharger, Former ExxonMobil

Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California, prepared

by Cardno ERI.

C: w/attachment:

Mr. Luis Changkuon, California Regional Water Quality Control Board - Los Angeles Region

Mr. Thomas Clark, Coast Aluminum and Architectural Inc./Clark Holdings, LLC, property owner

Mr. William Macnider, CSI Electrical Contractors, Inc., property owner

Ms. Michelle F. Smith, property owner

Mr. John Maple, property owner

C: w/o attachment:

Mr. James Anderson, Cardno ERI

Cardno ERI License A/C10-611383

4572 Telephone Road Suite 916 Ventura, CA 93003 USA

Phone 805 644 4157 Fax 805 644 5610 www.cardno.com

www.cardnoeri.com

March 25, 2015 Cardno ERI 08115504.R17

Mr. Arthur Heath
California Regional Water Quality Control Board
Los Angeles Region
320 West 4th Street, Suite 200
Los Angeles, California 90013

SUBJECT Request to Name Continental Heat Treating as Discharger

Former ExxonMobil Jalk Fee Property
10607 Norwalk Boulevard
Santa Fe Springs, California
CRWQCB-LAR Case No. 0203; Site I.D. No. 1848000

Mr. Heath:

At the request of ExxonMobil Environmental Services Company (EMES), on behalf of ExxonMobil US Production Company (ExxonMobil), Cardno ERI has prepared this request to name Continental Heat Treating (CHT) as discharger for the above-referenced site (Plate 1). This report summarizes the evidence EMES presented to representatives of the California Regional Water Quality Control Board – Los Angeles Region (CRWQCB-LAR) on March 3, 2015, namely that ExxonMobil did not use chlorinated solvents on the Jalk Fee property and therefore could not be the discharger of the PCE identified in the soil beneath the subject site, and that CHT used extensive quantities of solvents in its degreasing operations from approximately 1969 to 1995, had poor operational practices that resulted in spills of solvents and other chemicals to the ground surface, and received various agency citations and notices of violation (NOVs) for releases of solvents and other chemicals. In addition, an updated site conceptual model was presented, which demonstrates the preferential pathways that allowed chlorinated solvents released from the CHT facility to migrate and be observed on the Jalk Fee property.

The evidence presented by EMES is consistent with the same conclusions the CRWQCB-LAR has already reached, as demonstrated by the CRWQCB-LAR's letter dated June 23, 2010 to CHT (Appendix A). The CRWQCB-LAR stated that significant quantities of PCE were stored and used by CHT, that primary sources of PCE contamination (degreaser, storage area, etc.) have been identified at the CHT property, that releases of chlorinated solvents at CHT have impacted the subsurface, that the pipe trench leading from the degreaser to the north end of the building may have created a potential preferential pathway for the migration of PCE, and that no primary sources of PCE contamination have been identified on the Jalk Fee property.

Therefore, EMES, on behalf of ExxonMobil, requests that the CRWQCB-LAR review the evidence and identify CHT as the discharger and responsible party for the chlorinated solvents identified in the soil on the CHT, Jalk Fee and 10711 Norwalk Boulevard properties; rescind its Order dated August 24, 2010 requiring ExxonMobil to assess and monitor the extent of chlorinated solvents; and formally remove ExxonMobil as the named discharger and responsible party for the chlorinated solvents on the subject properties.

The following sections will present documentation demonstrating that 1) there is no primary source of chlorinated solvents on the Jalk Fee property, 2) CHT used and stored significant quantities of chlorinated solvents, 3) CHT is the source of chlorinated solvents based on the history of spills and releases as documented from various agency inspections and NOVs, and 4) preferential pathways exist between the CHT and Jalk Fee properties, which explain the migration of the chlorinated hydrocarbons in soil from the CHT property to the Jalk Fee property.

HISTORY OF JALK FEE PROPERTY

The Jalk Fee property was used as an oil field from approximately the 1920s until 1996. It was originally operated by ExxonMobil, and later leased and operated by Hathaway Oil Company (Hathaway). In the 1990s, ExxonMobil and Hathaway ceased oil production and removed the infrastructure from the site.

ExxonMobil owned the property during its time of use as an oil field. In 2001, ExxonMobil sold the property to SFS Norwalk. In 2003, the property was developed with paved parking and several industrial buildings, and remains in the same configuration today. The businesses on the eastern half of the property are Coast Aluminum and Architectural Inc. and Contents Restorers of California, and based on interviews with their management conducted during building inspections associated with the preparation of Cardno ERI's *Addendum to Work Plan for Indoor Air Assessment* dated November 14, 2014 for the subject site, the businesses are not known to have used chlorinated solvents in their operations.

From the 1920s until its redevelopment in 2003, the Jalk Fee property had a dirt surface and was unpaved, as can be observed in the historical aerial photos, which would allow rainwater and spills/releases from the adjacent paved CHT property to run off onto and infiltrate into the upper vadose zone of the Jalk Fee property (see Plate 1 and Appendix B for the historical aerial photos).

ExxonMobil has had internal discussions with its personnel who managed oil field operations at various locations, who confirmed that chlorinated solvents were not standard chemicals used in its oil field production operations. This is reinforced by the CRWQCB-LAR's letter dated June 23, 2010 to CHT, which stated that the "Jalk Fee property was used for oil production operations and no primary sources(s) of PCE contamination have been identified [on the property]" (Appendix A). Additionally, file reviews conducted with the City of Santa Fe Springs and the County of Los Angeles did not identify agency records or NOVs, indicating that chlorinated solvents were stored, used or released onto the Jalk Fee property (Appendix C).

In 2014, Cardno ERI conducted a review of the State Water Resources Control Board's online GeoTracker information database of various oil field sites across the State of California that had current or closed environmental cases, and was unable to identify any oil field site that had chlorinated solvents as a contaminant of concern. Additionally, Cardno ERI spoke with representatives of the County of Santa Barbara Environmental Health Services and the California Regional Water Quality Control Board – Central Valley Region, which are agencies that have extensive oil field operations and clean-up projects in their areas of responsibility, and the representatives from both agencies were not aware of any oil field sites within their jurisdictions that had chlorinated solvent contamination.

Levine-Fricke's report dated December 6, 1991 claims that a tenant of Mobil who rented the Jalk Fee property may have used chlorinated solvents on the eastern portion of the property (Levine-Fricke, 1991). The report doesn't cite any source evidence for this statement, and ExxonMobil is unaware of any information that supports this claim. Further, ExxonMobil has conducted extensive reviews of its lease files and has no record that any company or person rented the property during its period of operation or ownership, other than Hathaway. As stated previously, Hathaway was an oil production company, and oil field operators did not use solvents as standard chemicals. Thus, there is no evidence that ExxonMobil, a tenant, or the subsequent property owners and their tenants ever used chlorinated solvents on the property. Therefore, there is no primary source of chlorinated solvents from historical operations on the Jalk Fee property, and the chlorinated solvents in soil must be from an off-site source.

HISTORY OF CHT PROPERTY

The building that is currently present at the CHT property was constructed in 1969, at which time the majority of the property would also have been paved for parking, as is apparent in aerial photographs of the site (Appendix B). Based on information provided by CHT, since commencing operations at the site, the CHT business has cleaned metal parts and processed them with heat. This process requires the cleaning of the metal parts to remove cutting oils and debris, which was performed by placing the metal parts in a solvent-based vapor degreaser. Thus CHT conducted degreasing operations and used chlorinated solvents from approximately 1969 to 1995, as supported by the following documentation.

- > Blueprints obtained from the City of Santa Fe Springs file dated 1968 identify a Detrex degreaser (Item #19) in the eastern area of the building (Appendix D).
- ➤ The 1968 blueprints also identify a 'degreaser future' (Item #81), located 50 feet south of the north building wall, and 200 feet west of the east building wall (Appendix D).
- ➤ A City of Santa Fe Springs Industrial Waste Survey dated December 12, 1969, which indicated CHT was doing metal degreasing (Appendix E).
- A City of Santa Fe Springs Industrial Waste Disposal Permit issued to CHT and dated January 20, 1970, which includes discharge to the sewer of "wastes from...degreasing metals" (Appendix F).
- An inspection report of April 5, 1982, referenced in McLaren Hart's September 23, 1993 letter, noted in the Special Hazards and Conditions section that a degreaser was present in northeast portion of the building (Appendix G).
- A County of Los Angeles survey report dated March 16, 1984, which identifies that 150 gallons per month of PCE were being used and stored in drums. The report also identifies the use of 1,1,1-trichloroethane at the property, which was another chlorinated solvent commonly used for metal degreasing (Appendix H).
- A County of Los Angeles survey report dated May 19, 1989, which identifies that CHT is conducting degreasing using PERC (another name for PCE); generating 2,200 gallons of PERC per year; storing the PERC in 55 gallon containers, presumed to be drums; disposing of 400 gallons of PERC; and conducting parts wiping, with the excess rags containing oil and solvent stored in covered cans (Appendix I).
- An attachment from a letter from CHT to Mobil Exploration & Producing U.S., Inc. (Mobil) dated July 30, 1993 is a diagram of the CHT facility, which shows a degreaser at the western edge of the CHT building (Appendix J).
- A Los Angeles County Fire Department Request for Service dated November 4, 1993 for the CHT property, which states, "possible illegal discharge into subsurface from PCE metal degreaser" (Appendix K).
- A Los Angeles County Fire Department Health Hazardous Materials Division Industry Survey dated October 6, 1994, which has a hand-drawn map that identifies the 'position of old degreaser' inside the

building, and a second hand-drawn map showing a waste storage area for 200 gallons of PCE ('accum containment 12" concrete w/ roof PERC 200 G') on the property. The bottom hand-drawn map has "South" written towards the top of the map, placing the waste storage area in the southwest area of the CHT property, which is consistent with other documentation of the storage location at the property. Although the upper hand-drawn map does not have an indicated directional orientation, it is logical to assume that it was drawn in the same orientation as the lower map. Additionally, the hand-drawn 'area 12X12' to the right of the building in the document would be in the sidewalk or street if the map orientation were north to the top, whereas it would be inside the property in a south to the top orientation, providing further support that the two maps have the same south to the top of page orientation. Based on this, the 'old degreaser' is 40 feet west of the east wall of the building and in close proximity to the northern wall of the building (Appendix L).

- An undated Los Angeles County Fire Department Small Quantity Generator Contingency Plan, which indicates that a 200-gallon tank is being used to store PCE, and 300 gallons of waste PCE are being stored in drums (Appendix M).
- A Los Angeles County Fire Department Case Synopsis dated October 19, 1995 for the CHT Project, which states, "Eventually the old location of the degreaser was established. It appeared this old location was close enough to the northern property line..." (Appendix N).

As shown in these building records, CHT performed vapor degreasing at the property from approximately 1969 through 1995, which necessitated the storage of hundreds of gallons of chlorinated solvents at any time on the property and the generation of significant quantities of waste solvent, such as 2,200 gallons per year in the 1989 record. Over this 26-year operational period, the records show that CHT had one degreaser in the eastern portion of the building (Detrex #19); a second degreaser in the central portion of the building (Item #81), which is the location that is most consistent with depictions in the reports submitted by CHT to the CRWQCB-LAR; a third degreaser along the western end of the building; and possibly even a fourth degreaser at an unidentified location along the northern edge of the building.

In addition to the degreasing operations inside the building and the storage of waste PCE in the southwestern area of the property, it also appears that CHT utilized the northwestern portion of the property as an equipment storage and repair area based on review of the historical aerial photos and several reports (Appendices B and O). Given that storage and repair of equipment occurred in this area of the site, it is likely that the cleaning of parts also occurred here, which is directly adjacent to the area of the Jalk Fee property where the highest PCE concentrations have been observed (Plate 1).

Regulatory oversight and inspections started to become more common in the late 1970s and early 1980s. These regulatory inspections demonstrate that CHT's practices resulted in numerous documented releases and spills to

the ground throughout its operations at the property. The various inspections, investigation reports and violations are summarized below and documented in Appendices G, I, N and P through AC.

- ➤ A County of Los Angeles Project Planning and Pollution Control Division Notice dated July 11, 1978 and issued to CHT, which states, "you are hereby instructed to clean the interceptor...also maintained [maintain] the interceptor in good operating condition at all times." At the bottom of the notice is a hand written note, "Violation Corrected 7/2?/78." (Appendix P)
- A County of Los Angeles Department of Health Services Official Notice of Violation dated March 16, 1984 issued for the property at 10643 South Norwalk, where CHT is located, which requires, "you are hereby directed to remove oil from ground in rear storage area" (Appendix Q).
- An Investigation Worksheet dated December 8, 1986 from the City of Santa Fe Springs Public Works Department, which is investigating a complaint that CHT "is discharging industrial waste over the driveway." The report further identifies that "water with vivid blue-green streaks of color was flowing at several gallons per hour into Norwalk Blvd. from Continental's cooling tower area" (Appendix R).
- McLaren Hart's Perchloroethylene (PCE) and Heavy Metals in Soil at the Jalk Lease letter dated September 23, 1993, which identifies that three fires occurred in CHT's degreasing equipment, all of which could have resulted in the release of solvents from the degreasing equipment (Appendix G).
 - Degreaser Tank Fire (Code 6205) 10/2/87
 - Fire in Degreaser (Code 6225) 4/9/88
 - Fire in Degreaser (Code 6229 8/1/88
- An Investigation Worksheet dated October 5, 1987 from the City of Santa Fe Springs, which is investigating a complaint of "blue-green water being discharged to the street" and identifies that "the recent earthquake (10/04/87) had broken several pieces of equipment at this site and a discharge similar to that of 12/08/86 was occurring" (Appendix S).
- An Investigation Worksheet dated February 23, 1988 from the City of Santa Fe Springs, which is investigating a complaint of "discharging I.W. [industrial waste] to street." The worksheet also states "Notice of Violation #0060 was given" (Appendix T).
- A County of Los Angeles Department of Health Services Notice of Violation and Order to Comply dated May 19, 1989 and issued to CHT to 1) "Discontinue the disposal of hazardous waste to an unauthorized point(s)...any waste oil onto the ground"; 2) "Store all hazardous waste in compatible containers which are closed and in good condition...keep lids and bungs on, don't overfill"; 3) Remove and legally dispose of oily surface in rear asphalted yard...discharge of oil waste both onto asphalt top and onto soil (SW corner or rear yard)"; 4) Unlabeled barrels that Mr. Bastian indicated contained either PERC or waste oil"; and 5) "Facility has a continuing problem with mineral oil disg [sic] out on the asphalted area" (Appendix U).

- A County of Los Angeles Department of Health Services survey report dated May 19, 1989, with remark of "Apparent motor oil discharge(s) with one auto-type oil filter on ground SW corner" (Appendix I).
- ➤ A County of Los Angeles Fire Department Order to Comply dated October 6, 1994, which required "Provide a corrective action plan for unauthorized releases of hazardous waste or constituents evaluate the area vicinity 120' W. of the east wall and 30' S. of the north wall for soil contamination by chlorinated hydrocarbon solvent" (Appendix V).
- A Los Angeles County Fire Department Case Synopsis dated October 19, 1995 for the CHT site in which the agency case worker wrote, "Eventually the old location of the degreaser was established. It appeared this old location was close enough to the northern property line that leaks, sloppy operations or spills could have migrated offsite despite employees' statements to the contrary...A single boring to a depth of 10' immediately adjacent but exterior to the concrete sump of the old industrial vapor degreaser was proposed." The soil sample collected at 6 inches in depth indicated PCE and TCE concentrations of 7.514 and 4.759 mg/kg, respectively. (Appendix N)
- ➤ A City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation dated May 25, 2006, for "Continental Heat Treating violated City Ordinance...by having oil in the 3rd stage of their clarifier. Oil must be removed from the clarifier and maintained such that oil is kept out of the sewer system" (Appendix W).
- ➤ A City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation dated May 9, 2007, for "Continental Heat Treating violated City Code…by failing to maintain pretreatment equipment in good working order. The third stage of the clarifier had oil in it. Continental Heat Treating must maintain the clarifier to prevent oil from entering the sewer system" (Appendix X).
- A City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation dated May 8, 2012, for "Continental Heat Treating violated...by not maintaining industrial waste pretreatment equipment. There was oil in the clarifier." (Appendix Y).

As documented by these agency inspection reports and NOVs, the limited periodic agency visits to the site over the past three decades have documented numerous instances of chemical releases onto the ground at the property.

SUBSURFACE TRANSPORT MECHANISM/SITE CONCEPTUAL MODEL

The agency inspection records and NOVs demonstrate that CHT's operational practices caused numerous chemical spills to both the asphalted and soil surface on the CHT property. The following section will demonstrate that two subsurface transport mechanisms were present, which resulted in the movement of chlorinated solvents from the CHT property to the Jalk Fee property.

First, the 1968 blueprints identify subsurface pipe trenches running between the two degreasers and various pieces of equipment within the building. Most significantly, one pipe trench branches off the east-west pipe trench that connects to degreaser #19, runs to the north, and terminates outside of the CHT building near the Jalk Fee property boundary. A second pipe trench runs north from degreaser #81 and terminates at the northern edge of the CHT building. It is unclear from the blueprints if the northern ends of the two pipe trenches are connected to anything, or what type of piping was contained within the trenches. Regardless, based on standard construction methods, the utility trenches would have been backfilled with sand or other similar material that would have a higher permeability than the surrounding soil. Therefore, these trenches would provide a preferential pathway directly from the degreasers to the northern edge of the CHT building and the southern boundary of the Jalk Fee property, allowing the migration of chlorinated solvent vapors (Appendix D). The CRWQCB-LAR reached much the same conclusion in its letter to CHT dated June 23, 2010 (Appendix A).

Second, extensive assessment has been conducted in the southeastern portion of the Jalk Fee property and the northwestern portion of the CHT property, which has allowed for a thorough understanding of the near surface vadose zone lithology between the two properties. Two cross-sections were generated for the area to the west of the CHT building and surrounding Jalk Fee well MW6, where the maximum PCE concentrations have been detected on the Jalk Fee property (Appendix Z, Figures 5.1.1 and 5.1.2). In addition, plan view figures of the distribution of low (clay/silt) and high permeability soils (sand) at 6, 10 and 16 feet bgs of the CHT and Jalk Fee property boundary area show that a laterally continuous, shallow, low permeability silt/clay layer is present under much of the CHT property (Appendix AA, Figures 5.2.1, 5.2.2 and 5.2.3). This silt/clay layer starts to dip along the northern part of the CHT property and continues to dip northward onto the Jalk Fee property to a depth of 15 to 16 feet bgs. Soil above the silt/clay layer on the northern CHT property and on the Jalk Fee property is generally characterized as sand. It should be remembered that the Jalk Fee property was unpaved and essentially an open field until 2003. Therefore, chlorinated solvents released by CHT along the northern portion of the CHT property or directly released onto the Jalk Fee property would infiltrate downward through the higher permeability surface sand until reaching the low permeability unit and then would migrate along the northward dipping contact between the high and low permeability units onto the Jalk Fee property.

The figures in Appendix AA also show the soil samples collected during the assessment activities in the southern portion of the Jalk Fee property and the northern portion of the CHT property, which have total chlorinated solvent concentrations greater than 1,000 mg/kg at 6, 10 and 16 feet bgs. The figures in Appendix AB (Figures 5.3.1 and 5.3.2) show plan view and vertical distributions of the total chlorinated solvent concentrations in proximity to the property boundary between the two sites. Most notably, elevated concentrations of chlorinated solvents are located at a shallow depth on, or immediately adjacent to the CHT boundary (Areas 1, 2 and 3 on Figures 5.3.1 and 5.3.2). However, near the northwest corner of the CHT building, elevated total chlorinated solvent concentrations occur

further onto the Jalk Fee property in a narrow northwest trending band, with elevated concentrations becoming deeper with distance from the CHT property boundary. Specifically, chlorinated solvents were measured in soil at concentrations from south to north of 2,517 mg/kg at 4 feet bgs at location T9A-1A (a trench excavation sample located 10 feet north of the property boundary), 350.8 mg/kg at 15 feet bgs at location EX2-26 (an excavation verification sample collected 30 feet north from the property line), and 59,800 mg/kg at 15 feet bgs at location GP-6 (a geoprobe sample located 45 feet north of the property boundary) (Appendix AC). These samples all occurred in sand, and the two samples collected at a depth of 15 feet bgs are located at the contact between the sand and clay/silt units. Specifically, sample EX2-26 is located along a sand-clay/silt basal contact, and the GP-6 sample from 15 feet bgs is located at a sand-clay/silt lateral contact. The relationship between the stratigraphic contacts and the distribution of elevated chlorinated solvent concentrations suggests that the solvent-containing soil in this area is derived from a lateral transport mechanism. This is further supported by the soil samples collected in the vicinity of location GP-6, which are significantly lower in total chlorinated solvent concentrations. Specifically, the two samples collected from location GP-6 at shallower depths (5 and 10 feet bgs) had total chlorinated solvent concentrations of 0.33 mg/kg and 0.021 mg/kg, respectively, and the soil sample collected above sample EX2-26 at 6 feet bgs [sample EX2-26(A)] had a total chlorinated solvent concentration of 0.715 mg/kg (Appendix AC). This distribution pattern indicates that surface releases of chlorinated solvents were not occurring in these areas, as surface releases would have resulted in similar to higher concentrations of chlorinated solvents with residual saturation in the shallower soil samples. Furthermore, the presence of the elevated shallow detections abutting the CHT-ExxonMobil property line supports that chlorinated solvent release(s) occurred in the vicinity of the property line and transport occurred to the north onto the Jalk Fee property. This transport was likely facilitated by runoff from the CHT property (including roof runoff from the CHT building), which caused the movement of chlorinated solvents away from the property line onto the Jalk Fee property.

ExxonMobil historically has conducted several remedial excavations on the Jalk Fee site to facilitate the sale and redevelopment of the property, which are depicted on Plate 2. Any soil samples discussed above from the excavation areas are pre-excavation samples or confirmatory samples taken from the base and sides of the excavations. The two largest and most northerly excavation areas on the Jalk Fee property, under the current Contents Restorers of California building, were excavated to a maximum depth of 19 feet bgs; TPH-containing soil was removed, and PCE was not detected in the verification samples, with the exception of only one sample (JF-M3-S35-NW-13 collected from excavation M3 at 0.27 mg/kg). The three excavations that extended along and close to the CHT property boundary went as deep as 15 feet bgs, and both TPH and elevated PCE concentrations were measured in the pre-remediation and/or verification samples. (Appendix AC)

Elevated concentrations of total petroleum hydrocarbons and chlorinated hydrocarbons, however, are generally not co-located across the majority of the Jalk Fee site (Appendix AD, Figure 4.6). For example, the TPH

concentrations in the northern excavation areas do not contain chlorinated solvents, whereas several of the near surface soil samples collected in the vicinity of the property line contain both elevated TPH and chlorinated solvents. Although the soil samples in the vicinity of the property line contain both chlorinated solvents and TPH, the respective concentrations are generally both low, or with either PCE or TPH significantly higher in concentration than the other constituent. These results reinforce the site conceptual model in which chlorinated solvents from CHT released along the northern portion of the CHT property or directly onto the Jalk Fee property infiltrated downward through the higher permeability surface sand, until reaching the low permeability unit, and then migrated along the northward dipping contact between the high and low permeability units onto the Jalk Fee property.

SUMMARY AND CONCLUSIONS

As the CRWQCB-LAR has already acknowledged and demonstrated with its letter dated June 23, 2010, CHT is the only primary source of chlorinated solvents on the CHT and Jalk Fee properties.

- There are no primary sources of PCE on the Jalk Fee property as chlorinated solvents are not
 typically used in oil field activities, no evidence of PCE use at the Jalk Fee property has been
 identified, and other CA regulatory agencies and GeoTracker do not identify chlorinated solvent
 contamination at other oil field properties.
- The surface of the Jalk Fee property was unpaved soil until the property was redeveloped in 2003, allowing surface spills and precipitation to migrate downward.
- CHT had several primary sources of chlorinated solvents including multiple degreasers within its building, storage areas, and the northwestern area of the site where equipment storage and repairs were likely conducted.
- CHT used significant quantities of chlorinated solvents for degreasing operations from approximately 1969 through 1995, including 2,200 gallons a year in 1989.
- Inadequate operational and housekeeping practices by CHT resulted in numerous releases/spills of chlorinated solvents and other chemicals, which were identified during infrequent agency inspections, resulting in various NOVs.
- Several pipe trenches led from the degreasers to the northern edge of the building and property
 line, which had higher permeable backfill and would have been preferential pathways for the
 migration of chlorinated solvent vapor from the CHT building to the Jalk Fee property.
- Assessment activities have identified that a low permeability silt/clay unit is present in the near surface vadose zone between both properties and generally dips to the north, providing an additional preferential pathway for subsurface chlorinated solvents to migrate along the contact plane from the CHT property onto the Jalk Fee property.

 The distribution pattern of subsurface PCE indicates that the PCE was released at the surface from CHT at or adjacent to the property boundary and then migrated vertically to deeper depths and laterally to the north onto the Jalk Fee property.

Based on the evidence provided, it has been demonstrated that CHT is the source of the chlorinated solvents observed in soil beneath the CHT, Jalk Fee and 10711 Norwalk Blvd properties. Therefore, EMES, on behalf of ExxonMobil, requests that the CRWQCB-LAR identify CHT as the discharger and responsible party for the chlorinated solvents identified on the CHT, Jalk Fee and 10711 Norwalk Boulevard properties; rescind its Order dated August 24, 2010 requiring ExxonMobil to assess and monitor the extent of chlorinated solvents; and formally remove ExxonMobil as the named discharger and responsible party for the chlorinated solvents.

LIMITATIONS

For documents cited that were not generated by Cardno ERI, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

March 25, 2015

Cardno ERI 08115504.R17 Former ExxonMobil Jalk Fee Property, Santa Fe Springs, California

For questions concerning this report, please contact Mr. James Anderson at 805 644 4157, extension 181805.

Sincerely,

James Anderson

Senior Engineer

for Cardno ERI

Direct Line 805 644 4157, ext. 181805

Email: james.anderson@cardno.com

Andy Nelson

Senior Geologist

P.G. 8360

for Cardno ERI

Direct Line 805 644 4157, ext. 181809

Email: andy.nelson@cardno.com

Enclosures:

References

Acronym List

Plate 1 Generalized Site Plan

Plate 2 Excavation Area Location Map

Appendix A June 23, 2010 CRWQCB-LAR Response to Letter Dated May 19, 2010

Appendix B 1956-2005 Aerial Photos

Appendix C Public Agency Records Requests and Response for Jalk Fee Property

Appendix D August 20, 1968 CHT Blueprints

Appendix E December 12, 1969 City of Santa Fe Springs Industrial Waste Survey

Appendix F January 20, 1970 City of Santa Fe Springs Industrial Waste Disposal Permit

Appendix G September 23, 1993 McLaren Hart PCE and Heavy Metals in Soil at the Jalk Lease Letter

Appendix H March 16, 1984 County of Los Angeles Survey Report

Appendix I May 19, 1989 County of Los Angeles Survey Report

Appendix J Map of CHT Building from CHT Letter to ExxonMobil

Appendix K November 4, 1993 Los Angeles County Fire Department Request for Service

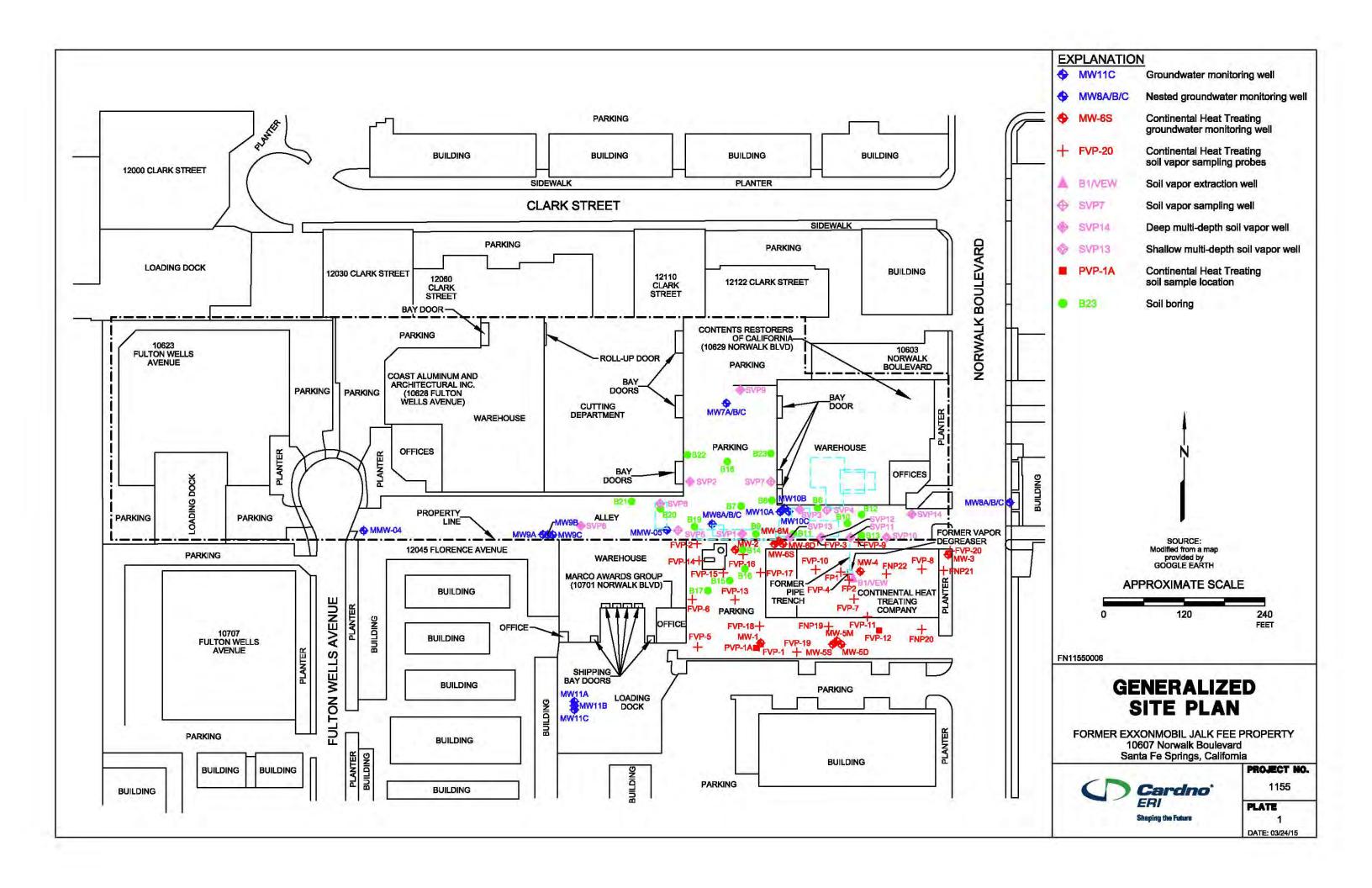
Appendix L October 6, 1994 Los Angeles County Fire Department Health Hazardous Materials Division

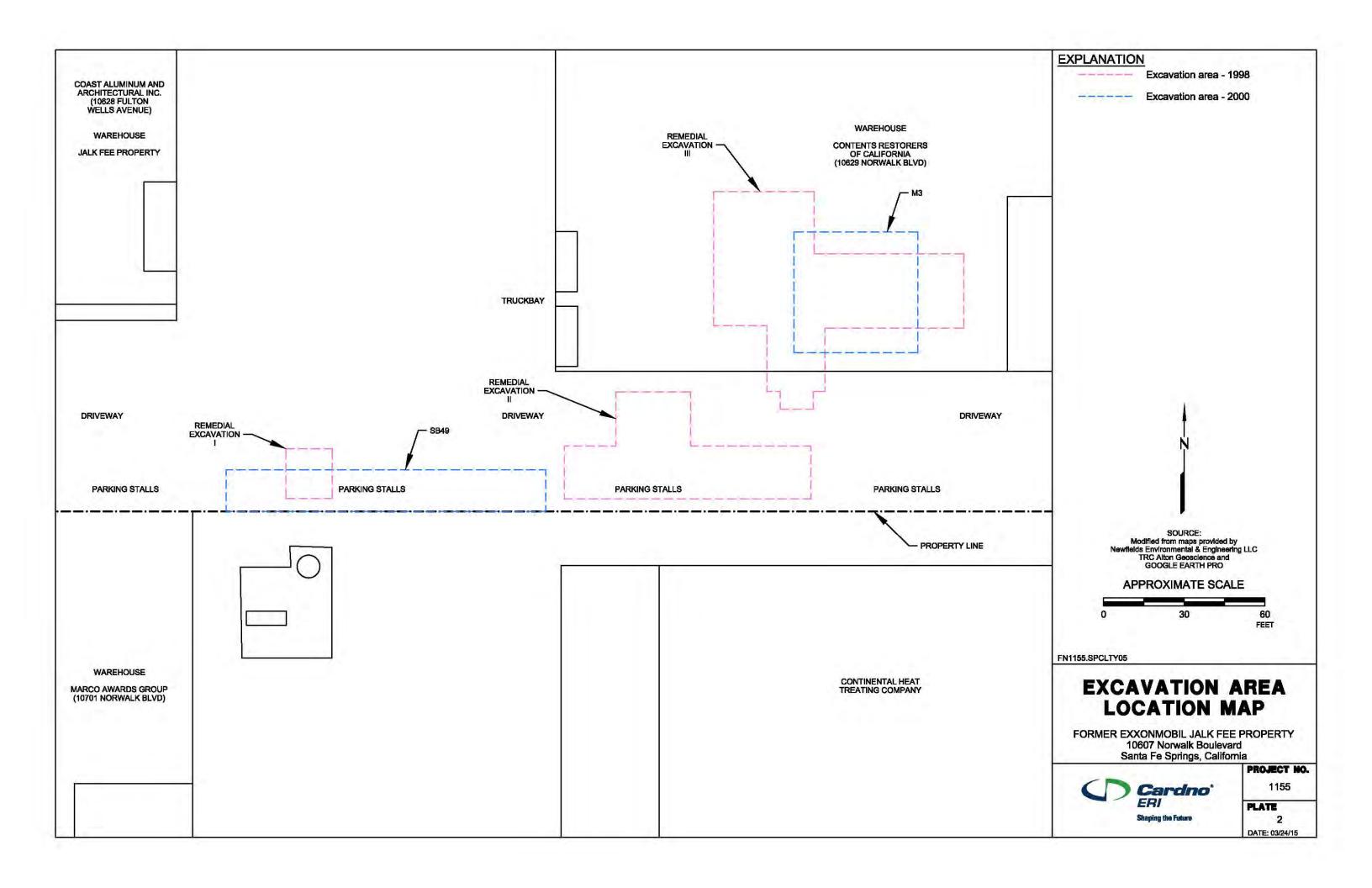
Industry Survey

March 25, 2015

Cardno ERI 08115504.R17 Former ExxonMobil Jalk Fee Property, Santa Fe Springs, California

Appendix M	Undated Los Angeles County Fire Department Small Quantity Generator Contingency Plan
Appendix N	October 19, 1995 Los Angeles County Fire Department Case Synopsis
Appendix O	Previous Consultant's Maps Showing Equipment Storage and Repair Area at CHT Property
Appendix P	July 11, 1978 County of Los Angeles Project Planning and Pollution Control Division Notice
Appendix Q	March 16, 1984 County of Los Angeles Department of Health Services Official Notice of Violation
Appendix R	December 8, 1986 City of Santa Fe Springs Public Works Investigation Worksheet
Appendix S	October 5, 1987 City of Santa Fe Springs Public Works Investigation Worksheet
Appendix T	February 23, 1988 City of Santa Fe Springs Public Works Investigation Worksheet
Appendix U	May 19, 1989 County of Los Angeles Department of Health Services Notice of Violation and Order
	to Comply
Appendix V	October 6, 1994 County of Los Angeles Fire Department Order to Comply
Appendix W	May 25, 2006 City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation
Appendix X	May 9, 2007 City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation
Appendix Y	May 8, 2012 City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation
Appendix Z	January 2014 NewFields Figures 5.1.1-5.1.2
Appendix AA	January 2014 NewFields Figures 5.2.1-5.2.3
Appendix AB	January 2014 NewFields Figures 5.3.1-5.3.2
Appendix AC	CHC Calculations and Previous Consultants' Soil Data
Appendix AD	January 2014 NewFields Figure 4.6


March 25, 2015 Cardno ERI 08115504.R17 Former ExxonMobil Jalk Fee Property, Santa Fe Springs, California


REFERENCES

Levine-Fricke. December 6, 1991. *Subsurface Soil Investigation* – Draft, Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.

ACRONYM LIST

μg/L	Micrograms per liter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m ³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		

APPENDIX A

JUNE 23, 2010 CRWQCB-LAR RESPONSE TO LETTER DATED MAY 19, 2010

California Regional Water Quality C ntrol Board

Los Angeles Region

Linda S. Adams Cal/EPA Secretary 320 W. 4th Street, Suite 200, Los Angeles, California 90013 Phone (213) 576-6600 FAX (213) 576-6640 - Internet Address: http://www.waterboards.ca.gov/losangeles

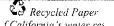
Arnold Schwarzenegger

Governor

June 23, 2010

Mr. James Stull Continental Heat Treating 10643 Norwalk Boulevard Santa Fe Springs, CA 90670

RESPONSE TO LETTER DATED MAY 19, 2010 FROM MR. MICHAEL FRANCIS OF DEMETRIOU, DEL GUERCIO, SPRINGER & FRANCIS, LLP – CONTINENTAL HEAT TREATING (CHT), 10643 SOUTH NORWALK BOULEVARD, SANTA FE SPRINGS (SCP NO. 1057, SITE ID NO. 204GW00)


Dear Mr. Stull:

Los Angeles Regional Water Quality Control Board (Regional Board) staff received a letter from your attorney, Mr. Michael Francis of Demetriou, Del Guercio, Springer & Francis, LLP, dated May 19, 2010, providing comments to the Regional Board following the issuance of the California Water Code (CWC) section 13267 Order dated May 5, 2010 (Order). The Order requires preparation and submittal of technical report(s) for the lateral and vertical delineation of impacted soil, soil-gas, and groundwater on and offsite (if necessary), including the installation of three on-site groundwater monitoring wells in accordance with a work plan dated March 2, 2002, and subsequently approved in a letter from Regional Board staff dated April 16, 2002.

Mr. Francis indicates that the Regional Board "cites to and relies upon numerous erroneous allegations" in the Order. Regional Board staff relies upon documentation and data provided by consultants representing individual sites. Our decisions and actions are based upon the assumption that the information provided to us is accurate and representative of conditions at a site. Below are some of the comments provided by Mr. Francis (italicized) followed by Regional Board staff responses:

- ... your May 5, 2010 letter states that there was a pipe trench from the degreaser to the north end of the building and continuing westward along the property line. This was a utility trench and it did not convey or contain perchloroethylene ("PCE").
 - Several of the alleged errors pertain to a report by McLaren-Hart (McLaren Report) dated September 23, 1993, as referenced in the letter by Mr. Francis. The McLaren Report indicates that a pipe trench was shown going from the degreaser to the north end of the building, just west of the electrical panel. This conduit, regardless of its intended use, may have created a preferential pathway for tetrachloroethene (PCE) migration.
- Second, the RWQCB mis-stated the February 15, 1993 purported hazardous materials registration forms. Such forms did not report an average PCE use of 125 gallons per day and a maximum daily use of 250 gallons per day. Instead, such forms reported an average PCE storage of 125 gallons per day and a maximum daily storage of 250 gallons.

California Environmental Protection Agency

The McLaren Report indicated an average use of 125 gallons per day and a maximum daily use of 250 gallons per day. However, the term "use" may have been used in the McLaren Report to address quantities of PCE stored in the degreaser.

• Furthermore, you state that CHT annually generated 1.5 tons of waste PCE. Please note that 1.5 tons of PCE is equivalent to approximately 225 gallons of PCE. This annual volume of PCE translates to an average daily PCE use of approximately one half gallon.

The numbers provided by Mr. Francis translate to an average daily PCE *waste* of one half gallon, which does not represent how much PCE was used for daily operations in the degreaser tank. According to the McLaren Report, the PCE degreaser capacity was 500 gallons. It is reasonable to assume that this tank was filled to appropriate levels to accommodate daily operations at CHT.

• Third, you indicate there was a degreaser formerly located in the northeast portion of the on-site building. CHT requests the RWQCB provide CHT with the documentation of such purported degreaser location.

The McLaren Report indicates that an inspection report dated April 5, 1982 (included in the Industrial Waste Permit file with the Los Angeles County Sanitation District), noted that a degreaser was present in the northeast portion of the building.

• With respect to the degreaser you described as being "in-ground," that unit was in fact a free standing degreaser that was installed in a reinforced concrete vault.

According to the report by Trilogy Regulatory Services dated December 21, 2004, "The degreaser was an in-ground metal-walled tank set within a concrete vault."

• Fourth, you state that certain site assessment data associated with the Property indicate certain impacts to the Property's soil matrix, soil gas and groundwater. However, as explained further below, the adjacent Jalk Fee property was/is heavily contaminated.

Primary sources of PCE contamination (degreaser, storage area, etc.) have been identified at CHT. Impact to the subsurface has been detected in soil gas samples at multiple locations throughout CHT, and in the area of the former degreaser from the ground surface to groundwater (approximately 60 to 70 feet below ground surface [bgs]) in both soil gas and soil matrix samples. To date, the extent of subsurface PCE contamination has not been defined or remediated adequately.

The adjacent Jalk Fee property was used for oil production operations and no primary source(s) of PCE contamination have been identified. However, PCE contaminated soil was encountered at Jalk Fee's southern property boundary, adjacent to CHT. During their site redevelopment activities in approximately 2000, the majority of PCE impacted soil to a depth of approximately 15 feet bgs was removed from the Jalk Fee property.

 In addition, the Omega Chemical Site's 4.5 mile PCE plume passes beneath the Property. Thus, those known upgradient contamination sources may have caused, in whole or part, the observed soil matrix, soil gas and groundwater impacts to the Property. Contrary to your assertions, the soil gas PCE concentrations observed beneath the Property at the capillary fringe suggest such

California Environmental Protection Agency

levels are the result of the Omega PCE plume and/or the Jalk Fee property soil and groundwater contamination.

The historic soil matrix and soil gas data shows high levels of PCE and trichloroethene (TCE) contamination from the surface to groundwater at CHT. The highest soil matrix PCE and TCE concentrations were detected at 0.5 feet bgs at 7,514 and 4,759 micrograms per kilogram (µg/kg), respectively, adjacent to the former degreaser. Releases at CHT have impacted the subsurface, including, soil matrix, soil gas, and groundwater, and have contributed to the regional Omega groundwater plume. CHT has been identified as a responsible party in the US Environmental Protection Agency's Omega Chemical groundwater plume investigation and cleanup.

Fifth, the CHT soil vapor extraction ("SVE") system operations were terminated because the
Julk Fee property's petroleum hydrocarbon contamination migrated on to the Property and
interfered with the SVE's operations. Such Jalk Fee property petroleum hydrocarbon caused the
CHT SVE system to be shut down.

Total petroleum hydrocarbons (TPH) contamination seen in soil gas probes at CHT from approximately 5 feet bgs to the groundwater interface indicate a potential source of TPH contamination at CHT. Additional subsurface investigation(s) at CHT will help determine the impact of TPH contamination associated with historic operations at CHT.

• Finally, there is no data that confirms an allegation that the CHT property is a source of groundwater contamination.

Due to the elevated concentrations of chlorinated volatile organic compounds (VOCs) and TPH contamination detected in soil gas and soil matrix samples in the area of the former degreaser from near ground surface through the entire soil column to approximately 60 feet bgs (capillary fringe), groundwater has been impacted from releases at CHT. However, no groundwater wells have been installed at CHT to determine how extensive this impact may be.

 CHT requests the RWQCB provide CHT with a copy of the McLaren Report. ... CHT requests the RWQCB provide CHT with a copy of the recent RWQCB groundwater monitoring directive that was issued in connection with the Jalk Fee property and provide CHT with a copy of the Jalk Fee workplan for such ordered groundwater monitoring.

In accordance with the Freedom of Information Act (FOIA), you may request a file review of the CHT and Jalk Fee case files. A copy machine is available for your use with a charge of \$0.15 per page. Please send a file review request for each case via fax to (213) 576-6713 or via email to Laura Gallardo at lgallardo@waterboards.ca.gov . Please include the site name, address, Site Cleanup Program number (SCP No. 1057 [CHT], SCP No. 0203 [Jalk Fee]), and your contact information. A representative from the Regional Board will contact you to confirm the appointment. In addition, most recently submitted reports/documents and Regional Board correspondence have been uploaded to GeoTracker. You may search, review, and download the information from the GeoTracker database the following address: http://geotracker.waterboards.ca.gov/.

• ...CHT will delay the implementation of the RWQCB approved groundwater monitoring workplan until: (1) such work can be coordinated with the RWQCB directed Jalk Fee property

groundwater monitoring; and (2) the RWQCB directed soil and soil gas delineation work, on the Property, is complete.

Accordingly, the September 15, 2010 due date for the submittal of a groundwater well installation and sampling report will not be met.

At this time, the work required at the Jalk Fee site is irrelevant to the requirements issued in the Order. To date, no groundwater wells have been installed at CHT despite a work plan being submitted in March 2002 and the issuance of a work plan approval letter by the Regional Board dated April 16, 2002. The installation of the approved groundwater monitoring wells will be an initial step in evaluating impact to groundwater from releases at CHT. These wells will provide basic hydrologic information needed to understand subsurface conditions at CHT, which will be used for the installation of additional on and offsite groundwater wells, as needed, to delineate the lateral and vertical extent of releases at CHT. Therefore, in accordance with the Order, you are required to complete the installation of the groundwater monitoring wells as proposed in the work plan dated March 2, 2002 and as approved in the Regional Board's work plan approval letter dated April 16, 2002. As directed in the Order, a groundwater well installation and sampling report is due to the Regional Board by September 15, 2010. Failure to comply with the requirements of the Order will result in additional enforcement action(s) being taken by the Regional Board.

Finally, with respect to the RWQCB's "Chemical Storage and Use Questionnaire," CHT respectfully requests the RWQCB advise CHT of the RWQCB's statutory authority to request this information.

Please refer to California Code of Regulations (CCR), Title 23, section 2907, which is a summary of the regulatory provisions contained in State Water Resources Control Board Resolution No. 92-49. Resolution No. 92-49 is available online at the following address:

http://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/1992/rs1992_0049.s html .

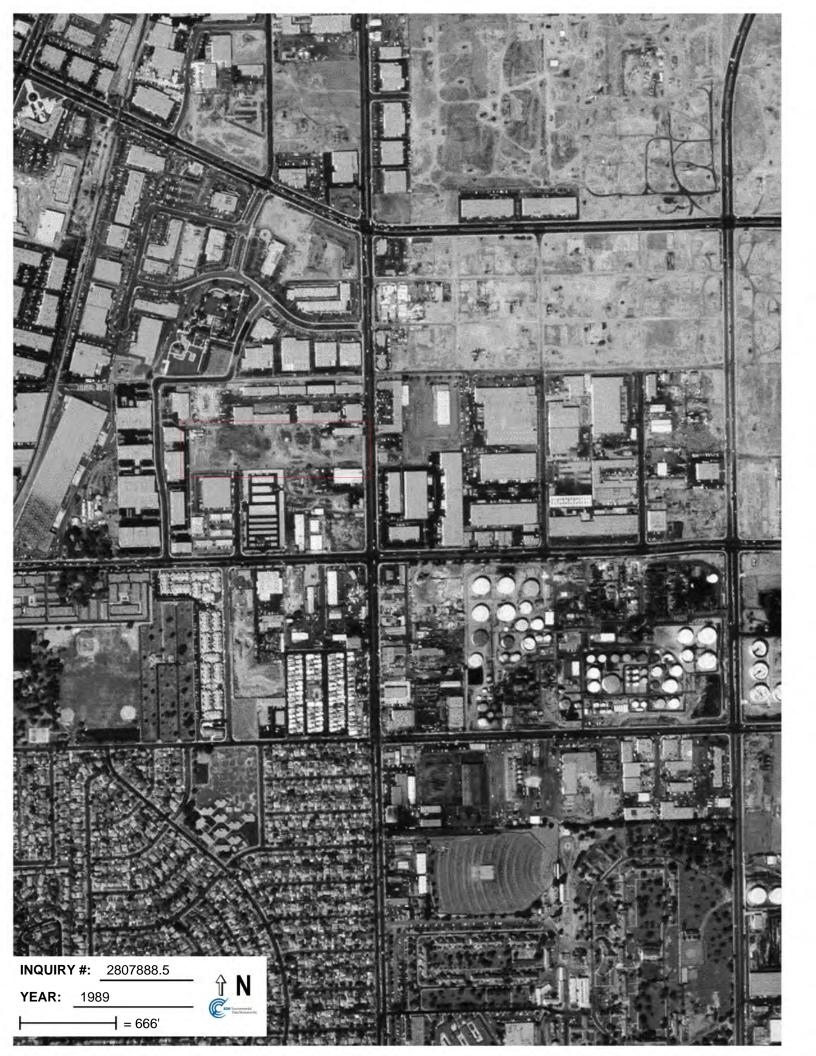
If you have any questions, please feel free to contact the project manager Mr. David Young at (213) 576-6733 or via email at dyoung@waterboards.ca.gov.

Sincerely,

Interim Executive Officer

Mr. Michael A. Francis, Demetriou, Del Guercio, Springer & Francis, LLP

California Environmental Protection Agency Recycled Paper


APPENDIX B

1956-2005 AERIAL PHOTOS

APPENDIX C

PUBLIC AGENCY RECORDS REQUESTS AND RESPONSE FOR JALK FEE PROPERTY

CYNTHIA A. HARDING, M.P.H. Interim Director

JEFFREY D. GUNZENHAUSER, M.D., M.P.H. Interim Health Officer

Public Health Investigation Administration LEOLA MERCADEL

Chief, Public Health Investigation

5555 Ferguson Drive, Suite 120-04 Commerce, California 90022 TEL (323) 890-7801 • FAX (323) 728-0217

www.publichealth.lacounty.gov

February 25, 2015

CARDNO ROBERT SERRATO 4572 TELEGRAPH RD #916 VENTURA, CA 93003

BOARD OF SUPERVISORS

Hilda Solls First District

Mark Ridley-Thomas Second District

Shella Kuehl Third District

Don Knabe Fourth District

Michael D. Antonovich

SUBJECT: 10607 Norwalk Blvd. Santa Fe Springs, CA 90670

I, the undersigned, being the Custodian of Records, certify that a thorough search of our files, carried out under my direction and control, revealed no records as named in your request for records.

It is to be understood that this does not mean that records do not exist under another spelling, another name, or under another classification, but that with the information furnished our office, and to the best of our knowledge, no such records exist in our files.

Sincerely,

Christian Sten, Deputy Health Officer

Public Health Investigation

COR ID No. 151126

Request - NO Records Revised 3/15/13

PUBLIC HEALTH INVESTIGATION CUSTODIAN OF RECORDS REQUEST FOR PUBLIC RECORDS

TEL (323) 890-7806 FAX (323) 728-0217

Complete the Custodian of Records Request for Public Records Form in blue or black ink, or type. If you have any questions about completing the form or requesting Hazardous Materials reports call (323) 890-7806.

Submit your request to Public Health Investigation, Custodian of Records Office to Fax Number (323) 728-0217, Email to phicor@ph.lacounty.gov, or mail to:

Public Health Investigation 5555 Ferguson Drive Suite 120-04 Commerce, CA 90022

*Required Information

•					
REQUESTOR INFORMATION	N				
Name *					
Address *					
City *					
State *					
Zip *					
Telephone No. *					
Fax No.					
Website/Email					
CONTACT PERSON INFORM	IATI(ON (If different from Requesto	er)		
Name					
Telephone No.					
•					
DELIVERY OF RECORDS (If	differ	ent from Requestor)			
Address					
City					
Zip					
RECORD INFORMATION Ty	pe of 1	Record * (Choose only one pe	r request)		
ENVIRONMENTAL HEALT	Ή	ENVIRONMENTAL	HEALTH HAZARDOUS		
DISTRICT SURVEILLANCE	E	HEALTH PROTECTION	MATERIALS	ALL OTHERS	
Apartment, Condo, Home					
Inspections		Beaches	CalARP	Animal Bite Report	
Apartment, Condo, Home and				1	
Institution Lead Inspections		Landfills	Emergency Response	Medical Marijuana ID	
Food Borne Outbreak		Public Swimming Pools	Hazmat Site Inspections	v	
Food Poisoning		Recycled Water	Hazmat Site Mitigation		
Food Vehicles		Residential Pools			
Motels and Hotel Inspection		Septic Tanks			
Retail Food Inspection		Sewage			
Schools and Day Care		-			
Inspection		Water Wells			
Street Vendor					
Od T					
Other Type of Record:					
REQUEST INFORMATION (P	Provide	e as much information possibl	(e)		
Incident Date/Time					
Incident/Food Borne					
Illness/Outbreak Summary No.					
Type of Disease					
Inspector Name (If known)					
Incident Location					
Owner Name					
Victim/Patient/Complainant					
Name					
Date of Birth					
Medical Record No.					
Location of Records					
Site/Street Address					
Site/City					
Site/Zip					

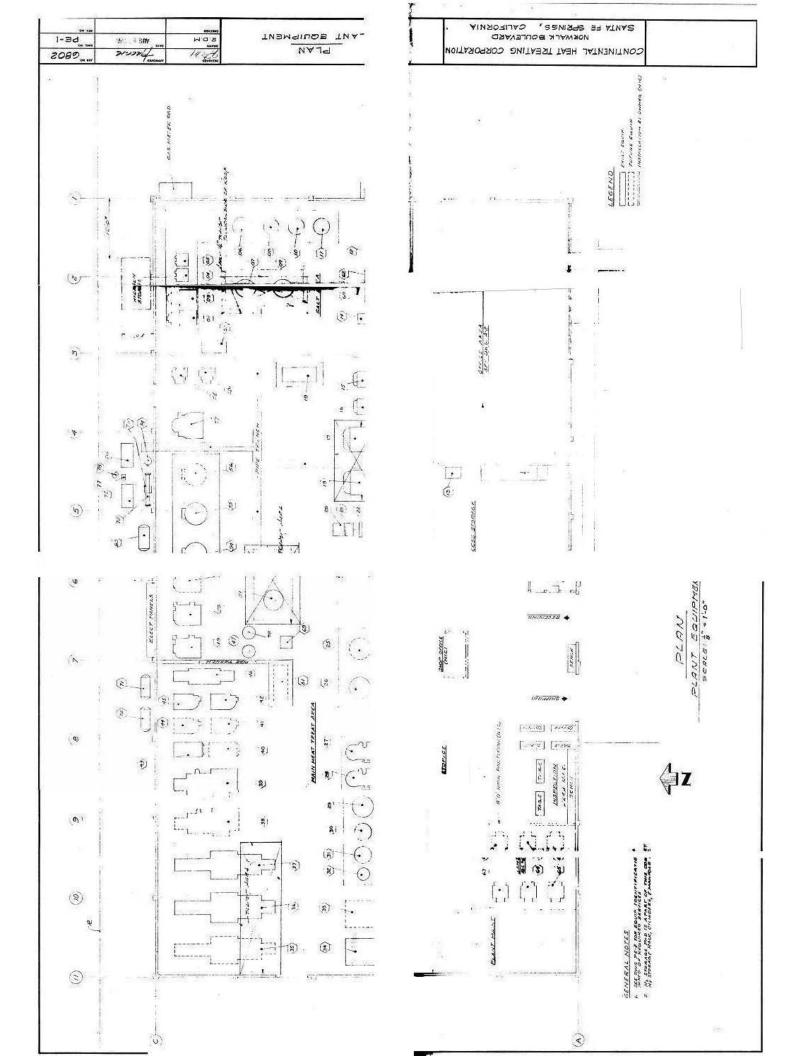
	Office Use Only Appointment	
Date _		
Time _		

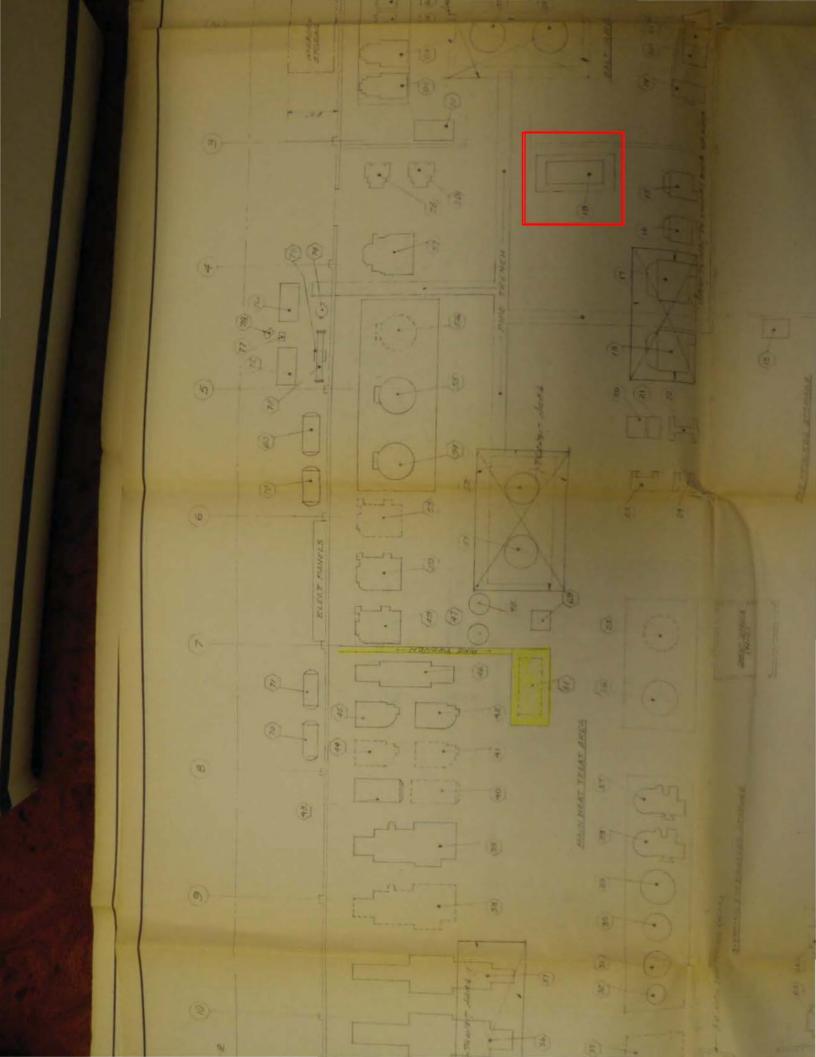
Date	# of pages	
То	From	
Co/Dept	Co.	
Phone #	Phone #	
Fax#	Fax#	

Santa Fe Springs Fire-Rescue

11300 Greenstone Ave • Santa Fe Springs CA 90670 (562) 944-9713 • FAX (562) 941-1817 • fire@santafesprings.org

REQUEST FOR SITE INFORMATION


NOTE: To accommodate your request, please allow time for confidential information to be removed prior to viewing. If Fire staff performs work outside public viewing, the information will not be released until payment is received.


SEARCH REQUESTED BY			
CARDNO		POBERT. SERRATO QU	RDNO.COM
COMPANY/ORGANIZATION	ON	E-MAIL ADDRESS	
POBERT SERRATO			
PRINT NAME		SIGNATURE	
ASSISTANT PROJEC	T MAN	805-290-3275 PHONE NUMBER	2/20/15 DATE
REASON FOR THIS REQUEST	EVIE	W RECORDS FOR EVIDENCE O	= PCE/SOLVENT
RELEASE			
TYPE OF INFORMATION REQUES	STED NO	TICK OF VIOLATIONS, INSPECTION	RELORDS, PERMIT
		15, COPRESPONDENCE	
 Fees for service Public viewing of records is free of \$5.00 per box will be assessed for records 		historical documents stored off-site. Per copy charge is .	20.
File review hours • 9:00 AM - 11:00 AM • Please contact our office to reserve	an appointi	ment time. We can no longer accept walk-ins.	
NAME OF COMPANY AT SITE		ADDRESS	
EXXCMMOBIL		10607 NORWALK BLVD, SAN	TA FE SPRINGS, CA
NOTE: Some information may be comaps, contacts, trade secrets, etc. To	onfidential a	and is not disclosable to the general public. Confidential formation, a release from the business owner must be att	l information includes facility ached to this form.
	- 7	OFFICE USE ONLY	
CHARGE FOR ARCHIVED FILES	\$	REQUEST PROCESSED BY	
CHARGE FOR COPIES	\$	DATE RECEIVED	
CHARGE FOR MAILING	\$	DATE COMPLETED	
TOTAL AMOUNT DUE	\$	K:\CUPA Related Forms and Do	cuments\FORMS\Request for Site Info.doc

APPENDIX D

AUGUST 20, 1968 CHT BLUEPRINTS

OM 1840	. 16 90V	M. H. M. Leaves		SHEDOLE T	NY1d	
25/20 0000 REMAINS REM	TO THE OWN TOWN OF THE SUMMER	57.4N.0.8): 57.4N.0.8):	OTHER OF SELLY BUILD STATES SOUTH ALTER THE SELLY	NETHERE SERVICES	WHUN SIES MAGUIDO AT	
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	1076	SERVICE DROP SIZES SHOWN AND OVERNESS OF STREET THE CONNECTION OF SERVINGANT.	
ON ON THE PARTY OF	65 66 67 67	69. 70. 71. 73. 73.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 - AIR COMPANISOR		64 65 66 67 68 69 69 77 77 77 77 77 78 80 81
\$215 000 PT 1	W. C. STELLERS FROM THE TO THESE SHOWING	Y. 3. S. WOODS, WASTE FLOOR DRAID COUR, FORK	IIO SERVICES REGULINEO	RUTURE LUCTARE NO SERVES REGUNESO SELE CANTAINED HYDRRULE	NO SERVICES REGUINAD SELF CONTRINCE HYDRAULE RUTURE GLECTRIC	
ALLONIO SALONIO SALONI		5.5	9 4	20 No.		
O TO TO DESCRIPTION	SOLLOFF TANK SALT FURNANCE-AVAX NUM: SALT PURNANCE-AVAX NUM: CHANG-LIBINO TENE THIN CHANG-LIBINO TENE	ANTH 18 48 381. LIANTO GERBARATION BRING QUENCH TANK GATH 18 48 4812 TO OLE OLE OLE OLE OLE OLE OLE OLE OLE OL	0 - 2 - HW-1	SW 1 1 1 1	23 — BENCH CENTRES 24 — BRAN FURINGE PERS DEPL. 25 DASH FURINGE SENSON 26 DASH FURINGE SENSON 27 DASH FURINGE SENSON 28 DASH FURINGE SENSON 29 DASH FURINGE SENSON 20 D	10.5 SALT DEATH FURTHER 19. 12. 10.6 STATE STATE STATE STATE 10.7 STATE STATE STATE STATE 10.8 STATE STATE STATE STATE 10.9 STATE STATE STATE STATE 10.0 STATE STATE STATE 10

APPENDIX E

DECEMBER 12, 1969 CITY OF SANTA FE SPRINGS INDUSTRIAL WASTE SURVEY

INDUSTRIAL WASTE SURVEY

City SANTA FE SPRIVES	1. File No. Requested 1-6585.
S.M.D. No. 0515.75	Permit No. REQUESTED 4365
Firm Name: CONTINENTAL HEAT 7	REATING
Address: 10 G 43 NORWALL BLVD	Tel. No. 944-8808
between FLOREUCE AVE	and CLARK IVE
Contact Name JETT WEGUS	Title: MAINTENANCE SUPE.
Business and Processes: HEAT TREATING; D	EGREASING, AND RINSING.
TYPE AND QUANTITY I.W.: QLL SALT 4	- Sauce a
WASTE DISPOSAL:	
	Dist. 18 Volume 110 GALS, A PAY
	ater RECIRCULATED Uncontaminated NEWS
Ground	
Other wens	
PRETREATMENT FACILITIES:	Location EASTEND OF \$106. QUISIDE
Trap: Standard NOTT. (1000) No	on Standard
Other:	
	•
REQUIREMENTS AND DATA:	
	ency New TN & Y Permit REPUESTED
	vey T.C. Requested
Classification	Method of Disposal
REMARKS AND RECOMMENDATIONS:	
COLLING TOWER HAS A SMALL AM	COUNT OF BLEEDOFF, FLO-EDRAINS
WERE NOT INSTALLED AS DEBINAG	
DIRECTLY TO INTERCEPTOR. PER	
Survey by: Robert B. W. Harlles	Date: 12-12-69
76 1 5198—CE 659—Cdb. 2-62	

APPENDIX F

JANUARY 20, 1970 CITY OF SANTA FE SPRINGS INDUSTRIAL WASTE DISPOSAL PERMIT

Region 10

CITY OF SANTA FE SPRINGS

January 27, 1970

Mr. Robert L. Williams City Manager Santa Fe Springs, California

Dear Mr. Williams:

CONTINENTAL HEAT TREATING CORPORATION 10643 SOUTH NORWALK BOULEVARD FILE NO. 1-6585-111

We are transmitting Industrial Waste Disposal Permit No. 4365 to your office for processing and delivery to the permittee. This permit has been prepared in accordance with the ordinance requirements of the City of Santa Fe Springs. The permit regulates the disposal of industrial wastes produced on this location.

Please advise this office when this permit has been delivered.

Yours very truly,

John A. Lambie CITY ENGINEER

Original Signed

C. G. Brisley, Jr. Deputy

CGB: NB-vs 8

Enclosures

dc: I-6585-1H, Per. Issd., Region 10, GM, NB, Extra

CITY OF SANTA FE SPRINGS INDUSTRIAL WASTE DISPOSAL PERMIT

No. 4365

File: <u>I-6585-1H</u>
Date: <u>1/20/70</u>
Permission is hereby given under Chapter 18 of the City Code
(As amended) to <u>Continental Heat Treating Corporation</u>
10643 South Norwalk Boulevard (Mailing Address)
to discharge waste material from or upon the premises located at
10643 South Norwalk Boulevard
Vastes covered by this permit shall consist of:
washdown and wastes from heat treating, quenching, and degreasing
metals.

and shall comply with all provisions of applicable ordinances of the City of Santa Fe Springs including the special conditions and limitations marked (x) on the second page of this permit.

In accordance with Section No. 18-114 of the City Code of the City of Santa Fe Springs, this permit is not transferable from one location to another and it may be revoked if used contrary to the provisions of the Ordinance.

This permit is automatically suspended without notice if the Industrial Waste Permit Fee or Annual Renewal is not paid within 60 days from the day on which said fee is due.

John A. Lambie CITY ENGINEER

SPECIAL CONDITIONS AND LIMITATIONS

INDUSTRIAL WASTE DISPOSAL PERMIT NO. 4365.

All wastes shall be disposed of in accordance with the conditions marked below:

- (X) A standard pretreatment facility designated by the City Engineer as sand & grease interceptor Standard No. _____.
- () A grease interceptor of a type approved by the City Engineer with a flow capacity gallons per minute and grease retention capacity of pounds.
- () A garbage grinder approved by the City Engineer and equipped a valve operating to automatically shut off the water supply when the grinder is not in use.
- () Special facilities constructed in accordance with plans approved by the City Engineer, which plans are hereby made a part of this permit.
- () Special Facilities:
- (X) Further special conditions and limitations as listed below.

The Sanitary Sewer and Industrial Waste Chapters of the City Code contain certain restrictions on the use of sanitary sewers and other methods of the disposal of industrial wastes. A copy of this ordinance may be obtained by applying to the City Hall, 11710 Telegraph Road, Santa Fe Springs, California 90670.

In general, the intent of the ordinance is to prevent the discharge, deposit, or disposal of all wastes including any material which may cause pollution of underground or surface waters in, upon, or affecting the incorporated territory of the City of Santa Fe Springs, and to provide protection to the public sewers, industrial connection sewers, and treatment plants. Storm water or uncontaminated cooling water cannot be discharged to the sewer. All required pretreatment facilities must be regularly cleaned and otherwise maintained in good operating condition.

Compliance with the special conditions listed in this permit in no way relieves the permittee from the obligation of meeting requirements of the Sanitary Sewer Ordinance or liability for payment of costs of cleaning or repairing sewers occasioned by the violation of such ordinances.

If further information is desired, please contact the Project Planning and Pollution Control Division of the Department of County Engineer at 629-4747, extension 81385.

- 1. The concentration of cyanide in any waste(including HCN and $C\overline{N}$) shall not exceed 10 ppm.
- 2. All effluent discharged to the sanitary sewer shall be treated, when necessary, to maintain a pH between 6.0 and 9.0.

APPENDIX G

SEPTEMBER 23, 1993 MCLAREN HART PCE AND HEAVY
METALS IN SOIL AT THE JALK LEASE LETTER

September 23, 1993

Mr. T. M. Walker, P.E. Environmental Engineer Mobil Exploration and Producing U.S. Inc. 10735 South Shoemaker Avenue Santa Fe Springs, CA 90670

PERCHLORETHYLENE (PCE) AND HEAVY METALS IN SOIL AT THE JALK LEASE

Dear Mr. Walker,

McLaren/Hart has completed our review of the site characterization report prepared by Levine/Fricke ("Draft Subsurface Soil Investigation, Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California"). The report included data showing that the soil contains crude oil, which would be expected in an active oil field. The report also documented that the soil contains lead, which presumably leached from metal pipes in an area known as the "boneyard", and perchlorocthylene (PCE), which we believe is a result of operations at the neighboring facility.

This letter briefly explains the significance of the findings which were presented in the Levine and Fricke report and makes recommendations on how Mobil should proceed.

HEAVY METALS

Total lead, mercury, and zinc were detected in the boneyard in the southwest corner of the property at maximum concentrations of 1,750, 34.1, and 10,000 milligrams per kilogram (mg/kg), respectively. These concentrations exceed the Total Threshold Limit Concentration (TTLC) of 1,000, 20, and 5,000 mg/kg. Soluble lead and zinc were also detected at maximum concentrations of 151 and 474 milligrams per liter (mg/l). These concentrations exceed the Soluble Threshold Limit Concentration (STLC) of 5 and 250, respectively. Samples exceeding the TTLC and STLC were found at both the three foot and the eight foot depths. No samples were collected below eight feet.

Although the lead samples were collected from random sample locations, it appears that the lead is confined to the northeast corner of the boneyard, representing approximately one third of the

STAPFATERRELLEMISS.LTD

16755 Von Karman Avenue, Irvine, CA 92714 (714) 756-2667 FAX (714) 756-8460

T.M. Walker ptember 22, 1993 age 2

total surface area of the boneyard, approximately 6,100 square feet. Excavation of this area to a depth of eight feet would result in approximately 1,800 cubic yards of soil.

Since the data show that metal concentrations were increasing between 3 and 8 feet, it is reasonable to assume that the soil below 8 feet may contain metals exceeding the cleanup criteria. We recommend additional sampling below eight feet prior to excavation to define the vertical extent of heavy metals.

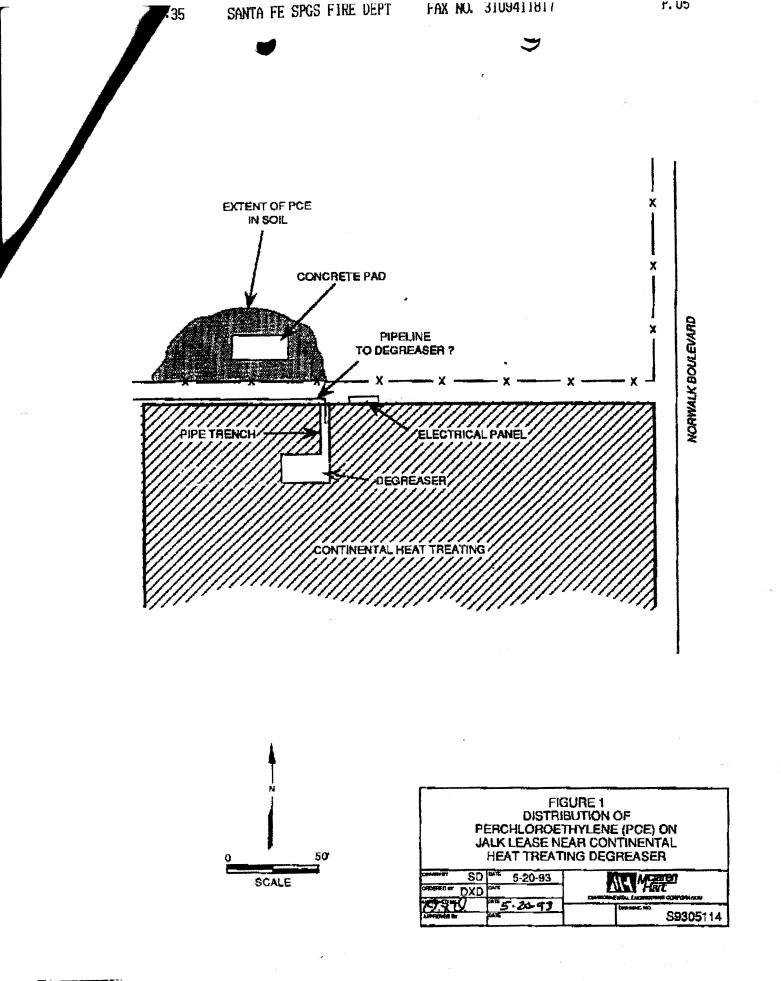
PERCHLOROETHYLENE (PCE)

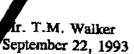
Perchloroethylene and related compounds [trichloroethylene (TCE) and 1,2-dichloroethylene (DCE)] were detected in the soil at the Jalk Fog. These chlorinated compounds are used in such industries as dry cleaning, electronics, aerospace, and metal treating, but are not used in oil production. The maximum concentration of PCE in soil at the Jalk Fee is 2,500,000 parts per billion (ppb). The following sections describe the possible source of PCE at this location.

Santa Fe Springs Fire Department Record Review

In an attempt to identify possible sources of the PCE at the Jalk lease, McLaren/Hart reviewed the files at the Environmental Compliance Section of the City of Santa Fe Springs Fire Department. A written request to review the file on Continental Heat Treating was submitted by FAX on Tuesday, May 11, 1993 and the file was reviewed on Wednesday, May 12th. The following is a summary of the information in the file relevant to the PCE on the Jalk lease.

Use of PCE at Continental Heat Treating


The Continental Heat Treating facility was designed in 1968 and began operation in 1969. The facility drawings (Job # 6802, PE-1) dated August 20, 1968 showed a degreaser located approximately 120 feet west of the northeast corner of the building and 30 feet south of the northern wall of the building. A pipe trench was shown going from the degreaser to the north end of the building, just west of the electrical panel. The PCE on the Jalk lease was found in the area beginning exactly where the pipe trench left the building and continuing west to the northwest corner of the building. (See Figure 1)


In a letter to the City of Santa Fe Springs dated March 30, 1987, Continental Heat Treating reported that PCE was "used for cleaning of parts prior to heat treating." The hazardous material registration forms (February 15, 1993) reported an average PCE use of 125 gallons per day and a maximum daily use of 250 gallons per day. The Business Plan described a 500 gallon above ground PCE tank, although the location of this tank could not be determined from the information in the file.

STAPPATERRELLE/135.LTB

O mayeled pape

Page 4

Documented Annual PCE Waste Generation

The hazardous materials registration forms (February 15, 1993) reported that 1.5 tons of PCE are generated each year at the facility. In the March 30, 1987 letter to the City of Santa Fe Springs, Continental Heat Treating reported that the PCE was stored in a tank provided by Acto Kleen Corporation and was disposed by Acto Kleen for recycling.

Hazardous Waste Code Violations

Continental Heat Treating has operated under an Industrial Waste Permit from the Los Angeles County Sanitation District and predecessor agencies since the 1970's. Permit # 4365 was issued on January 27, 1970 and Permit #4827 was issued on November 18, 1976. These permits did not include limits or sampling requirements for PCE.

Various inspections, violations, and complaints over the years were included in the file. These included:

- A Notice was issued on July 11, 1978 from the LA County Engineer ordering Continental Heat Treating to "clean the interceptor by July 18, 1978" and "maintain the interceptor in good operating condition at all times."
- An inspection report of April 5, 1982 noted under "Special Hazards and Conditions" that a degreaser was present in the northeast portion of the building.
- A complaint to the Fire Department was recorded on October 5, 1987 that blue-green water was being discharged to the street. This was attributed to the recent earthquake (October 4, 1987) which had broken several pieces of equipment at the site and that "a discharge similar to that of December 8, 1986 was occurring."
- A Notice of Violation (NOV) was issued on February 23, 1988 for discharging cooling tower blow down water to the street.
- The Santa Fe Springs Fire Department cited Continental Heat Treating on June 14, 1988 for failure to disclose certain materials on the 1987 plot plan.

Possible Explanations

Illegal and accidental discharges of chlorinated solvents to soil are typically not reported and are not discovered until a site characterization is performed. The data from the Levine/Fricke report

STAFF\TERRELLB\135.LTB

r. T.M. Walker September 22, 1993 Page 5

showing PCE in the soil, the use of large quantities of PCE on the adjoining site, the location of the PCE in soil relative to the degreaser and pipe trench on the Continental facility, and the complete absence of any use of chlorinated solvents of any kind by Mobil E & P, very strongly points to Continental Heat Treating as the source of the PCE on the Jalk Fee.

The following possible explanations are based on the information we were able to find and on past experience with similar situations. We cannot say which of these explanations is most likely or whether there is another possible explanation for the observed PCE.

Intentional or Unintentional Discharge. One possible explanation is that PCE from the degreaser or from the above ground storage tank was discharged to the ground by an employee or contractor working on site. This could have resulted from any number of activities such as overflow, spillage, a broken pipe, or an intentional discharge of waste PCE.

Fires. Three degreaser fires were reported in the Continental Heat Treating file at the Santa Fe Springs Fire Department:

- Degreaser Tank Fire (Code 6205) 87/10/02;
- Fire in Degreaser (Code 6225) 88/04/09;
- ► Fire in Degreaser (Code 6229) 88/08/01.

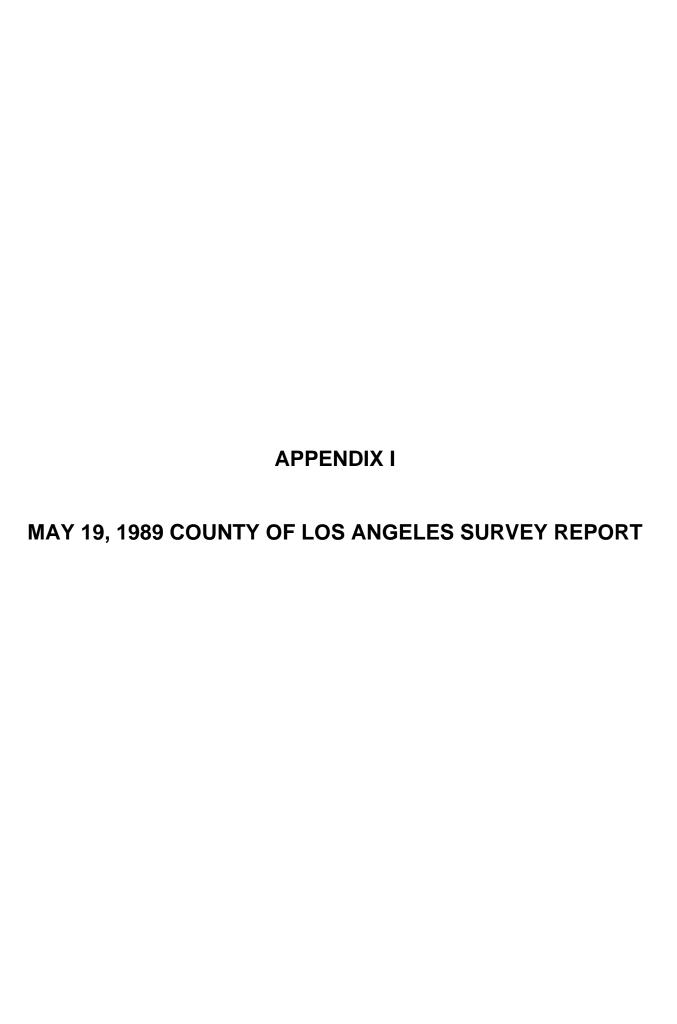
Earthquake. The file made reference to two earthquakes (December 8, 1986 and October 4, 1987) that resulted in broken equipment and discharge of chemicals. Although these references were made to the cooling tower blowdown water, it is also possible that the piping between the degreaser and the PCE storage tank were among the "several pieces of equipment" that were damaged at the same time.

I would be happy to discuss this matter with you at any time. Please call me at (714) 752-3211 if you have any questions or requests for additional information.

Sincerely,

Dennis Dineen

Managing Principal Geoscientist Assistant Regional Manager, Irvine


STAPPATERRELLB\135.LTB

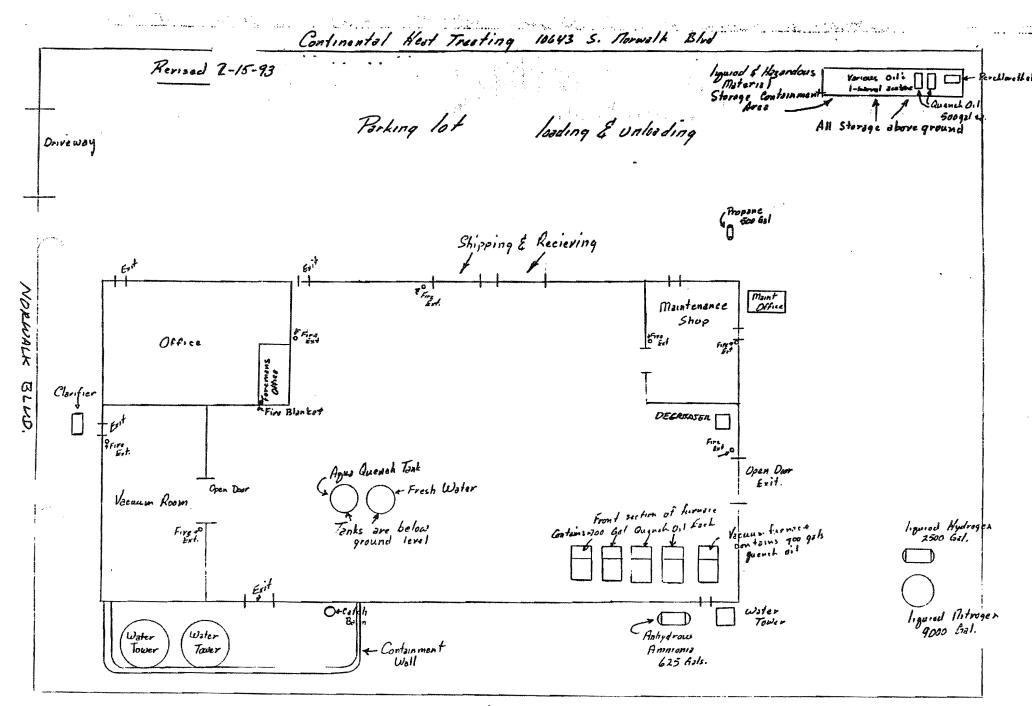
APPENDIX H

MARCH 16, 1984 COUNTY OF LOS ANGELES SURVEY REPORT

MINN MI Tower Industries the ZERSON INTERVIEWED & TITLE PHONE NO. 693-6920 NO. TEMPLO Ray Berry - Pres Vennis Hugie-Production May THERGENCY NO. INDUSTRIAL WASTE NO EPA NO. 3858296 153090-101 ISAFETY SHOWER 🛝 CATING AREA TYPE OF TACTUTY & DESCRIPTION OF OPERATION PRODUCTST TOTLET & WASTING FACILITIES APPOUNTED STATE PERSONAL PROJECTIVE DEVICES ADEQUATE 1915 Treating of Steel (members PLANT SANITATION ADEQUATE GE CONTROL - HATERTAL ... PROCESS IJAZ ARD VOLALOS STORAGE METHOD DISPOSAL METHOD HANDE Steel Remode W Trentment Including annealing Harrie - Labewood Querchin al 1 Service Trakk Perchlosettyle Manufist reg. perimet by Supplies Acetone 1-1-1 Trichlores unl Parts cleaning ACTO Kleen -(1) degreeny Wapa Dum Perchlorethy Ligreush- Parchiorethylete 7869 Paramount & (2) Ht trichlorethane PICO Rivern (3) abvasive blasting Intak Resid to BKK Berned wer bead 5 by Nach Salvage Ink described in (4) acetal 16211 Places Describe the process 5 this water both ever handowing - what types for Contract HUMBER OF UNDERGROUND STO TANKE 1 9050/140 +6000 gol DECESS TO BYDAIN INLET ON PREMISES YES NOL CHLONINATED HYDROCARDON USED; YES V NO SEVER CONNECTION ON PREMISES LYES NO gasding tarke, abrasio blasting MICHARKSI AQMD Sermits in Home NOV to be see 5 mull VIOLATIONS: DUPFURAL THE THE RESERVE OF THE PROPERTY O

SIC.			DOUS WASTE CONTR		DA	ITE: 5-19-8	19: pl	
COMPANY NAME		5	STREET	1	CITY & ZIP		DISTRI	
Continenta	1 Hoat Tre	ating	10643 Nov		SFS	90670	56	1
UWNER	•		PERSON INTERVIEW		PHONE NO (2)	37944-880	WO. EM	PLOYEES
) tull, Ja	mos, - owner		Bestray, h.t	e,6M.	EMERGENCY N	10.	1 4	<u> </u>
L.A. CO. PHY NO. 153 090-101	INDUSTRIAL W		PA NO. / 05358295 ·	SAFETY S		w		
	L DESCRIPTION OF OF				REA CARACI WASHING FACI		ATE ck	
	teat Treati	• .			NITATION ADEC			
			HAZ	ARDOUS WASTE				I.H.
PROCESS	MATERIAL	TYPE VOL	/LBS STORAGE	METHOD DIS	POSAL METHOD	MANIFEST	CONTROL	HAZARI
inDegreesing	PERC-	Waste PERG 2,	20050 55 go		to- Eleen cc Rivera)	400 gal (10 drum) 3/21/89	A4D Dispessel 87746425	complete
Luen ching	Mineraloil	min oil we lev mix	clarifi pumpse pernqu	Pronee Disposer arteryn Ser	usel Control	877 4641 705	Don lemos Rev don 89580	
J Floor Streegings			regular	Dus	pusal Control YVIC-R.		Casmalia	
(9) De Rebord & Tempony Vacuum Cooling	S H2 N2	5202	gopo cused,	cers)	two plete reacted to reacted reacted		V	(
NUMBER OF UNDERGROUND VOLUME & TYPE OF VERTICAL STATES	DUND STORAGE TANKS: NASTE IN UNDERGROUN SYSTEMS ON PREMISES			ACCESS TO CHLORINATE	STORM INLET I ED HYDROCARBOI NECTION ON PRI	ON PREMISES: N USED: YES EMISES: YES	Yes NO NO	°
REMARKS: Hauls	approx 1/que	arter all	wastes					
1	coil duch	as more)	with one c	into tumo	al lette	as chois	5W Gr	nac.
VIOLATIONS:	c con proceed	July 1		110	7	the state of the s		
		ACT	TON.		SUPVEN CONT	es Odlin	y/GB	victor
REFERRAL TO:		ACI	ION:		SURVEY COND	DUCTED BI:	())	v

SIC.	C	OUNTY OF LOS HAZA		DEPARIMENT ASTE CONTROL			TE: 511	9-89 p7	L
COMPANY NAME			STREET			CITY & ZIP		DISTRIC	
OWNER			PERSON	INTERVIEWED	& TITLE	PHONE NO. EMERGENCY NO		NO. EMF	PLOYEES
L.A. CO. PHL NO.	INDUSTRIAL W	ASTE NO.	EPA NO.			Y SHOWER			
TYPE OF FACILITY & (DESCRIPTION OF OP	ERATION/PRODU	ICTS:		TOILE	G AREA T & WASHING FACIL SANITATION ADEQL		TE	
				HAZAR	DOUS WAST	E			I.H.
PROCESS	MATERIAL	TYPE V	OL/LBS	STORAGE	METHOD	DISPOSAL METHOD	MANIFEST	CONTROL	HAZARD
T. let Service	glease					Service 4	mpeny	-	
Vacuumpumps.	oil	wastecil				onto grafficalle	und top		
Undvanlie pump				, ·		ct rear y	not.		•
Parts cleaning by blasting of lof tool skell	Skel Shot	dust -		-Twept	1-to a	Samostic vash			1
					•		. ,		
NUMBER OF UNDERGROUP VOLUME & TYPE OF WAS PRIVATE DISPOSAL SYS	STE IN UNDERGROUN	D TANK(S): : YES NO			CHLORI	TO STORM INLET D NATED HYDROCARBON CONNECTION ON PRE	USED: YES	NO	
REMARKS: AQHI) For over	nst vapo	N de	gressen			,		
VIOLATIONS:	•	•	· · · · · · · · · · · · · · · · · · ·	•	:	•		(mg)	and the second
REFERRAL TO:		A	CTION:			SURVEY COND	UCTED BY:		


060000 Rear sw

)

SIC.	(ANGELES DEPARTI	MENT OF HEALTH SI	DATE: 5-1	949 p3
COMPANY NAME	•		STREET		CITY & ZIP	DISTRICT
OWNER			PERSON INTERV	EWED & TITLE	PHONE NO. EMERGENCY NO.	NO. EMPLOYEES
L.A. CO. PHL NO.	INDUSTRIAL V	VASTE NO.	EPA NO.	SAFETY S EATING A	SHOWER	
TYPE OF FACILITY & D	DESCRIPTION OF OF	PERATION/PRODU		PLANT SA	WASHING FACILITIES ADE ANITATION ADEQUATE	QUATE
			-	MAZARDOUS WASTE		I.H.
PROCESS	MATERIAL	TYPE V		RAGE METHOD DIS		CONTROL HAZARD
of Slool	Annyal NHz		104 (-		in process	
Parts wiping	rags -	oil selvent	Dian	eveolcans >1	Prudenhal overalls	service
ř.						
()						
NUMBER OF UNDERGROUN VOLUME & TYPE OF WAS PRIVATE DISPOSAL SYS	STE IN UNDERGROUN	ID TANK(S):		CHLORINAT	STORM INLET ON PREMISE ED HYDROCARBON USED: Y INECTION ON PREMISES: Y	ES NO -
REMARKS:						
VIOLATIONS:		Part of the agency to a second and a second of the second	**************************************			
						(The
REFERRAL TO:		Α	CTION:	**************************************	SURVEY CONDUCTED BY:	

APPENDIX J

MAP OF CHT BUILDING FROM CHT LETTER TO EXXONMOBIL

MOBIL PROPERTY

APPENDIX K

NOVEMBER 4, 1993 LOS ANGELES COUNTY FIRE DEPARTMENT REQUEST FOR SERVICE

HAZIVAT

Request For Service

Form #RS1 rev 20 • 5/92

Los Angeles County Fire Department Prevention Bureau Hazardous Waste Control Program

Log # [yynnnn]: 933143-1/8	Emergency Response	illegal Storage
Received by: LR Date: 11/4/93	🔀 Illegal Disposal Onsite	☐ Clean•up
Log entry by: LR Date: 1/4/93	🔲 Illegal Disposal Offsite	Public Health License
Name: Continental Heat Tres	Phone:	
Address: 10643 Monewalk		Fe Spring
Substance: Solvents	·	Fe Springs Zip: 90670
Same	indicated pairs	
· ·	\	
illegel dischange ?) augus 223
Inspection.	- Salara	J. Staffeld B. Bring To Samuel
Status:		
MPART 810-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
Section Assign To: Osgv Osfv Osg Osg Os	OM OER OENFOSM	Date:
Inspector Assign To: GR Assign	By: Fr	Date: 1/-5-93
Service Requested By:		
Address:	Phone:	
	The state of the s	
the Marie		
	,	
Belowelt by lawy th	To the second	
1/92		
L		,

APPENDIX L

OCTOBER 6, 1994 LOS ANGELES COUNTY FIRE DEPARTMENT HEALTH HAZARDOUS MATERIALS DIVISION INDUSTRY SURVEY

APPENDIX M

UNDATED LOS ANGELES COUNTY FIRE DEPARTMENT
SMALL QUANTITY GENERATOR CONTINGENCY PLAN

You are required by the California Code of Regulations, Title 22 to design, operate and maintain your business to minimize hazards to human health and the environment from any unplanned releases of hazardous materials.

Section 1 General Busine	ess Information					
Name of Business CO	NTINENTAL HEAT TR	EATING C	O. INC.		***************************************	
Address 10643 S. N	ORWALK B.VD	City	SANTA FE	SPRINGS	Zip 90670	
Phone Number(310) 944	_8808Emerge	ency Phone(319 697	_ 0903		
Description of Business H	EAT TREATING META	L PARTS				
Number of Employees	30 Operating H	lours(M-F)_	24HRS M	−F Sat	Sun	
Business Owner UA				mber(⁷¹⁴) 675		
Address 319 GRAN	ID CANAL	CityB	ALBOA IS	LAND Zi	p 92662	
Property Owner ANNA	HATHAWAY TRUST		Phone Num	nber(714) 661	<u>l - 6969 C.P.</u> A	
Section 2 Hazardous Ma	terial / Waste Activities	- List all Ch	nemicals at	your business.		
	RAW MATERIALS			HAZARDO	OUS WASTE	
Chemical Name or Trade Name*	Specific Usage	Quantity of Chemicals Stored	Manner of Storage	Quantity of Waste Stored	Manner of Storage	
OIL	QUENCH OIL	500 GAL	TANK	300 GAL	DRUMS	
PERCHLORETHLENE	DEGREASING	200 GAL	TANK	: 300 GAL	DRUMS	
ACETONE	CLEANING	55	DRUM	0	0	
AMMONIA	CARBONITRIDE	250	TANK	θ	θ	
					1	
*Obtain from your Supplier Section 3 Emergency Coording Your company is required to l EC shall have the authority to mitigate an unplanned release	ist the names, addresses, and commit resources and shall h	telephone nun	nbers for your	emergency coord	linators(EC). The	
Name of EC DENNIS	IUGE	After I	Hours Phone(3	10) 697_ 09	903	
Address 141 NORTH \	/IRGINIA ST.	City	LA HABRA		Zip90631	
Alternate EC RAY CRO	Alternate ECRAY_CROSSAfter Hours Phone (909) 674 _ 1529					
Address 29264 NORTHPOINTE City LAKE ELSINORE Zip 92530					ip 92530	

The EC must notify the follo threaten human health or the			release, fir	e, or explo	sion which could
Fire <u>911</u> Health	Haz Mat	(213) 890-43	17r	olice	_911
If the EC determines that eva agencies and the State Office					ıll notify the above
List an Emergency Response C	Contractor you	may use in the ev	ent of a maj	or Hazardo	us Materials Spill.
Name PACIFIC ENVIR	ONMENTAL	MGMT · Emergen	cy Phone(8	00)_77	7 - 3363
List all hospitals or clinics you	may use in th	ne event of hazardo	us materials	exposures	or injuries.
Hospital or Clinic HEALT	H FIRST I	MEDICAL	Phone(3	10) 949	9 - 9328
Address 11817 E. TE	LEGRAPH	RD	City SAN	TA FE	SPRINGS
Section 5 Emergency Procedu	ures.				
Attach a description of what ye facility. (Training is required f			•		
Section 6 Site Map	•		J		•
Attach a map of your company	and indicate	the locations of the	e following:		
*Layout work areas		lectrical shut-off			al Safety Sheets
*Fire Extinguishers	*Emergen	•			ground Tanks
*Chemical Storage	*Waste St	•			Ground Tanks
*Alarms - Telephone		& Restrooms			tion Routes
*Employee Protect'n Equip *First Aid Stations		ns & Clarifiers			ency Equipment etection devices
Trist Aid Stations	Emergen	cy Shut-offs		*Leak o	etection devices
*Indicate schools, residences,	and public gat	hering places less	than a block	away from	your facility.

Section 7 Additional Requirements

This Contingency Plan must be updated on a continuous basis and copied to our office. This Contingency Plan is designed for your use in the event of a hazardous materials incident. You must keep copies of your completed plan at your facility at all times. Review the contents of the plan with your employees and make the location of your completed plan known and accessible to them.

Send your completed Contingency plan to the following address:

County of Los Angeles Fire Department-Prevention Bureau/HEALTH HAZ MAT DIVISION 7300 E Alondra Blvd. #203, Paramount, Calif. 90723
Phone: (310) 790-1810, Fax: (310) 790-8002

Your Inspector is: GEORGE	BAKTER
---------------------------	--------

CONTINGENCY PLAN - SUPPLEMENTAL INFORMATION

BUSINESS NAME CONTINENTAL HEAT TREATING CO. INC.
ADDRESS 10643 S. NORWALK BLVD. CITY SANTA FE SPRING ZIP 90670
Section 5: Emergency Procedures
In the event of a OIL spill, the
following procedures will be followed.
Using DRY SORB the spilled material will be contained and prevented from going onto the ground or off the property.
The absorbed OIL & DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.
Based on the:
Material Safety Data Sheet
Personal knowledge
Other
of the Material, the following precautions should be taken when handling the spilled material:
Wear:
Gloves and goggles
Respirator
Boots and Apron
Other

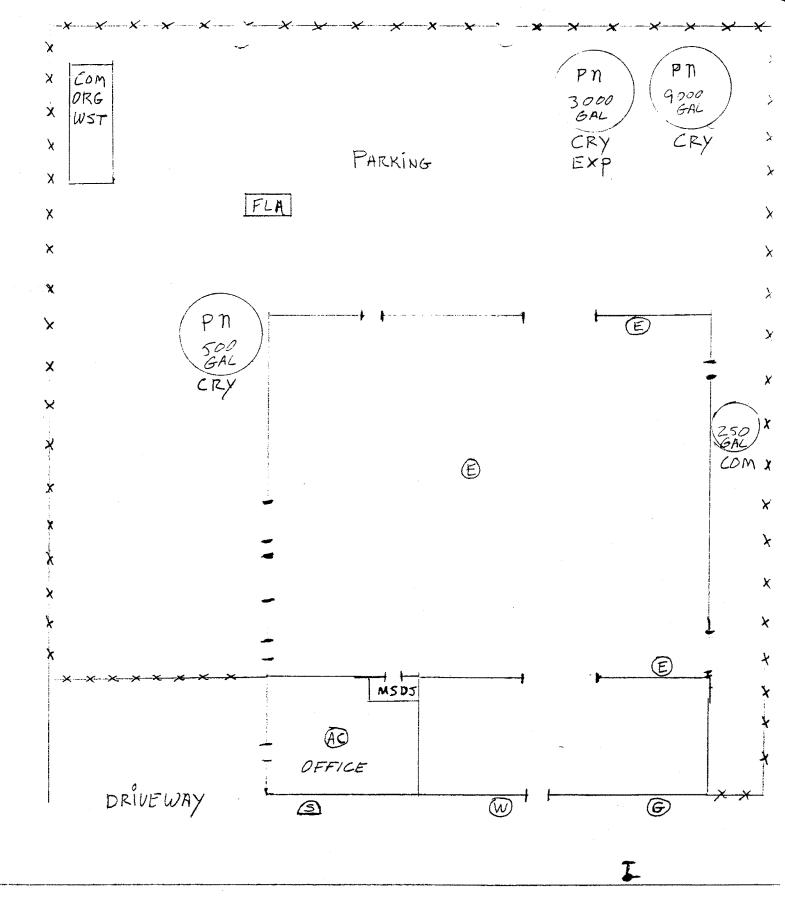
SECTION 6 SITE MAP
(See page 2, Section 6 for requested information, as applicable)

CONTINGENCY PLAN - SUPPLEMENTAL INFORMATION

BUSINESS NAI	ME CONTINENTAL HEAT TREATING CO. INC.
ADDRESS	10643 S. NORWALK BLVD. CITY SANTA FE SPRINGS ZIP 90670
Section 5: Emer	rgency Procedures
In the event of a	PERCHLORETHLYENE spill, the
following proced	lures will be followed.
XX	Using DRY SORB the spilled material will be contained and prevented from going onto the ground or off the property.
XX	The absorbed DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.
[XX]	Based on the: Material Safety Data Sheet Personal knowledge Other of the Material, the following precautions should be taken when handling the spilled material:
	Wear: Gloves and goggles Respirator Boots and Apron Other

See Reverse side, page 4 for Site Map

CONTINGENCY PLAN - SUPPLEMENTAL INFORMATION


ROZINEZZ NAW	ME CONTINENTAL HEAT TREATING CO. INC.	
ADDRESS	10643 S. NORWALK BLVD. CITY SANTA FE SPRINGSZIP	90670
Section 5: Emer	gency Procedures	
In the event of a	ACETONE spil	ll, the
following proced	ures will be followed.	
XX	Using DRY SORB the spilled material will be contained and prevented from going onto the ground or off the property.	
XX	The absorbed ACETONE AND DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.	
[XX]	Based on the: Material Safety Data Sheet	
	Personal knowledge Other	
	of the Material, the following precautions should be taken when handling the spilled material:	•
	Wear:	
	Gloves and goggles	
	Respirator	
	Boots and Apron Other	

See Reverse side, page 4 for Site Map

<u>CONTINGENCY PLAN - SUPPLEMENTAL INFORMATION</u>

BUSINESS NAM	ME CONTINENTAL HEAT TREATING CO. INC.	
ADDRESS 10	0643 S. NORWALK BLVD. CITY SANTA FE SPRINGS 2	CIP 90670
Section 5: Emer	rgency Procedures	
In the event of a	AMMONIA (NH3)	_spill, the
following proced	dures will be followed.	
XX	Using DRY SORB the spilled material will be contained and prevented from going the ground or off the property.	onto
XX	The absorbed DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.	
	Based on the:	
	Material Safety Data Sheet	
. •	Personal knowledge	
	Other	
	of the Material, the following precautions should be taken when handling the spilled material:	
	Wear:	
	Gloves and goggles	
	Respirator (APPROBED)	
	Boots and Apron	
	Other FULL PROTECTIVE CLOTHING	

See Reverse side, page 4 for Site Map

10643 SO NORWALK BLUD.

APPENDIX N

OCTOBER 19, 1995 LOS ANGELES COUNTY FIRE DEPARTMENT CASE SYNOPSIS

CONTINENTAL HEAT TREATING October 19, 1995 Page 1

LOS ANGELES COUNTY FIRE DEPT/HHMD/SMU

CASE SYNOPSIS

Date: October 19, 1995

Log Number: 951668-377
Project Mgr: G Baker
SMU Priority: III
HW Generator: Yes

Generator #: 606073-101

Project: CONTINENTAL HEAT TREATING

Address: 10643 S. Norwalk Blvd, Santa Fe Springs, CA 90670

Contaminants: tetrachloroethylene and trichloroethylene

Depth to Ground Water: 35 - 65' GW contamination: unknown

Responsible Party: Continental Heat Treating

10643 S. Norwalk Blvd, Santa Fe Springs, CA 90670 Phone #: (310)944-8808 Contact: James Stull

Consultant:

Green Environmental, Inc.

6727 Greenleaf Ave, Whittier, CA 90601 Phone #: (310)698-5338 Contact: Kent Green

Case Description:

On November 3, 1993, a complaint from the site operator of adjacent property to the north (lessee: Mobil Exploration) was received by this Department. The complaint alleged Continental Heat Treating was responsible for all or part of the chlorinated VOC contamination on Mobil's oil production lease property at 10607 S. Norwalk Blvd. The complaint was referred to Enforcement Unit for action on November 4, 1993. No enforcement activity by September 27, 1994, prompted a routine complaint inspection October 6, 1994.

Long-time employees all denied any improper disposal, leaking or spillage of vapor degreasing solvents anywhere on the property. Furthermore, the vapor degreaser had been moved from its original location in the shop. Eventually the old location of the degreaser was established. It appeared that this old location was close enough to the northern property line that leaks, sloppy

CONTINENTAL HEAT TREATING October 19, 1995 Page 2

operations or spills could have migrated offsite despite employees' statements to the contrary. This inspection resulted in NOV #P14042, which included an order to provide a plan for corrective action at the old vapor degreaser location.

A single boring to a depth of 10' immediately adjacent but exterior to the concrete sump of the old industrial vapor degreaser was proposed. Three soil samples were taken as part of a preliminary assessment. The results of these samples are summarized as follows:

	PCE AND	TCE SC	JIL CONTAMINATION	IN μg/Ng
BORING	# DEPTH	(FT)	TRICHLORO- ETHYLENE (TCE)	TETRACHLORO- ETHYLENE (PCE)
B-1	6"		47593	7514³
B-1	5 ′		21	2903
B-1	10'		663	1855³

PCE AND TCE SOIL CONTAMINATION IN μ g/kg

The maximum TCE and PCE concentrations were 4759 and 7514 μ g/Kg respectively and the means were 1615 and 3220 μ g/Kg respectively.

No sample exceeded the HBSSL levels as carcinogens (PCE=8,500 and TCE=4,000 $\mu g/Kg$).

The Region IX USEPA residual PRG levels of PCE and TCE allowed (PCE(ind) = 25 mg/Kg and PCE(res) = 7 mg/Kg; TCE(ind) = 17 mg/Kg and TCe(res) = 7.1 mg/Kg) in industrial and residential soils were exceeded by PCE in the 6" sample only.

Applying the recent RWQCB model allowing the average attenuation factor of 255XMCL, three of the analyses would exceed the 1.275mg/Kg guideline concentration; PCE at 6" and 10', and TCE at 6".

The results of the preliminary assessment were sufficient documentation of a significant release to require a remedial investigation of the area. A letter was sent to Mr. Stull July 5, 1995, which directed him to determine the extent of the contamination and submit a site mitigation workplan. The workplan was prepared by Green Environmental and starts with a very limited scope investigation of the old vapor degreaser area.

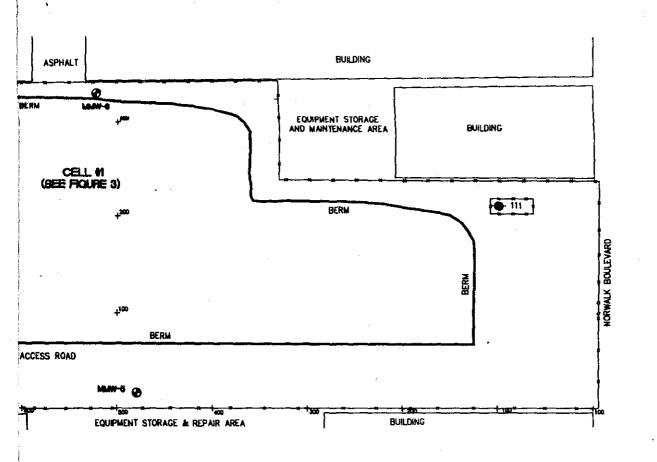
 $^{^3}$ exceeds 10XMCL; the Los Angeles RWQCB risk-based cleanup standards for TCE and PCE (both of which are $5\mu g/Kg$) based on the VOC cleanup model.

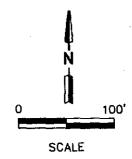
CONTINENTAL HEAT TREATING October 19, 1995 Page 3

Issues:

- 1. How much of the property needs to be evaluated in the RI?
- 2. Is it prudent to require a GW monitoring well at this juncture?
- 3. How much of the information (which the 10607 Norwalk Bl cleanup project has developed) could help economize this project?
- 4. Is it likely that the proposed borings and sampling protocol will define the vertical and lateral extent of the identified contamination?

Proposed Work Plan:

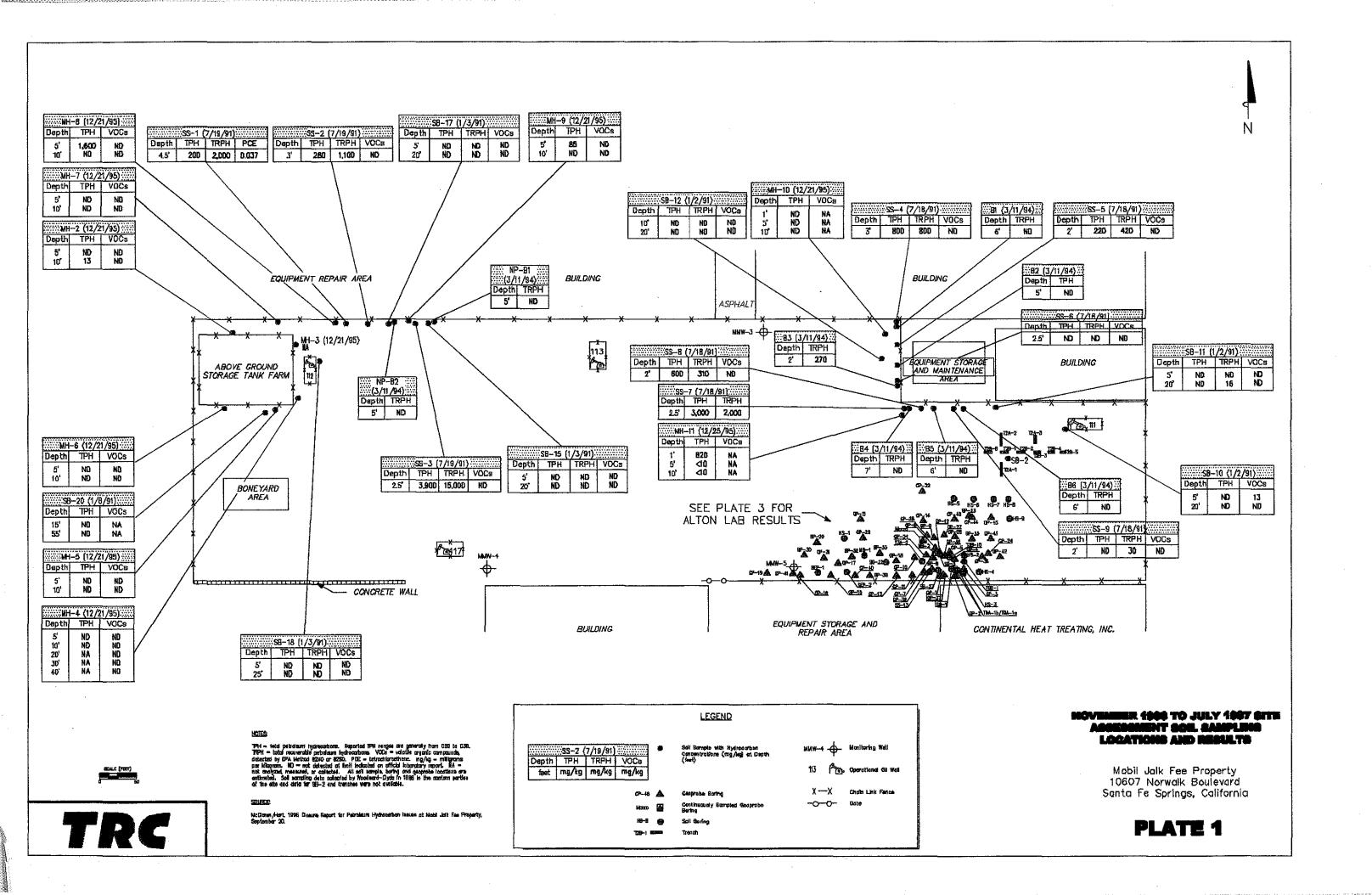

A work plan for the subsurface site investigation of the immediate area of the old vapor degreaser sump was received October 11, 1995.


A review of the submittal was completed and the following are missing or substantially defective for a complete property investigation. However, the workplan is directed only at the specified area in the immediate vicinity of the old vopor degreaser location.

- 1) A review of the historical use and existing information on the nature of the site mitigation problem.
- 2) Justification for the use of EPA method 8010 for sample analysis.
- 3) Justification for depth and array of borings and sampling.
- 4) Evaluation of public health and environmental concerns.
- 5) Investigation of hydrology and land use.
- 6) Justification for not boring to groundwater for the purpose of sampling for the known VOC contaminants.
- 7) A health and safety plan for the proposed investigation.
- 8) Justification for not submitting a work plan for at least one groundwater monitoring well, per RWQCB specifications, considering the underlying lithology of the site.

APPENDIX O

PREVIOUS CONSULTANT'S MAPS SHOWING EQUIPMENT STORAGE AND REPAIR AREA AT CHT PROPERTY



VIET WORKED

FIGURE 2
BIOREMEDIATION TREATMENT
CELL LOCATION
MOBIL JALK FEE PROPERTY
10607 NORWALK BOULEVARD
SANTA FE SPRINGS, CA

CH WE	DATE 10/8/94	LINETS OF CANDIDOS	MAL)
CHECOGIC BY	CATE	CHILDRE CHANGE	MCC.
<u> </u>	10/3/84	Section 1	MIL.
NEGOVER BI	DATE 10/8/84	1000000	
TA.			NUMBER
NCALE.	ACFUA	8-9	4_FIG:2

APPENDIX P

JULY 11, 1978 COUNTY OF LOS ANGELES PROJECT PLANNING AND POLLUTION CONTROL DIVISION NOTICE

COUNTY OF LOS ANGELES DEPARTMENT OF COUNTY ENGINEER PROJECT PLANNING AND POLLUTION CONTROL DIVISION

NOTICE

10 te July 11, 1978

To Mig. TED INDA File	No. I-6585-14
Firm Name CONTINE WATER TOTAL HEAT TOTALLY W.	20 18 No. 4365
Location 10/13 S. Nonwille BLO. SANTAT	E 920-45
Remarks You die HOLEBY INSTRUCTED TO CLEAN THE	
July 18, 1978, ALSO MAINTAINED THE INTESC	•
OPPLATIONG CONDITION AT ALL TIMES.	One and the second contract of the second of
	er av 1919 – er status av samujungum er sams vor sen status i Berlingsmittelijke
	ng ang may ng mga kang mga ang mga ang mga ng mga mga mga mga mga mga mga mga ng mga ng mga kang ng mga ng mga
Please telephone the office indicated below for re	turn inspection:
DEPARTMENT OF COUNTY ENGINEER Harvey T. Brand+, CO	OUNTY ENGINEER
722:866-7011 Ex 7. 253 C. G. Brisley, Jr.,	Division Engineer
16623 S. BEALFLOWER BLVD. BELLFLOWER, CALIFORNIA 30706 By - And J. A.	in 1
BELLFLOWER, CALIFORNIA 30706	O
yd 8 2-75	
	,
	REGION 1H
ADDRESS 10643 S. Norwalk Blvd., SANTA	FE SPRINGS
INDUSTRY CONTINENTAL HEAT TREATING	metri maganasimatan teranturun merentapan makaran pertama pertama pertama pertama pertama pertama pertama pert
SM.D.15.00 No. 6585 I.W.P. 4365 CLASS	201 DISPOSAL CODE 1
FACILITY Nott. 1000	
Fast and of hide ou	tside
LOCATION OF FACILITY East end of bldg. ou	

Violated Connected Howhi

COMPANY REPRESENTATIVE ______
SKETCH OR INSTRUCTIONS_____

Janis Pratt , .

APPENDIX Q

MARCH 16, 1984 COUNTY OF LOS ANGELES DEPARTMENT OF HEALTH SERVICES OFFICIAL NOTICE OF VIOLATION

			Community Her	Los Angeles Department of Health Services Environmental Management		
OFFICE	ADDRESS)	-Att Denn	7 Hudie	DATE 3/	116189	
Todquedo	SuTRE	-447	ADDRESS 10		ORWALL.	· S F.S 90
IBJECT HAZA	XGONT M	Large Land	ADDRESS	from -		<u> </u>
7		-11110 -	- Julean		comments.	
61	From	arun	din	Yeur	5-4	rouge
						-(l-
UNK	~		· · · · · · · · · · · · · · · · · · ·			
						*
	ann ann an bhatan à mailligh an air an bliactaine		purion de la composition della			Annual Control of the
Carta		ired by:				e, Los Angeles
unty Ordinance l	No. 7583/ 🗆		_City Ordinance	No, (Other Code	

APPENDIX R

DECEMBER 8, 1986 CITY OF SANTA FE SPRINGS PUBLIC WORKS INVESTIGATION WORKSHEET

Iľ	V	V	E	ST	IG	AT		N
	1	V		R	(5	HE	EE.	T

12/8/86 8:00

INVESTIGATION BY

John Hunter

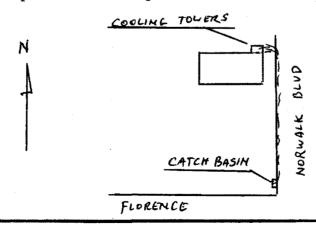
DATE & TIME OF COMPLAINT

12/8/86

Page 1 of 1

	FIRM		COMPLAINTANT
NAME	CONTINENTAL HEAT TREATING	NAME	Aziz
ADDRESS	10643 Norwalk Blvd. Santa Fe Springs	ADDRESS	City of Santa Fe Springs Public Works Department
PHONE	944-8808	PHONE	868-0511 Ext. 244

COMPLAINT:


Above company is discharging industrial waste over the driveway.

REPORT:

Water with vivid blue-green streaks of color was flowing at several gallons per hour into Norwalk Blvd. from Continental's cooling tower area (See Sketch). The water flowed south, where it entered a catch basin at Florence Ave. The concrete was stained green in several areas where high water marks were deposited.

Mr. Ray Cross of Continental stated that a cooling tower pump had broken and the replacement pump was insufficient to handle the flow which caused the towers to overflow. The blue-green color was from a water treatment which is added at one part per thousand, no MSDS could be found, but, Mr. Cross claimed the water treatment contained no chrome and is considered non-hazardous.

Mr. Cross was instructed to (1) berm the cooling tower slab with sand, (2) clean the curb and gutter, and (3) to have the pump repaired or stop the flow immediately. Mr. Cross agreed to this and said the pump would be repaired this afternoon.

	V	VITNESSES — CONTACTS		
	NAME	ADDRES5	POSITION	PHONE
1	Ray Cross	Continental Heat Treating	Maint. Sup.	944-8808

APPENDIX S

OCTOBER 5, 1987 CITY OF SANTA FE SPRINGS PUBLIC WORKS INVESTIGATION WORKSHEET

INVESTIGATION WORKSHEET

	FIRM	COMPLAINANT
NAME	Continental Heat Treating	NAME Violation observed while driving by.
AD DRESS	10643 Norwalk Santa Fe Springs, CA 90670	ADD RES S
PHONE		PHONE

COMPLAINT:

Blue-green water being discharged to the street.

REPORT:

The recent earthquake (10/04/87) had broken several pieces of equipment at this site and a discharge similar to that of 12/08/86 was occurring. Mr. Ray Cross was contacted and instructed to make the necessary repairs immediately.

APPENDIX T

FEBRUARY 23, 1988 CITY OF SANTA FE SPRINGS PUBLIC WORKS INVESTIGATION WORKSHEET

INVESTIGAT.JN WORKSHEET

DATE & TIME OF COMPLAINT
1500
2/23/88
INVESTIGATION BY ON
DAUE KLUCK
2/23/88 1600

FIRM

COMPLAINANT

NAME Continental Heat Treating

" City Hall

ADDRESS 10643 NORWALK BIJO

ADDRESS

PHONE 944 8808

PHONE

COMPLAINT: Discharging I.W. to street.

REPORT: Industrial Waste Water was discharged to the street when the Blow Down water circulation pump froze up. This allowed the Blow Down water to over fill its reservoir and spill Down the Driveway into the street. I.W. water have a pH of 9,0 and a low concentration of an algiride. Notice of violation # 0060 was given to Ray (Ross. At which time he was also requested to submit plans to prevent reture occurances. Plans Due 3/9188. Because the company's project manager is on vacation an prosequent extension till 3/15/88 was granted. Plans to Date include: Oping overflow lines directly to the clarifier D provent installation of a Bern around the Blower/cooling towar.

3 temporary piet Bern and trenches have Been installed to prevent flow to the street.

WITNESSES - CONTACTS

NAME

ADDRESS

POSITION

PHONE

1 11/1/

Mike Bastian Cont. Heat Treating

project manager 9448808

APPENDIX U

MAY 19, 1989 COUNTY OF LOS ANGELES DEPARTMENT OF HEALTH SERVICES NOTICE OF VIOLATION AND ORDER TO COMPLY

L .__COUNTY HEALTH SERVICES HAZARDOUS WASTE CONTROL PROGRAM

	•		•
			. CASE NAME Continental Heat Treature
ME	TIME .	INITIALS	REMARKS
5/19/19	N box	JOJGB (Disdrargo of oil waster.
	•		both ale asshall top
Philipson (Company of the State			and onto soilleswanneron
			rear yard
			5) Untatelled barrels this
•		• •	Mr Futto melica to Contained
			cettres PERCa waste oil
			3) Incomplete manifesto (10
		•	disposal facility stopped coper
			available .
	:	. (4) Leolo Flungs missing on simo
			al waste bands.
			Has value PHLO
7-25-89		M	Manufact 89485618 - 7/10/89 for removed.
			of oil/absitent Mr Baskan.
•			state this was from both the:
			rear area (soil) and aspliable 4.
•			dring ramoules Ill Novlating.
			abated. Facelety has a
	•		Cartinuing problem Dotte mineral
			al diag out on the explicited
			ava. O.
1			

COUNTY OF LOS ANGELES • DEPARTMENT OF HEALTH SERVICES

AZARDOUS MATERIALS CONTROL PROGRAM

		- · · · · · · · · · · · · · · · · · · ·		
Owner Jame	s Stull	01 103	Date	5-19-89
Business CN+1M	ental Hat Trait	THE PARTY OF THE P	Reply refe	
Address 10643	5 Nexual K Blue	少(管理)	2615 Sout	h Grand Avenue, Boom 607
City, Zip Code		Gunoral	(213) 744-	es, CA 90007
	NOTICE OF VI	OLATION AND ORDER TO CO	MPLY	Jumes Odling
Code of Regulation 20, Chapter 6.5,	onditions or practices ob as (CCR), Title 26, Divi (H&S) or both, which rela e. YOU ARE DIRECTED TO C	sion 22 or the Californ te to the disposal, man	ia Health and agement,trans	Safety Code, Division portation, and storage
CORRECTION DIS	SPOSAL: Discontinue the dispos (H&S 25189.5).	al of hazardous waste	to an unautho	rized point(s).
-> 11918 7	(nas 2510).5).	worke or		
	Legally dispose of all h	azardous waste and cont	aminated mate	rials (H&S 25189.5)
		discharged to		
□ 3.	Legally dispose of all s at (H&S 25)		nd contaminat	ed materials located
,C, t. 5/14/89	NAGEMENTY CURWEL 1	1-1 / 12		
6/14 MAI	Submit to this office a	copy of your facility's		
7-1-1	plan and employee traini	ng plan. (CCR 67105, 67	7120-67126, 67	140-67145)
	Services at (916) B. Complete a unifor applicable under S (H&S 25160 and 2514) C. Transport all haz (H&S 25163) Submit to this office a dispose of Keep copies at your fac a minimum of three (3) (CCR 66492) DRAGE: Discontinue the storag permit from the State Store all hazardous wast	entification Number from 324-1781. (CCR 66472) m Hazardous Waste Manifetate Department of Heal 3) ardous waste by a Second of the completed by the completed from 1975 and make document of hazardous waste for Department of Health e in compatible contains	fest or obtate the Services waste manifests, rate available or longer than Services. (Correct which are	Department of Health in a receipt when variance procedures. Tred hauler. (CCR 66328). Treceipts or both for agency review. 190 days without a CCR 66508). Treceipts or both for agency review.
1/1/09	condition. (CCR 66241 -	67243) Keeplids +	- bungsan	=, don't war til
OT!	name and address of pana	rator: bazardous propo		omposition and physical Cubel waste oil
Articoperate	Provide this office w contamination at your fa		et and mitig	gation plan for the
	Anna + la	ally digo	200	sely surface
		y march	yara	
Patture	2.23	A	×	
V	fully comply with this N	(lan	esult in furth andous Materi	un 5

HMCP 2/89

APPENDIX V

OCTOBER 6, 1994 COUNTY OF LOS ANGELES FIRE DEPARTMENT ORDER TO COMPLY

Notice of Violatic and Order to Comp

COUNTY OF LOS ANGELES • FIRE DEPARTMENT
Health Hazardous Materials Division

Health Hazardous Materials Division	
Owner STULL, JAMES G.	14005 385.00/8/94
Address 10643* S. NORWALK	7300 Alondra BI Ste 203 Paramount CA 90723 Office (310) 790-1810
City, ZIP Code JANTA FE SPRINGS	90670 Fax (310) 790-8002
of Regulations (22 CCR, Div 4.5, Ch 10, Sec 66260.1 et seq), and/or H et seq) for which there are civil and criminal penalties. Time grant et seq.	
HAZARDOUS WASTE DETERMINATION Correction Date//	STORAGE AND MANAGEMENT OF CONTAINERS
01 Provide a hazardous waste determination for	Correction Date//
(CCR 66262.11)	Discontinue the on-site accumulation of hazardous waste:
	10 ☐ longer than 90 days without an extension from DTSC (CCR 66262.34(c));
	11 ☐ longer than 90 days after 100 kg has been
DISPOSAL	accumulated (CCR 6626/a3400) 12 longer than 1 year or 90 days after 65 gallons has
Correction Date/_/_	been accumulated at satellite storage.
Discontinue the illegal disposal of hazardous waste	Label the waste container with the following:
and/or extremely hazardous waste to an unauthorized	22 ☐ the words, "HAZARDOUS WASTE" (CCR 66262.34(f));
location (H&S 25189.5):	14 description of contents / hazardous property of
02 trash/dumpster/ground;	waste / generator name and address (CCR 66262.34(f));
03 storm drain;	13 accumulation start date (CCR 66262.34(f)).
04 sewer/septic system with a permit;	Provide hazardous waste containers which are:
05 ☐ unpermitted facility. 06 ☐ Discontinue the disposal of hazardous materials	15 ☐ in good condition (CCR 66265.171); 16 ☐ compatible with waste contents (CCR 66265.172);
containers which are not legally empty (CCR 66261.7)	17 Closed/sealed during storage (CCR 66265.173);
	handled/stored/segregated to minimize waste release/reaction (CCR 66265.177(c));
	19 inspected at least weekly (CCR 66265.174).
	25 \(\subseteq \text{Label hazardous materials properly within 10 days or } \)
	handle as hazardous waste (CCR 66261.2(f)(1)).
EPA NUMBER/PERMITS	26 Store hazardous materials properly within 96 hours or handle as hazardous waste (CCR 66261.2(f)(2)).
Correction Date/_/	20 Properly manage used oil filters (CCR 66266.130).
Obtain the following from the Cal-EPA: 07 □ EPA Identification Number (contact Cal-EPA.	21 Properly manage spent lead-acid storage batteries
07 D EPA Identification Number (contact Cal-EPA, 916-324-1781, for ID number) (CCR 66262.12);	(CCR 66266.81).
08 on-site waste treatment/disposal permit for	
(CCR 66270.1)	
09 cxtremely hazardous waste permit for handling and disposal of (CCR 67430.1)	TANK REGULATIONS Correction Date//
	23 Discontinue storing incompatibles in the same tank
	(CCR 66265.199). 24 Inspect tank and tank equipment daily and document
	in the operating record of the facility (CCR 66265.195).
Authorized rep RAY CROSS Ti	tle MEOHANIC Page 1 of 2
Auth rep signature	spected by LACoFD HHMD • NV1-PAR • v2.5 • 6/93
	P 14042

Notice of Violation and Order to Co y # 9/4/C DBA/Name CONTINENTAL HEAT TREATER	County of Los Angeles • HHMD Owner STULL, TAMES G.
27 Obtain a storage permit for tanks greater than 5,000	the, street and
gallons of hazardous waste (CCR 66262.34(d)).	
28 Provide proper secondary containment for hazardous	
waste tank systems (CCR 66265.193).	MANIFEST/RECEIPTS
29 Provide a written assessment for tank system	Correction Date//
(CCR 66262.192).	50 Discontinue shipping hazardous waste without a
	manifest (CCR 66262.42).
	57 Maintain manifest copy for three years from shipment
DECODE/CEDE/C	(CCR 66262,40).
RECORDKEEPING	51 Maintain completed modified manifest/receipt(s) on
Correction Date / /	site for at least three years (CCR 66263.42).
30 Keep waste analysis/test records for at least three	52 Maintain used oil manifest/receipt(s) on site for at
years (CCR 66262.40(c)). 31 □ Send Biennial Report to DTSC (CCR 66262.41).	least three years (H&S 25250.8). 53 □ Provide manifest copies to DTSC within 30 days
32 Retain copies of biennial and exception reports for at	(CCR 66262.23).
least three years (CCR 66262.40(b)).	54 \(\subseteq \text{Complete all applicable sections of the manifest} \)
1005 till 00 y cars (00k 00202.40(0)).	(CCR 66262.23).
	55 Determine status of waste when TSD facility manifest
***************************************	copy is not received within 30 days (CCR 66262.42).
TRAINING	56 Send Exception Report to DTSC within 45 days
Correction Date//	(CCR 66262.42).
33 Provide a training program (CCR 66265.16).	58 Provide proper documentation for excluded recyclable
34 \(\subseteq \text{Train and supervise personnel within six months of} \)	materials (H&S 25143.10).
hire date and retrain as needed (CCR 66265.16(b)).	((
36 ☐ Keep training records on site (CCR 66265.16(d)).	
37 Maintain training records until closure of facility or	
for at least three years (for former employees)	TRANSPORT
(CCR 66265.16(e)).	Correction Date//
	59 Discontinue shipping hazardous waste by transporters
	lacking an EPA ID No. (CCR 66262.12).
CONTINCENCY DE ANI/DUCINECO DE ANI	60 □ Discontinue shipping hazardous waste to TSD
CONTINGENCY PLAN/BUSINESS PLAN	facilities lacking an EPA ID No. (CCR 66262.12).
Correction Date 16 1944 38 Submit a contingency/business plan (CCR 66265.53(b)).	
39 Complete contingency/business plan (CCR 66265.53(b)).	
40 Maintain copy of plan on site (CCR 66265.53).	
41 🗷 Amend and update plan as necessary (CCR 66265.54).	
42 ☐ Assign Emergency Coordinator to facility	
(CCR 66265.55).	OTHER 42/06/95
SUBMIT UPDATE TO THIS OFFICE	Correction Date
	The state of the s
BY 11/6/94 (NOV 6,1994)	Plan and Report for review (H&S 25244.21).
PREPAREDNESS AND PREVENTION	62 Provide a copy of LDR notice/certification for each
Correction Date/ _/	shipment of restricted hazardous waste (CCR 66268.7).
43 Maintain facility to minimize possibility of fire or	63 Provide a corrective action plan for unauthorized
release of hazardous waste or constituents	releases of hazardous waste or constituents
(CCR 66265.31).	(H&S 25187).
44 Provide an internal communications or alarm system	64 Legally remove hazardous waste/contamination before
(CCR 66265.32(a)).	the closure of the facility (CCR 66265.11).
45 Provide a device capable of calling outside emergency	#63 EVALUATE THE AREA VACINITY
help (CCR 66265.32).	120 W. OF THE EAST WALL AND
46 Provide access to communication/alarm system during	30' S. DE THE NORTH WALL
waste handling (CCR 66265.34).	TOA SAU COURT WILLTIAM DV
47 Provide fire/spill control or decontamination system	ALLON CONTINUATION DY
(CCR 66265.32(c)).	CHURINATED HYDROCHEBON
48 Test and maintain emergency equipment (CCR 66265.33).	SOLVENT
49 Maintain required aisle space (CCR 66265.35).	PROVINE PLAN TO THIS OFFICE
	NO GATER THAN NOV 20, 1994.
Authorized rep DAM CAGAG Title	Page 2 of 2
	// FCHAN/C
Auth rep signatura / cul (coss Insp	LACoFD HHMD • NV1 • v2.6 • 6/93

APPENDIX W

MAY 25, 2006 CITY OF SANTA FE SPRINGS FIRE DEPARTMENT INSPECTION REPORT & NOTICE OF VIOLATION

y of Santa Fe Springs Fire Departn Environme: A Protection Division & Certified Unified Program Agency 11300 Greenstone Ave & Santa Fe Springs & CA 90670 (562) 944-9713 FAX (562) 941-1817

Warmall EHOLL ariog as item

Hurse E ME gocc. CVES CWP

Page 1 of ____

The following items, if applicable, have been inspected. This document constitutes a Summary of Violations and Notice to Comply if the violation (V) column is checked. Reference: Titles 19 and 22 of the California Code of Regulations (CCR), Chapters 6.5, 6.67, and 6.95 of the Health and Safety Code (HSC), and Chapter 97 of the City Code.

Inspector(s) Ereward Kallman				Inspection date ら / とら / ぴっ				
Inspection consent given by Charles Solela				Contact phone number (ちょっ) りくり ーマといく				
HAZARDOUS WASTE GENERATOR				HAZARDOUS WASTE GENERATOR				
	V SUBJECT	REFERENCE		V	SUBJECT	REFERENCE		
<u>l</u>	Hazardous waste generator permit	City Ordinance 97.400	27	1 00	Hazardous waste analysis retained for 3 yrs	CCR 66262.40(c)		
2	EPA ID number (call DTSC 800-618-6942)	CCR 66262.12(a)	28	M	Personnel training for LQG	CCR 66265.16 CCR 66262.34(d), CFR		
3 4	Hazardous waste determination Proper disposal of hazardous waste	CCR 66262.11 HSC 25189.5(a)	30	\vdash	Personnel training for generators of waste Contingency plan for LQG	CCR 66265.51		
5	Reckless management of hazardous waste	HSC 25189.5(a)	31		Emergency preparedness/prevention	CCR 66265.30		
6	Hazardous waste labeling	CCR 66262.34(f)	32	1997	SB14 requirements for LQGs	CCR 67100.3		
7	Hazardous waste accumulation time	CCR 66262.34(a-d)	33	1	Biennial report for RCRA LQGs	CCR 66262.40		
8	Retrograde/speculative accumulation	CCR 66262.10	34		Excluded recyclable material management	HSC 25143.29		
9	Satellite accumulation	CCR 66262.34(e)	35		Recyclable material report	HSC 25143.10		
10	Containers leaking or not in good condition	CCR 66265.171	36	-	Proper management of Universal Waste	CCR 66273		
11	Hazardous waste container closed	CCR 66265.173(a)	37_	rΛ	Other hazardous waste violation(s)	TOTALTICO TATANI		
12	Separation of incompatibles	CCR 66265.177		ļ	HAZARDOUS MATERIALS BI	· · · · · · · · · · · · · · · · · · ·		
13	Management of empty containers	CCR 66261.7	38		HMBP established and filed	HSC 25503.5		
14	Used oil management	CHSC 25250.4	39		Inventory and plot plan accurate	HSC 25509 Ch. 6.95, HSC		
15 17	Used oil filter management	CCR 66266.130	40	-	Owner/operator information accurate INDUSTRIAL WAS			
18	Contaminated textile management Container storage inspection – weekly	HSC 25144.6	42	+-+	Discharging industrial waste w/o a permit	City Ordinance, Ch. 97		
19	Tank inspection – daily	CCR 66265.174 CCR 66265.195	43	-	Other violation(s)	City Ordinance, Cir. 97		
20	Tank inspection – dany Tank operating requirements	CCR 66265.194	- 1 43	σ	STORM WATER			
21	Hazardous waste transported w/o manifest	CCR 66262.20-23	44	1000	Storm water permit required (GIASP)	City Ordinance, Ch. 52		
22	Hazardous waste manifest complete	CCR 66262.23(a)	45	050	Failure to implement BMPs	City Ordinance, Ch. 52		
23	Manifest copies to DTSC	CCR 66262,23(a)(4)	-	1	ABOVE GROUND PETROLE			
24	Manifest copies retained for 3 years	CCR 66262.40(a)	46	0	SPCC plan complete per requirements	CHSC 25270.5(c)		
25	Consolidated manifest requirements	HSC 25160.2	ii		UNIFORM FIRE CO			
26	LDR documents retained onsite	CCR 66268.7(a)(6)	47		Uniform Fire Code	Uniform Fire Code		
No hazardous waste violation(s) observed on date of inspection Notice to Comply: The violation(s) must be corrected by Return "Certificate of Compliance" \$ Fee after this date Attention: The item(s) checked are in violation. A re-inspection may occur at any time to verify compliance. Non-compliance could result in re-inspection fees, permit revocation, and/or administrative/civil/criminal penalties. Any time granted for correction of the violation(s) does not preclude any enforcement action by this Department or other agencies. The giving of this notice								
3020170070	cent inspection of your facility is not a representation by the		destroyer and a second	COLUMN TO SERVICE SERV	. (*	Y.IEC		
	am(s) inspected: HMBP HWG TP							
•					CA ONLY [RECYCLER [CESQG SI	lver L SPG		
Inspe	ction Category: 🗌 Single Program 🖫 Combined	🗌 Joint 🌋 Integrate	ed/Multi-N	/ledia	Number of	Employees: 🏊 🏻 🛇		
Notes	: Ph 5-25-06 Cardinan	1 L L L - L - L - L - L - L - L - L - L	vikas	A.	was inecited. From	AL Vest		
	1 1 1	N -	. 1	200 M		7.46 0-550		
and 3r	este wetal parts and	does copp	re by		with our months boards.			
			•					
-		-25 Chenson			5.16 by not harme a -1 Quantity Generators (1	terming baseom		
						~ · · · · · · · · · · · · · · · · · · ·		
	teenthy must implement a	Explosion Chr.				vaws 0		
1	rational Waste, there	61, Stortally	o our	<u>~~</u> ~	from and a descript	ent to rec		
**************************************	structured announce	- D Avendan	town	`AAa	Exposer that weather !	OG requirements		
	8 2000 8 11		11/2000 387	Val.	the Course was was in	S. C.		
	my beginning of the safety of pm	d with with d	ALFO .					
	· · · · · · · · · · · · · · · · · · ·							
2007000				3001/P1				
	read and understand the above stated violations. A the required or requested information.	fter these violations have	been corr	ected	I will sign and return the "Certification of Co	mpliance" form and submit		
Sign	ature of responsible party		Print name)	/ -	Date		
11	Wellic Vil	1,	(1 h.	N	he SoTelo	5-25-06		
				-	1 - 20, 270			

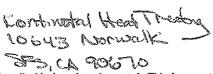
ty of Santa Fe Springs Fire Departme Environmental Protection Division & Certified Unified Program Agency 11300 Greenstone Ave Santa Fe Springs CA 90670 (562) 944-9713 FAX (562) 941-1817

INSPECTION REPORT & NOTICE OF VIOLATION

BUSINESS SITE ADDRESS annell Efford CONTACT Char INSPECTED BY DATE INSPECTED 105- Emil - 2

Reference: Titles 19 and 22 of the California Code of Regulations (CCR), Chapters 6.5, 6.67, and 6.95 of the Health and Safety Code (HSC), and Chapter 97 of the City Code.
52. Controlly Heat Treating must ensure their waste winimistation plan
(Serrelan) = up to date in accordance with 222-ce (21003)
Freithy has plan on site, but it oppears it was last ipstated in
११९९
37. Continendal Heat Treating unlabed Decelerzist, 175 (b)(5) by having
the chief estimation was end and proper copyed ment in season hope
The condain contrainment which the Petrould as and by as possible and
operpristely manage spilled makeral week pump and continuously and
appropriately was ago spilled make and waste,
43 Card neorbal blood Treature and obed City Ordinance Chapter 52 by hours
Oil on true 3ed story. I have charifer on much be removed from the Clarifier and mandenned such that Oil of topt and of the sense
Clarifier and mantained such that Oil 5 topt out of the sener
Englishme.
44 Contracted Heat-Treature much ensure treer starminates pollution presentions plan is up to date. The plan on site is as dated 1997. Dresue plan is accorded and stall meets regulating requirements.
plan is up to date. The plan on site isse of the I'll. Drawe plan is
accounts was still meet reduping who was a
as it is a second of the desired of the second of the seco
46. Hoservation: Continential Heat Treating has in excess of 1,320 Zallina of polioleum products stored storeground. Facility is subject
Sund of helicum traduct aund mandhania. La cold is twolers
Es Face 100 remembers
•
Cand Ordature by 6-25-de
Adams Co-O
5-25-06
·

APPENDIX X


MAY 9, 2007 CITY OF SANTA FE SPRINGS FIRE DEPARTMENT INSPECTION REPORT & NOTICE OF VIOLATION

City of Santa Fe Springs Fire Department

Environm Protection Division © Certified Unified P am Agency 11300 Greenstone Ave Santa Fe Springs © CA 90670 (562) 944-9713 FAX (562) 941-1817

INSPECTION REPORT & NOTICE OF VIOLATION

Page 1 of

		wing items, if applicable, have been inspecte : Titles 19 and 22 of the California Code of Regul							
Ims	nerí	or(s) Richard Kally	ΔιΔο		***********	Inspection date	3/0	1 /07	
Inspection consent given by Charles Stell					Contact phone number (をかえ) くくととうかいが				
пянэ		HAZARDOUS WASTE GENE			20000	HAZARDOUS WAST			
ļ	V	SUBJECT	REFERENCE		Īν	SUBJECT	E GENERA	REFERENCE	
<u> </u>	V	Hazardous waste generator permit	City Ordinance 97.400	27	· V	Hazardous waste analysis retaine	d for 3 yrs	CCR 66262.40(c)	
2	 	EPA ID number (call DTSC 800-618-6942		28		Personnel training for LQG	1101 5) (3	CCR 66265.16	
3	+-+	Hazardous waste determination	CCR 66262.11	29	-	Personnel training for generators	of waste	CCR 66262.34(d), CFR	
4	+	Proper disposal of hazardous waste	HSC 25189.5(a)	30		Contingency plan for LOG	or waste	CCR 66265.51	
5	-	Reckless management of hazardous waste	HSC 25189.6	31	†	Emergency preparedness/prevent	ion	CCR 66265.30	
6		Hazardous waste labeling	CCR 66262.34(f)	32		SB14 requirements for LQGs		CCR 67100.3	
7	M	. Hazardous waste accumulation time	CCR 66262.34(a-d)	33		Biennial report for RCRA LQGs		CCR 66262.40	
8		Retrograde/speculative accumulation	CCR 66262.10	34		Excluded recyclable material man	nagement	HSC 25143.29	
9		Satellite accumulation	CCR 66262.34(e)	35	3	Recyclable material report		HSC 25143.10	
10		Containers leaking or not in good condition		36		Proper management of Universal		CCR 66273	
11		Hazardous waste container closed	CCR 66265.173(a)	37	•	Other hazardous waste violation(
12		Separation of incompatibles	CCR 66265.177			HAZARDOUS MATI	<u>ERIALS BU</u>	ISINESS PLAN	
13	l	Management of empty containers	CCR 66261.7	38		HMBP established and filed		HSC 25503.5	
14		Used oil management	CHSC 25250.4	39	0	Inventory and plot plan accurate		HSC 25509	
15		Used oil filter management	CCR 66266.130	40	<u> </u>	Owner/operator information accu		Ch. 6.95, HSC	
17		Contaminated textile management	HSC 25144.6			INDUST	RIAL WAS		
18		Container storage inspection - weekly	CCR 66265.174	42		Discharging industrial waste w/o	a permit	City Ordinance, Ch. 97	
19		Tank inspection - daily	CCR 66265.195	43	0	Other violation(s)			
20		Tank operating requirements	CCR 66265.194	₩			M WATER		
21	ļ	Hazardous waste transported w/o manifest	CCR 66262.20-23	44		Storm water permit required (GIA	ASP)	City Ordinance, Ch. 52	
22		Hazardous waste manifest complete	CCR 66262.23(a)	45	ļ	Failure to implement BMPs		City Ordinance, Ch. 52	
23	1	Manifest copies to DTSC	CCR 66262.23(a)(4)		ļ	ABOVE GROUND I			
24	-	Manifest copies retained for 3 years	CCR 66262.40(a)	46	-	SPCC plan complete per requirem		CHSC 25270.5(c)	
25 26		Consolidated manifest requirements	HSC 25160.2	47	1		M FIRE CO	Uniform Fire Code	
<u> 20</u>	<u> </u>	LDR documents retained onsite hazardous waste violation(s) o	CCR 66268.7(a)(6)	!!!	O	Uniform Fire Code	1	Uniform rife Code	
Atten admi	Re1	tice to Comply: The violation(s turn "Certificate of Compliano The item(s) checked are in violation. A re-inspr ive/civil/criminal penalties. Any time granted for inspection of your facility is not a representation by	ection may occur at any time to ve correction of the violation(s) does no	rify con	nplian de any	enforcement action by this Department			
Ргод	ram(s) inspected: X HMBP X HWG 🖂 TF	PBR RECYCLER	□ U	ST	ACAL ARP X SPCC X S	w X rw	X UFC	
1						CA ONLY [RECYCLER [ver [SPG	
		n Category: Single Program 🔏 Combi					Number of I		
					SEATON S				
Note	s: (m 5-9-07 Combine	inted Head Treat	Ma	٠.,	es inspected. Fa	<u>cestory</u>	essilitus.	
7) ~A.F	naces to heat treat of	ports and coop	السيوج	Ыe	ches whom parts	<u>sas y</u>	<i>oell</i>	
			A	· 	·				
<u>"1,</u>	<u>(</u> 2	ndinandal Heat Treat				observed ME.Sassac	مر لتكهد		
<u> </u>	75	ran allowed. 1 x SS go	With Arum of wall	Life !	£3.	there was Stored	My Fir	e Pleating	
<u> </u>	820	sortmant Thomas area	. The down ha	2 so	A	accumulation &	mort di	the of	
	11	Lestrenord Contonented	Heat Treatme	MANS	4	staris snotes har	C	are thom	
	ે(dern unless waster	storage meaters	15Q	13	to decision to	C/011	remarks.	
			123 25 7	~		N. Commission of the State	2-3-D		
200	^	onto rental Heat Tre	1.6.1.2.1.2.2.	0	۸ ،	160 20112 14 1			
35:59	<u>. </u>		patrolary mite	24	<u></u>	15c 25143 10 b	1	completing	
-	<u> </u>		port This regar	1	<u> 1</u>			my pressy Assur	
	<u>y</u>	7	in 2 201 Contin			, ,	tens.	<u>conficte</u>	
~	11111111111111111111111111111111111111	tweeter from frogen co		2000/06/02/05/20	\$22 NOTES	- itmontosa			
		d and understand the above stated violations required or requested information.	. After these violations have be	en corre	ected	, I will sign and return the "Certific	ation of Con	npliance" form and submit	
THE COLUMN TWO		re of responsible party	Pri	ny name	· /		I	Date	
1/2		10000	XI	// 24	L	1 Sole10		5-10-07	

ty of Santa Fe Springs Fire Departr t Environmental Protection Division & Certified Unified Program Agency 11300 Greenstone Ave Santa Fe Springs CA 90670 (562) 944-9713 FAX (562) 941-1817

SITE ADDRESS E4401 * Shevrock CONTACT Charles Sotel INSPECTED BY DATE INSPECTED S.Q.O.

Reference: Titles 19 and 22 of the California Code of Regulations (CCR), Chapters 6.5, 6.67, and 6.95 of the Health and Safety Code (HSC), and Chapter 97 of the City Code.
39. Continental Heat Treating wicked USC 25509 by not housing am
accurated business plan inventory on site A cylinder of nitragen Naydragen gas used by the ZE unit was not listed and as well as welling
Sas was a by the 26 Mat was that listed as well as melding
gas Continental Heat Trating must determine of the quantity of these waterals requires on a oriental inventory form to be Submitted updates
Shall be send to the Fire Department.
43. Condinantal Head Treature instabile City Code 97.60 section 20,30,610 by
failing to Maintean pretreatment & inposent in good isouting order. The Tourd Stage of the Clarker had git in it. Can't number Heat Treating
the found stage of the court of the Athense there is a second
must maintain to clarifier to prevent oil from emboring the sensor
Signed Am
47A Contracted Hest Treating protected USC-80014.7 by not maintaining
Atte between return welf at retire mater is keep in towngrings
Furnace NZ was found to be leaking ammonia. Continental Heat
Treating must stop the annual a leak and ansure equipment is
mantarial to grewnt leaks.
478 Contracted Heat Tocating weekered CCC 8001.118 by houng managentable
Motorale street forther. Ands to Breeze were storand to their in the
Estarge onea for the pleting department in importable material must be
Separated by 20 Feat of a non-combustible partient,
· · · · · · · · · · · · · · · · · · ·
Other Contracted Host Treating watched 19 CCR 2755. 6 by not completing
a Colder self Andit. Soft Amedits are required to be completed
emy three years. The CalARA was introlly submitted 4-29-04,
so the and was suctobe completed by 4-29-57. Continental theat
Treating must complete the and and and a copy of the and it
results to the Fire Department.
Course Ordodone by 6-10-09
Ali (Charle SoTelo 5-10-07
Sonother Dame : Date

APPENDIX Y

MAY 8, 2012 CITY OF SANTA FE SPRINGS FIRE DEPARTMENT INSPECTION REPORT & NOTICE OF VIOLATION

Santa Fe Springs Department of Fire-Rescue Environmental Lection Division & Certified Unifical Program Agency 11300 Greenstone Ave. Santa Fe Springs & CA 90670 (562) 944-9713 FAX (562) 941-1817

INSPECTION REPORT & NOTICE OF VIOLATION

Business name

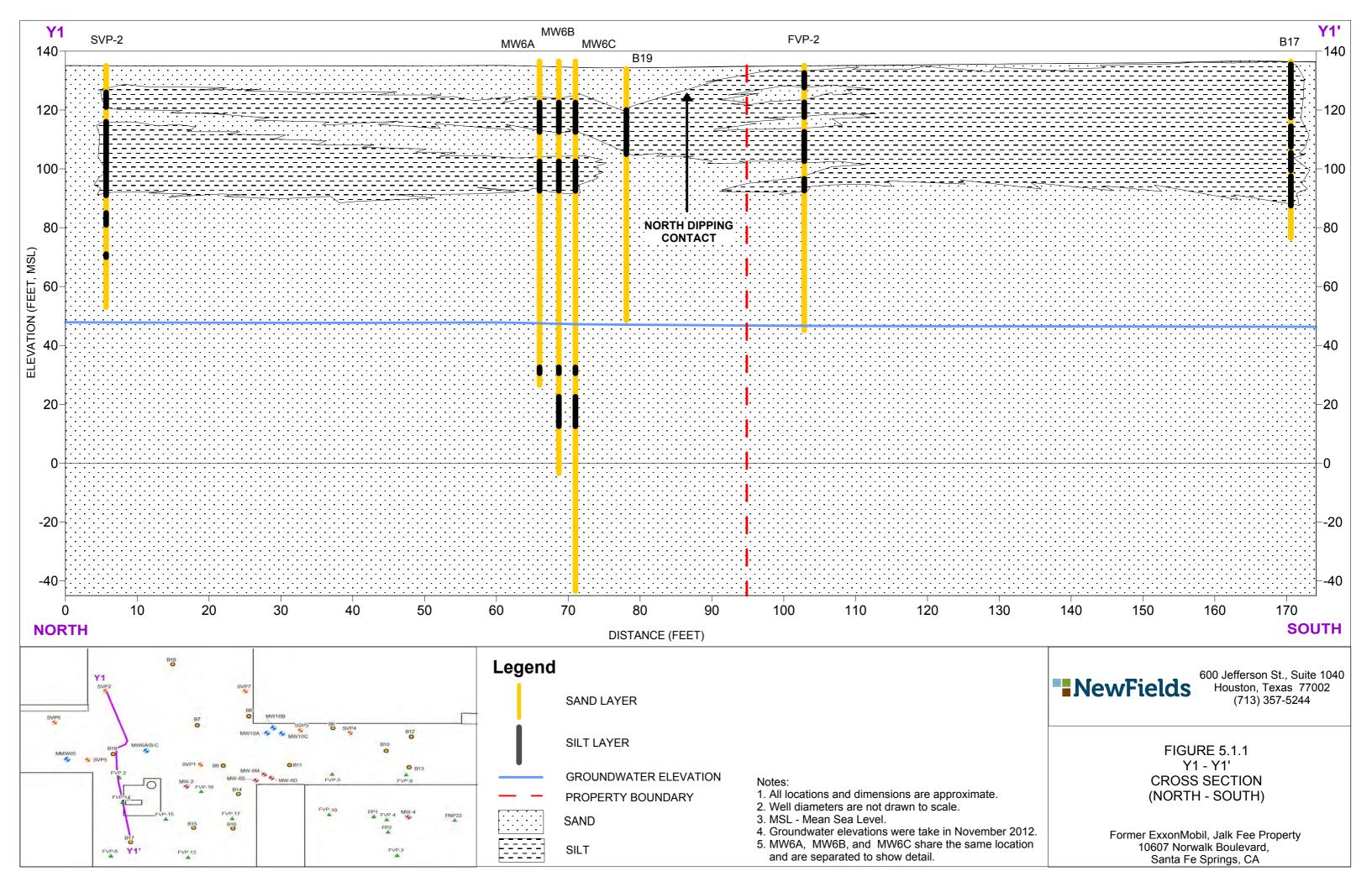
Cardnental Heat Trading

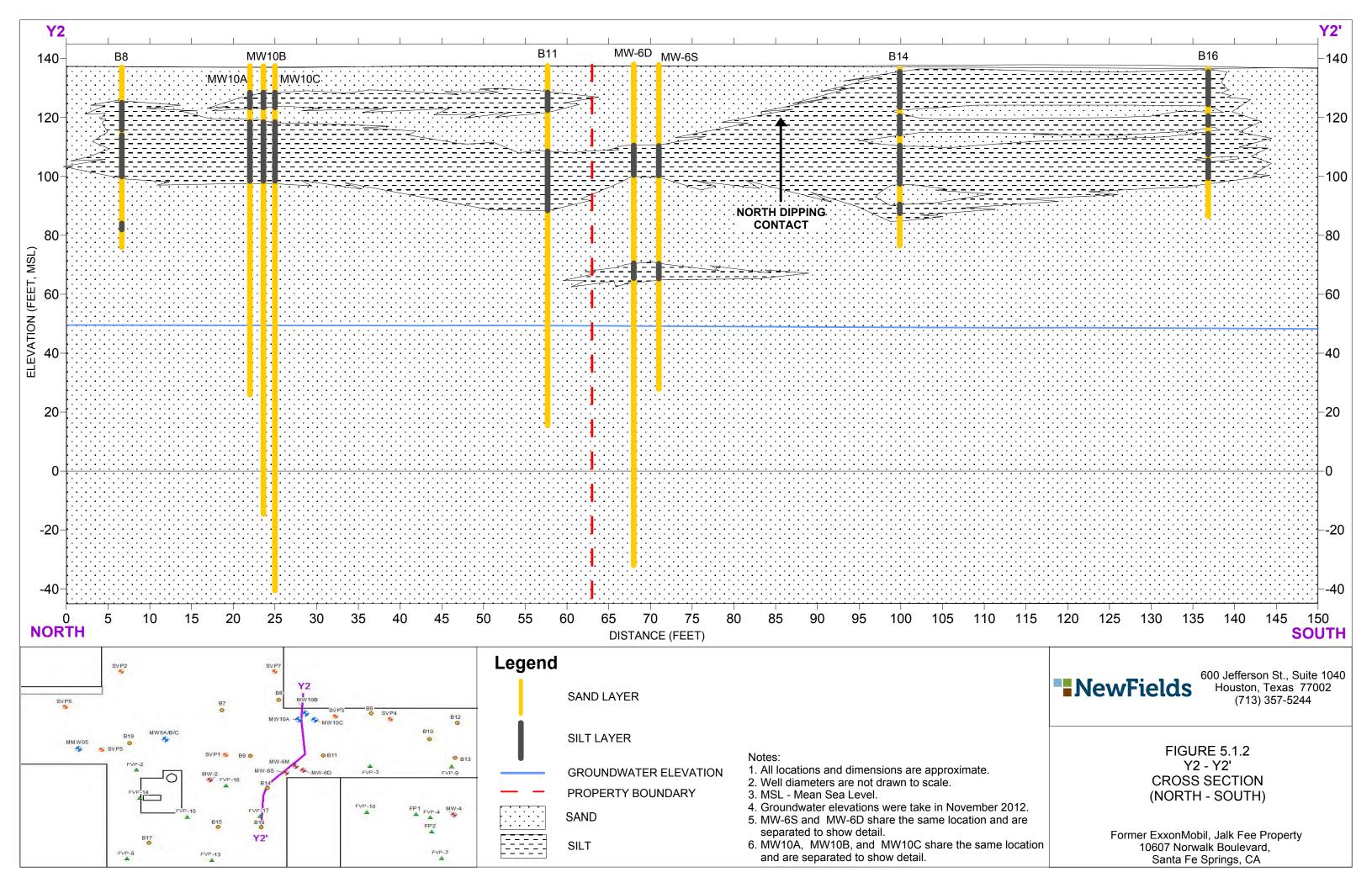
Address

10643 Romande

CAPEL VIDE LOG HINELOGI

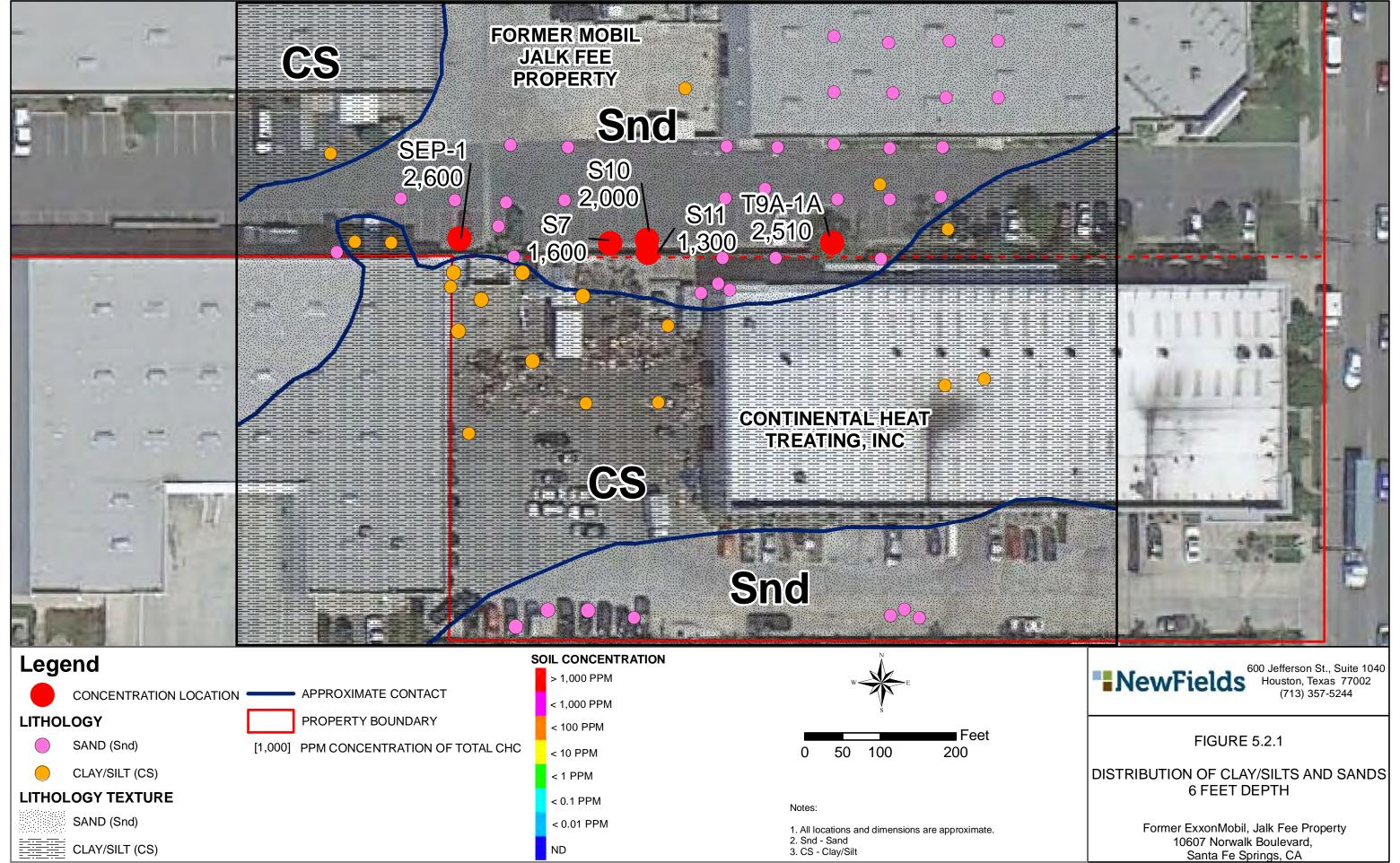
Page 1 of 1

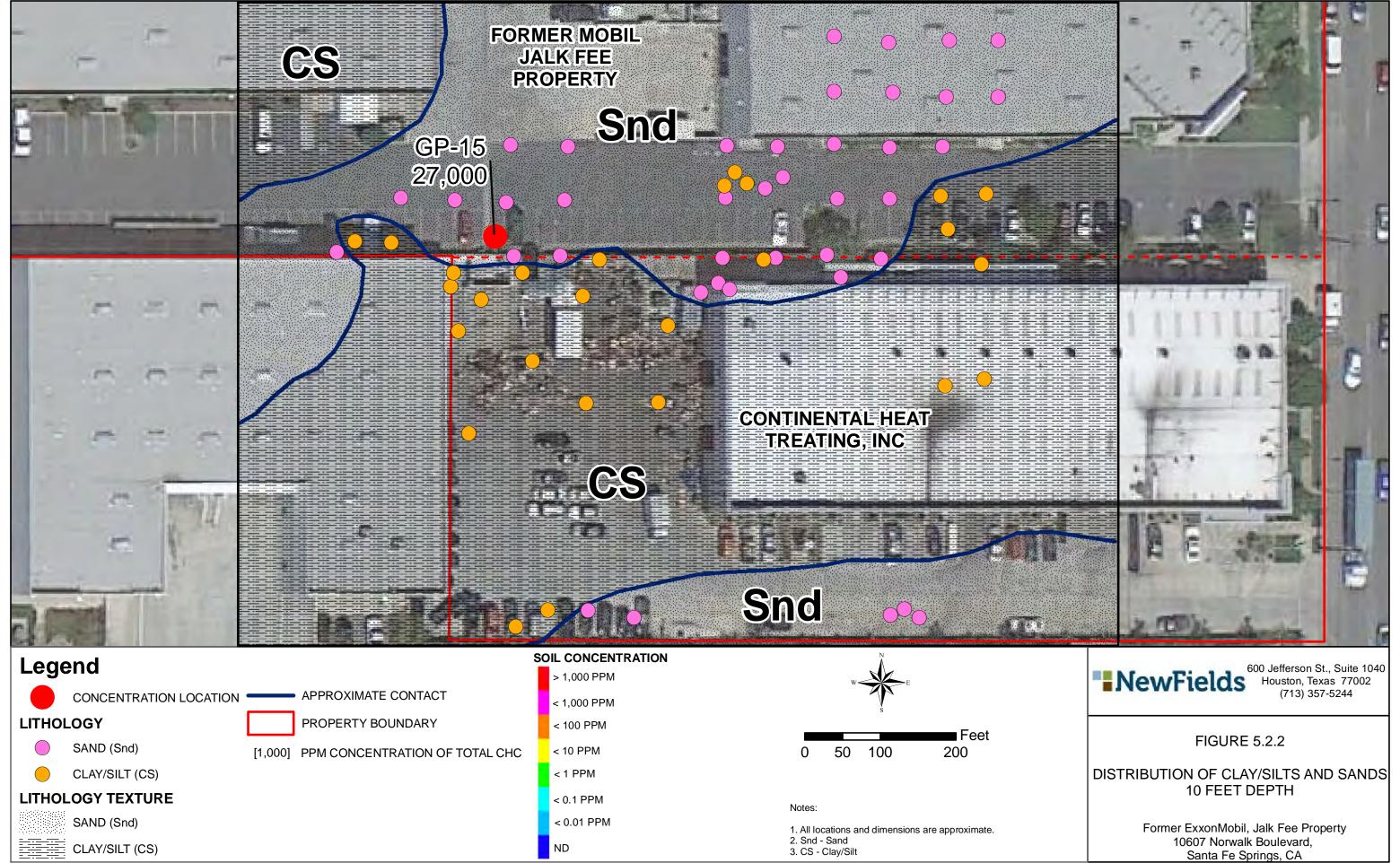

Santa Fe Springs, CA 90670

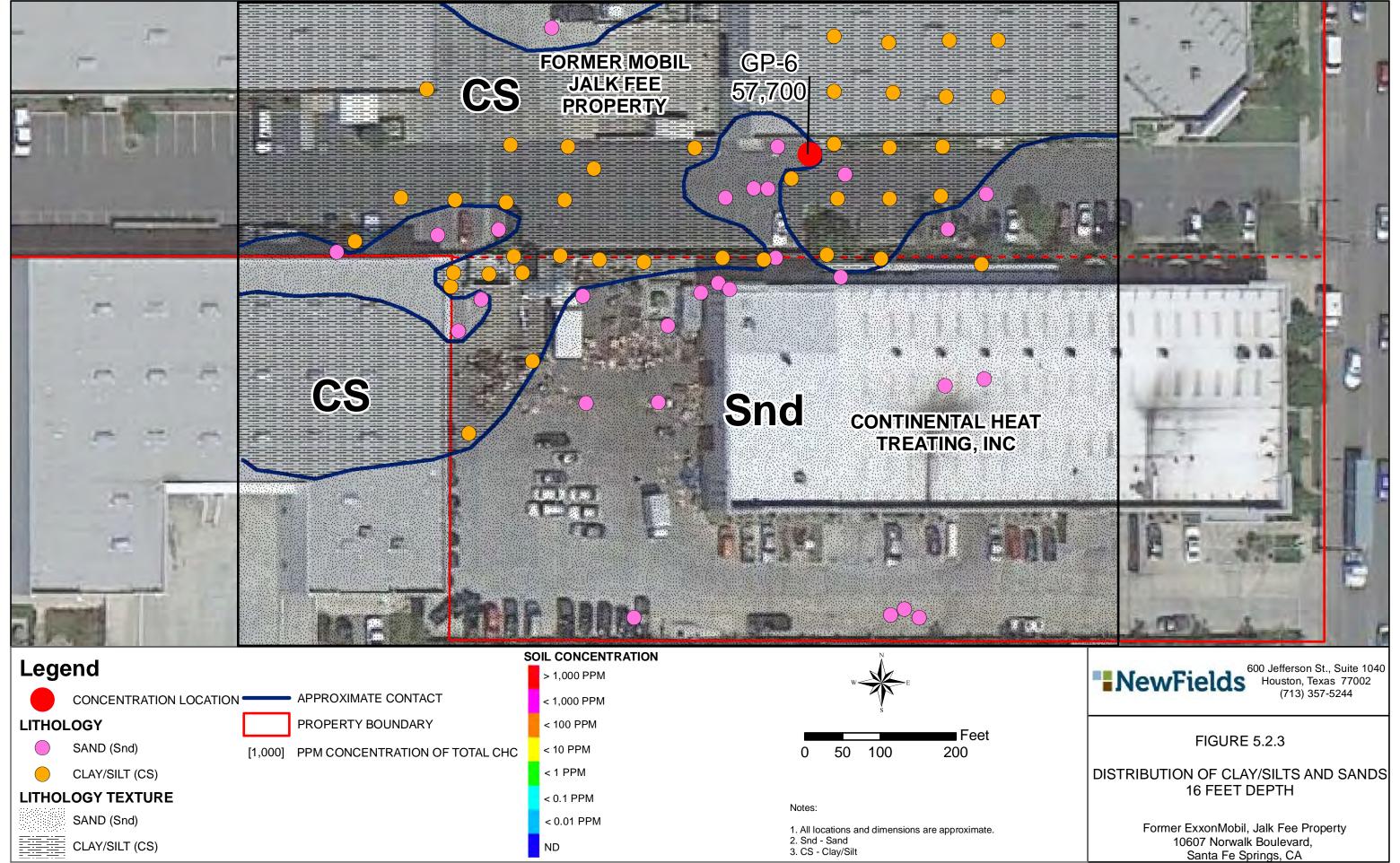

The following items, if applicable, have been inspected. This document constitutes a Summary of Violations and Notice to Comply if the Violation (V) column is checked. Reference: Titles 19, 22, and 23 of the California Code of Regulations (CCR), Chapters 6.5, 6.67, 6.95 of the Health and Safety Code (HSC), The California Fire Code and Chapter 97 of the City Code.

	Section 2	and Chapter 97 of the City Code.			a de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición dela composición de la composición dela c										
Ins	oec	tor(s) Kretwal Eullman	2200000			Inspection date 5/									
Ins	pec	tion consent given by Charive	Sitelo	-1-01040444	eninipoenin	Contact phone number (56	2) 944-8806								
		HAZARDOUS WASTE GENERA				HAZARDOUS WASTE GENERA	TOR								
	V	SUBJECT	REFERENCE	ļ	TV	SUBJECT	REFERENCE								
1		Hazardous waste generator permit	City Code 97,400	26	† '	Contingency plan for LQG	CCR 66265.51								
2		EPA ID number/CA Waste ID number	CCR 66262.12 (a)	27	†	Emergency preparedness/prevention LQG	CCR 66265.30								
3		Hazardous waste determination	CCR 66262.11	28		SB14 requirements for LQGs	CCR 67100.3								
4		Proper disposal of hazardous waste	HSC 25189.5 (a)	29	1	Excluded recyclable material management	HSC 25143.29								
5		Reckless management of hazardous waste	HSC 25189.6 (a)	30		Proper management of Universal Waste	CCR 66273.13								
6		Hazardous waste labeling	CCR 66262.34 (f)			HAZARDOUS MATERIALS BU	SINESS PLAN								
7		Haz Waste/Satellite accumulation time	CCR 66262.34 (a-d)/(e)	31	ļ	HMBP established, implemented, filed	HSC 25503.5								
8		Retrograde/speculative accumulation	CCR 66261.2 (d)	32	ļ	Minimum standards for business plans	CCR 2729								
9		Hazardous waste containers closed	CCR 66265,173 (a)			INDUSTRIAL WAS	·								
10		Containers mislabeled, deteriorated, etc.	CCR 66262,2 (f)	33	 	Generating industrial waste w/o a permit	City Code, Ch. 97								
11	<u> </u>	Container storage inspection - weekly	CCR 66265.174	ļ	 	CALIFORNIA FIRE C	<u> </u>								
12		Management of empty containers	CCR 66261.7	34		Maximum allowable hazardous materials	CFC 2703.1.1								
13		Used oil management	HSC 25250.4	35	ļ	Separation of incompatible materials	CFC 2703.9.8								
14		Used oil filter management	CCR 66266,130	36	ļ	Secure compressed gas cylinders	CFC 303								
15	_	Contaminated textile management	HSC 25144.6	37	ļ	Fire protection system maintenance	CFC 901.6.1								
16		Tank inspection – daily	CCR 66265.195	38	 	Service and tag kitchen hood system	CFC 904.11.6.4								
17		Tank operating requirements	CCR 66265.194	39	ļ	Clearance from electrical control panels	CFC 605.3								
18	M	Manifest general requirements	CCR 66262,20-23	40_	 	Exits free from obstructions	CFC 1028								
19 20	-	Manifest completed Consolidated manifest requirements	CCR 66262.23 (a) HSC 25160.2	41	1	STORM WATER Storm water permit required (GIASP)	City Code, Ch. 52								
21		Manifest copies retained for 3 years	CCR 66262.40 (a)	42	-	Failure to implement BMPs	City Code, Ch. 52								
				72	 		City Code, Cit. 52								
	22 Biennial report for RCRA LQG CCR 66262.40 (b) CALARP 23 Hazardous waste analysis refained 3 years CCR 66262.40 (c) 43 CalARP required 19 CCR 2745.1 (b)(3)														
	23 Hazardous waste analysis retained 3 years CCR 66262.40 (c) 43 CalARP required . 19 CCR 2745.1 (b)(3)														
25	24 Personnel Training Plan for LQGs CCR 66265.16 OTHER VIOLATION														
Droc		s) inspected: 웹HMBP 웹HWG 디TP (202000000000000000000000000000000000000	A STATE OF THE OWNER,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
		-i													
Insp	ectio	n type: ⊠Routine 🗆 Other HWG Status:	: ☐ RCRA LQG SELNon RCI	RA LQ	G 🗆	RCRA SQG CA ONLY RECYCLER D	CESQG Silver [] SPG								
Insp	ectio	n Category: 🛘 Single Program 📽 Comb	oined 🖫 🗓 Integrated/Mui	ti-Mec	ia	Number of	Employees: 50								
	STATE OF THE PARTY.		1 1 1 1 1	eggine Carte galleriere K	4 ;	1 1 1	1 1								
Note	:5:_	on 5/8/12 Continu	mad theat	1.63	J. 1962	y was more stad Envi									
á. em	الم	or webs out out	here a me	olo	4.0	and Long									
	<u> </u>	A Transfer Sea	2002 OF 12 14 15 11C	day.	3.4										
L															
15-5		Centurantal Heat Tra	le adolone and	نـالات	Э-∕-	erzer on hund hamm	a <2000 d								
		^	· · · · · · · · · · · · · · · · · · ·				·· • • • • • • • • • • • • • • • • • •								
	<u> </u>	ed technology to para	<u> </u>	1 1 m	10	achon inust obtain a cop	N of Fire								
	درع	- and was lester folk	man dear actions	.	Mark Section	<u>.</u>									
 	***	-RACTOT AS TO WESTER ASK	(WAS SHAMA)	<u>کتنہ</u>	1) Fr. CAL	7									
					<u> </u>										
ધું ખુ	4	Carolmental block Treet	betwien in	~7.n.	2,7	inistenses for pot 013.	a hand I								
- 4	- -	- NAPANETA DESMINATION	2 020/32FG	المرز ووس	يود	1.000 EIG 0000 Manifernion	of married								
	€,	was trenterentong stea	soult, downer	- 6-32	<u> </u>	or in the Clerkier	Greather must								
	-		· · · · · · · · · · · · · · · · · · ·	1	۵		4								
		some and are are	bushing was	o bil	<u> </u>	The expression of									
	o h	azardous waste violation(s) obse	rved on date of inspe	ction											
N Lak	oti	ce to Comply: The violation(s) mu	st be corrected by	meesteeteen O	Andrews Andrews										
		rn attached "Certificate of Compli	• (marine.	1-12-1									
		The item(s) checked is (are) in violation. All		A re-	lnsoe	ection may occur at any time to verify complian	nce. Non-compliance								
could any e	rest nfor	It in re-inspection fees, permit revocation, and tement action by this Department or other age Springs that no other violations exist on your p	d/or administrative/civil/crimencies. The giving of this not	inal pe	naltie	es. Any time granted for correction of the viole	ation(s) does not preclude 🎚								
Rece				it nar	ne		ate-/5//2								

APPENDIX Z

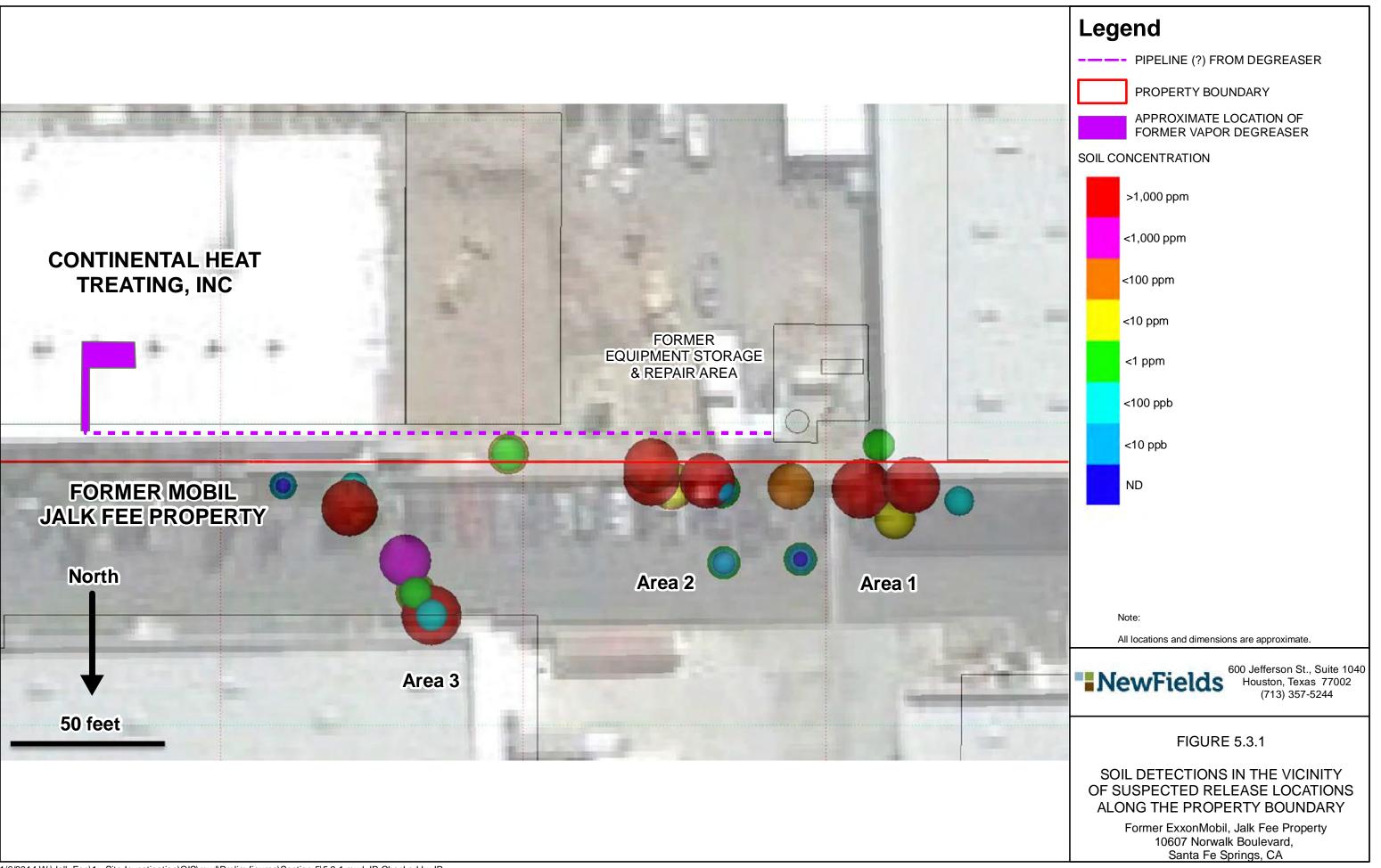

JANUARY 2014 NEWFIELDS FIGURES 5.1.1-5.1.2

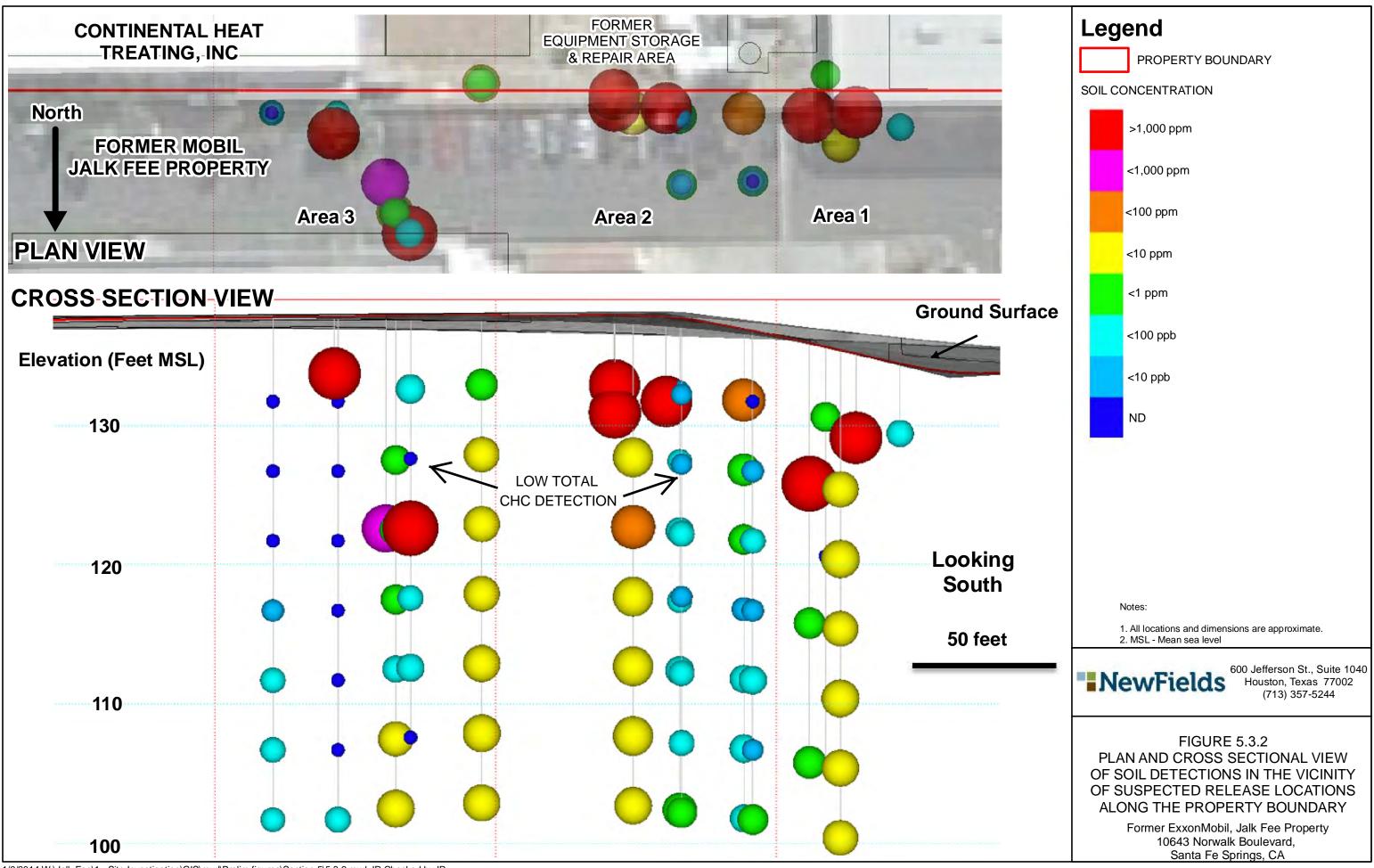




APPENDIX AA

JANUARY 2014 NEWFIELDS FIGURES 5.2.1-5.2.3





APPENDIX AB

JANUARY 2014 NEWFIELDS FIGURES 5.3.1-5.3.2

APPENDIX AC

CHC CALCULATIONS AND PREVIOUS CONSULTANTS' SOIL
DATA

TABLE 1

TOTAL CHLORINATED SOLVENT CONCENTRATION CALCULATION FORMER EXXONMOBIL JALK FEE PROPERTY 10607 NORWALK BOULEVARD SANTA FE SPRINGS, CALIFORNIA

Cardno ERI 1155

				Cis-1,2-	TOTAL
Sample	Depth	PCE	TCE	Dichloroethene	CHC
Number	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Samples collecte	d by various cons	sultants.			
EX2-26(A)	6.0	0.68	0.035	NA	0.715
EX2-26	15.0	308	28.1	14.7	350.8
T9A-1A	4	2500	10	7.0	2517
GP-6	5	0.045	0.055	0.23	0.33
GP-6	10	ND	ND	0.021	0.021
GP-6	15	55000	2700	2100	59800

EXPLANATION:

mg/kg = milligrams per kilogram

CHC = chlorinated hydrocarbon concentration

NA = not analyzed

ND = not detected

PCE = tetrachloroethene or perchloroethene

TCE = trichloroethene

Table 1

RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES

June 9 through June 22, 1998

Mobil Jalk Fee Properties

=====				sec-	tert-	Iso	p-Iso		n-	1,2,4-	1,3,5-			cis-1,2-	(rans-1,2-							
				Butyl	Butyl	propyl	propyl	Naphth	Propyl	Trimethyl	Trimethyl	6 -	m,p-	Dichloro	Dichloro		Ethyl		Methylene	Vinyl		
Boring	Sample	Depth	TRPH	benzene	benzene	benzene	toluene	alene	benzene	benzene	benzene	Xylenes	Xylenes	ethene	cthene	Toluene	benzene	Benzene	Chloride	Chloride	PCE	TCE
Number	Date	(fbg)	(ppm)	(քքի)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(քքե)	(քբն)	(ppb)	(ppb)	(ppb)	(ppb)	(քքե)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
EX1-1	6/9/98	5.5	ND				· ·				74		**		ND		==		ND	ND	200	ND
EX1-2	6/9/98	5.5	ND												ND				ND	ND .	130	ND
EX1-3	6/9/98	5.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EX1-4	6/9/98	6.5	ND												ND			_	ND	ND	100	ND
EX1-5	6/10/98	5,5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND
EX1-6	6/10/98	5.5	ND				**								ND	**			ND	ND	240	ND
EX1-7	6/10/98	11.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EX1-8	6/10/98	11.5	ND							••		**			ND				ND	ND .	150	ND
EX1-9	6/10/98	11.5	ND												ND		***		ND	ND	54	ND
EX1-10	6/10/98	11.5	ND												ND			••	ND	ND	170	ND
EX1-11	6/11/98	6.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	.ND	ND
EX2-1	6/9/98	5.5	73	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	8	ND	ND	ND	ND	15	ND
EX2-2	6/9/98	5,5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EX2-3	6/9/98	5.5	ND		~-			-							ND				ND	ND	300	ND
EX2-4	6/9/98	7.0	120					~~							ND				ND	ND	ND	5.2
EX2-5	6/9/98	5.5	730				=#								ND	**	·		ND	ND	ND	ND
EX2-6	6/9/98	9.5	ND			-								**	ND			**	ND	ИŊ	ND	ND
EX2-7	6/9/98	6.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EX2-8	6/9/98	6.0	ND						-						ND			~~	ND	ND	ND	ND
EX2-9	6/9/98	6.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EX2-10	6/9/98	15.0	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	7	ND	ND	ND	ND	ND	ND	ND	ND	ND
> EX2-11	6/9/98	15.0	25000	8	ND	10	24	ND	ND	ND	ND	16	20	ND	12	13	13	23	ND	ND.	ND	ND
EX2-12	6/10/98	15.0	ND												ND	**			ND	ND	ND	ND
EX2-13	6/10/98	12,5	ND			~-					**				ND				ND	ND	ND	ND
EX2-14	6/10/98	7.0	ND							-					ND				ND	ND ·	170	ND

Page 1 of 4

Table 1

RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES

June 9 through June 22, 1998

Mobil Jalk Fee Properties

				sec-	teri.	Îso	p-Iso		6-	1,2,4-	1,3,5-			cis-1,2-	trans-1,2-			-				
				Butyl	Butyl	propyl	propyl	Naphth	Propyl	Trimethyl	Trimethyl	0-	m,p-	Dichloro	Dichloro		Ethyl		Methylene	Vinyt		
Boring	Sample	Depth	TRPH	benzene	benzene	benzene	toluene	alene	benzene	henzene	be <u>nzene</u>	Xylenes	Xylenes	ethene	ethene	Toluene	benzene	Benzene	Chloride	Chloride	PCE	TCE
Number	Dute	(fbg)	(ppm)	(ppb)	(Ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
		·····																	- Current			
EX2-15	6/10/98	5.5	ND		~-						~-		4-	~~	ND				ND	ND	430	17
EX2-16	6/10/98	5.5	ND					••							ND				ND	ND	270	20
EX2-17	6/10/98	5.5	ND	400							. ••				ND				ND	ИD	350	23
EX2-18	6/10/98	11.5	ND						*-	•-					ND				ND	ND	290	6.6
EX2-19	6/11/98	11.0	3600					 ,							59				ND	7.8	33000	10000
EX2-20	6/11/98	6.0	5900						••						26		'		ND	ND	300	270
EX2-21	6/11/98	6.0	ND												ND				ND	ND	100	18
EX2-22	6/11/98	11.0	ND	~-							~-				ND				ND	ИD	44	11
EX2-23	6/11/98	6.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EX2-23	6/11/98	6.5	20												ND				ND	ND	6.2	10
EX2-24	6/11/98	6.5	ИD							~					ND	••			ND	ND	9.6	ND
EX2-25	6/11/98	6.5	1100						•-						ND				ND	ND	140	28
EX2-26	6/11/98	6.0	21	••											ND				ND	ND	680	35
EX2-26	6/22/98	15.0		2300	ND	1100	ND	ND	1600	200	ND	ND	500	14700	ND	ND	ND	300	ND	ND	308000	28100
	510.000																					
EX3-1	6/9/98	5.5	ND											4-	ND				ND	ND	ND	ND
EX3-2	6/9/98	6.0	ND		•-										ND				ND	ND	ND	ND
EX3-3	6/9/98	5.5	280												ND				ND	ND	ND	ND
EX3-4	6/9/98	5.5	ND									~-			ND				ND	ND	ND	ND
EX3-5	6/9/98	6.0	ND	••																, *** -		
EX3-6	6/9/98	6.0	ND															~~				
EX3-7	6/9/98	6.0	ND								~~										~~	
EX3-8	6/9/98	6.5	ND																			**
EX3-9	6/9/98	6.5	85					~~				**					••					•• .
EX3-10	6/9/98	6.5	ND			**																
EX3-11	6/9/98	7.0	ND				*n					~~										'

Page 2 of 4

Table 1

RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES

June 9 through June 22, 1998

Mobil Jalk Fee Properties

		90C-	tert-	oe1	p-Leo		D-													
			_					1,2,4-	1,3,5-			cis-1,2-	trans-1,2-							
		Butyl	Butyl	propyl	propyi	Naphth	Propyl	Trimethyl	Trimethyi	٥-	ա,թ-	Dichloro	Dichloro		Ethyl		Methylene	Vinyl		
-		benzene	benzene	benzene	toluene	alene	benzene	benzene	benzene	Xylenes	Xylenes	ethene	ethene	Toluene	benzene	Benzene	Chloride	Chloride	PCE	TCE
te (fbg) (bbm)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(bbp)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
							•				,									
/98 7.5	130				••							 ,	••						·	••
/98 7.0	8000																			**
/98 10.0	ON ND											~~						'		
/98 10.0) ND					^-					••				**					
/98 10.0	ON C								ζ									*-		4.0
/98 10.0	D ND												7-							 ,
/98 10.0) ND													**					**	
/98 11.0) ND		**															~~		••
/98 12.0	200																			
/98 12.0	16																	4-		-
/98 7.0	ND	-											••			-	*-	**		
/98 7.0	ND						70											••		
/98 6.5	5600																			
/98 11.2	5 21														**					
/98 11.:	650																			
/98 12.5	ND							~-												
/98 6.5	950																			
/98 6.0	3600								••										••	
/98 6.0	2200			~~		4n		^-				·								
/98 6.0	2300	**																<u> </u>		
	2400								••											
													*-					=4		••
	98 7.5 98 7.0 98 10.0 98 10.0 98 10.0 98 10.0 98 10.0 98 11.5 98 12.5 98 7.0 98 11.5 98 6.5 98 6.0 98 6.0 98 6.0 98 7.0	98 7.5 130 98 7.0 8000 98 10.0 ND 98 12.0 200 98 12.0 16 98 7.0 ND 98 7.0 ND 98 7.0 ND 98 12.5 ND 98 12.5 ND 98 6.5 950 98 6.0 2200 98 6.0 2300 98 6.0 2400 98 7.0 190 98 7.0 190	98 7.5 130 98 7.0 8000 98 10.0 ND 98 11.0 ND 98 12.0 200 98 7.0 ND 98 7.0 ND 98 7.0 ND 98 11.5 650 98 11.5 650 98 12.5 ND 98 6.5 950 98 6.0 3600 98 6.0 2200 98 6.0 2300 98 7.0 190 98 7.0 190 98 7.0 190 98 7.0 190	98 7.5 130 98 7.0 8000 98 10.0 ND 98 11.0 ND 98 12.0 200 98 7.0 ND 98 7.0 ND 98 7.0 ND 98 11.5 650 98 11.5 650 98 6.5 950 98 6.0 2200 98 6.0 2300 98 6.0 2300 98 7.0 190 98 7.0 190 98 7.0 190 98 7.0 190 98 7.0 190 98 7.0 190	98 7.5 130	98 7.5 130	98 7.5 130	98 7.5 130	ce (hg) (ppb) (pp	c (fbg) (ppb) (pp	Part Part		Composition Composition	98 7.5 130	98 7.5 130				8 7.5 120	

Table 1

RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES

June 9 through June 22, 1998

Mobil Jalk Fee Properties

				sec-	tert-	Iso	p-Iso		n-	1,2,4-	1,3,5-			cis-1,2-	traus-1,2-							
				Butyl	Butyl	propyl	propyl	Naphth	Propyl	Trimethyl	Trinethyl	0-	ա,թ-	Dichloro	Dichloro		Ethyl		Methylene	Vinyl		
Boring	Sample	Depti	TRPH	benzene	benzene	benzene	toluene	ыеве	benzene	benzene	benzene	Xylenes	Xylenes	ethene	ethene	Toluene	benzene	Венгене	Chloride	Chloride	PCE	TCE
Number	Date	(fbg)	(ppm)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(բքե)	(ppb)	(ppb)	(ppb)	(ppb)	(թթև)	(երե)	(ppb)	(ըքե)	(ֆրե)	(քքե)	(ppb)	(բրե)
													·						<u> </u>			<u> </u>
Notes:	TRPH	= to1	al petroleum l	liydrocarbon	s with gaso	line distinct	lon							•								
	PCE	= tet	achloroethen	.e															-		÷	
	TCE	= tri	hloroethene																			
	fbg	= fe	t below grade	•																		
	ppm	= pa	ts per million	1			•														1	
	ppb	= pa	ts per billion																			
	ND	= no	detected; see	official lab	oratory rep	orts for dete	ection limit	Š														
		= 110	analyzed, m	essured, or	collected																	

Table 1

Previous Soil Sample Analytical Results (Levine-Fricke, 1991a) Mobil Exploration and Producing U.S., Jalk Fee Property

Volatile Organic Compounds (VOCs) and Total Recoverable Petroleum Hydrocarbons (TRPH)

Page 1 of 1

Sample	Sample	EPA Method 8260 (ppm)					
Location	Depth (ft)	TCE	PCE	cîs-1,2-DCE	Methylene Chlorinde	TRPH	
T3A-2	Surface Grab Sample	NA	NA		1	horization	
T3B-10	5	ND	ND		Histor	loving ha	
T9A-1A	4	10	2500		t t	concern	
T9A-1B	4	ND	0.32		10 E		
T9B-1	5	ND	ND				
SB-1	11	ND	ND			44.1	
SB-1	26	ND	ND			N.	
SB-3	16	15	430				
SB-3	26	ND	ND			e i vizi	
SB-22	11	NA	NA				
SB-22	26	NA	NA	ına.	NA	ND	
SB-27	15	ND	ND	53	2*	NA	
SB-27	30	ND	ND	0.02	0.03	NA	
SS-13	4	ND	1.3	ND	ND	140	

TCE = Trichloroethene

PCE = Tetrachloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

ND = None Detected

NA = Not Analyzed

* = also identified in laboratory blank samples

Source: Table 2 and Table 3, Levine-Fricke 1991a

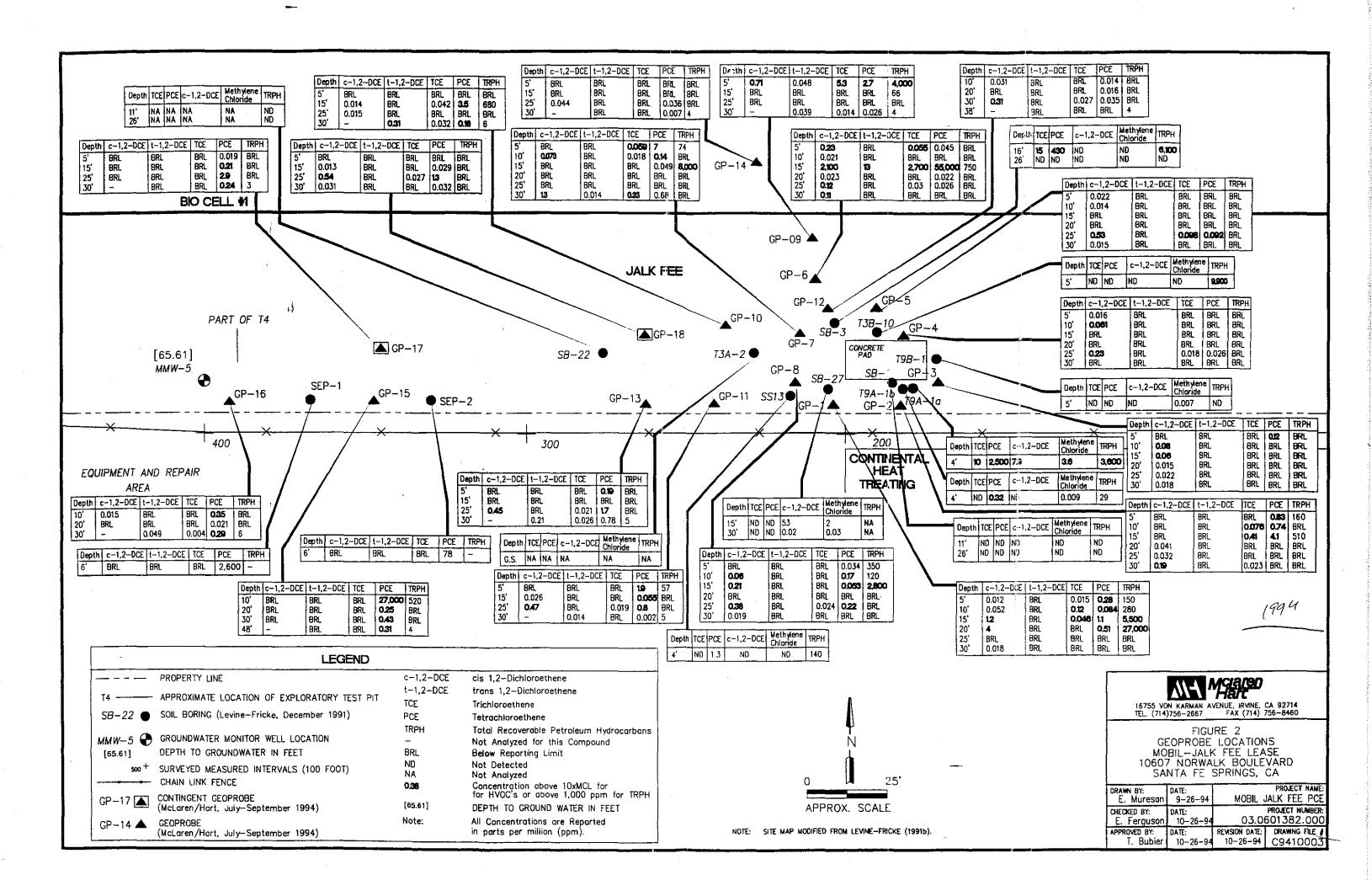


Table 2

Halogenated Volatile Organic Compounds (HVOCs) and Total Recoverable Petroleum Hydrocarbon (TRPH)

GeoProbe	Depth		EPA Method 418.1 (ppm)			
ID	(ft)	cis-1,2-DCE	trans-1,2-DCE	TCE	PCE	TRPH
	5	0.012	BRL	0.015	0.28	150
	10	0.052	BRL	0.12	0.084	280
CD 1	15	1.2	BRL -	0.046	1.1	5500
GP-1	20	4	BRL	BRL	0.51	27000
	25	BRL	BRL	BRL	BRL	BRL
	30	0.018	BRL	BRL	BRL	BRL
	5	BRL	BRL	BRL	0.83	160
	10	BRL	BRL	0.076	0.74	BRL
an a	15	BRL	BRL	0.41	4.1	510
GP-2	20	0.041	BRL	BRL	BRL	BRL
	25	0.032	BRL	BRL	BRL	BRL
	30	0.19	BRL	0.023	BRL	BRL
	5	BRL	BRL	BRL	0.12	BRL
·	10	0.08	BRL	BRL	BRL	BRL
an a	15	0.06	BRL	BRL	BRL	BRL
GP-3	20	0.015	BRL	BRL	BRL	BRL
	25	0.022	BRL	BRL	BRL	BRL
	30	0.018	BRL	BRL	BRL	BRL
	5	0.016	BRL	BRL	BRL	BRL
	10	0.061	BRL	BRL	BRL	BRL
cn :	15	BRL	BRL	BRL	BRL	BRL
GP-4	20	BRL	BRL	BRL	BRL	BRL
	25	0.23	BRL	0.018	0.026	BRL
Ì	30	BRL	BRL	BRL	BRL	BRL

Table 2

Halogenated Volatile Organic Compounds (HVOCs) and Total Recoverable Petroleum Hydrocarbon (TRPH)

GeoProbe	Depth		EPA Metho 418.1 (ppm			
ID	(ft)	cis-1,2-DCE	trans-1,2-DCE	TCE	PCE	TRPH
	5	0.022	BRL	BRL	BRL	BRL
	10	0.014	BRL	BRĹ	BRL	BRL
CD 6	15	BRL	BRL	BRL	BRL	BRL
GP-5	20	BRL	BRL	BRL	BRL	BRL
	25	0.53	BRL	0.098	0.092	BRL
	30	0.015	BRL	BRL	BRL	BRL
	5	0.23	BRL	0.055	0.045	BRL
	10	0.021	BRL	BRL	BRL	BRL
GP-6	15	2100	13	2700	55000	750
	20	0.023	BRL	BRL	0.022	BRL
	25	0.12	BRL	0.03	0.026	BRL
	30	0.11	BRL	BRL	BRL	BRL
	5 ,	BRL	BRL	0.059	7	74
	10	0.073	BRL	0.018	0.14	BRL
65.5	15	BRL	BRL	BRL	0.049	8000
GP-7	20	BRL	BRL	BRL	BRL	BRL
	25	BRL	BRL	BRL	BRL	BRL
ľ	30	1.3	0.014	0.23	0.68	BRL
	5	BRL	BRL	BRL	0.034	350
GD 6	10	0.06	BRL	BRL	0.17	120
	15	0.21	BRL	BRL	0.053	2800
GP-8	20	BRL	BRL	BRL	BRL	BRL
	25	0.38	BRL	0.024	0.22	BRL
	30	0.019	BRL	BRL	BRL	BRL

Table 2

Halogenated Volatile Organic Compounds (HVOCs) and Total Recoverable Petroleum Hydrocarbon (TRPH)

GeoProbe	Depth	-	EPA Metho			
ID D	(ft)	cis-1,2-DCE	trans-1,2-DCE	TCE	PCE	TRPH
	5	0.71	0.048	5.3	2.7	4000
an a.	15	BRL	BRL	BRL	BRL	66
GP-9	25	BRL	BRL	BRL	BRL	BRL
	30	NA	0.039	0.014	0.026	4
	5	BRL	BRL	BRL	BRL	BRL
ا مدحت	15 .	0.014	BRL	0.042	3.5	680
GP-10	25	0.015	BRL	BRL	BRL	BRL
	30	NA	0.31	0.032	0.18	6
GP-11	5	BRL	BRL	BRL	1.9	57
	15	0.026	BRL	BRL	0.055	BRL
	25	0.47	BRL	0.019	0.8	BRL
	30	NA	0.014	BRL	0.002	5
	10	0.031	BRL	BRL	0.014	BRL
65.10	20	BRL	BRL	BRL	0.016	BRL
GP-12	30	0.31	BRL	0.027	0.035	BRL
	38	NA	BRL	BRL	BRL	4
	5	BRL	BRL	BRL	0.19	BRL
GP-13	15	BRL	BRL	BRL	BRL	BRL
	25	0.45	BRL	0.021	1.7	BRL
	30	NA	0.21	0.026	. 0.78	5
GP-14	5	BRL	BRL	BRL	BRL	BRL
	15	BRL	BRL	BRL	BRL	BRL
	25	0.044	BRL	BRL	0.036	BRL
	30	NA	BRL	BRL	0.007	4

Table 2

Halogenated Volatile Organic Compounds (HVOCs) and Total Recoverable Petroleum Hydrocarbon (TRPH)

GeoProbe ID	Depth		EPA Method 418.1 (ppm)			
	(ft)	cis-1,2-DCE	trans-1,2-DCE	TCE	PCE	TRPH
	. 10	BRL	BRL	BRL	27000	520
	20	BRL	BRL	BRL	0.25	BRL
GP-15	30	BRL	BRL -	BRL	0.43	BRL
	48	NA	BRL	BRL	0.31	4
	10	0.015	BRL	BRL	0.35	BRL
GP-16	20	BRL	BRL	BRL	0.021	BRL
	30	NA	0.049	0.004	0.29	6
	5	BRL	BRL	BRL	0.019	BRL
an 17	15	BRL	BRL	BRL	0.21	BRL
GP-17	25	BRL	BRL	BRL	2.9	BRL
	30	NA	BRL	BRL	0.24	3
	5	BRL	BRL	BRL	BRL	BRL
GD 10	15	0.013	BRL	BRL	0.029	BRL
GP-18	25	0.54	BRL	0.027	1.3	BRL
	30	0.031	BRL	BRL	0.032	BRL
SEP-1	6	BRL	BRL	BRL	2600	NA
SEP-2	6	BRL	BRL	BRL	78	NA

cis-1,2-DCE = cis-1,2 Dichloroethene

trans-1,2-DCE = trans-1,2 Dichloroethene

TCE = Trichloroethene

PCE = Tetrachloroethene

BRL = Below Reporting Limit

NA = Not Analyzed

TABLE 1
Hydrocarbon Results of TRC Confirmation Soil Samples
Jalk Fee Property / Santa Fe Springs, California
October and November 2000

		HYDROCARBON RESULT (mg/kg)				
SAMPLE NUMBER	DEPTH (fbg) ^f	C4-C12	C13-C22	C23-C40		
EXCAVATION AREA M-1						
JF-M1-S37-EW-8	8.0	ND	ND	ND		
JF-M1-S38-B-14	14	334	2,020	3,200		
JF-M1-S39-SW-8	8.0	ND	ND	ND		
JF-M1-S40-WW-8	8.0	ND	ND	ND		
EXCAVATION AREA M-2	2					
JF-M2-S16-B-10	10	ND	ND	ND		
EXCAVATION AREA M-3						
IF-M3-829-B-16	16	4,958	2,677	1.909		
JF-M3-S29B-B-19	19	5,510	4,630	3,796		
JF-M3-S33-EW-10	10	ND	2.0	ND		
JF-M3-S34-WW-14	14	ND	ND	ND		
JF-M3-S35-NW-13	13	ND	ND	ND		
JF-M3-S36-SW-13	13	ND	ND	ND		
EXCAVATION AREA M-7	1					
JF-M7-S22-EW-8	8.0	ND	ND	ND		
JF-M7-S23-SW-8	8.0	ND	ND	ND		
JF-M7-S24-B-13	13	ND	ND	ND		
JF-M7-S25-WW-8	8.0	ND	ND	ND		
JF-M7-S26-NW-8	8.0	ND	ND	ND		
EXCAVATION AREA M-8	3					
JF-M8-S27-B-13	13	ND	ND	ND		
JF-M8-S28-WW-10	10	ND	ND	ND		
JF-M8-S30-SW-10	10	ND	364	1,069		
JF-M8-S31-EW-10	10	ND	32	265		
JF-M8-S32-NW-10	10	52	732	984		
EXCAVATION AREA M-9)					
JF-M9-S17-WW-5	5.0	ND	76	649		
JF-M9-S18-NW-5	5.0	ND	59	334		
JF-M9-S19-B-7	7.0	738	2,346	1.709		
JF-M9-S19B-B-16	16	3,797	10,949	8,480		
JF-M9-S19C-B-24	24	658	1,219	697		
JF-M9-S20-SW-5	5.0	ND	42	453		
JF-M9-S21-EW-5	5.0	ND	103	326		
EXCAVATION AREA SB-						
JF-SB49-S1-SW-5	5.0	ND	ND	l ND		
JF-SB49-S2-NW-5	5.0	ND	ND	ND		
JF-SB49-S3-B-6	6.0	ND	ND	ND		
JF-SB49-S4-B-7	7.0	2,172	2,796	1,685		
JF-SB49-S4B-B-13	13	ND	17	39		
JF-SB49-S5-SW-5	5,0	45	340	461		
JF-SB49-S5B-SW-10	10	803	1,401	812		
JF-SB49-S6-NW-5	5.0	ND	ND ND	ND ND		
JF-SB49-S7-B-6	6.0	2.0	671	815		
JF-SB49-S8-SW-5	5.0	ND	2.0	19		
JF-SB49-S9-NW-5	5.0	ND ND	792	1,096		
IF-SB49-S10-B-7	7.0	ND ND	464	1,391		
JF-SB49-S11-SW-5	5.0	ND	399	972		
JF-SB49-S12-NW-5	5.0	ND	82	230		
JF-SB49-S13-B-6	6.0	ND ND	1.0	12		
JF-SB49-S14-SW-5	5.0	ND ND	1.0	14		
JF-SB49-S15-NW-5	5.0	ND ND	ND	ND ND		

¹ fbg - feet below grade.

Note: Results in blue foat italics were excavated.

TABLE 2 VOC Results of TRC Confirmation Soil Samples Jalk Fee Property / Santa Fe Springs, California October and November 2000

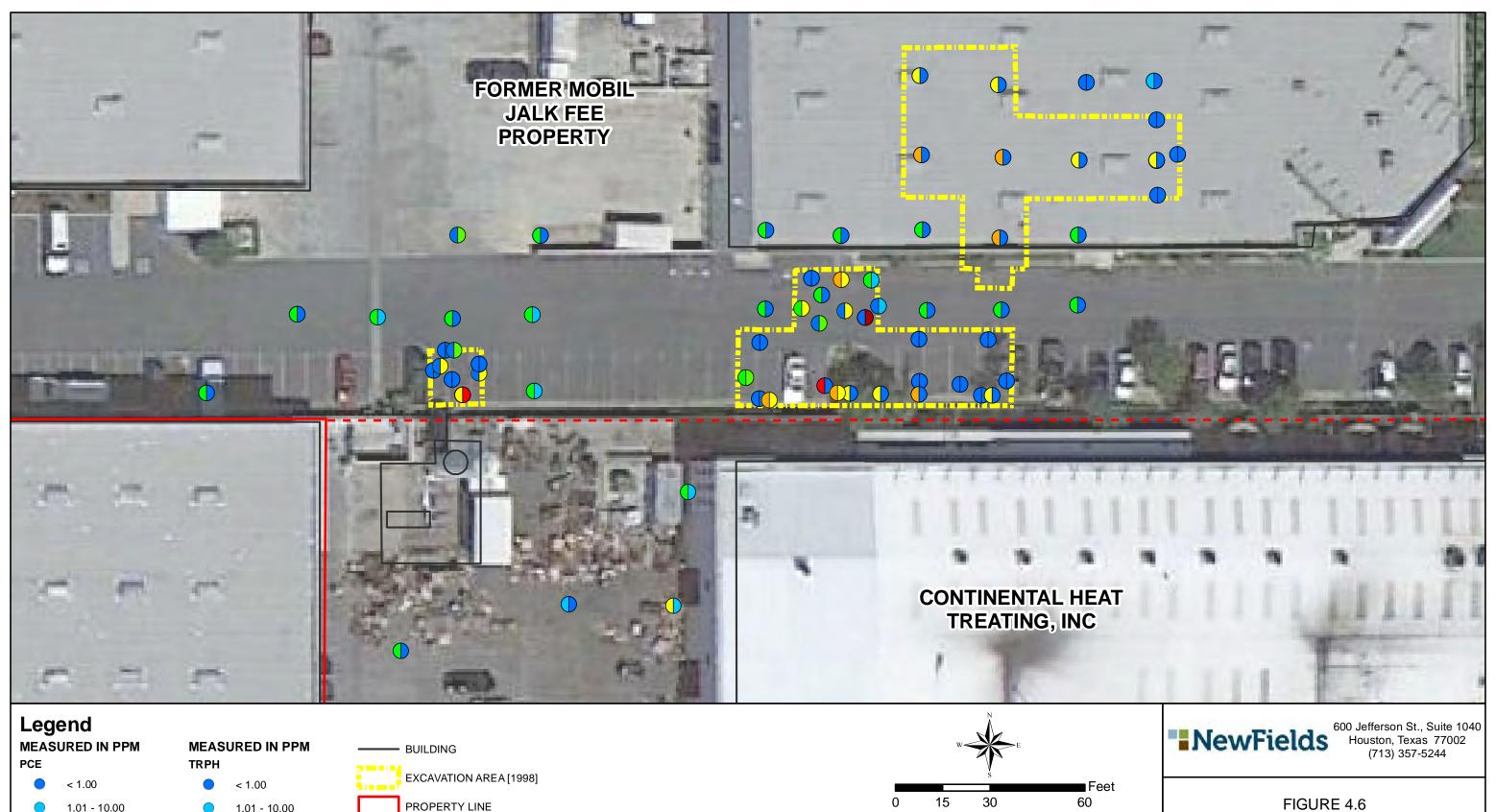
			VOCs 2	VOCs 2 (mg/kg)		
SAMPLE NUMBER	DEPTH (fbg) 1	c-1,2-DCE 3	PCE 4	TCE 5	Other VOCs 6	
EXCAVATION AREA M-1		C-1,2-DCE 1	I CE	TCE	TOURI TOES	
JF-M1-S37-EW-8	8.0	<0.001	< 0.001	< 0.001	0.00572	
JF-M1-S38-B-14	14	<0.001	0.059	< 0.001	6.214	
JF-M1-S39-SW-8	8.0	<0.001	0.00099	<0.001	0.0076	
JF-M1-S40-WW-8	8.0	<0.001	0.00065	100.0>	0.0091	
EXCAVATION AREA M-2		1 .0.001	4.0000			
JF-M2-S16-B-10	10	<0.001	< 0.001	< 0.001	0.00638	
EXCAVATION AREA M-3				L		
JF-M3-S29-B-16	16	<0.001	< 0.001	<0.001	145.56	
JF-M3-S33-EW-10	10	<0.001	<0.001	< 0.001	0.03347	
JF-M3-S34-WW-14	14	<0.001	<0.001	< 0.001	0.01271	
JF-M3-S35-NW-13	13	<0.001	0.27	< 0.001	0.0155	
JF-M3-S36-SW-13	13	<0.001	<0.001	<0.001	0.00447	
EXCAVATION AREA M-7		10.004			3,00,111	
JF-M7-S22-EW-8	8.0	<0.001	0.0031	<0.001	0.0132	
JF-M7-S23-SW-8	8.0	<0.001	0.046	<0.001	0.0233	
JF-M7-S24-B-13	13	<0.001	0.0054	<0.001	0.08384	
JF-M7-S25-WW-8	8.0	<0.001	0.0049	<0.001	0.032	
JF-M7-S26-NW-8	8.0	<0.001	0.0041	<0.001	0.00499	
EXCAVATION AREA M-8		1	0,007,			
JF-M8-S27-B-13	13	<0.001	<0.001	< 0.001	ND	
JF-M8-S28-WW-10	10	<0.001	< 0.001	<0.001	0.2	
JF-M8-S30-SW-10	10	<0.001	<0.001	<0.001	0.0094	
JF-M8-S31-EW-10	10	<0.001	<0.001	<0.001	0.00708	
JF-M8-S32-NW-10	10	<0.001	< 0.001	< 0.001	0.1501	
EXCAVATION AREA M-9				L		
JF-M9-S17-WW-5	5.0	<0.001	< 0.001	< 0.001	0.013	
JF-M9-S18-NW-5	5.0	<0.001	< 0.001	<0.001	0.011	
JF-M9-S19-B-7	7.0	<0.001	<0.001	<0.001	5.207	
JF-M9-S20-SW-5	5.0	<0.001	< 0.001	<0.001	0.0162	
JF-M9-S21-EW-5	5.0	< 0.001	<0.001	< 0.001	0.00848	
EXCAVATION AREA SB-	49					
JF-SB49-S1-SW-5	5.0	0.023	0.0073	<0.001	0.05177	
JF-SB49-S2-NW-5	5.0	0.0012	0.0055	< 0.001	0.0112	
JF-SB49-S3-B-6	6.0	0.00061	0.0099	< 0.001	0.0133	
JF-SB49-S4-B-7	7.0	8.8	31	5.9	104.2	
JF-SB49-S4B-B-13	13	0.02	1.1	0.0024	ND	
JF-SB49-S5-SW-5	5.0	1.4	61	0.71	0.73	
JF-SB49-S5B-SW-10	10	2.0	3.0	0.73	35.74	
JF-SB49-S6-NW-5	5.0	0.025	0.4	0.0053	0.03535	
JF-SB49-S7-B-6	6.0	<1.0	1,600	<1.0	4.9	
JF-SB49-S7B-B-12	12	0.0065	9.8	0.0065	0.0152	
JF-SB49-S8-SW-5	5.0	0.0014	3.2	0.0016	0.0153	
JF-SB49-S9-NW-5	5.0	0.033	250	0.089	0.53786	
JF-SB49-S9B-NW-6	6.0	< 0.001	0.14	< 0.001	0.0071	
JF-SB49-S10-B-7	7.0	0.0014	2,000	0.14	0.7609	
JF-SB49-S10B-B-8	8.0	<0.001	2.5	0.0089	0.0229	
JF-SB49-S11-SW-5	5.0	<0.001	1,300	0.01	0.52733	
JF-SB49-S12-NW-5	5.0	0.00055	440	0.13	0.34907	
JF-SB49-S12B-NW-6	6.0	<0.001	1.7	<0.001	0.00883.	
JF-SB49-S13-B-6	6.0	<0.001	1.4	< 0.001	0.17185	
JF-SB49-S14-SW-5	5.0	< 0.001	I.I	<0.001	0.23029	
JF-SB49-S15-NW-5	5.0	< 0.001	0.15	<0.001	0.0815	

¹ fbg - feet below grade.

Note: Results in blue font italics were excavated.

² VOCs - volatile organic compounds.

³ c-1,2-DCE - cis-1,2-dichloroethene.


⁴ PCE - tetrachloroethene.

⁵ TCE - trichloroethene.

⁶ Total remaining VOCs including acetone and methylene chloride which are possible laboratory contaminants.

APPENDIX AD

JANUARY 2014 NEWFIELDS FIGURE 4.6

Notes:

- 1. All locations and dimensions are approximate.
- 2. Excavation area and excavation soil samples for 1998 was taken from the Alton Remedial Ecxavation/ Site Closure Repot, October 14, 1998.
- 3. Petroleum hydrocarbons measured as total recoverable Petroleum Hydrocarbons

FIGURE 4.6

PCE - TPH **CONCENTRATIONS IN SOIL**

Former ExxonMobil, Jalk Fee Property 10607 Norwalk Boulevard, Santa Fe Springs, CA

1.01 - 10.00

10.01 - 100.00

100.01 - 1,000.00

1,000.01 - 10,000.00

10,000.01 - 100,000.00

TETRACHLOROETHENE (PCE)

TOTAL RECOVERABLE PETROLEUM (TRPH)

1.01 - 10.00

10.01 - 100.00

> 100,000.01

100.01 - 1,000.00

1,000.01 - 10,000.00

10,000.01 - 100,000.00

ExxonMobil Global Services Company 22777 Springwoods Village Pkwy, Room S2 28.282

Spring, Texas 77389 (832) 624-2039 Telephone L. M. (Len) Racioppi Project Development Manager - Sediments/Superfund/NRD Environmental Services Company

SENT VIA GEOTRACKER

February 9, 2017

Samuel Unger, P.E. Executive Officer California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

Re: Cardno Report re Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger

Dear Executive Officer Unger:

Enclosed please find a report prepared by ExxonMobil Oil Corporation's (ExxonMobil's) consultant Cardno entitled Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger dated February 8, 2017. This report provides the additional evidence and data ExxonMobil presented to the Regional Board during our meeting on December 14, 2016. In addition, this report responds to issues the Regional Board raised in its July 22, 2016 response to ExxonMobil's Request to Name Continental Heat Treating as Discharger dated March 25, 2015, submitted by Cardno.

The new and compelling data in this report supports ExxonMobil's position that Continental Heat Treating ("CHT") is the sole discharger of the chlorinated solvents found in soil at the Jalk Fee property, CHT's property, and the surrounding area. Based on the evidence previously presented to the Regional Board and the evidence included in this Report, we believe the Regional Board will be convinced that CHT should be named as the only responsible party at the Jalk Fee property and that ExxonMobil should be relieved of the Regional Board's Water Code section 13267 Order dated August 24, 2010 and all requirements issued under that Order.

Further, as we discussed during the December 14, 2016 meeting, we remain willing to provide a presentation of this information to your counsel if that would be of assistance in your evaluation of this new evidence. Additionally, as you know, we filed a petition for review with the State Water Resources Control Board on August 19, 2016, regarding the Regional Board's decision not to name CHT as the sole discharger for the Jalk Fee property.

In light of the evidence presented in this report, ExxonMobil renews its request for an extension of the deadlines for the three deliverables currently required by the Regional Board per its correspondence dated November 18, 2016 for the Jalk Fee property until after the Regional Board has reviewed and evaluated the additional evidence provided in the attached report.

Please don't hesitate to contact me if you have any questions at 908.403.3140 or via email.

Regards,

Len M. Racioppi

Project Development Manager

Cc:

Paula Rasmussen, LA-RWQCB (via email w/o enclosure)

Su Han, LA-RWQCB (via email w/o enclosure)

Luis Changkuon, LA-RWQCB (via email w/o enclosure)

James Anderson, Cardno

Marla D. Madden, ExxonMobil (via email w/o enclosure)

Sara Morey, ExxonMobil (via email w/o enclosure)

Annette Moore, Esq., ExxonMobil (via email w/o enclosure)

Ramon Echevarria, Esq., ExxonMobil (via email w/o enclosure)

Norm Novick, Roux (via email w/o enclosure)

Elizabeth Weaver, Esq., Norton Rose Fulbright US LLP (via email w/o enclosure)

Cardno License A/C10-611383

4572 Telephone Road Suite 916 Ventura, CA 93003 USA

Phone 805 644 4157 Fax 805 644 5610

www.cardno.com

February 8, 2017 Cardno 08115504.R23

Mr. Samuel Unger
California Regional Water Quality Control Board
Los Angeles Region
320 West 4th Street, Suite 200
Los Angeles, California 90013

SUBJECT Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger

Former ExxonMobil Jalk Fee Property
10607 Norwalk Boulevard
Santa Fe Springs, California
CRWQCB-LAR Case No. 0203; Site I.D. No. 1848000

Mr. Unger:

At the request of ExxonMobil Environmental Services Company (EMES), on behalf of ExxonMobil US Production Company (ExxonMobil), Cardno has prepared this report of *Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger* (Report) for the above-referenced site. In Cardno ERI's *Request to Name Continental Heat Treating as Discharger* dated March 25, 2015 (March 2015 Report), evidence was presented to the California Regional Water Quality Control Board - Los Angeles Region (CRWQCB-LAR) that demonstrated:

- 1. ExxonMobil never used nor stored chlorinated solvents at the Jalk Fee property (Site).
- 2. Continental Heat Treating (CHT) used and stored extensive quantities of chlorinated solvents in its degreasing operations from approximately 1969 to 1995.

- 3. CHT had poor operational and waste management practices which resulted in spills of chlorinated solvents and other chemicals to the ground surface.
- 4. CHT received various agency citations and notices of violation (NOVs) for their releases of chlorinated solvents, waste oils, and other chemicals to the ground (Cardno ERI, 2015).

In addition, an updated site conceptual model (SCM) was presented that demonstrated the preferential pathways which allowed the chlorinated solvents released from the CHT facility to migrate to their current location on the Jalk Fee property (including the fact that the CHT property was paved during most of its history, while the Jalk Fee property was unpaved during CHT's operational period of PCE use and storage).

Based on the evidence provided, ExxonMobil requested that the CRWQCB-LAR identify CHT as the sole discharger and responsible party for the chlorinated solvents observed in soil on the Jalk Fee property.

In a letter dated July 22, 2016 (Letter), the CRWQCB-LAR responded to Cardno's March 2015 Report requesting the CRWQCB-LAR name CHT as discharger by making several assertions about a possible source of PCE on the Jalk Fee property and what the CRWQCB-LAR felt were data inconsistencies with ExxonMobil's SCM, and declined to name CHT as the sole discharger (Appendix A). While ExxonMobil did not agree with the CRWQCB-LAR's conclusions, after considering the Letter, ExxonMobil developed additional evidence that further supports its SCM and its claim that CHT is the sole discharger of chlorinated solvents.

On December 14, 2016, EMES representatives met with the CRWQCB-LAR to present the additional evidence. As requested by the CRWQCB-LAR, this Report summarizes the additional evidence EMES presented in the December 14, 2016 meeting, including a forensic study of hydrocarbons in soil found at the property boundary, responds to the CRWQCB-LAR's Letter, and provides new and compelling support for ExxonMobil's position that CHT was the sole discharger of chlorinated solvents and therefore should be named as the only responsible party.

USE AND STORAGE OF CHLORINATED SOLVENTS

As outlined in Cardno's March 2015 Report, no evidence has been identified by the CRWQCB-LAR, CHT, or ExxonMobil that ExxonMobil or Hathaway Oil ever used or stored PCE on the Jalk Fee property, or that chlorinated solvents have been identified as a contaminant of concern generated from oil production activities. Further, Cardno reviewed the State Water Resources Control Board's (SWRCB) GeoTracker database and was unable to identify any other cases of oil production sites with chlorinated solvent issues. On the other hand, it is well documented that CHT used, stored, and released significant quantities of PCE in its degreasing operations for approximately 26 years in close proximity to the boundary between the two properties. Additional documents supporting the facts were gathered by ExxonMobil after submittal of the March 2015 Report and the documents are discussed further in

the following sections. Thus, CHT is sole source and responsible party for the chlorinated solvents in soil at Jalk Fee and the surrounding area.

In its Letter, the CRWQCB-LAR provided two arguments to support its contention that chlorinated solvents may have been used on the Jalk Fee property:

- 1. A United States Environmental Protection Agency (USEPA) publication which states that waste solvents were used in oil field operations (USEPA, 2002).
- 2. The concentration of PCE at 10 feet bgs in soil boring B22, which was purportedly located within the footprint of a former trucking operations area at the site.

USEPA Publication

The CRWQCB-LAR's Letter stated that the USEPA's Exemption of Oil and Gas Exploration and Production Wastes from Federal Hazardous Waste Regulations, dated October 2002, "lists waste generated during oil exploration activities, among them waste solvents" (USEPA, 2002). However, "solvent" is a general term for one substance which can dissolve another substance, and is not limited to chlorinated chemicals. There is no reference or information presented in the USEPA publication for the use of chlorinated solvents in oil and gas exploration and production. The USEPA's reference to waste solvents used in oil field operations likely refers to petroleum-based solvents, such as diesel, xylenes, or mid-distillates, as these chemicals are readily available in oil production activities. This is consistent with the information previously provided by ExxonMobil to the CRWQCB-LAR that petroleum-based solvents are what were typically used at oil production sites, and which is substantiated by Cardno's review of the SWRCB's GeoTracker database that did not identify chlorinated solvents at other production sites (Cardno ERI, 2015).

The USEPA's publication is consistent with ExxonMobil's contention that there is no evidence that chlorinated solvents were used at the Jalk Fee property, and that the use of chlorinated solvents is inconsistent with oil production practices.

Former Trucking Operations

Also in its Letter, the CRWQCB-LAR stated, "PCE was detected at a concentration of 5,460 µg/kg (5.4 mg/kg) in a sandy soil sample collected at 10 feet bgs from soil boring B22. Boring B22 is located within the 'approximate location of former trucking operations area' at the Site." The CRWQCB-LAR also stated, "This boring is located

approximately 140 feet north of the property boundary with the CHT site. This data indicates an on-site release or discharge at the [Jalk Fee] Site."

ExxonMobil retained an aerial photo interpreter to analyze historical aerial photos of the Jalk Fee property to investigate the existence of a former trucking operations area which had been identified on several figures presented in previous reports for the Site. The interpreter determined that various large trucks were parked in the northcentral portion of the site in the early 1980s, that no storage tanks were identified in the area of the truck parking, that no buildings of a size required for the repair of trucks were present, and that the location of the former truck operations area in the aerial photos did not match the location identified on the site plans in previous consultant reports. Therefore, the location where trucks were parked at the site was not proximal to boring B22. Refer to Plate 1 and Appendix B for the aerial photo interpreter's report.

Additionally, ExxonMobil conducted a soil vapor survey in the same area where the trucks had been parked in the 1983 aerial photos (Plate 1). This survey was conducted in 1995 (at the end of the oil production activities at the property) and consisted of the collection of soil gas samples from nine locations at depths of 5 to 10 feet bgs. The results indicated that chlorinated solvents were not detected in 16 of the 18 soil gas samples, and that PCE was only measured in two samples at low concentrations of 1 and 3 ppb (Plate 1 and Appendix C) (McLaren Hart, 1996).

Therefore, based upon review of historical aerial photos, which confirmed that whatever trucks were present at the property were not located in the vicinity of B22, and the soil vapor survey conducted in 1995, the "trucking operations" were not a source of PCE and the PCE detected in soil boring B22 could not be associated with a release from the area of the alleged trucking operation.

GEOLOGIC INTERPRETATIONS AND SITE CONCEPTUAL MODEL INTERPRETATIONS

In its Letter, the CRWQCB-LAR selected a few isolated soil concentrations from the hundreds of samples which have been collected at the Site, and a few isolated boring logs from the dozens which have been advanced at the Site, to conclude that ExxonMobil's SCM did not fully explain how PCE released by CHT at the property boundary would have migrated onto and across the Jalk Fee property.

PCE Distribution

The CRWQCB-LAR stated that "ExxonMobil's rationale cannot explain that PCE was detected in a soil sample collected at 10 feet below ground surface (bgs) at a concentration of 5,460 µg/kg in soil boring B22 at the Site. This

boring is located approximately 140 feet north of the property boundary with the CHT site. This data indicates an on-site release or discharge at the Site."

As discussed in previous sections and in the March 2015 Report, ExxonMobil has already provided evidence that PCE was not used or stored on the Jalk Fee property, and that the area of the alleged trucking operations was not a source of PCE (Cardno, 2015).

The presence of the PCE in B22 at 10 feet bgs can be explained by ExxonMobil's current SCM through the migration of PCE from releases by CHT on the CHT property near the boundary with the Jalk Fee property (Cardno, 2015). The PCE would have migrated north- and northeastward through the soil along the previously-identified low permeable layer, which dips from the CHT property to the Jalk Fee property.

Additionally, a soil vapor partition analysis was performed using the soil vapor concentration measured in soil vapor well SVP2, which is located in close proximity to soil boring B22. Using the vapor concentration from the sample collected at 5 feet bgs in September 2014, and soil input parameters from accepted industry standards and regulatory guidance documents, the data was input into a soil vapor partitioning model developed by the ASTM (E 1943-98) (Cardno ERI, 2014). The results indicated that using the site-specific soil vapor concentration, a range of likely site soil characteristics (θ w, θ v, foc, ρ s), and the range of PCE chemical-specific parameters (Koc, H) found in the literature, PCE soil concentrations from 0.3 to 11.5 mg/kg could result from the soil vapor concentration measured in SVP2, which is consistent with the 5.4 mg/kg concentration measured in B22 (Appendix D). Therefore, through a combination of the migration of PCE near the CHT property boundary along the low permeable soil layer and soil vapor partitioning, the concentration of PCE measured in B22 is consistent with ExxonMobil's SCM and does not require the presence of an unknown and unidentified potential release in the area of B22.

Similarly, the soil concentration in SVP7 at 5 feet bgs, which the CRWQCB-LAR identified as another data point that indicated a release had occurred away from the property boundary, can be explained through lateral migration of PCE from the CHT property and soil vapor partitioning, because the soil concentrations the model predicts from the SVP7 soil vapor sample (1.3 to 19.5 mg/kg) are of the same order of magnitude as the measured soil sample concentration (1.12 mg/kg) (Appendix D) (Cardno ERI, 2014). Again, the concentration of PCE measured in SVP7 at 5 feet bgs is consistent with ExxonMobil's SCM and does not require the presence of an unknown and unidentified potential release in the area of SVP7.

The CRWQCB-LAR also stated in its Letter that the vertical distribution of PCE in soil boring B11, with PCE measured at 5.36 and 11 mg/kg, at 10 and 15 feet bgs, respectively, and a concentration of 0.937 mg/kg at 35 feet bgs, was inconsistent with ExxonMobil's SCM. However, the distribution of PCE in B11 is completely consistent

with the SCM. The highest concentrations in B11 are present at 15 feet bgs on top of the low permeable silt layer. The concentrations then decrease with depth. The silt is not completely competent or impervious to the migration of COCs, therefore it is reasonable to expect that lower concentrations would be observed within and below the silt layer. Additionally, the PCE concentrations at 20 to 35 feet bgs are all relatively low (less than 1 mg/kg) and generally within one order of magnitude of each other, and it is reasonable that there would be minor variations in concentrations based on variations in the surrounding lithology affecting the amount of PCE that is adsorbed to the soil as it migrates laterally and vertically.

Geologic Interpretations

As part of its Letter, the CRWQCB-LAR generated a cross section using only two data points (SVP1 and CHT's MW2), and drew the cross section to show a silty layer dipping from the southern part of the Jalk Fee site to the northern part of the CHT property, which the CRWQCB-LAR alleged could serve as a pathway for contaminants to migrate from Jalk Fee to CHT. The CRWQCB-LAR's cross section contradicts the geologic model presented by ExxonMobil in the March 2015 Report, which demonstrated that a north- and northeastward dipping silt layer extended from the CHT property onto the Jalk Fee property.

The geologic depiction by the CRWQCB-LAR is deficient in several aspects:

- It incorrectly identifies the upper five to 10 feet of soil as sand, while the bore logs for SVP1 and MW2 both identify this interval as a sandy silt.
- The CRWQCB-LAR's cross section does not appear to have been produced or reviewed by a Professional Geologist (PG), thus is not appropriate to use in making geologic or technical interpretations.
- 3. The CRWQCB-LAR's cross section used only two boring locations that have varying amounts of sand and silt throughout their columns. This makes it difficult to determine an overall trend, and multiple interpretations between only two points can be generated.
- 4. The CRWQCB-LAR's cross section does not follow professional standards and industry best practice to integrate all available data points when generating a geologic interpretation. The Jalk Fee and CHT sites have had dozens of soil borings drilled that provide a substantial amount of lithologic information on the two properties.

A Cardno PG reviewed the lithology for the same two locations used by the CRWQCB-LAR (SVP1 and MW2), as well as surrounding borings, and came to the opposite conclusion as the CRWQCB-LAR. The Cardno PG concluded that a silt layer, which is first encountered between approximately 15 and 20 feet bgs, dips to the north

from the CHT property to the Jalk Fee property in the area of SVP1 and MW2. This northward dip affirms the SCM presented in the March 2015 Report that the low permeability silt layer, immediately beneath the near surface sandy silt/silty sand layer, dips to the north and northeast and provides a preferential pathway for contaminants to migrate from CHT's property to Jalk Fee (Plate 2).

As the CRWQCB-LAR's cross section only used two data points when dozens of others were available, and failed to evaluate and take into account the surrounding area-wide lithology, the CRWQCB-LAR's cross section showing a south-ward dipping silt layer between these two borings is not a reasonable interpretation. ExxonMobil has already demonstrated through several previously presented figures, which evaluated all of the lithologic data collected near the property boundary at the two sites, that an area wide low permeable silt layer dips to the north and northeast (Appendix E) (Cardno ERI, 2015).

Therefore, the CRWQCB-LAR's cross section should not be used to invalidate the more robust geological interpretation presented on behalf of ExxonMobil which demonstrates the subsurface transport pathway to the north away from the property boundary area.

ADDITIONAL FILE REVIEWS

Cardno's March 2015 Report presented conclusive documentation of CHT's poor waste management and operational practices, including agency inspection reports and NOVs for the release of various chemicals to the ground (Cardno, 2015).

In October 2016, Cardno conducted a file review with the South Coast Air Quality Management District (SCAQMD), as the SCAQMD's files were not reviewed during previous investigations. The SCAQMD documents provide additional evidence for the use and storage of PCE at the CHT property and along the property boundary with Jalk Fee, including:

- In 1969, CHT permitted two degreasers for its operations.
- CHT had a 575-gallon outdoor aboveground storage tank (AST) for PCE located off the northwest corner of CHT's building, which was located along the property boundary with Jalk Fee (Plate 1).
- In 1982, CHT reported that the AST was "used till empty and refilled" and "26 refills per yr", indicating that CHT used approximately 14,950 gallons of PCE per year.
- In 1982, CHT was storing "12 55 gal drums from 3 months operation return for reclaim for 2 degreasers", and a 1982 memorandum states, "He said there are 12 55 gal drums waiting for vendor to pickup."

 In 1982, it was reported that "1,540 gallons of 'waste oil' was trucked away by Lakeland Oil Company; and wash water was pumped out seven times and contained 101 gallons of oil."

These records from the SCAQMD provide further documentation of the substantial use of PCE by CHT for over 25 years, that new and waste PCE was stored by CHT near the property boundary with Jalk Fee, and that waste oil generated from its heat treating operations was also stored near the property boundary with Jalk Fee. The documents obtained from the SCAQMD file are contained in Appendix F.

Additionally, the SCAQMD had no records which indicated that PCE was used or stored at the Jalk Fee property, which further supports ExxonMobil's previously documented file reviews.

USE OF AND RELEASES OF QUENCH OIL BY CHT

Quenching is an integral part of heat treating operations, as heated parts are dipped in a quenching fluid to prevent crystallization, distortion, and microcracking of the metal. This quenching fluid is commonly an oil.

CHT's 1969 Degreaser Application to the Los Angeles County Air Pollution Control District states, "Many steel parts to be heat treated have a thin oil film on the part and it is desirable to remove this oil film by the use of a degreaser. Some heat treated parts are oil quenched and to clean the parts for shipment the parts are cleaned in the degreaser". CHT's 1982 Electrostatic Precipitator Application to the SCAQMD states that "the quench oil is L-100 Pale Neutral made by Far-Best Corporation. Continental Heat Treating records show that in 1977, 1,650 gallons were purchased" (Appendix G).

Additionally, CHT's Hazardous Materials Contingency Plan in the Los Angeles County Fire Department records identifies that CHT stored 500 gallons of quench oil in a tank and disposed of 300 gallons of waste quench oil in drums (Appendix G).

The agency documents presented in Cardno's March 2015 Report, which are partially summarized below, provide further evidence for CHT's use, storage, and release of quench (mineral) oil and waste oil onto the CHT property (Appendix G).

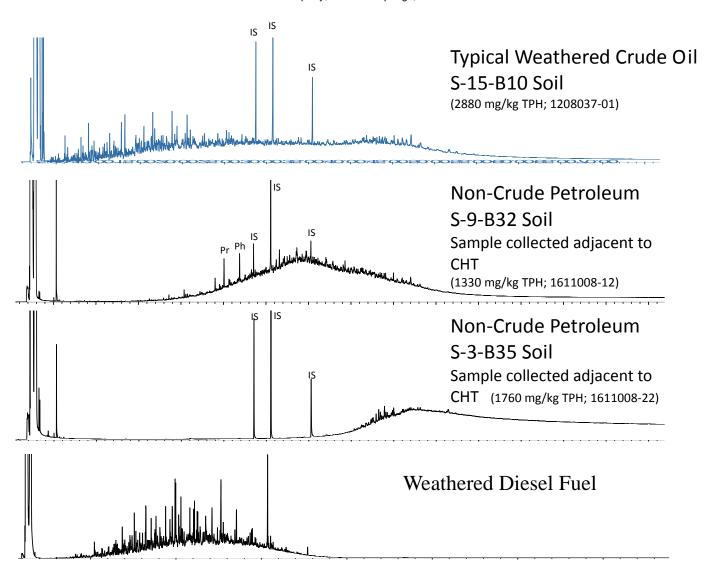
 A County of Los Angeles survey report dated May 19, 1989, identifies that CHT conducted parts wiping, and stored excess rags containing oil and solvent in covered cans.

- A County of Los Angeles Department of Health Services Official Notice of Violation dated March 16, 1984 issued for the CHT property states: "you are hereby directed to remove oil from ground in rear storage area". (Emphasis added)
- A County of Los Angeles Department of Health Services Notice of Violation and Order to Comply dated May 19, 1989 to CHT states:
 - "Discontinue the disposal of hazardous waste to an unauthorized point(s)...any waste oil onto the ground". (Emphasis added)
 - "Store all hazardous waste in compatible containers which are closed and in good condition...keep lids and bungs on, don't overfill".
 - 3) "Remove and legally dispose of oily surface in rear asphalted yard...discharge of oil waste both onto asphalt top and onto soil (SW corner or rear yard)". (Emphasis added)
 - ♦ 4) "Unlabeled barrels that Mr. Bastian indicated contained either PERC or waste oil".
 - 5) "Facility has a continuing problem with mineral oil disg [sic] out on the asphalted area".
 (Emphasis added)
- A City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation dated May 25, 2006, states: "Continental Heat Treating violated City Ordinance...by having oil in the 3rd stage of their clarifier. Oil must be removed from the clarifier and maintained such that oil is kept out of the sewer system". (Emphasis added)
- A City of Santa Fe Springs Fire Department Inspection Report & Notice of Violation dated May 9, 2007, states: "Continental Heat Treating violated City Code...by failing to maintain pretreatment equipment in good working order. The third stage of the clarifier had oil in it. Continental Heat Treating must maintain the clarifier to prevent oil from entering the sewer system". (Emphasis added)

These records show that CHT used significant quantities of quench (mineral) oil in its operations, that the degreasing fluid (PCE) becomes commingled with the quench oil during heat treating operations, that waste oil is generated from the operations, that CHT stored the quench oil and the waste oil in its yard to the west of the building, and that the waste oil, undoubtedly mixed with PCE, was released multiple times onto the ground at CHT's facility due to poor handling practices.

These surface spills of oil and PCE would passively migrate onto the unpaved Jalk Fee property, where the highest concentrations of PCE in shallow soil have been identified in subsequent assessments, directly to the north of the CHT equipment storage and repair area.

FORENSIC ASSESSMENT


In October 2016, an investigation of the forensic signature of PCE and hydrocarbons in the soil at the Jalk Fee property was performed to determine the nature and likely source of these contaminants, Soil samples were collected along the southern boundary of the property, adjacent to the CHT property, in the area where the highest concentrations of PCE in shallow soil have been identified.

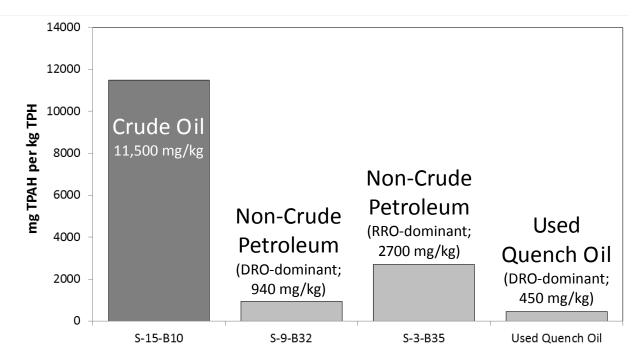
Comparisons were made to forensic markers that would be unique to heat treating and degreasing activities. The presence of these markers, co-located with the PCE in soil, would provide conclusive evidence that the PCE observed in soil was released by CHT. The study involved the advancement of various soil borings within and surrounding the former SB49 excavation and the collection of soil samples by Cardno (Plate 3). Refer to Appendix H for a report detailing the methodology for the sample collection and handling.

The soil samples were then submitted to Newfields Environmental Forensics Practice (Newfields), where they were analyzed by Alpha Analytical using several USEPA and forensic-specific analytical methods and the resulting data was evaluated and interpreted. A detailed discussion of the forensic evaluation of the soil samples and the laboratory analytical data is found in the Newfields' Report in Appendix I, and is briefly summarized below.

PCE was measured in all ten of the soil samples, at concentrations ranging from 0.003 to 1,100 mg/kg, and hydrocarbons were measured in eight of the ten soil samples collected in the investigation at concentrations ranging from 117 to 1,760 mg/kg. The hydrocarbon signatures from the 2016 investigation were compared to the signature of soil samples with weathered crude oil collected at the Site in 2012, and a weathered diesel fuel. The 2016 soil sample hydrocarbon signatures were clearly distinct from the weathered crude oil and diesel samples, as shown in the figures below. Further analysis of the fingerprints indicated that it would have been impossible for the signature of the hydrocarbons in soil along the property boundary to have resulted from the weathering and degradation of crude oil or diesel fuel, which are the expected COCs at an oil field. Therefore, the hydrocarbons measured in soil during the October 2016 assessment were not associated with historic oil field operations.

February 8, 2017 Cardno 08115504.R23 Former ExxonMobil Jalk Fee Property, Santa Fe Springs, California

Because the 2016 soil samples collected near the property boundary clearly did not contain petroleum that might be attributed to historic oil field operations (e.g. crude oil or diesel fuel), and because documents obtained from file reviews of the neighboring CHT facility indicated the use of quench (mineral) oils and disposal of waste oil "onto the ground and asphalt top at rear yard", the hydrocarbon signatures observed in the 2016 soil samples were compared to the signature of oils and wastes used or generated by the heat treating of metal. By comparing the fingerprints of the hydrocarbons found in soil in the 2016 assessment with various reference samples of new and used quench oil and waste oils generated from typical heat treating operations (no samples were available from CHT), Newfields concluded that the hydrocarbons found in soil during the 2016 assessment at the Jalk Fee property along the boundary with CHT appear highly consistent with used quench oil that contains some residual sludge/waste oil generated from repeated heat treating.



Comparison of fresh and used quench oil samples to soil sample S-9-B32, collected near the Jalk Fee property boundary with CHT, as shown in the preceding figures indicate that:

- All the samples contained a similar unresolved complex mixture (UCM) with a maximum at C₂₂.
- All the samples contained aliphatic hydrocarbons consistent with a paraffinic quench oil. The used quench oil contained both n-alkanes and isoprenoids, whereas sample S-9-B32 only contained isoprenoids, a phenomenon attributed to loss of the n-alkanes from biodegradation in the soil.
- The broad UCM in sample S-9-B32 was consistent with the broadening of the UCM between the
 fresh and used quench oil, which is attributed to the formation of sludge and the deterioration of the
 quench oil during its normal usage in heat treatment operations.

As a second line of evidence, Newfields analyzed the soil samples for PAHs and petroleum biomarkers. Quench oils are de-aromatized during the refining process, therefore are chemically distinct from crude oil and other hydrocarbon products which would be used at oil production sites. The results of the analysis indicated a low aromatic (PAH) content in the 2016 soil samples, comparable to a used quench oil, as shown in the graph below,

further demonstrating that the hydrocarbons in soil are not crude oil, and are consistent with used quench oils containing varying amounts of sludge or waste oil.

Comparison of the TPH-normalized concentrations of total PAHs (TPAH) in representative soil samples from the Site containing severely weathered crude oil (S-15-B10) and non-crude petroleum enriched in DRO- and RRO- components (S-9-B32 and S-3-B35), as well as a used quench oil.

The forensic study demonstrates that the hydrocarbons observed in the 2016 soil samples collected along the property boundary are not associated with crude oil or diesel fuel, but are consistent with used quench oils containing some heavier sludge and waste oil. These used oils and wastes were exclusively part of CHT's heat treating business activities, are co-located with PCE concentrations as high as 1,100 mg/kg, and are located directly adjacent to CHT's property boundary, where CHT stored and released PCE, quench oil and waste oil.

SUMMARY AND CONCLUSIONS

In a letter dated July 22, 2016, the CRWQCB-LAR responded to ExxonMobil's 2015 request to name CHT sole discharger by making several assertions about a possible source of PCE on the Jalk Fee property and identified several isolated data points that the CRWQCB-LAR claimed were inconsistent with ExxonMobil's SCM, which had explained how releases of PCE from CHT's operations migrated onto and across the Jalk Fee site.

As presented to the CRWQCB-LAR during a meeting in December 2016, and as detailed above, ExxonMobil has developed additional evidence to support its contention that PCE identified in soil on the Jalk Fee site was the sole result of CHT's 26 years of poor operational and waste management practices in using and releasing quench oil and PCE during its heat treating and degreasing operations.

The CRWQCB-LAR acknowledged that that CHT is the primary source of chlorinated solvents on the CHT and Jalk Fee properties in its letter dated June 23, 2010. Further, as detailed in Cardno's March 2015 Report and this report:

- There is no evidence for a primary source or release of PCE on the Jalk Fee property:
 - There is no evidence of PCE use or storage at the Jalk Fee property by ExxonMobil or Hathaway Oil.
 - The USEPA did not identify the use of chlorinated solvents during oil production.
 - A soil gas survey conducted in the 'former trucking operations' area demonstrated there was no release of PCE in this area.
 - Other California regulatory agencies and GeoTracker do not identify chlorinated solvent contamination at other oil field properties.
- The surface of the CHT property was paved during most of its operation, and the surface of the
 Jalk Fee property was unpaved soil until the property was redeveloped in 2003, allowing surface
 spills and precipitation to passively migrate laterally onto the Jalk Fee property and downward.
- CHT had several primary sources of chlorinated solvents including multiple degreasers within its building, an outdoor PCE storage tank, waste storage, and the northwestern area of the site where equipment storage and repairs were likely conducted.
- CHT used and stored significant quantities of chlorinated solvents for degreasing operations from approximately 1969 through 1995, including approximately 14,950 gallons per year in 1982.
- Inadequate operational, housekeeping, and waste management practices by CHT resulted in numerous releases/spills of chlorinated solvents and other chemicals, which were identified during agency inspections, and which resulted in various NOVs.

- Pathways for surface and subsurface chlorinated solvents to migrate from the CHT property to the
 Jalk Fee property have been identified, and the extensive lithological data collected explains the
 vertical and lateral distribution of PCE found in soil on the Jalk Fee property.
- Quench oils are used in heat treating operations and are not used in oil field operations.
- As identified in various agency records and NOVs, CHT used, stored, and released quench oils
 and waste oil generated from its heat treating process onto the ground on its property, which would
 have migrated northward onto the unpaved Jalk Fee property.
- The forensic study demonstrates that the hydrocarbon fingerprints identified in the soil along the property boundary, which were co-located with the highest PCE soil concentrations, could not have been from oil field activities, as they are inconsistent with weathered crude oil or diesel fuel.
- The forensic study demonstrates that the hydrocarbon fingerprints identified in the soil along the property boundary, which were co-located with the highest PCE soil concentrations, are consistent with used quench oil and waste oil generated from heat treating operations.
- Only CHT used, stored and released quench oil and waste oil in its operations, and the quench and
 waste oils are co-located with the highest PCE concentrations in soil, providing direct evidence of
 releases of PCE and quench oil by CHT, and migration from CHT's operations.

Based on the substantial evidence provided, ExxonMobil believes it has demonstrated that CHT is the sole source of the chlorinated solvents observed in soil beneath the CHT, Jalk Fee, and 10711 Norwalk Blvd properties.

Therefore, ExxonMobil, again respectfully requests that the CRWQCB-LAR identify CHT as the sole discharger and responsible party for the chlorinated solvents identified in soil and soil vapor on the CHT, Jalk Fee and 10711 Norwalk Boulevard properties; rescind its Order dated August 24, 2010 and subsequent amendments requiring ExxonMobil to assess and monitor the extent of chlorinated solvents; and formally remove ExxonMobil as the named discharger and responsible party for the chlorinated solvents.

LIMITATIONS

For documents cited that were not generated by Cardno, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

For questions concerning this report, please contact Mr. James Anderson at 805 644 4157, extension 181805.

Sincerely,

James Anderson

Senior Program Manager

for Cardno

Direct Line 805 644 4157, ext. 181805

Email: james.anderson@cardno.com

Andy Nelson

Senior Geologist

P.G. 8360

for Cardno

Direct Line 805 644 4157, ext. 181809

Email: andy.nelson@cardno.com

February 8, 2017

Cardno 08115504.R23 Former ExxonMobil Jalk Fee Property, Santa Fe Springs, California

Enclosures:

References

Acronym List

Plate 1 1983 Aerial Photo with Trucking Area Soil Gas Sampling Wells and Soil Boring B22

Plate 2 Industry Standard Interpretation Cross Section SVP1-MW2

Plate 3 Forensic Study Soil Boring Locations

Appendix A Regulatory Correspondence

Appendix B Aerodata Photo Interpretation Report

Appendix C Soil Vapor Table and Figure from McLaren Hart Report

Appendix D Soil Vapor Partition Model and Calculations

Appendix E Newfields Figures

Appendix F SCAQMD File Documents

Appendix G Quench Oil File Documents

Appendix I Cardno's Report of Soil Borings In Support of Forensic Investigation, dated February 8, 2017

Appendix I Newfields' Forensic Signature of Hydrocarbons in Soil at the Former Jalk Fee Facility, dated

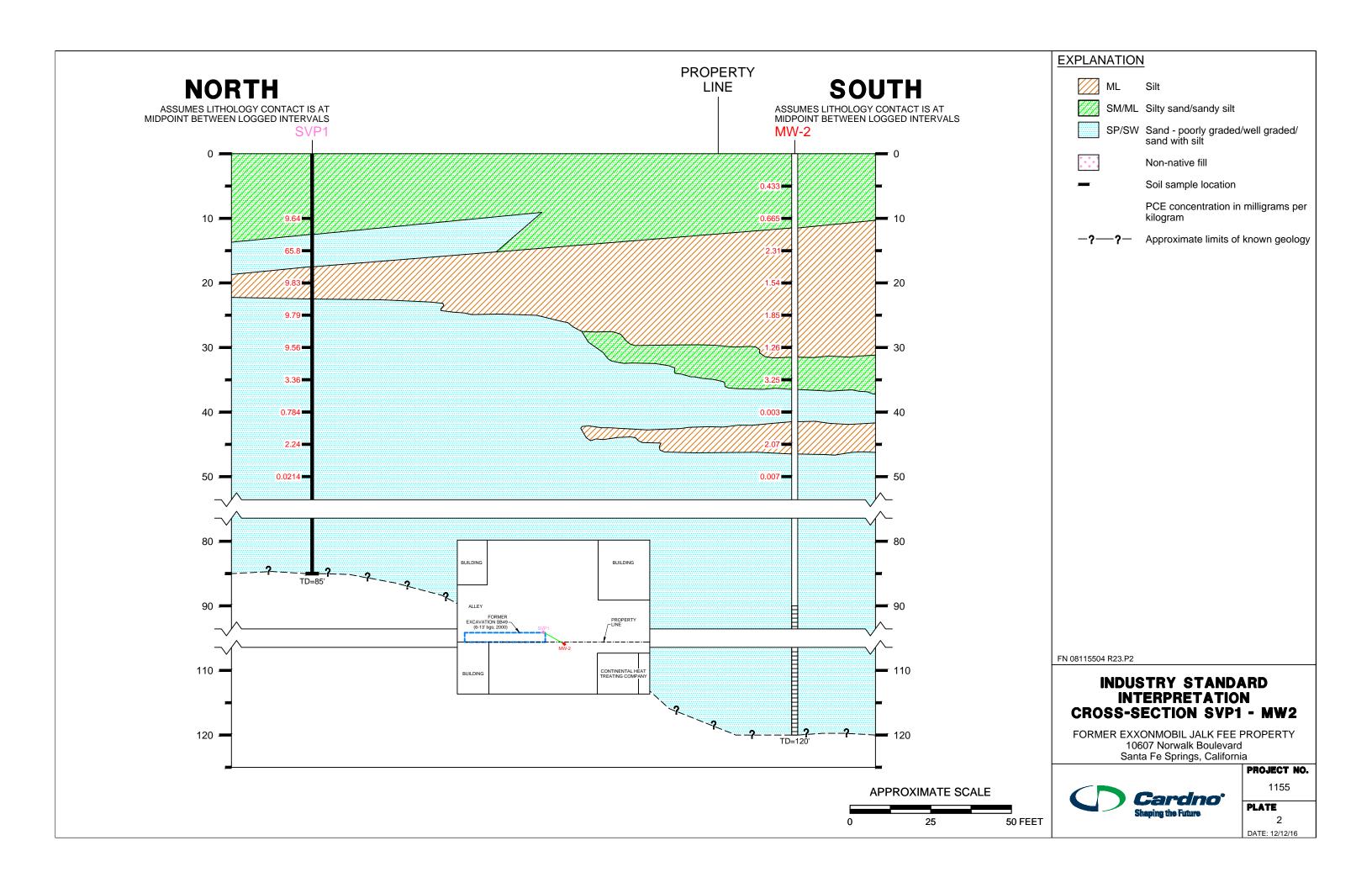
February 7, 2017

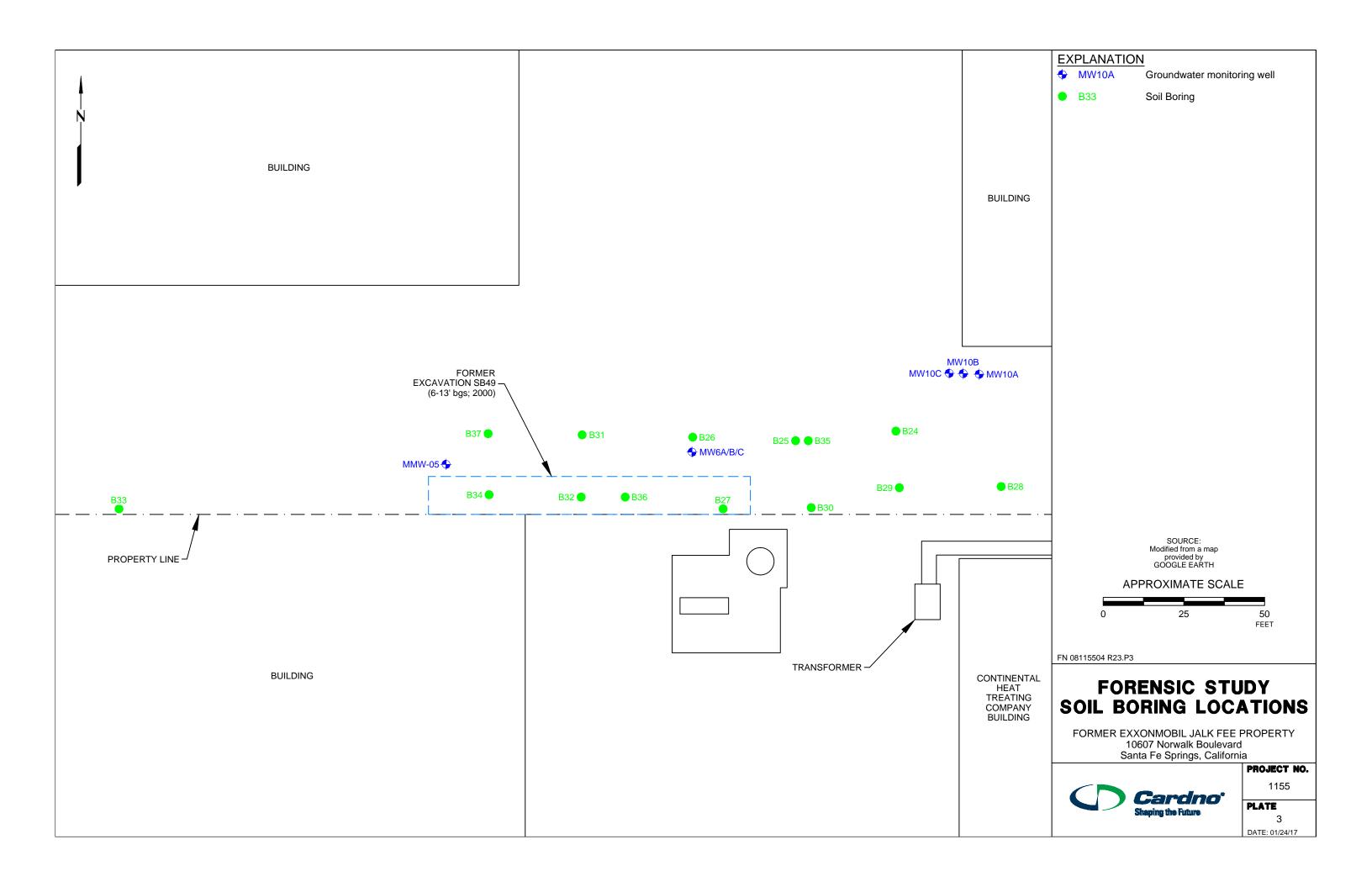
REFERENCES

Cardno ERI. October 20, 2014. *Site Assessment Report*, Former ExxonMobil Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.

Cardno ERI. March 25, 2015. Request to Name Continental Heat Treating as Discharger, Former ExxonMobil Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.

Cardno. February 3, 2017. Report of Soil Borings in Support of Forensic Investigation, Former ExxonMobil Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.


McLaren Hart. February 2, 1996. *Draft Additional Soil Sampling at Mobil Jalk Fee Property*, 10607 Norwalk Boulevard, Santa Fe Springs, California.


United States Environmental Protection Agency (USEPA). October 2002. *Exemption of Oil and Gas Exploration and Production Wastes from Federal Hazardous Waste Regulations*.

ACRONYM LIST

μg/L	Micrograms per liter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		

APPENDIX A REGULATORY CORRESPONDENCE

Los Angeles Regional Water Quality Control Board

July 22, 2016

Ms. Marla Madden ExxonMobil Environmental Services Co. 18685 Main Street, Suite 101, PMB 601 Huntington Beach, CA 92648

RETURN MAIL RETURN RECEIPT REQUESTED CLAIM NO. 7015 0640 0006 6057 5019

SUBJECT: RESPONSE TO "REQUEST TO NAME CONTINENTAL HEAT TREATING AS

DISCHARGER", PURSUANT TO CALIFORNIA WATER CODE SECTION

13267 ORDER DATED AUGUST 24, 2010

SITE: FORMER EXXONMOBIL JALK FEE PROPERTY, 10607 NORWALK

BOULEVARD, SANTA FE SPRINGS, CA (SCP NO. 0203, SITE ID NO. 1848000)

Dear Ms. Madden:

The Los Angeles Regional Water Quality Control Board (Regional Board) reviewed the March 25, 2015, Request to Name Continental Heat Treating as Discharger (Report), prepared and submitted by Cardno ERI on your behalf, for the referenced site. In the Report, ExxonMobil Environmental Services Company (ExxonMobil) requests the Regional Board to rescind the California Water Code (CWC) section 13267 order dated August 24, 2010 (Order) issued to ExxonMobil, based on its conclusions that the Continental Heat Treating (CHT) site is a source of the chlorinated solvents in soil and groundwater at and near the Former ExxonMobil Jalk Fee Property (Site). The Regional Board agrees that the CHT site is a source of chlorinated solvents and issued a CWC section 13267 order dated May 5, 2010 to CHT to investigate and delineate the extent of contamination in soil, soil-gas, and groundwater from releases at the CHT facility. The Regional Board, however, disagrees with ExxonMobil's conclusion that CHT is the sole source of chlorinated solvents because soil, soil vapor, and groundwater data collected at the Site indicates on-site discharges. Below are ExxonMobil's comments (italicized) provided in the Report, followed by the Regional Board's detailed responses:

1. The evidence presented by EMES is consistent with the same conclusions the CRWQCB-LAR has already reached, as demonstrated by the CRWQCB-LAR's letter dated June 23, 2010 to CHT (Appendix A). The CRWQCB-LAR stated that significant quantities of PCE were stored and used by CHT, that primary sources of PCE contamination (degreaser, storage area, etc.) have been identified at the CHT property, that releases of chlorinated solvents at CHT have impacted the subsurface, that the pipe trench leading from the degreaser to the north end of the building may have created a potential preferential pathway for the migration of PCE, and that no primary sources of PCE contamination have been identified on the Jalk Fee property.

The CHT site is located to the south and adjacent to the Site (Figure 1, enclosed), and under oversight by the Regional Board, as a separate case. The Regional Board issued CHT a CWC section 13267 order dated May 5, 2010 to investigate soil, soil gas, and groundwater contamination as a result of their own releases. On May 19, 2010, CHT provided comments to the May 5, 2010 order, indicating that the Regional Board cited numerous erroneous allegations.

On June 23, 2010, the Regional Board provided responses to CHT's May 19, 2010 letter and presented the sources of information for the citations made, and stated that no primary source(s) of tetrachloroethene (PCE) contamination have been identified at the Site. However, investigations conducted at the Site in 2011 encountered PCE in soil and groundwater at concentrations up to 6,600 micrograms per kilogram ($\mu g/kg$), and 1,800 micrograms per liter ($\mu g/L$), respectively. Based on these analytical results, the Regional Board determined that volatile organic compounds (VOCs) detected in soil have threatened groundwater quality, and required ExxonMobil to further investigate soil matrix, soil vapor, and groundwater at the Site.

2. From the 1920s until its redevelopment in 2003, the Jalk Fee property had a dirt surface and was unpaved, as can be observed in the historical aerial photos, which would allow rainwater and spills/releases from the adjacent paved CHT property to run off onto and infiltrate into the upper vadose zone of the Jalk Fee property (see Plate 1 and Appendix B for the historical aerial photos).

ExxonMobil's rationale cannot explain that PCE was detected in a soil sample collected at 10 feet below ground surface (bgs) at a concentration of 5,460 μ g/kg in soil boring B22 at the Site. This boring is located approximately 140 feet north of the property boundary with the CHT site. This data indicates an on-site release or discharge at the Site.

3. ExxonMobil has had internal discussions with its personnel who managed oil field operations at various locations, who confirmed that chlorinated solvents were not standard chemicals used in its oil field production operations. This is reinforced by the CRWQCB-LAR's letter dated June 23, 2010 to CHT, which stated that the "Jalk Fee property was used for oil production operations and no primary sources(s) of PCE contamination have been identified [on the property]" (Appendix A). Additionally, file reviews conducted with the City of Santa Fe Springs and the County of Los Angeles did not identify agency records or NOVs, indicating that chlorinated solvents were stored, used, or released onto the Jalk Fee property (Appendix C).

Please see Regional Board's response to Item No. 1 regarding the Regional Board letter dated June 23, 2010 that stated that the "Jalk Fee property was used for oil production operations and no primary sources(s) of PCE contamination have been identified [on the property]".

Appendix C is incomplete, and does not provide all the documents to support ExxonMobil's file review process.

4. In 2014, Cardno ERI conducted a review of the State Water Resources Control Board's online GeoTracker information database of various oil field sites across the State of California that had current or closed environmental cases, and was unable to identify any

SCP No. 0203

oil field site that had chlorinated solvents as a contaminant of concern. Additionally, Cardno ERI spoke with representatives of the County of Santa Barbara Environmental Health Services and the California Regional Water Quality Control Board - Central Valley Region, which are agencies that have extensive oil field operations and clean-up projects in their areas of responsibility, and the representatives from both agencies were not aware of any oil field sites within their jurisdictions that had chlorinated solvent contamination.

Data collected at the Site indicates on-site discharge or release of chlorinated solvents at the Site (See Regional Board's responses to Items No. 1, 2, and 9).

5. Levine-Fricke's report dated December 6, 1991 claims that a tenant of Mobil who rented the Jalk Fee property may have used chlorinated solvents on the eastern portion of the property (Levine-Fricke, 1991). The report does not cite any source evidence for this statement, and ExxonMobil is unaware of any information that supports this claim. Furthermore, ExxonMobil has conducted extensive reviews of its lease files and has no record that any company or person rented the property during its period of operation or ownership, other than Hathaway.

As stated previously, Hathaway was an oil production company, and oil field operators did not use solvents as standard chemicals. Thus, there is no evidence that ExxonMobil, a tenant, or the subsequent property owners and their tenants ever used chlorinated solvents on the property. Therefore, there is no primary source of chlorinated solvents from historical operations on the Jalk Fee property, and the chlorinated solvents in soil must be from an off-site source.

A figure on the May 13, 1997, "Work Plan for Site Characterization Activities and Proposed Environmental Fate Modeling and Health Risk Assessment", displays an area at the Site identified as "approximate location of former trucking operations area" (Figure 2, enclosed). PCE was detected at a concentration of 5,460 μ g/kg in a sandy soil sample collected at 10 feet bgs from soil boring B22. Boring B22 is located within the "approximate location of former trucking operations area" at the Site.

In addition, the October 2002, "Exemption of Oil and Gas Exploration and Production Wastes from Federal Hazardous Waste Regulations", published by the United States Environmental Protection Agency (USEPA), lists waste generated during oil exploration activities, among them waste solvents.

6. History of CHT Property

The building that is currently present at the CHT property was constructed in 1969, at which time the majority of the property would also have been paved for parking, as is apparent in aerial photographs of the site (Appendix B). Based on information provided by CHT, since commencing operations at the site, the CHT business has cleaned metal parts and processed them with heat. This process requires the cleaning of the metal parts to remove cutting oil and debris, which was performed by placing the metal parts in a solvent-based vapor degreaser. Thus, CHT conducted degreasing operations and used chlorinated solvents from approximately 1969 to 1995, as supported by the following documentation [Appendix D through Appendix N].

Regional Board staff has reviewed the information included in Appendices D through N. In summary, the appendices indicated the following:

- CHT used PCE in its degreasing operations.
- Discharges of PCE from degreasing operations at the CHT site impacted soil at CHT.
 PCE was detected in soil samples collected at approximately 10 feet below ground surface (bgs) in the immediate vicinity of a degreaser, at a concentration of 7,514 μg/kg.
- CHT stored waste solvents in drums at their site and drums were transported to an off-site facility.

This information does not demonstrate that chlorinated solvent contamination at the Site soley originates from CHT. The Regional Board acknowledges that on-site discharges or releases of chlorinated solvents occurred at the CHT site as a result of their operations. The Regional Board issued a California Water Code section 13267 order dated May 5, 2010 to CHT to investigate the extent of impacted soil, soil gas, and groundwater.

7. As shown in these building records, CHT performed vapor degreasing at the property from approximately 1969 through 1995, which necessitated the storage of hundreds of gallons of chlorinated solvents at any time on the property and the generation of significant quantities of waste solvent, such as 2,200 gallons per year in the 1989 record. Over this 26-year operational period, the records show that CHT had one degreaser in the eastern portion on the building (Detrex #19); a second degreaser in the central portion of the building (Item #81), which is the location that is the most consistent with depictions in the reports submitted by CHT to the CRWQCB-LAR; a third degreaser along the western end of the building; and possibly a fourth degreaser at an unidentified location along the northern edge of the building.

This information supports the presence of on-site source(s) of chlorinated solvents at the CHT facility/site that impacted soil, soil vapor, and groundwater beneath the CHT site. This information does not support the claim that there is no source of PCE contamination identified on the Site.

8. In addition to the degreasing operations inside the building and the storage of waste PCE in the southwestern area of the property, it also appears that CHT utilized the northwestern portion of the property as an equipment storage and repair area based on review of the historical aerial photos and several reports (Appendices B and 0). Given that storage and repair of equipment occurred in this area of the site, it is likely that the cleaning of parts also occurred here, which is directly adjacent to the area of the Jalk Fee property where the highest PCE concentrations have been observed (Plate 1).

In addition to the equipment storage and repair area located in the northwestern portion of CHT's property, a trucking operations area was located at the Site. (See Regional Board response to Item No. 5).

9. Regulatory oversight and inspections started to become more common in the late 1970s and early 1980s. These regulatory inspections demonstrate CHT's practices resulted in numerous documented releases and spills to the ground throughout at the property. The various inspections, investigation reports and violations are summarized below and documented in

Appendices G, I, N and P through AC.

Regional Board staff has reviewed the information included in the referenced appendices. In summary, the appendices indicated the following:

- Wastewater was discharged from the cooling tower located on the northeast section of the CHT property to Norwalk Boulevard.
- · Soil impacted with oil was encountered at the CHT property.
- · Oil was encountered in a clarifier.
- Degreaser fires were reported.
- Soil in the immediate vicinity of the degreaser (inside the CHT building) is impacted with PCE at a concentration of 7,514 µg/kg.

This information does not change the Regional Board's conclusion that on-site sources of chlorinated solvents are located at the Site. The conclusion is based on soil data from B-11 and B-22 obtained from the Site, the "approximate location of former trucking operations area" at the Site, and the 2002 USEPA publication referenced in our response to Item No. 5.

10. First, the 1968 blueprints Therefore, these trenches would provide a preferential pathway directly from the degreasers to the northern edge of the CHT building and the southern boundary of the Jalk Fee property, allowing the migration of chlorinated solvent vapors (Appendix D). The CRWQCB-LAR reached much the same conclusion in its letter dated June 23, 2010 (Appendix A).

Soil, soil vapor, and groundwater data collected at the CHT site indicates the presence of at least one on-site source beneath the existing building.

Likewise, data collected at the Site indicates the presence of at least two on-site sources, one at the southern side close to the property boundary with CHT, and another one at the central portion of the Site.

11. Second, extensive assessment has been conducted in the southeastern portion of the Jalk Fee property and the northwestern portion of the CHT property, which has allowed for a thorough understanding of the near surface vadose zone lithology between the two properties. Two crosssections were generated for the area to the west of the CHT building and surrounding Jalk Fee well MW6, where the maximum PCE concentrations have been detected on the Jalk Fee property (Appendix Z, Figures 5.1.1 and 5.1.2). In addition, plan view figures of the distribution of low (clay/silt) and high permeability soils (sand) at 6, 10 and 16 feet bgs of the CHT and Jalk Fee property boundary area show that a laterally continuous, shallow, low permeability silt/clay layer is present under much of the CHT property (Appendix AA, Figures 5.2.1, 5.2.2 and 5.2.3). This silt/clay layer starts to dip along the northern part of the CHT property and continues to dip northward onto the Jalk Fee property to a depth of 15 to 16 feet bgs. Soil above the silt/clay layer on the northern CHT property and on the Jalk Fee property is generally characterized as sand. It should be remembered that the Jalk Fee property was unpaved and essentially an open field until 2003. Therefore, chlorinated solvents released by CHT along the northern portion of the CHT property or directly released onto the Jalk Fee property would infiltrate downward through the higher

permeability surface sand until reaching the low permeability unit and then would migrate along the northward dipping contact between the high and low permeability units onto the Jalk Fee property.

ExxonMobil's explanation of the migration of chlorinated solvents from the CHT site to the Site is not adequately supported. For example, in a cross section generated by Regional Board staff, including SVP-1 (southern part of the Site) and MW-2 (northern CHT), a silty layer dips from the southern part of the Site to the northern part of the CHT property. This silty layer would serve as a pathway for contaminants to migrate from the Site to CHT (Figure 3, enclosed).

The Report (Figure 5.1.2, enclosed) assumed that a silty layer on B14, extends laterally for approximately 55 feet towards MW6 (distance between B14 and MW6, both on CHT). Then, the silty layer would continue laterally from MW6 towards B11 (Site). This silty layer would serve as a migration pathway for VOCs to migrate from CHT (B14 and MW6) to the Site (B11). The silty layer that serves as a migration pathway extends vertically on B11 from approximately 24 to 39 feet bgs.

However, ExxonMobil's model cannot explain the vertical distribution of PCE on B11. PCE was detected in soil samples collected at 10 and 15 feet bgs at concentration of 5,360 micrograms per kilogram (μ g/kg) and 11,000 μ g/kg, respectively. However, in a soil sample collected at 35 feet bgs, PCE was detected at 937 μ g/kg (Figure 4, enclosed).

12. Specifically, chlorinated solvents were measured in soil at concentrations from south to north of 2,517 mg/kg at 4 feet bgs at location T9A-1A (a trench excavation sample located 10 feet north of the property boundary), 350.8 mg/kg at 15 feet bgs at location EX2-26 (an excavation verification sample collected 30 feet north from the property line), and 59,800 mg/kg at 15 feet bgs at location GP-6 (a geophone sample located 45 feet north of the property boundary) (Appendix AC). These samples all occurred in sand, and the two samples collected at a depth of 15 feet bgs are located at the contact between the sand and clay/silt units. Specifically, sample EX2-26 is located along a sand-clay/silt basal contact, and the GP-6 sample from 15 feet bgs is located at a sand-clay/silt lateral contact. The relationship between the stratigraphic contacts and the distribution of elevated chlorinated solvent concentrations suggests that the solvent-containing soil in this area is derived from a lateral transport mechanism. This is further supported by the soil samples collected in the vicinity of location GP-6, which are significantly lower in total chlorinated solvent concentrations. Specifically, the two samples collected from location GP-6 at shallower depths (5 and 10 feet bgs) had total chlorinated solvent concentrations of 0.33 mg/kg and 0.021 mg/kg, respectively, and the soil sample collected above sample EX2-26 at 6 feet bgs [sample EX2-26(A)] had a total chlorinated solvent concentration of 0.715 mg/kg (Appendix AC). This distribution pattern indicates that surface releases of chlorinated solvents were not occurring in these areas, as surface releases would have resulted in similar to higher concentrations of chlorinated solvents with residual saturation in the shallower soil sample.

Not all existing data collected to date supports ExxonMobil's explanation on the lateral migration of chlorinated solvents from the CHT site to the Site. For example, the soil type for boring SB-1, located at approximately 5 feet of T9A-1A was described as silt from ground surface to approximately 25 feet bgs. The soil type for soil boring SB-3, located at approximately 15

feet of GP-6 was described as silt from ground surface to approximately 39 feet bgs. The soil type description of SB-1 and SB-3 does not support ExxonMobil's assumption of the presence of a sand-silt contact at approximately 15 feet bgs, that serves as a pathway for VOCs to migrate from CHT to the Site.

13. Furthermore, the presence of the elevated shallow detections abutting the CHT-ExxonMobil property line supports that chlorinated solvent release(s) occurred in the vicinity of the property line and transport occurred to the north onto the Jalk Fee property. This transport was likely facilitated by runoff from the CHT property (including roof runoff from the CHT building), which caused the movement of chlorinated solvents away from the property line onto the Jalk Fee property.

Soil data indicate that there are silty/clay layers dipping from the Site to the CHT site (see Regional Board responses to Items No. 11 and 12). Therefore, roof runoff from the CHT building would not facilitate all contaminant migration from the CHT site to the Site.

14. Elevated concentrations of total petroleum hydrocarbons and chlorinated hydrocarbons, however, are generally not co-located across the majority of the Jalk Fee (Appendix AD, Figure 4.6). For example, the TPH concentrations in the northern excavation areas do not contain chlorinated solvents, whereas several of the near surface soil samples collected in the vicinity of the property line contain both elevated TPH and chlorinated solvents. Although the soil samples in the vicinity of the property line contain both chlorinated solvents and TPH, the respective concentrations are generally both low, or with either PCE or TPH significantly higher in concentration than the other constituent. These results reinforce the site conceptual model in which chlorinated solvents from CHT released along the northern portion of the CHT property or directly onto the Jalk Fee property infiltrated downward through the higher permeability surface sand, until reaching the low permeability unit, and then migrated along the northward dipping contact between the high and low permeability units onto the Jalk Fee property.

The existing soil and analytical data do not support ExxonMobil's site conceptual model. (See Regional Board responses to Items No. 11 and 12.) For example, PCE was detected at a concentration of 5,460 μ g/kg (B22 at 10 feet bgs), and a concentration of 1,120 μ g/kg (SVP7 at 5 feet bgs). B22 and SVP7 are located northwest of the excavation area, at approximately 140 and 90 feet north of the property boundary, respectively. These PCE concentrations at shallow depths indicate the presence of on-site release or discharge at the Site and cannot be explained with ExxonMobil's site conceptual model.

15. Based on the evidence provided, it has been demonstrated that CHT is the source of the chlorinated solvents observed in soil beneath the CHT, Jalk Fee and 10711 Norwalk Blvd properties. Therefore, EMES, on behalf of ExxonMobil, requests that the CRWQCB-LAR identify CHT as the discharger and responsible party for the chlorinated solvents identified on the CHT, Jalk Fee and 10711 Norwalk Boulevard properties; rescind its Order dated August 24, 2010 requiring ExxonMobil to assess and monitor the extent of chlorinated solvents; and formally remove ExxonMobil as the named discharger and responsible party for the chlorinated solvent.

The Regional Board acknowledges that CHT is a source of chlorinated solvents found at the CHT site, and contaminant plumes in groundwater found at both properties (CHT, and the Site) may have commingled. However, data collected and submitted to date (including, but not limited to, the contaminant fate and transport, and configuration of the plumes in soil matrix, soil vapor, and groundwater) have not indicated that the sources of chlorinated solvents in soil and groundwater found beneath the Site and suspected beneath the 10711 Norwalk Boulevard property properties, solely originated at or from the CHT site. To the contrary, the data demonstrates that there is an on-site discharge/release of chlorinated solvents that is independent of the chlorinated solvents on the CHT site.

In summary, based on existing soil matrix and soil vapor data collected at the Site and in the immediate vicinity including the northern portion of the CHT property, the Regional Board continues to hold that ExxonMobil has discharged, discharges, or is suspected of having discharged waste that could affect the quality of waters of the state. Therefore, the Regional Board is not rescinding its Order dated August 24, 2010, and the December 21, 2011 amendment to the Order, requiring ExxonMobil Environmental Services to adequately define the vertical and lateral extent of VOCs in soil matrix, soil vapor, and groundwater, originating from or encountered at the Site. Pursuant to the Order, you are required to continue soil matrix, soil gas and groundwater investigations to define the vertical and lateral extent of contamination originating from the Site.

If you have any questions, please contact Mr. Luis Changkuon, Project Manager, at (213) 576-6667 or luis.changkuon@waterboards.ca.gov.

Sincerely,

Samuel Unger, P.E.

Executive Officer

Enclosures:

Figure 1: Site Map

Figure 2: Map of the Former Jalk Fee site Figure 3: Cross section SVP1 – MW2

Figure 5.1.2

Figure 4: Soil concentrations on cross section 5.1.2

cc: Mr. James Anderson, Cardno ERI

Mr. John Maple

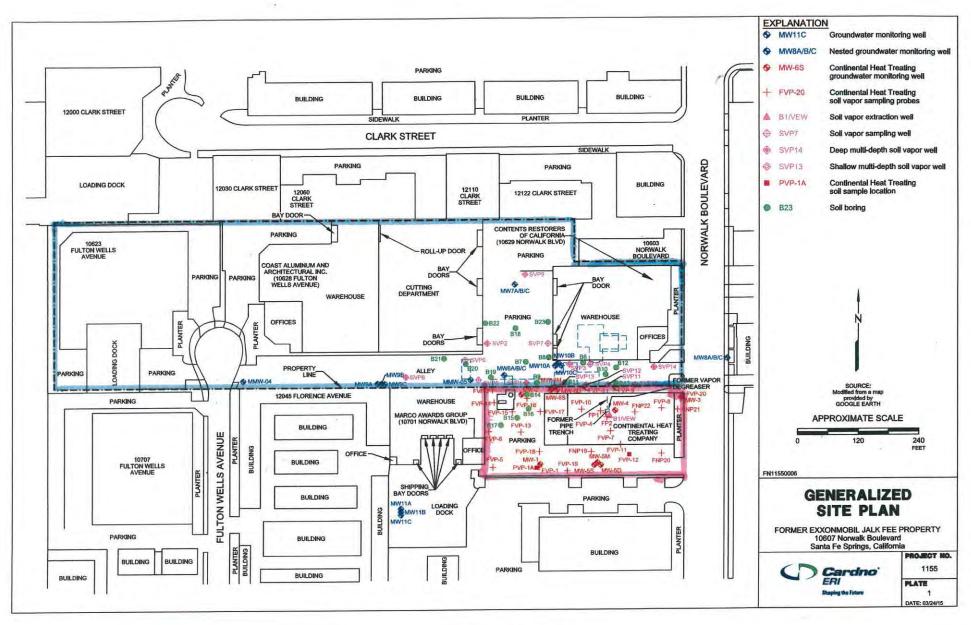
Ms. Michelle F. Smith

Mr. Thomas Clark, Coast Aluminum and Architectural, Inc.

Mr. William Macnider, CSI Electric Contractors

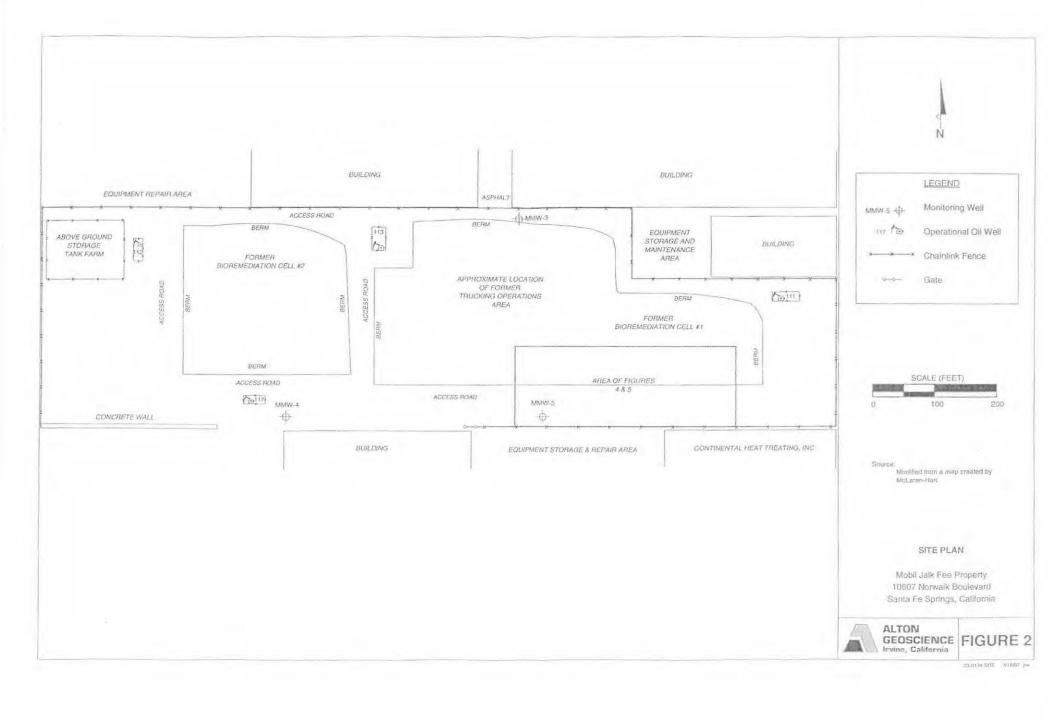
Mr. James Stull, Continental Heat Treating

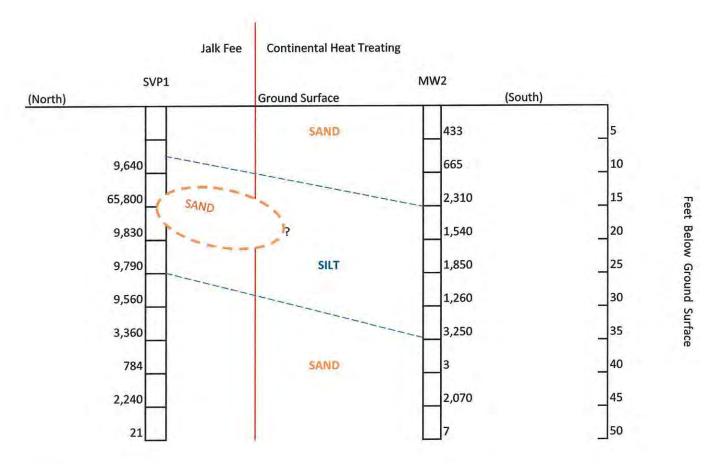
Mr. Michael Francis, Demetriou, Del Guercio, Springer & Francis, LLP

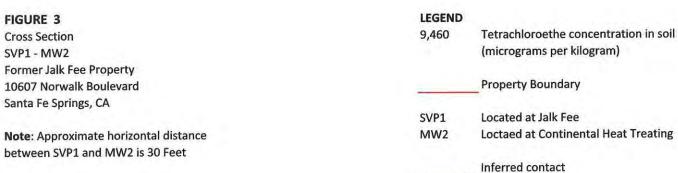

Ms. Ashley Arthur/Mr. Howard Schwimmer, Rexford Industrial Realty, LP

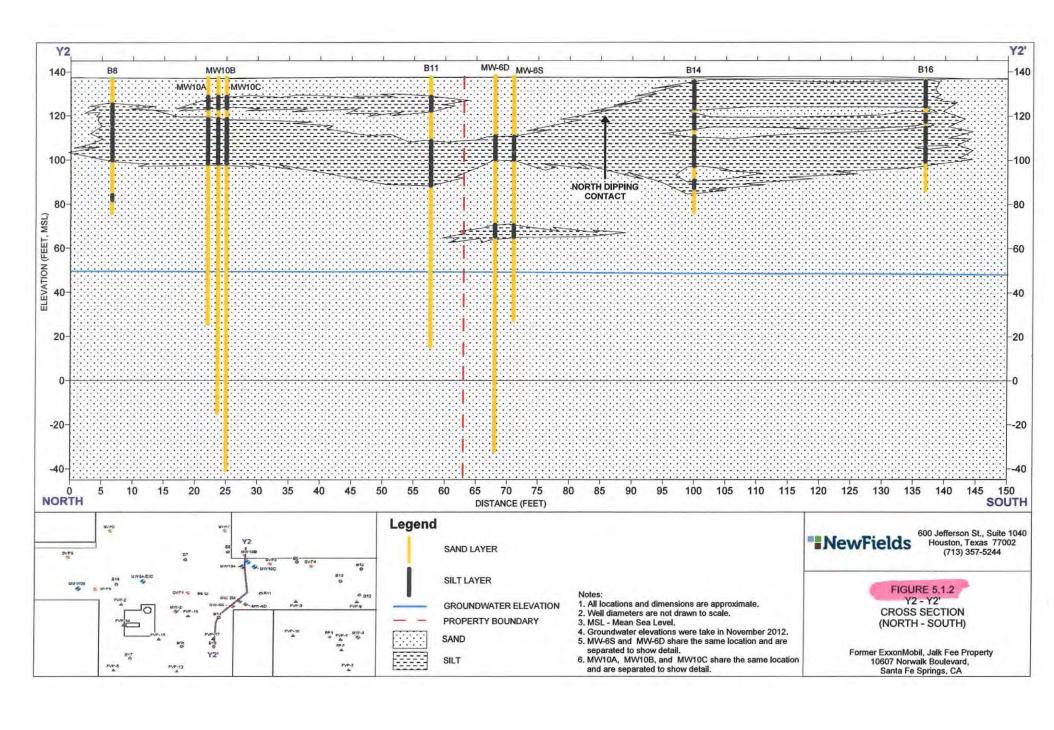
Mr. Jeremy Jungreis, Rutan & Tucker, LLP

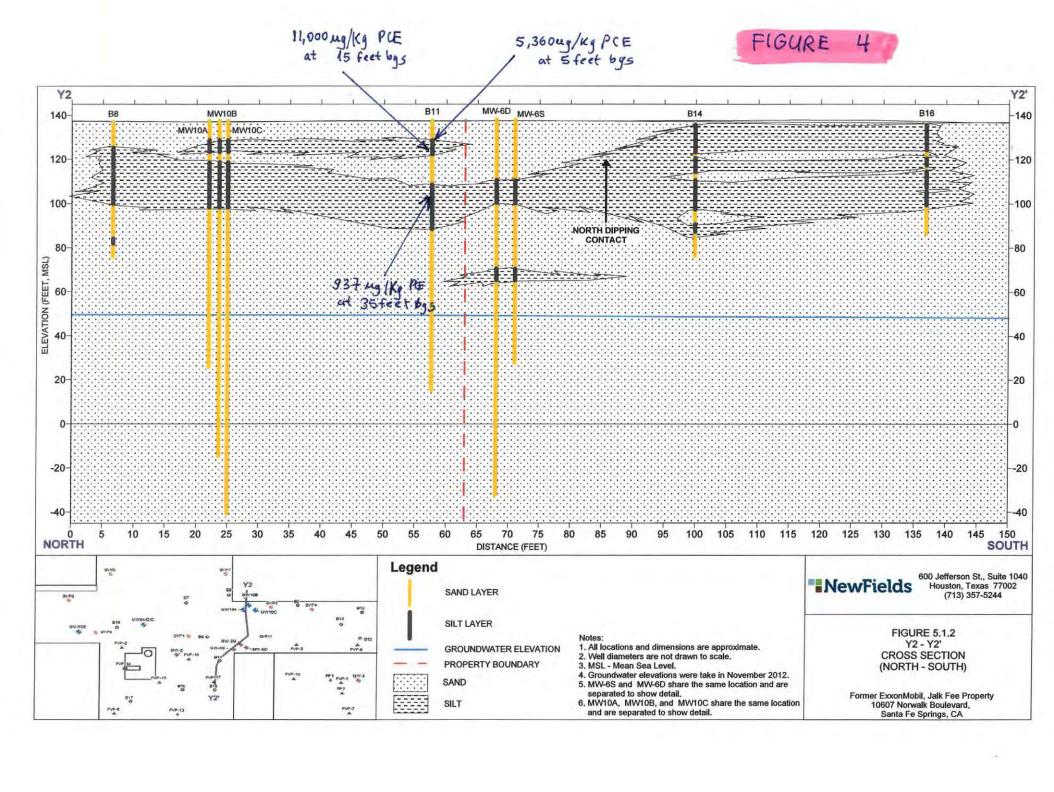
Mr. Rick Fero, Fero Environmental Engineering, Inc.


Mr. Wayne Praskins, United States Environmental Protection Agency


Mr. Gene Lucero, Omega Chemical Site Potentially Responsible Parties Organized Group







APPENDIX B

AERODATA PHOTO INTERPRETATION REPORT

Production and Interpretation of Aerial Photographs Covering the Jalk Fee Site

in Santa Fe Springs, California

Randall Grip

Aero-Data Corporation LLC

February 2, 2017

Introduction

Aero-Data Corporation was engaged to review two historical aerial photographic dates of photography, 2/19/1983 and 4/14/1983, covering the location of a former oil field ("Site") in Santa Fe Springs, California. Specifically, we were asked to review activities on the property and produce imagery for viewing and analysis.

Statement of Qualifications

My name is Randall W. Grip. I have a Bachelor of Science Degree in Geography from Louisiana State University. I am vice-president of Aero-Data Corporation. Aero-Data specializes in aerial mapping and environmental studies using aerial photography and historical maps. Over the past 20 years, I have provided expert photo-interpretation and photogrammetry services for environmental assessment purposes. During this work, I have participated in studies and obtained and interpreted aerial photographs of sites throughout the United States as well as in other foreign nations. Attachment B is my current resume.

My expertise is in review and analysis of readily available aerial photography. The processes I use include research and acquisition of stereoscopic photography, high resolution photogrammetric scanning, georegistration of stereo images, and rectified image production.

Information Considered in Forming Opinions

My opinions are based upon aerial photography of the Site as well as my experience and training.

Aerial photography was acquired of the Site from publicly available sources. The two dates reviewed are 2/19/1983 from Continental Aerial Photo and 4/14/1983 from the UC Santa Barbara Library.

Production of Geo-Registered Images and Maps

I have produced digital stereoplotter based geo-registered imagery both dates of aerial photography obtained for this expert report. The imagery is included in Attachment A.

Interpretations by Date of Photos

This report is primarily focused on two areas: an area near the center of the property and an area to the south of the property boundary which contains a vertical and horizontal tank.

2/19/1983

Four small (less than 20'x7') storage sheds are visible in the center of the property boundary. Three access pathways to this area from the south are visible. Light vehicles (trucks and cars) are visible throughout the focus area. A parked 18-wheeler and a grader are visible west and northwest of the sheds. Six parked trailers are visible south and southwest of the westernmost sheds. There is no indication of vertical or horizontal storage tanks near the sheds or trailers.

A horizontal and vertical tank are visible approximately 14 feet south of the property line. The horizontal tank measures approximately 8 feet wide and 20 feet long. The vertical tank is approximately 7.5 feet in diameter and is 36 feet from base to top.

4/14/1983

The conditions on the Site are relatively unchanged from the previous date of imagery taken two months earlier.

The four small storage sheds remain visible in the center of the property boundary. Three access pathways to this area from the south remain visible. Light vehicles (trucks and cars) are visible throughout the focus area. A parked 18-wheeler is visible northwest of the sheds. The grader is no longer visible. Six parked trailers are visible south and southwest of the westernmost sheds. There is no indication of vertical or horizontal storage tanks near the sheds or trailers.

A horizontal and vertical tank are visible 14 feet south of the property line. The horizontal tank measures approximately 8 feet wide and 20 feet long. The vertical tank is approximately 7.5 feet in diameter and is 36 feet from base to top.

Methods and Materials

Aerial research and acquisition

The historical aerial photography study of the Site began with research for available photo coverage from publicly available vendors. The photo coverage was then obtained in the form of frames consisting of vertical stereoscopic photography in a 9"x9" format.

Setting up the stereomodels

Two or more raster images for each stereo date of photography were then imported into a digital stereoplotter capable of providing stereoscopic viewing of the images at magnification levels ranging from 1x to 128x. The digital stereoplotter also allows precise mapping of significant environmental features, which are interpreted, in the 3-D imagery.

Ground control (UTM Zone 11N NAD83 Meters) for the initial stereo model, was derived from the georeferenced imagery and USGS quad maps of the area. Distant mapped features, hundreds of feet off the Site but which were also visible in the aerial photography, were measured (coordinates derived) from the georeferenced imagery and used as ground control points.

The coordinates of each selected visible ground control point were then entered in a control point file in the digital stereoplotter. The floating dot (measuring point) of the stereoplotter was carefully positioned by the operator with the hand controller, one point at a time, onto each of the visible control points and the coordinates of that point (from the ground control point file) were assigned to the image. When sufficient control points had been visited, accepted and the model checked for residual errors, the stereo model was then confirmed to be level, scaled and locked into the coordinate system. Thus, accurate measurements of heights and distances could now be made within the stereo model area by using the digital stereoplotter.

Other stereo models for the dates of photography were then setup using ground control points derived from the initial stereo model. Thus, the stereo models for all dates accurately register one to another allowing the photo interpreter to detect and map changed areas.

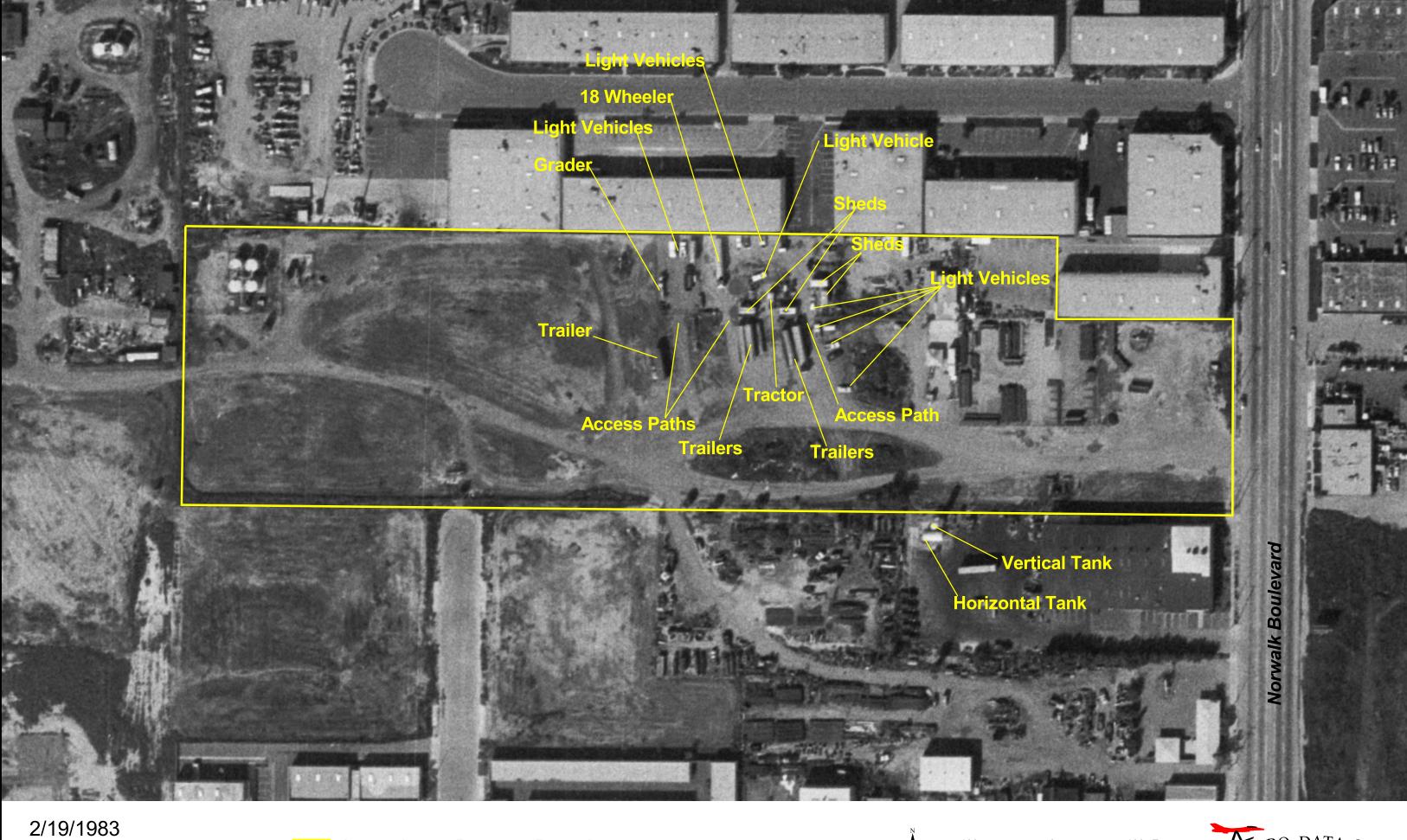
Rectified Image Production

Next, using the stereomodels and digital stereoplotter, a rectified image was produced for each date of photography. A rectified image is a two-dimensional raster image produced from one or more frames of vertical aerial photography such that most of the distortion caused by tip and tilt in the mapping camera has been removed, and the resulting raster image is accurately registered to a chosen coordinate system.

Photointerpretation

Photointerpretation of the Site was conducted primarily on the digital stereoplotter using the same digital stereo models used to produce the rectified images. The digital stereoplotter allows me to view the Site in 3-D on a stereo computer monitor or large computer projection screen, normally at magnification factors ranging from 8X to 32X while identifying and mapping the outlines of features.

The interpretation done with the digital stereoplotter captured all features in their true position. Stereo models for different dates were viewed and rapidly toggled back and forth on the stereo display to facilitate the detection of changes that occurred to the Site over time. The digital stereoplotter (soft copy) when used in this manner is an extremely powerful photointerpretation tool.

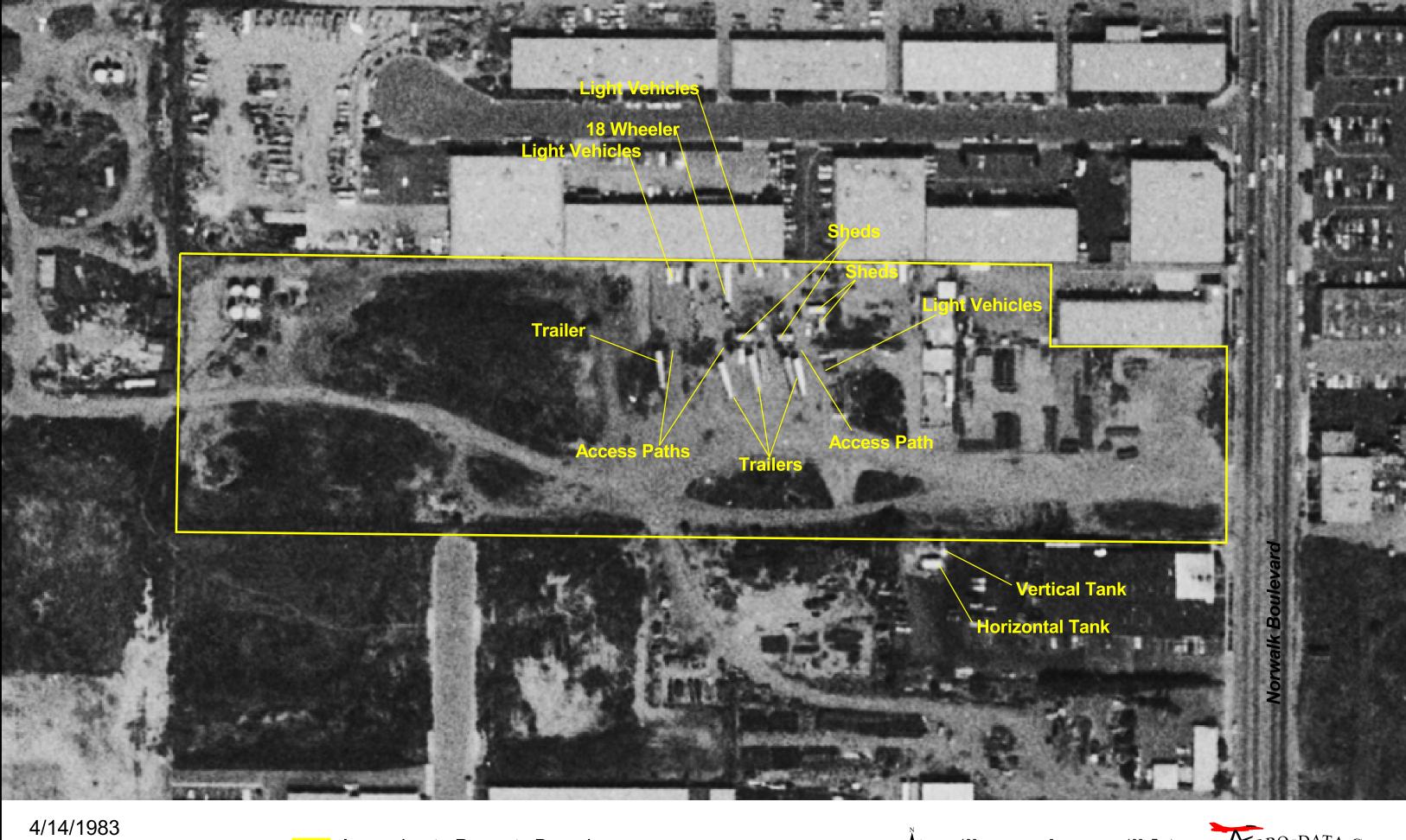

Geographic Information System (GIS)

The rectified images were next imported into the geographic information system (GIS).

The interpreted images located in the interpretations section of this report contain specific information and opinions which must be viewed by the reader to fully understand this report. These opinions supplement the textual opinions identified in my report. The mapped images (Attachment A) constitute the primary source of information in this report. They were prepared so that they may be displayed using computer generated prints or a computer projection system. The GIS provides a wide range of capabilities such as zooming, turning themes (layers) on and off and measuring distances. The interpreted images and maps will be used as exhibits at trial in my testimony. There may be additional demonstrative exhibits used at trial as well.

I reserve the right to revise and supplement this report.

Attachment A


Jalk Fee
Photo Source: Continental

Approximate Property Boundary

Jalk Fee
Photo Source: UCSB

Approximate Property Boundary

Attachment B

Randall Wayne Grip, Vice-President, Aero-Data Corporation

Education: Louisiana State University, BS in Geography (1996); Mapping Sciences emphasis.

Mr. Grip's course work included graduate level courses in photo interpretation, GIS mapping, GPS surveying and remote sensing with an emphasis in environmental applications.

Professional Experience:

September 2003 to Present Aero-Data Corporation, Baton Rouge, LA,

Vice-President

As company vice-president, Mr. Grip has directed all aspects of projects including photographic printing, photo interpretation, photogrammetry, and image research and acquisition. He has experience in digital image production and geographic information systems using Digital Photogrammetric Workstations and ESRI GIS. Mr. Grip has been involved in approximately two hundred mapping projects while at Aero-Data. During this time he has been trained and supervised by Wayne M. Grip, Aero-Data's co-founder and principal owner.

Aero-Data specializes in aerial photography and mapping, environmental photointerpretation, and geographic information systems. The company was founded in 1983. It has completed over fifty oil field studies since its founding. Aero-Data has a complete photo laboratory and two airplanes as well as aerial mapping cameras, GPS surveying and navigation receivers, and digital stereoplotter/photointerpretation work stations.

Aero-Data's projects number over 700 sites in 32 different states, to date. They include historical aerial photography-based hazardous waste site investigations; oil field investigations; environmental audits; accident site investigations; annual site documentation using aerial photography and video; contour mapping of plant sites; stockpile volume determinations; geographic information systems; and coastal zone erosion studies.

Aero-Data's client list includes many of the major corporations and law firms in the United States as well as government agencies such as the U.S. Fish and Wildlife Service, U.S. Environmental Protection Agency, U.S. Soil Conservation Service, U.S. Department of Justice, the Louisiana Department of Transportation and Development, the Louisiana Department of Natural Resources, and the Louisiana Department of Environmental Quality.

July 1995 to September 2003 Aero-Data Corporation, Baton Rouge, LA,

Project Manager III

August 1990 to July 1995 Aero-Data Corporation, Baton Rouge, LA,

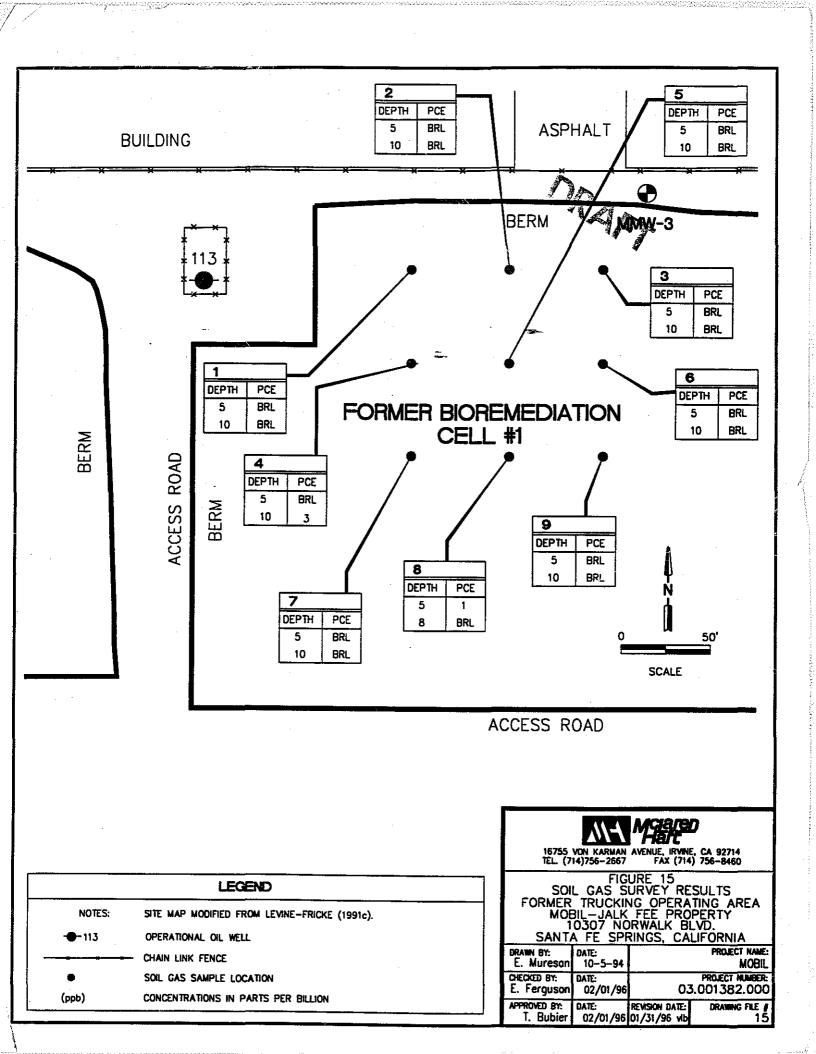
Photolab Specialist

While obtaining his university degree, Mr. Grip worked as a photo lab specialist and aerial camera operator for Aero-Data Corporation.

APPENDIX C

SOIL VAPOR TABLE AND FIGURE FROM MCLAREN HART REPORT

Table 6
Soil Gas Survey Analytical Results for Former Trucking Operations Area (Task 3)


Mobil Jalk Fee Property, Santa Fe Springs, California

		Date	EPA Method 8010 (ppb)					
Soil Boring	Depth							
Identification	(feet)	Sampled	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Trichloroethene	Tetrachloroethene	Other Halogenated Volatile Organic Compounds	
SG-1	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-1	10	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-2	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-2	10	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-3	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-3	10	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-4	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-4	10	1/2/96	BRL	BRL	BRL.	3	BRL	
SG-5	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-5	10	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-6	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-6	10	1/2/96	BRL	BRL	BRL	BRL	BRL	
\$G-7	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-7	10	1/2/96	BRL	BRL	BRL	BRL	BRL.	
SG-8	5	1/2/96	BRL	BRL	BRL	1	BRL	
SG-8	8	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-9	5	1/2/96	BRL	BRL	BRL	BRL	BRL	
SG-9	10	1/2/96	BRL	BRL	BRL	BRL	BRL	

BRL - Below Reporting Limit

Created by: M. Williams Reviewed by: E. Ferguson

^{1 -} Cleanup criteria equals the maximum contaminant level (MCL) times 10

APPENDIX D SOIL VAPOR PARTITION MODEL AND CALCULATIONS

Jalk Fee - Soil Vapor Partitioning Model for Soil Boring B22 and Soil Vapor well SVP2

$C_{\text{soil}} = C_{\text{v(eq)}} [\theta_{\text{w}} + k_{\text{d}} \rho_{\text{s}} + H \theta_{\text{v}}] / H \rho_{\text{s}} \qquad \text{(ASTM E 1943-98)}$

Term definition and units

Csoil = total soil concentration of PCE in g PCE/g soil

Cv(eq) = concentration of PCE in soil vapor in g/cm3 (SVP2)

 θ w = volumetric content of pore water in cm3 water/cm3 soil

kd = PCE soil/water partition coefficient in cm3/g; kd = Koc X foc

Koc = PCE organic carbon/water partition coefficient in cm3/g

ρs - soil bulk density in g soil/cm3 soil

H = PCE unitless Henry's Law constant

 θ v = volumetric content of vapor in cm3 vapor/cm3 soil

foc = fraction organic carbon (unitless)

1500000 ug/m3

Value		_
1.40883E-06	gPCE/gsoil	
0.0000015	g/cm3	site data
0.12		ASTM E 1943-98
0.4745	cm3/g	Koc*foc
94.9	cm3/g	ORNL Risk Assessment Information System
1.5	g/cm3	prof. judgement
0.724		ORNL Risk Assessment Information System
0.26		ASTM E 1943-98
0.005		prof. judgement

Predicted Adsorbed-Phase PCE Concentration:

1.4 mg/kg of PCE in soil

Sensitivity Analysis (varying only one parameter at a time in the Csoil equation):

 θ w = volumetric content of pore water in cm3 water/cm3 soil

Koc = PCE organic carbon/water partition coefficient in cm3/g

foc = fraction organic carbon (unitless)

 $\theta v = volumetric content of vapor in cm3 vapor/cm3 soil$

H = PCE unitless Henry's Law constant

ρs - soil bulk density in g soil/cm3 soil

			Maximum	
Minimum	Minimum	Maximum	Predicted	
Parameter	Predicted PCE	Parameter	PCE Value	
Value	Value (mg/kg)	Value	(mg/kg)	
0.05	1.3	0.5	1.9	Typical porosity range for sand to silt
50	0.9	152	2.0	Max is CA SWRCB Default value
0.002	0.8	0.02	4.4	Min is NJDEP Default Value
0.05	1.2	0.5	1.6	Inverse of volumetric content of pore water
0.463	2.1	0.724	1.4	USEPA online tool for Site Assessment - Henry's Law Calculator
1.4	1.4	1.75	1.3	Literature values for sand to silt

Sensitivity Analysis (varying all parameters in the Csoil equation):

Predicted Range of Adsorbed-Phase PCE Concentrations:

Using all Minimum Parameter Values: 0.3 mg/kg of PCE in soil
Using all Maximum Parameter Values: 11.5 mg/kg of PCE in soil

Jalk Fee - Soil Vapor Partitioning Model for Soil Vapor well SVP7

$C_{\text{soil}} = C_{\text{v(eq)}} [\theta_{\text{w}} + k_{\text{d}} \rho_{\text{s}} + H \theta_{\text{v}}] / H \rho_{\text{s}} \qquad \text{(ASTM E 1943-98)}$

Term definition and units

Csoil = total soil concentration of PCE in g PCE/g soil

Cv(eq) = concentration of PCE in soil vapor in g/cm3 (SVP7)

 θ w = volumetric content of pore water in cm3 water/cm3 soil

kd = PCE soil/water partition coefficient in cm3/g; kd = Koc X foc

Koc = PCE organic carbon/water partition coefficient in cm3/g

ρs - soil bulk density in g soil/cm3 soil

H = PCE unitless Henry's Law constant

 $\theta v = volumetric content of vapor in cm3 vapor/cm3 soil$

foc = fraction organic carbon (unitless)

4000000 ug/m3

Value		_
3.75687E-06	gPCE/gsoil	
0.000004	g/cm3	site data
0.12		ASTM E 1943-98
0.4745	cm3/g	Koc*foc
94.9	cm3/g	ORNL Risk Assessment Information System
1.5	g/cm3	prof. judgement
0.724		ORNL Risk Assessment Information System
0.26		ASTM E 1943-98
0.005		prof. judgement

Predicted Adsorbed-Phase PCE Concentration:

3.8 mg/kg of PCE in soil

Sensitivity Analysis (varying only one parameter at a time in the Csoil equation):

 θ w = volumetric content of pore water in cm3 water/cm3 soil

Koc = PCE organic carbon/water partition coefficient in cm3/g

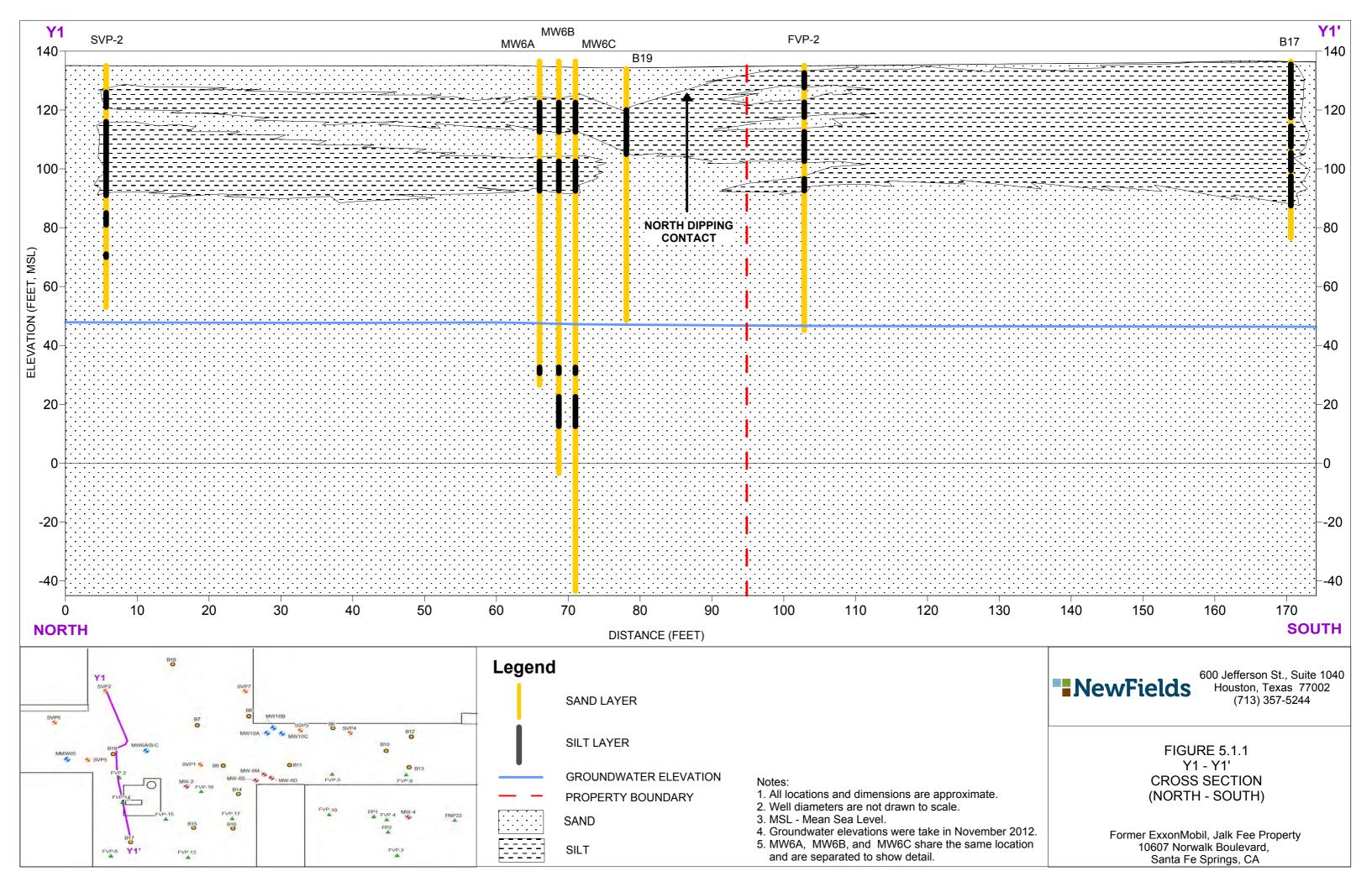
foc = fraction organic carbon (unitless)

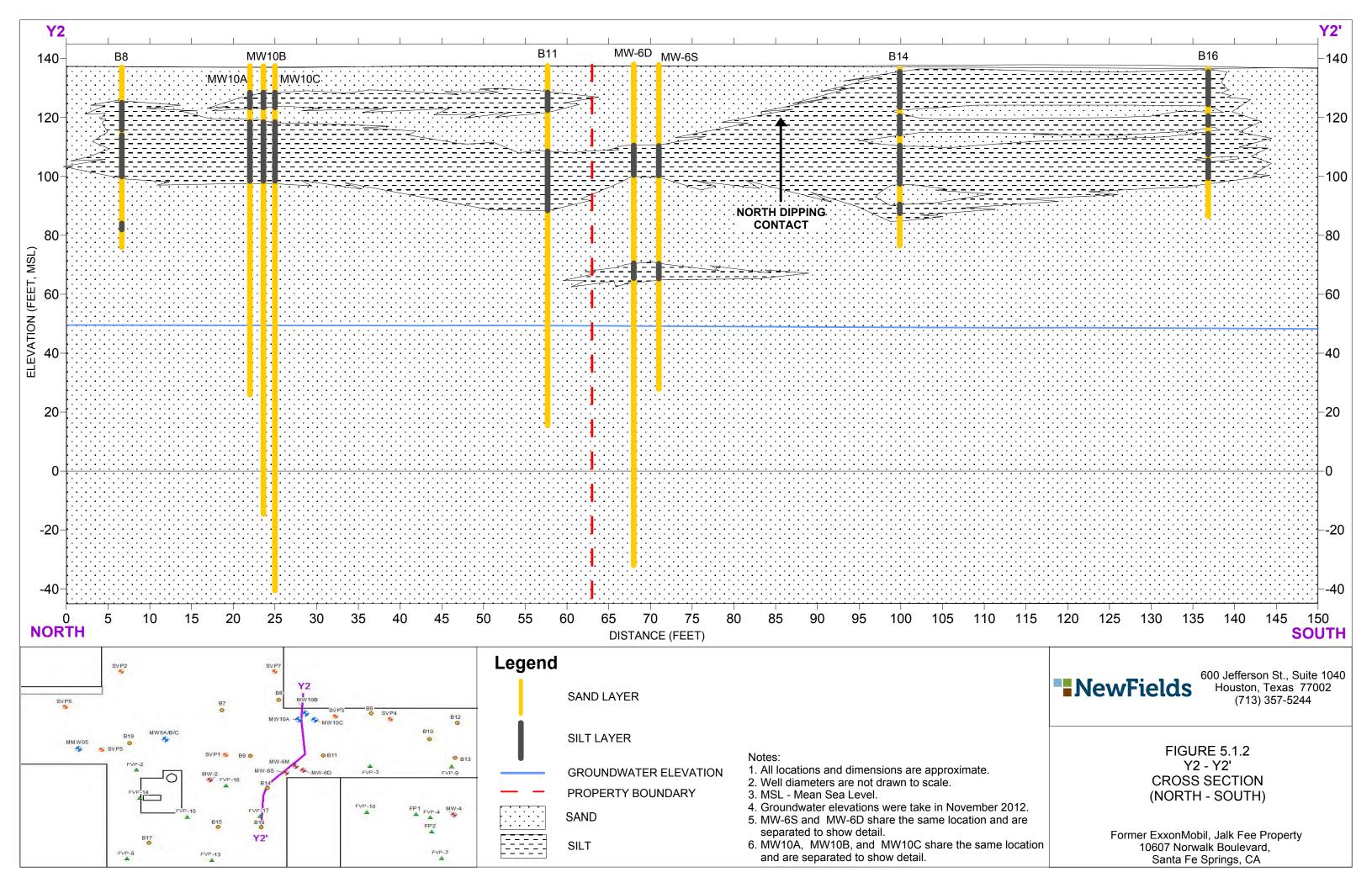
 $\theta v = volumetric content of vapor in cm3 vapor/cm3 soil$

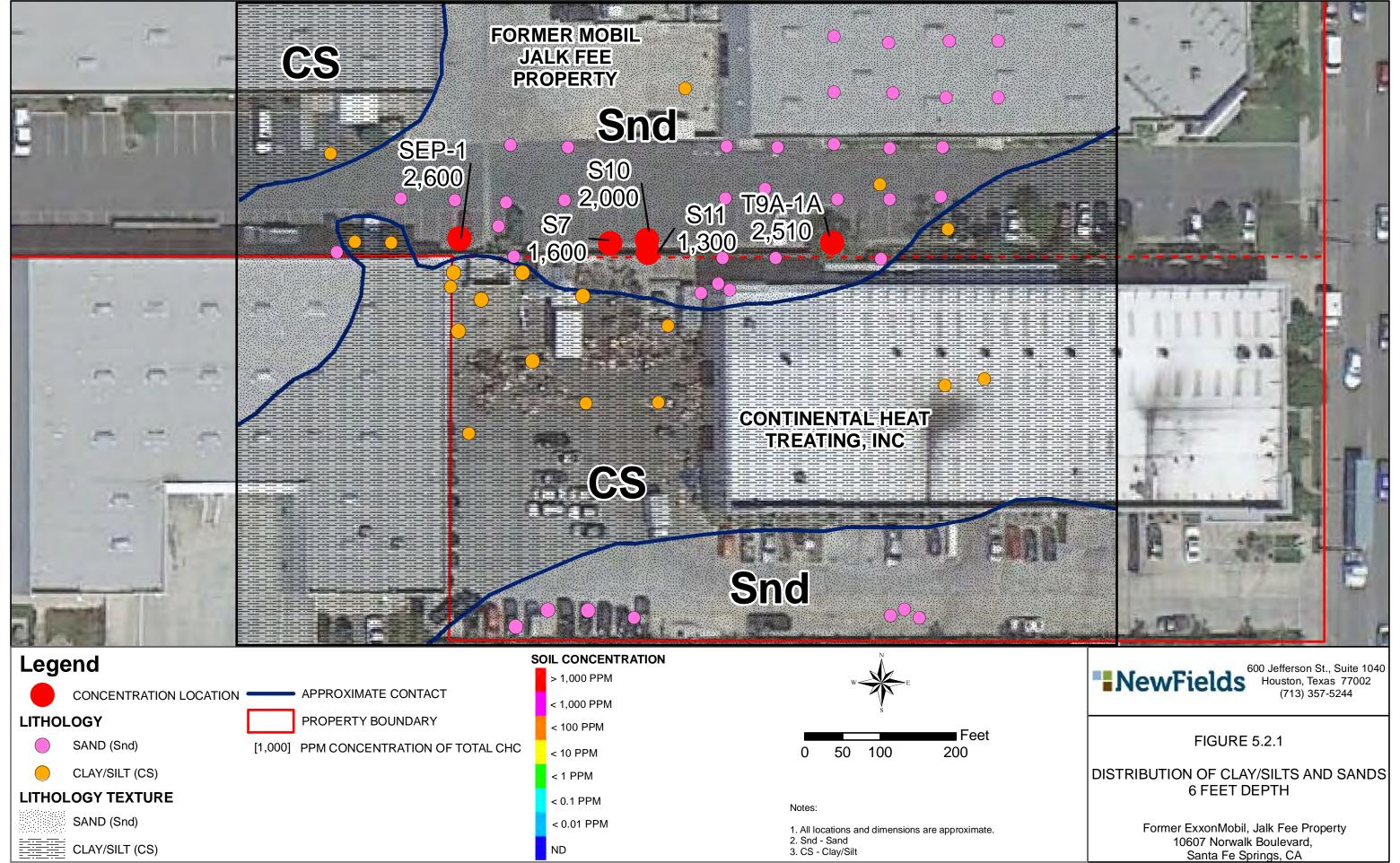
H = PCE unitless Henry's Law constant

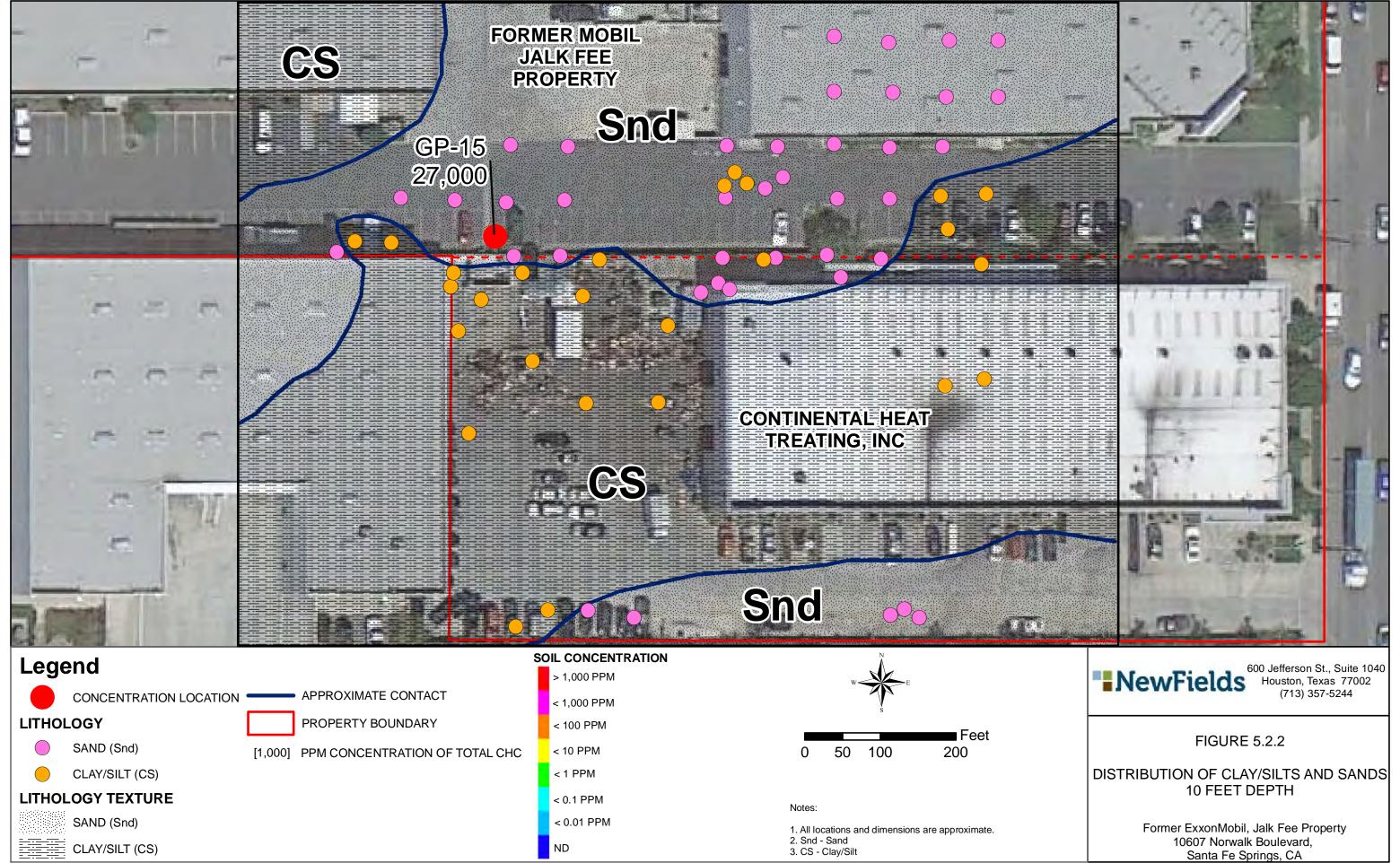
ρs - soil bulk density in g soil/cm3 soil

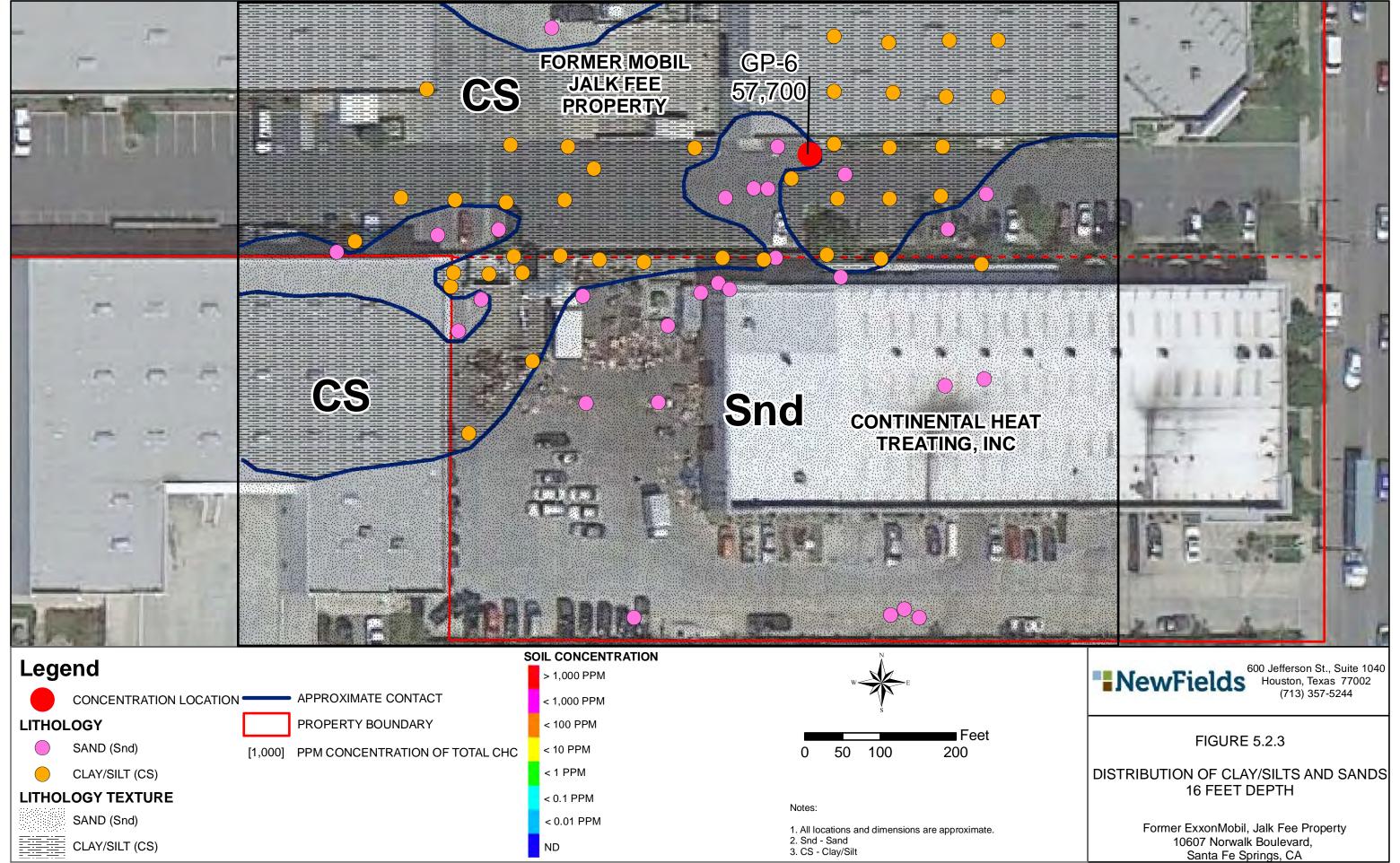
			Maximum	
Minimum	Minimum	Maximum	Predicted	
Parameter	Predicted PCE	Parameter	PCE Value	
Value	Value (mg/kg)	Value	(mg/kg)	
0.05	3.5	0.5	5.2	Typical porosity range for sand to silt
50	2.5	152	5.3	Max is CA SWRCB Default value
0.002	2.2	0.02	11.6	Min is NJDEP Default Value
0.05	3.2	0.5	4.4	Inverse of volumetric content of pore water
0.463	5.5	0.724	3.8	USEPA online tool for Site Assessment - Henry's Law Calculator
1.4	3.8	1.75	3.6	Literature values for sand to silt

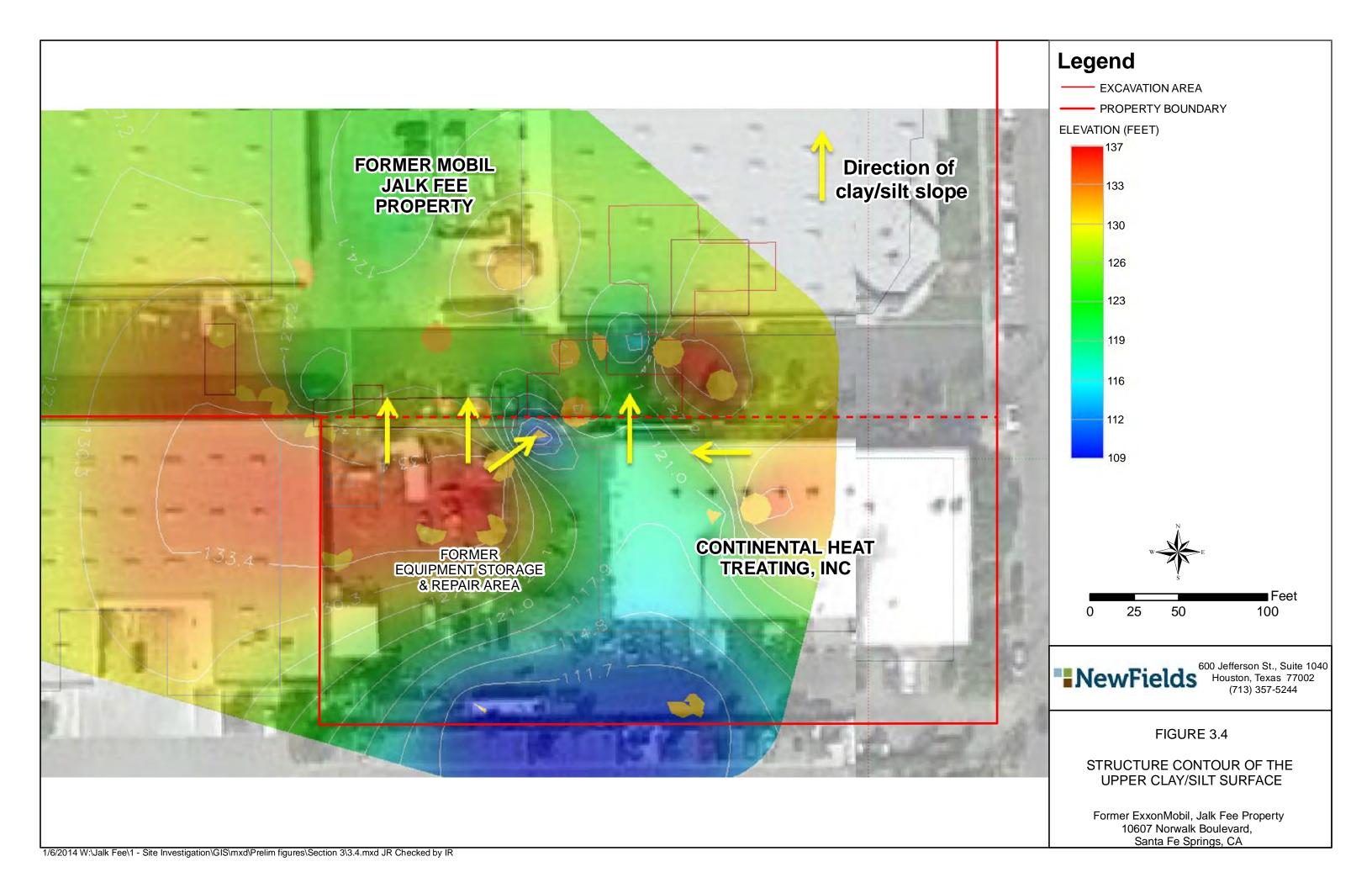

Sensitivity Analysis (varying all parameters in the Csoil equation):


Predicted Range of Adsorbed-Phase PCE Concentrations:


Using all Minimum Parameter Values: 1.3 mg/kg of PCE in soil
Using all Maximum Parameter Values: 19.5 mg/kg of PCE in soil


APPENDIX E


NEWFIELDS FIGURES



APPENDIX F SCAQMD FILE DOCUMENTS

December 18, 1969

A-56927-28 Sector SA

Continental Heat Treating Corp. (A Div. of Tower Industries) 10613 fouth Norwalk Boulevard Canta Pe Springs, California

Hr. William M. cems Attention:

Vice President - General Manager

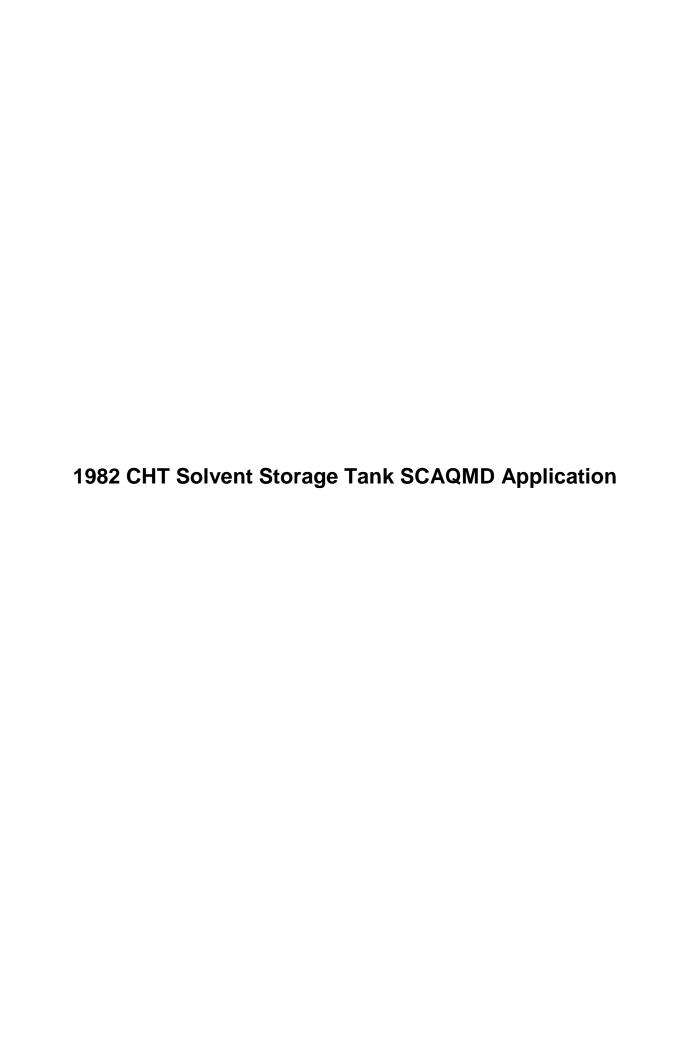
Centlement

Transmitted herewith are the following permits authorizing you to operate the described equipment:

Equipment Description Permit No. DOREALER P-36337 DEUREASER P-36338

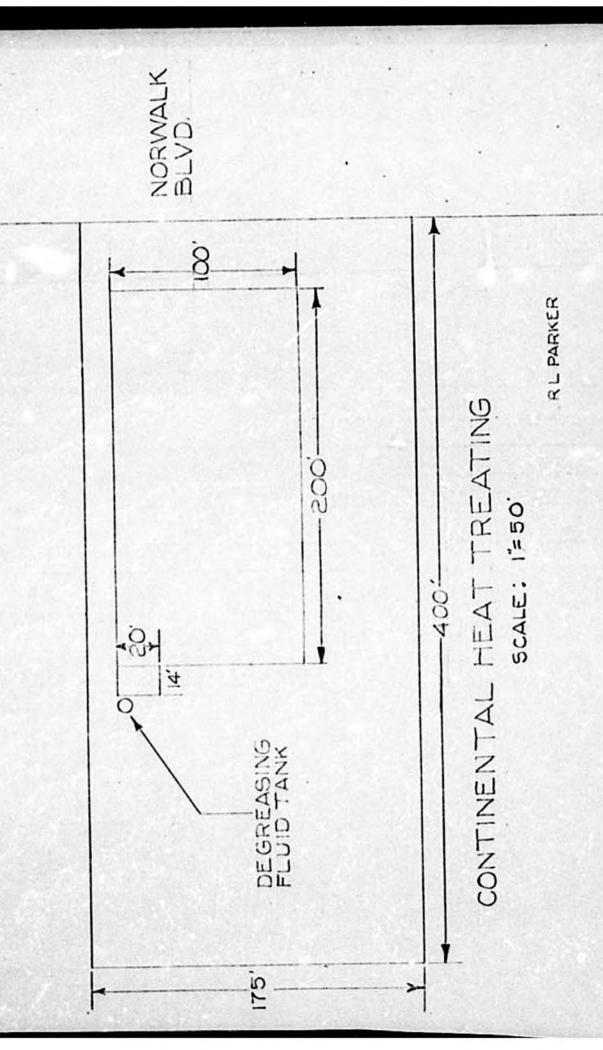
Hule 10. c. A person who has been granted under Rule 10 a permit to operate any article, machine, equipment, or other contrivance described in Rule 10 (b), shall firmly affix such permit to operate upon the article, machine, equipment, or other contrivance in such a manner as to be clearly visible upon the article, machine, equipment, or other contrivance is so constand accessible. In the event that the article, machine, equipment, or other contrivance is so constructed or operated that the permit to operate cannot be so placed, the permit to operate shall be structed or operated that the permit to operate cannot be so placed, the permit to operate shall be mounted so as to be clearly visible in an accessible place within 25 feet of the article, machine, equipment or other contrivance.

These permits are being issued covering your application on file at the Air Pollution Contro! District.


Very truly yours,

Louis J. Fuller Air Pollution Control Officer

Beth Malin


By Beth Malin, Fermit Section

LJF:BH:VM enclosures (2)

APPLICATION FOR PERMIT TO CONSTRUCT AND PERMIT TO OPERATE

PLIANT TIPE OF	2 2 2 2 2
14, *10*** 14 16 153415 701	2-7, 1-7, 1-13
Continental Heat Treating	
DIV. TOWER INDUSTRIES	O
	AND THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF TH
10. WAILING ABOUTST.	10.
10643 S. Norwalk Blvd. Santa Fe Sprin	gs, Ca. 90670
To describe to the fire the word.	To
Same	
Tax contact Pinter Contract & sent).	1. Cartest Page 40. 1010 10.11
T. F. Inda	213- 944-8800
1. Equipment, application in electer wast for Procest to de	17 440 Firest to appears for settlement successful.
PERCHLORETHYLENE STORAGE TANK	
PENCHEURETHIEFE STORAGE TANK	
to. Paisant and Pattoficks Egotiat Staff. 15.	
	**** * ***** **** *** **** ****
1. OF THIS EQUIPMENT HAS A PARTICULAR EXCITED PROMITE STATE STATE	of collection, character or incomment deals
None	
	700700 0000 0000
1. There is a second se	11 tele (00 a 110
7.8 41.0 494411441174	***************************************
Const of Autobary D	****** O *
	15-16 scar to test
tt. Action to the transfer of extending.	
titition, Loaned	1001 00 1007-00
35-31	19+42
	54 COCKTORY, 4-87 14
is, arrived an exclusion.	
Heat Treating of Hetal	Service
19. 1 access feedge-rut at question. The st tor to	
110-110 Milest 100-000 110-000 110	24
36-57 34-59 69-61 62-67 17 111.	1111 11111 1111 52
IT. SIRVATURE OF PREFENERAL PROPERTY OF APPROXIMATION.	II. STURE TO SEE ST TIME
Theodore F l. da	Maintenance supervisor
1. True is more and of the true	The same supervisor
THEODORE F. INDA	213-944-8800 October 31, 197
**************************************	h
11-74 COUNTY 15-16 ACC 16-74 COUNTY	27-74 4181 1.8. 401 75-28 8471.
> c.s. 34-36 t.c. 31-38 tre 39-47 (er 43-48 11. 4141 40	. 25-28 attent tret was 10-57 earles car. well de-
N ::: ::: ::::	
G 20102	25 occ. 01.1126-29 11.11111 16.11 11.11
S 28437 000 000	· · · · · · · · · · · · · · · · · · ·
5	1000 3152/
₹ \$64FC0006 5000:a \$05£	FEE 30-5) CHEEK ST MANTE
1	0+21+ +0.

ENGINEERING DIVISION MEMORANDUM

File	BU+	1- 7-8
outinental Heat	Treeting	C-2843
hauge to CI	ass III as the equipue	at is just alled.
20-82		
T/C to comp	my - Mr. Levna.	
. tank is us		
575 gallo		
	apty - then vatill	
4. retill ever	7-3 weeks. use Zwkg.	- 26 times/you
s Perchlovelly	lear solvent.	
		Burnelli L. F.
		1 1 1 1
建筑 001年10日		
US W. Carlot		

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT ENGINEERING DIVISION APPLICATION PROCESSING AND CALCULATIONS

APPL. NO. DATE
C-28437 1-20-82
PROCESSED BY CHECKED BY
BVA

110

Accelerated permit processing
As per memo from S. Weiss, Director
of engineering, dated December 21, 1981

Applicant Continental Heat Treating 10643 S Norwalk Blud. Santa Fe Springs, CA 90670

Attention: Mr R Lerma

Equipment Location: Some

See Page 3

A. Equipment Status

- 1. The to applicant, to llowing confirmed
 - (a) Tank in use
- (b) 575 gal capacity
- (c) solvert in Perchlorethylene
- (d) used till empty and vehilled
- (e) 26 refills peryr.
- Z. No I/Rs on file Company in compliance per inspector - equipment list.
- 3. NSED

 O low all contaminants.

Equipment Description:	Appl Processed	L. No. C- 28 437 Date 1-20-82 d By 8/A Checked my
The second secon		6-8'L, 575 Galler Capacity
ocated At: Continenta	Heat Treating 1064	3 S. Norwolk Bludy Sauta Fo Springs
Reason Application Requirement: Continuous Continuou	ed: Ø New Const. nd Ø in this application	Change of Loc. C Other .
Description of Materials	in application	
Initial BP of Liquid Comp	ound or Mixture:	MW = 166
Product f	ros manufacturing permit	unit Appl.
Materials Output: Raw materials	rial for manufacturing p	permit unit Appl
Packaging Tank or T	ruck loading	
Cark Is: Unheated Heated		Other
Cank Vents: Directly Vent trap	to atmosphere or filter; description	
Control e	quipment description	9
F= 2.4 M P V K		Permit No. F= Filling loss, lb M= Average mol wt, lb P= Vapor press, psia
	.29) (575) (
F= 0.66		space, usually 1 C= Compressibility factor, usually 1 for most
valuation and Disposition	a:	organic liquids
Odors Violation	s of Rules 401 & 402 are	
	construct is recommende construct is denied (Re	deasons in letter of denial)
For AL	OS (Hydrocoupens) H	6 = 0.66 10/1.
Fev E	$OP = R_1 = 0.66$	They harfday
		26 May 1/2×

		Applic	ation No. C-	28437
015P051110N:	PERMIT UNIT *0*01	**		
2	Ø		S sest	
- statte	O ** ******			
CONCEPED - DOM. L MELAND LIFTING LE	· ** *** 3 **	******	Descript itt	PIRMIT UNIT *****
Concerte - # Change 110	0 ••		· · · · · · · · · · · · · · · · · · ·	
Merious Person socs None				
finit mit meint Commen			-1 -11-	
A		VENT STORAG		4. x 6-8 L.
	575 Gall	ONS CAPACIT	Υ.	
	1			
CHARGE 01 000105HIP LOCATION	Day ocuasi	10 007/05	Osc. (1990) 1994	CA7100
CHANGE OF CONDITION	12 12 13 14 15 17 17 15 15 15 15 15 15 15 15 15 15 15 15 15	18 847185 6 18088450		
SCHIDULE ()- P. (2)10001 910-		11 . Dearrons.	Dent 201 (4) LE	
CHANGE OF CONDITION	O41 40 44114	E INCHESSE	Dent 301 (4) LE	11007100
CHARGE OF CONDITION	O-11. O:0	11 · () children · 5 75	Dent 301 (4) LE	11007100
CHARGE OF CONDITION	0 11 1 00 011 1 0 011 1 1 0 0 0 0 0 0 0	575	Dent 301 (4) LE	11007100
CHANCE OF COMDITION SCHEDULE () (2) 1000	101 t ac antia	575 41.001411005	Oratelati	Detroise .
CHANCE OF COMDITION	101 t ac antia	575 41 CULATIONS 41 CULATIONS	Onite 101 111 111	(Flav 7-1-8)
CHARCE OF COMDITION	101 t ac antia	575 41.001411005	Oratelati	(Flav 7-1-8)
	101 t ac antia	575 41 CULATIONS 41 CULATIONS 41 CULATIONS 41 CULATIONS 41 CULATIONS 41 CULATIONS	Onite 101 111 111	(Flav 7-1-8)
CHARCE OF COMDITION	101 t ac antia	575 41 CULATIONS BULL 301 PERMIT FEE BULL 40 10141 FFE	Onite 101 111 111	(Flav 7-1-8)
CHARCE OF COMDITION	101 t ac antia	11 · () CALLONS 5 75 ALCULATIONS AUCULATIONS PROBLET FEE OULE 40 TOTAL FEE FILLING FEE	Onite 101 111 111	(Flav 7-1-8)
CHANCE OF COMDITION SCHEDULE () (2) 1000	101 t ac antia	575 41 CULATIONS BULL 301 PERMIT FEE BULL 40 10141 FFE	Onite 101 111 111	(Flav 7-1-8)
CHANCE OF COMDITION SCHEDULE () (2) 1000	101 t ac antia	11 · () CALLONS 5 75 ALCULATIONS AUCULATIONS PROBLET FEE OULE 40 TOTAL FEE FILLING FEE	Onite 101 111 111	(Flav 7-1-8)
No P/C Penalty 50%	101 t ac antia	17 · () CALLORS 575 41 COLATIONS AUCULATIONS PERMIT TEE FORAL FEE FILLING FEE FIEL BALANCE	Onite 101 111 111	(Flav 7-1-8)
CHANCE OF COMDITION	101 t ac antia	11 · () CALLONS 5 75 ALCULATIONS AUCULATIONS PROBLET FEE OULE 40 TOTAL FEE FILLING FEE	Onite 101 111 111	(Flav 7-1-8)
No P/C Penalty 50%	2 1 100 6 ML 1 1 MC 8 1 A 1	17 · () CALLORS 575 41 COLATIONS AUCULATIONS PERMIT TEE FORAL FEE FILLING FEE FIEL BALANCE	Onite 101 111 111	(Flav 7-1-8)
No P/C Penalty 50%	1 () 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 · () CALLORS 575 41 COLATIONS AUCULATIONS PERMIT TEE FORAL FEE FILLING FEE FIEL BALANCE	Onite 101 111 111	(Flav 7-1-8)
No P/C Penalty 50%	1 () 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 · () CALLORS 575 41 COLATIONS AUCULATIONS PERMIT TEE FORAL FEE FILLING FEE FIEL BALANCE	Onite 101 111 111	(Flav 7-1-8)
No P/C Penalty 50% 111 111 111 111 111 111 111	1 () 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 · () CALLORS 575 41 COLATIONS AUCULATIONS PERMIT TEE FORAL FEE FILLING FEE FIEL BALANCE	Onite 101 111 111	(Flav 7-1-8)

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

PERMIT to OPERATE

9150 FLAIR DRIVE. EL MONTE, CALIFORNIA 91731

24608

Operation under this permit must be conducted in compliance with all information included with the initial application and the initial permit conditions. The equipment must be properly maintained and kept in good operating condition at all times. In accordance with Rule 206, this Permit to Operate or copy must be posted on or within 8 meters of equipment.

LEGAL OWNER CONTINUENTAL HEAT TREATING

APPL NO. C-28437

EQUIPMENT

10643 S. NORWALK BLVD

LOCATED AT: SANTA FE SPRINGS, CALIFORNIA

EQUIPMENT DESCRIPTION AND CONDITIONS:

TANK, SOLVEST STORAGE, 2'-2" DIA. x 6 -8" L. 575 GALBONS CAPACITY

This initial permit must be renewed by

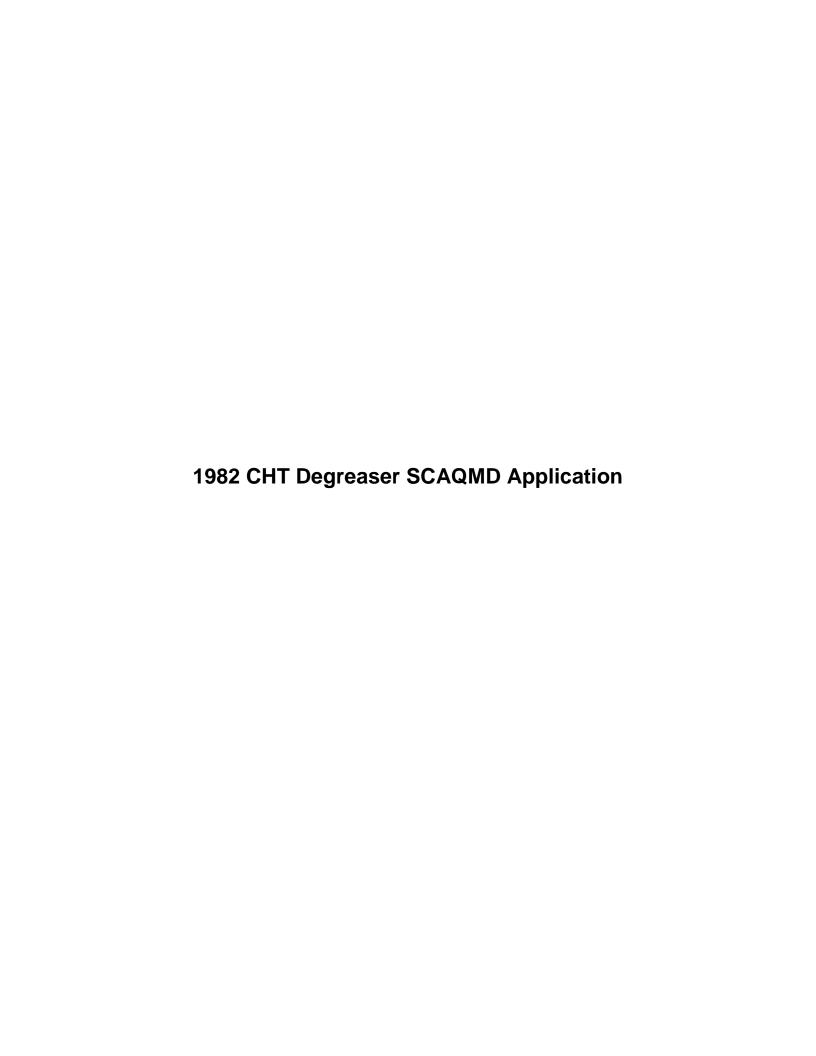
unless the equipment is moved, or changes ownership. If billing for annual renewal fee

(Rule 301.f) not received by expiration date. contact office above.

This permit does not authorize the emission of air contaminants in excess of those allowed by Division 26 of the Health and Safety Code of the State of California or the Rules of the Air Quality Management District. This permit cannot be considered as permission to violate existing laws, ordinances, regulations or statutes of other government agencies.

SCACHDODI

7500Da 8093


VOID UNLESS VALIDATED

EXECUTIVE OFFICER

DATE

mand it

76P235M-REV. .

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT ENGINEERING DIVISION APPLICATION PROCESSING AND CALCULATIONS

PAGES	PAGE
APPL. NO. (-28151	1-26-8Z
BVA	CHECKED BY

Perchlorocthylene Solvent

16 has/day

6 days/wk

se wks/yo

438 gals/mo - two degreasers

12 - 55 gal/drums for a dequeasers

Ave. Monthly use = 6 dayfor x 52 who for x 16 hospey + 12 months = 416 home.

Solvent supply:

438 gellow = 0.526 gelle loveach degreeser

2×A16 hrs/mor

Reclaimed solvent: 60% of reclaired solvent

12 Ayuns 55 galfaron x.6 = 66 galfmo, for each degreeses.

3 -1 / 2

416 = . 158 gel/or

Solvent Usage = .525 90/h. - . 158 90/h. = 0.36 90/hr = 5.76 00/hay

R1 = R2 = 0.36 9 % x 12.5 16/21 = 4.86 16/4.

Daily emission = 16 x 4.86 = 77.76 165/day

* Coedit from A/N A - 56927} = 33.8 16/Any

Print inactivated in 12-77

Invente in H.C. = 43.96 1/4.

* Noto: This application destroyed - see A/N A-56928 for info.

ENGINEERING DIVISION MEMORANDUM

File	BUA	1-26-82
Continental	Heat Treat	C-78 151
A.P.P. La	ta	
	en Richard Levma - d	
	6 Gel Capacity , No 1	
	KW Flortvic Heated	
	redel is DB-18 (not	
	olvent is Perchloroethyle	
	438 gala/no. 1 both d	
	Roll Cover - Closed wh	
	Use is 16 hrs/day 6 de	
	Water cooler ring - 30 5	gels/h.
7/1	0.101	
	Richard Lorge - Line	
	excersive and pounit would	
	about perch returned for	
	lor. Seid be vould c	
VELA	ov, sem problem c	HELP.
t/c du	on Lerna . He said the	eve ove 12-55941
dvums	vaiting for verlow to	nikup He said
	were from 3 months	
	I would religare with	
	two degreasers es as	
1-27-82	*	
7/6 1	o f. Lerne - He not s	upply any data on
the p	revious degreaser. Tol.	I him we would use
what	we show on the application	· la the other wit

APPENDIX G QUENCH OIL FILE DOCUMENTS

AIR POLLUTION CONTROL DISTRICT - COUNTY OF LOS ANGELES
434 SOUTH SAN PEDRO STREET, LOS ANGELES, CALIF. 90013. MADISON 9-4711

ENGINEERING DIVISION ... FIELD REPORT

Continental Heat	Treating Co	orp. (A Div. of Tower Industr	ries)	11-10-69
10643 Norwalk Box	alevard. Sar	nta Fe Springs, California 9	0670	See Below
Same				5A SONE NO.
	(X)		CATION (K)	ALTERATION ()
ATE CONSTRUC-		Trime SPENT	130 a.m.	10 11:15 a.m.
SUAL OPERATING SCHEDULE	2h hours/	lay, 5 days/week		22.12
Clear-Sunny	5-10 mph	LESTIMATED BASIC	A.P.C.	
AMES & TITLES OF PERSON		lian M. Weems, V.P General	Managam	17: 3
ONTACTED BY ENGINEER:		LOS. ALLOSED	LOS. CSTIN	MATED C
ROBLEMS ONLY: DE IGHT	(s)	ATION OF PROCESS BEIGHT(S), PROCESS D	/HR. LOSSE	s: //
APPLICATION A-5692	27		: \$1,700	
		, 150,000 BTU PER HOUR GAS FI		
APPLICATION A-5692	28	Basic	: \$1,250	
H.P. PUMP.		140,000 BTU PER HOUR, GAS FI		
Application A-5692 Application A-5692 name plate.	27, - BTU/HI 2 8 , - BTU/HI	R. and pump H.P. Obtained from catalog data	on old appl	ication.
Application A-5692 Application A-5692 name plate. BACKGROUND INFORM	27, - BTU/HE 28, - BTU/HE	R. and pump H.P. Obtained fro	om old appl	ication. pump from
Application A-5692 Application A-5692 Application A-5692 name plate. BACKGROUND INFORMA	27, - BTU/HE 28, - BTU/HE ATION Treating Contheir old pl	R. and pump H.P. Obtained from R. obtained from catalog data rp. was located at 12214 wood lant was issued permit P-1940	on old appl	ication. pump from in Downey, Cal
Application A-5692 Application A-5692 name plate. BACKGROUND INFORMA	ATION Treating Contheir old pl	R. and pump H.P. Obtained from R. obtained from catalog data rp. was located at 12214 wood lant was issued permit P-1940	on old appl	ication. pump from in Downey, Cal
Application A-5692 Application A-5692 Application A-5692 name plate. BACKGROUND INFORM Continental Heat Cone degreaser at The new Appl. No. The degreaser in The degreaser solution	ATION Treating Cortheir old pl is A-56927.	R. and pump H.P. Obtained from R. obtained from catalog data rp. was located at 12214 wood lant was issued permit P-1940	on old appl a - ¼ H.P. iruff Ave., 01, 3-22-67	ication. pump from in Downey, Cal
Application A-5692 Application A-5692 Application A-5692 name plate. BACKGROUND INFORM Continental Heat The degreaser at The degreaser in The degreaser solution	ATION Treating Cortheir old pl is A-56927.	R. and pump H.P. Obtained from R. obtained from catalog data rp. was located at 12214 wood lant was issued permit P-1940	on old appl a - ¼ H.P. iruff Ave., 01, 3-22-67	ication. pump from in Downey, Cal
Application A-5692 Application A-5692 Application A-5692 name plate. BACKGROUND INFORM Continental Heat Cone degreaser at The new Appl. No. The degreaser in The degreaser solutions Chloroethylene.	ATION Treating Cortheir old pl is A-56927.	R. and pump H.P. Obtained from R. obtained from catalog data rp. was located at 12214 wood lant was issued permit P-1940	on old appl a - ¼ H.P. iruff Ave., 01, 3-22-67	ication. pump from in Downey, Cal ; Appl. A-39870
Application A-5692 Application A-5692 Application A-5692 name plate. BACKGROUND INFORM Continental Heat Cone degreaser at The new Appl. No. The degreaser in The degreaser solutions Chloroethylene.	ATION Treating Contheir old pl is A-56927. Appl. A-5692	R. and pump H.P. Obtained from R. obtained from catalog data rp. was located at 12214 wood lant was issued permit P-1940. 28 is new. ichloroethylene, but the solv	on old appl a - 4 H.P. druff Ave., ol, 3-22-67	ication. pump from in Downey, Cal ; Appl. A-39870
Application A-5692 Application A-5692 Application A-5692 name plate. BACKGROUND INFORM Continental Heat Cone degreaser at The new Appl. No. The degreaser in The degreaser solutions Chloroethylene.	ATION Treating Contheir old pl is A-56927. Appl. A-5692 Vent was tri	R. and pump H.P. Obtained from R. obtained from catalog data rp. was located at 12214 wood lant was issued permit P-1940 at the solve ichloroethylene, but the solve to conditions listed eccos.	on old appl a - 4 H.P. druff Ave., ol, 3-22-67	ication. pump from in Downey, Cal ; Appl. A-39870 ow is per-

AIR POLLUTION CONTROL DISTRICT - COUNTY OF LOS ANGELES
434 SOUTH SAN PEDRO STREET, LOS ANGELES, CALIF. 90013, MADISON 9-4711

ENGINEERING DIVISION ... FIELD REPORT

Continental Heat Treating Corp. (A Div. of Tower Industries See P. 1 11-10-09

CRSERVATIONS

The two degressers were in operation and the solvent vapor could be seen up to the water cooled condenser line. To demonstrate in operation, torque wrench handles, to be heat treated, were cleaned in the new degresser.

Many steel parts to be heat treated have a thin oil film on the part and it is desirable to remove this oil film by the use of a degresser.

Some heat treated parts are oil quenched and to clean the parts for shipment the parts are cleaned in the degressor.

Most of the parts heat treated are of a size that to degrease they are loaded into a basket which is lowered into the degreaser.

The degreaser, having a steel cover, are in operation 24 hours/day, 5 days/week as is the plant. The work load is light and actual operation is less than 2 hours/day per degreaser.

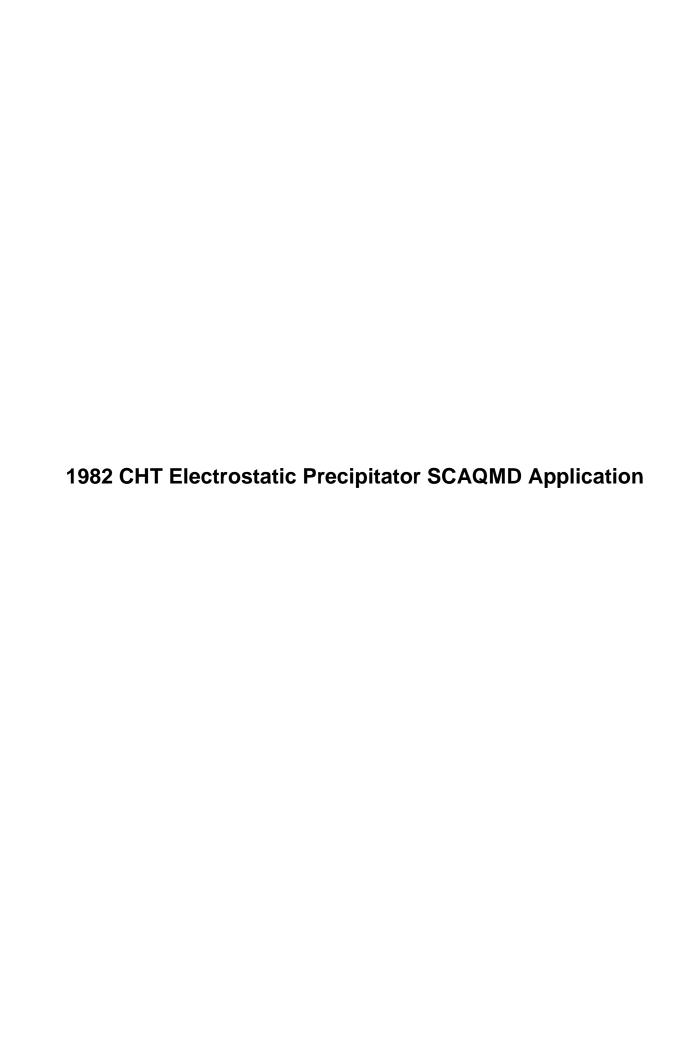
The solvent useage is not recorded for each degreaser. The solvent use is just over \$55 gal. drum per month or estimated a 5 gal/day for the two degreasers.

Solvent loss:

1/2 x 5 gal/day x 13.5 lbs/gal . 33.8 lbs/day each degresser.

RECOMMENDATIONS

It is recommended that the two degressers be issued permits to operate based on the use of perchloroethylene degressing solvent.


The operation of the two degressers in the plant is not likely to cause a public nuisance.

nd: 11/12/69

John C. Hall, Engineer

PAGE 2 OF 2 PAGES

16-50D107 R1-55-5

AIR POLLUTION CONTROL DISTRICT . COUNTY OF LOS ANGELES

ENGINEERING DIVISION APPLICATION PROCESSING AND CALCULATIONS

3 1

APPL. NO. CATE
C-14636 1-19-78

PROCESSED BY CHECKED
JTT

CONTINENTAL HEAT TREATING Division of Tower Industries 10643 So. Norwalk Blvd. Santa Fe Springs, CA 90670

APPLICATION NO. C-14636

AIR POLLUTION CONTROL SYSTEM CONSISTING OF:

- ELECTRIC PRECIPITATOR, UNITED AIR SPECIALISTS, SMOG-HOG, MODEL MS-6-2T, TWO-STAGE, DOUBLE PASS, 4'-1" W. x 6'-8" H. x 19'-8" L.
- 2. EXHAUST SYSTEM WITH ONE 5-H.P. BLOWER VENTING ONE DRAW FURNACE.

HISTORY:

The precipitator will be new equipment, and there is no record of previous SCAQMD permits having been issued.

An afterburner was used in an earlier attempt to control the furnace emissions, but was found to be inadequate.

DESCRIPTION:

This source is a job-shop operation that does abrasive blasting, degreasing, and heat-treating of small metal items. The process of present interest is as represented below:

The heat-treat furnace brings the metal pieces up to 1800°F before they are automatically pushed into the oil quench tank. The pieces are manually placed in the drain cart/wash basket and allowed to drain for approximately 5 minutes. The basket is then submerged in and lifted from, a number of times, the water and detergent washer for a period of approximately two minutes. The washer liquid is maintained at 160°F. The pieces are then placed in the 1100°F draw furnace where they remain for periods varying from 1/2 to 3 hours, depending upon the size of the pieces.

The proposed Smog-Hog electrostatic precipitator is a two-stage, double-pass precipitator which utilizes a solid state power pack to impart 11,000 VDC to the ionizers and 5,500 VDC to the collector plates. The ionizers are gold-plated wires and the collector plates are aluminum with 21,000 sq. in. of plate surface in each of six collector cells. Two water heat exchanger coils

ENGINEERING DIVISION APPLICATION PROCESSING AND CALCULATIONS

PAGES	PAGE
3	2
C-14636	1-19-78
JTT	CHECKED BY

are an integral part of the precipitator and are located just downstream from the prefilter.

Cleaning is accomplished by removing the collector cells, cleaning with water and detergent, drying, and reinstalling. The limited use of the furnace and precipitator, one hour in each eight-hour shift, should easily allow this procedure.

A five -H.P. whe will power a for less Medel to blower to provide a capture flow, at the furnace, of 5,000 CFM at a temperature of 250°F. The ducting system consists of a hood, three 90° elbows, and approximately 30 feet of 20-inch-diameter duct. The capture velocity and charging temperature are approximately 450 FPM and 120°F.

EVALUATION:

The electrostatic precipitator operates by producing ions, through electrical discharge, that collide with and charge particles entrained in the exhaust gases. The particles are then attracted to downst eam plates of the opposite charge and adhere to them for various types of removal.

The process mechanism indicates that electrostatic precipitation is not effective for collecting emissions in the gaseous state. However, for this application, the precipitator should effectively control the oil mists expected to be emitted from the draw furnace.

Exhaust System:

The furnace is 6'-0" D. x 5'-6" W. and is overlapped by the venting hood by 4" on each side, 1'-2" in the front, and is flush in the rear. Also, the plane of the hood opening is essentially flush with the furnace top. This configuration has an open area (flow area) of:

$$\frac{(14 \times 74) + (8 \times 72)}{144} = 11.2 \text{ sq. ft. open area}$$

Industrial Ventilation, page 5-9, recommends 200 scfm/sq. ft. of open area, which for this installation is:

200 x 11.2 ft2 = 2240 scfm.

Manufacturer states that this installation will provide:

The capture velocity, given as 450 fpm maximum, yields an efficiency of Maximum, Manual). approximately 70% when controlling oil mists (Fig. 93, p. 162, Engineering but.

Emissions:

The quench oil is L-100 Pale Neutral made by Far-Best Corporation. Continental Heat-Treating records show that in 1977, 1,650 gallons were purchased;

ENGINEERING DIVISION APPLICATION PROCESSING AND CALCULATIONS

PAGES 3	PAGE
APPL. NO. C-14636	3 0ATE 1-19-78
C-14636 PROCESSED BY JTT	CHECKED BY

1,540 gallons of "waste oil" was trucked away by Lakeland Oil Company; and the water ash was pumped out seven times and contained 101 gallons of oil. The oil remaining in the metal pores after being washed was:

The quench oil has a flash point of 320°F, and the vapors will be driven off within ten minutes of being charged into the 1100°F furnace.

 $R_2 = 0.06 \text{ lb /hour x .3 (70% efficiency)} = 0.018 \text{ lb /hour.}$

Rule 405 allowable = 0.99 lb /hour.

Particulate concentration =
$$\frac{.018 \times 7.000}{4084 \times 60}$$
 = .0005 gr/ft³

Rule 404 allowable = .105 gr/ft3

SUMMARY

A two-stage electrostatic precipitator has been demonstrated to be an effective control device for oil-mist emissions.

This source, after modification, will emit less than 15 lbs/hour or 150 lbs/day, and should not be denied a permit to construct on the basis of Rule 213.

Calculations indicate that the precipitator will control the basic equipment emission to comply with Rule 404 and 405.

Compliance with Rules 401 and 402 is anticipated, due to the small amount of emissions.

The capture velocity, approximately 7.5 fps, and the charging temperature, approximately 1200F, are within the desirable range.

RECOMMENDATIONS:

It is recommended that a permit to construct be issued, subject to the condition that a light to indicate precipitator operation must be mounted so as to be visible to the furnace operator.

You are required by the California Code of Regulations, Title 22 to design, operate and maintain your business to minimize hazards to human health and the environment from any unplanned releases of hazardous materials.

Section 1 General Busine	ess Information			•	
Name of Business CO	NTINENTAL HEAT TR	EATING C	O. INC.		
Address 10643 S. N	IORWALK B.VD	City	SANTA FE	SPRINGS	Zip 90670
Phone Number(310) 944	_8808Emerge	ency Phone(319 697	_ 0903	
Description of Business <u>+</u>	EAT TREATING META	L PARTS			
Number of Employees	30 Operating H	lours(M-F)_	24HRS M	-F_Sat	Sun
Business OwnerJA	MES G. STULL	Home	Phone Nur	mber(⁷¹⁴) 675	5 _0408
Address 319 GRAN	ID CANAL	CityB	ALBOA IS	LAND Zi	p 92662
Property Owner ANNA	HATHAWAY TRUST		Phone Num	nber(714)661	1 - 6969 C.P.A
Section 2 Hazardous Ma	terial / Waste Activities	- List all Ch	nemicals at	your business.	
	RAW MATERIALS			HAZARDO	OUS WASTE
Chemical Name or Trade Name*					
OIL	QUENCH OIL	500 GAL	TANK	300 GAL	DRUMS
PERCHLORETHLENE	DEGREASING	200 GAL	TANK	: 300 GAL	DRUMS
ACETONE	CLEANING	55	DRUM	0	θ
AMMONIA	CARBONITRIDE	250	TANK	θ	θ
*Obtain from your Supplier Section 3 Emergency Coording Your company is required to l EC shall have the authority to mitigate an unplanned release	ist the names, addresses, and commit resources and shall h	telephone nun	abers for your	emergency coord	linators(EC). The
Name of EC DENNIS	HUGE	After I	Iours Phone(³	10) 697- 0	903
Address 141 NORTH \	/IRGINIA ST.	City	LA HABRA		Zip90631
Alternate EC RAY CRO)SS	AfterHo	urs Phone(90	9) 674 - 152	9
Address 29264 No	ORTHPOINTE	City L	AKE ELS	INORE Z	ip 92530

The EC must notify the follo threaten human health or the			release, fir	e, or explo	sion which could
Fire <u>911</u> Health	Haz Mat	(213) 890-43	17r	olice	_911
If the EC determines that eva agencies and the State Office					ıll notify the above
List an Emergency Response C	Contractor you	may use in the ev	ent of a maj	or Hazardo	us Materials Spill.
Name PACIFIC ENVIR	ONMENTAL	MGMT · Emergen	cy Phone(8	00)_77	7 - 3363
List all hospitals or clinics you	may use in th	ne event of hazardo	us materials	exposures	or injuries.
Hospital or Clinic HEALT	H FIRST I	MEDICAL	Phone(3	10) 949	9 - 9328
Address 11817 E. TE	LEGRAPH	RD	City SAN	TA FE	SPRINGS
Section 5 Emergency Procedu	ures.				
Attach a description of what ye facility. (Training is required f			•		
Section 6 Site Map	•		J		•
Attach a map of your company	and indicate	the locations of the	e following:		
*Layout work areas		lectrical shut-off			al Safety Sheets
*Fire Extinguishers	*Emergen	•			ground Tanks
*Chemical Storage	*Waste St	•			Ground Tanks
*Alarms - Telephone		& Restrooms			tion Routes
*Employee Protect'n Equip *First Aid Stations		ns & Clarifiers			ency Equipment etection devices
Trist Aid Stations	Emergen	cy Shut-offs		*Leak o	etection devices
*Indicate schools, residences,	and public gat	hering places less	than a block	away from	your facility.

Section 7 Additional Requirements

This Contingency Plan must be updated on a continuous basis and copied to our office. This Contingency Plan is designed for your use in the event of a hazardous materials incident. You must keep copies of your completed plan at your facility at all times. Review the contents of the plan with your employees and make the location of your completed plan known and accessible to them.

Send your completed Contingency plan to the following address:

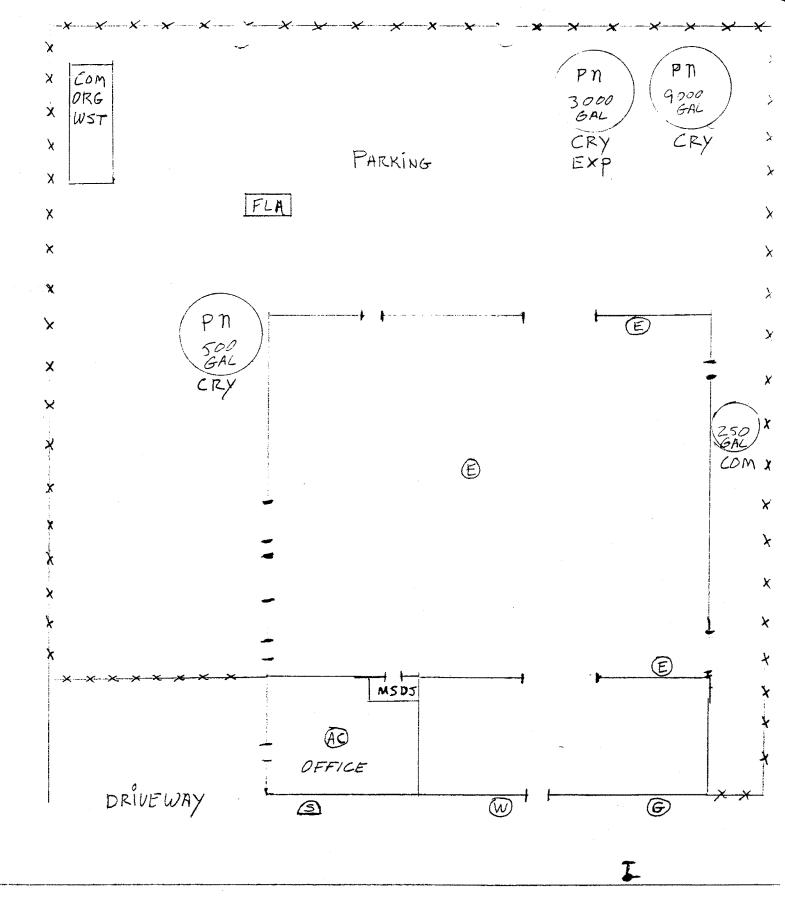
County of Los Angeles Fire Department-Prevention Bureau/HEALTH HAZ MAT DIVISION 7300 E Alondra Blvd. #203, Paramount, Calif. 90723
Phone: (310) 790-1810, Fax: (310) 790-8002

Your Inspector is:	GEORGE	BAKTER	
• •			_

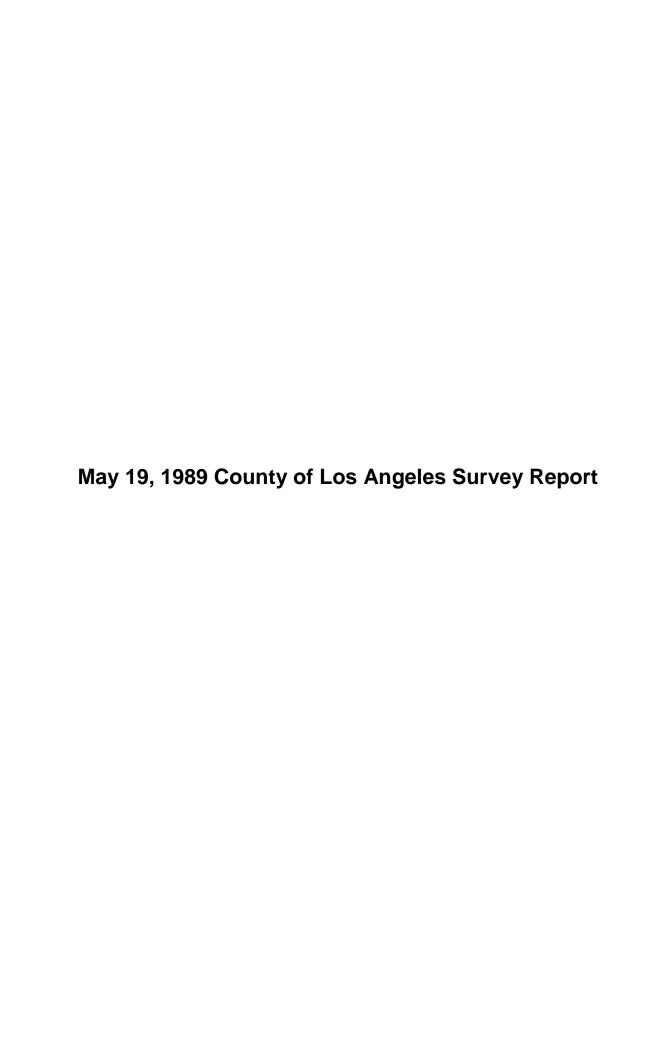
BUSINESS NAME CONTINENTAL HEAT TREATING CO. INC.
ADDRESS 10643 S. NORWALK BLVD. CITY SANTA FE SPRING ZIP 90670
Section 5: Emergency Procedures
In the event of a OIL spill, the
following procedures will be followed.
Using DRY SORB the spilled material will be contained and prevented from going onto the ground or off the property.
The absorbed OIL & DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.
Based on the:
Material Safety Data Sheet
Personal knowledge
Other
of the Material, the following precautions should be taken when handling the spilled material:
Wear:
Gloves and goggles
Respirator
Boots and Apron
Other

SECTION 6 SITE MAP
(See page 2, Section 6 for requested information, as applicable)

BUSINESS NAI	ME CONTINENTAL HEAT TREATING CO. INC.
ADDRESS	10643 S. NORWALK BLVD. CITY SANTA FE SPRINGS ZIP 90670
Section 5: Emer	rgency Procedures
In the event of a	PERCHLORETHLYENE spill, the
following proced	lures will be followed.
XX	Using DRY SORB the spilled material will be contained and prevented from going onto the ground or off the property.
XX	The absorbed DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.
[XX]	Based on the: Material Safety Data Sheet Personal knowledge Other of the Material, the following precautions should be taken when handling the spilled material:
	Wear: Gloves and goggles Respirator Boots and Apron Other


See Reverse side, page 4 for Site Map

ROZINEZZ NAW	ME CONTINENTAL HEAT TREATING CO. INC.	
ADDRESS	10643 S. NORWALK BLVD. CITY SANTA FE SPRINGSZIP 9	0670
Section 5: Emer	gency Procedures	
In the event of a	ACETONE spill,	the
following proced	ures will be followed.	
XX	Using DRY SORB the spilled material will be contained and prevented from going onto the ground or off the property.	
XX	The absorbed ACETONE AND DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.	
[XX]	Based on the:	
	Personal knowledge Other	
	of the Material, the following precautions should be taken when handling the spilled material:	•
	Wear:	
	Gloves and goggles	
	Respirator	
	Boots and Apron Other	


See Reverse side, page 4 for Site Map

BUSINESS NAM	ME CONTINENTAL HEAT TREATING CO. INC.	
ADDRESS 10	0643 S. NORWALK BLVD. CITY SANTA FE SPRINGS 2	CIP 90670
Section 5: Emer	rgency Procedures	
In the event of a	AMMONIA (NH3)	_spill, the
following proced	dures will be followed.	
XX	Using DRY SORB the spilled material will be contained and prevented from going the ground or off the property.	onto
XX	The absorbed DRY SORB will be placed in a leak-proof container with tight fitting lid, labelled "Hazardous Waste" and held as hazardous waste until lawfully disposed.	
	Based on the:	
	Material Safety Data Sheet	
. •	Personal knowledge	
	Other	
	of the Material, the following precautions should be taken when handling the spilled material:	
	Wear:	
	Gloves and goggles	
	Respirator (APPROBED)	
	Boots and Apron	
	Other FULL PROTECTIVE CLOTHING	

See Reverse side, page 4 for Site Map

10643 SO NORWALK BLUD.

SIC.		HAZARDOUS 1	WASTE CONTROL		DA	ITE: 5-19-8	75 pl	
COMPANY NAME		STREE			CITY & ZIP		DISTRI	-
Continenta	1 Hoat Tree	ating 1060		IK Bl	SFS	90670	76	
UWNER			INTERVIEWED		PHONE NO (2)	37944-880	NO. EM	LOYEES
) tall, Ja	mos, - owner		tray, tito	,6M.	EMERGENCY N	10.	<u> </u>	<u> </u>
L.A. CO. PHY NO. 153090-01	INDUSTRIAL W		58295	SAFETY SH		w		
	& DESCRIPTION OF OP		70213	EATING ARE		LITIES ADEQU	IATE OR K	<u>.</u>
1.11	test Treati					UATE		
1,5441	teat treating		HAZARD	OUS WASTE				T 11
PROCESS	MATERIAL	TYPE VOL/LBS	STORAGE M		OSAL METHOD	MANIFEST	CONTROL	I.H. HAZARI
'inDegreesing	PERC	Leusle PER 2,200 que		shed Acto	o- Eleen c Rivera)	400 gal	A4D Disposal 87746425	consider
zuen ching	Mineral oil	min oil was lev mix	clarifier pumped. pernquar	area Dispos leryn serv	iel Control rice	877 4641 705	Down lews Rev down	
J Floor sweeping & Spills D Reford &	Nvy absorbant	upprod 2520 gal	7		ousal Control	4	Casmalia	
5) Harmony Vacuum Luimelmer Luimelmer) N2	Jamks/	proces	as V	two place two place eached eached eached	ı		
VOLUME & TYPE OF	OUND \$70RAGE TANKS: WASTE IN UNDERGROUN SYSTEMS ON PREMISES					ON PREMISES: N USED: YES EMISES: YES		
REMARKS: Hauls	approx 1/que	arter all was	les					
	roil duch	areas unt	hone an	tx tumoi	I felte	a grown	5W Gr	nec.
VIOLATIONS:		July 1		11	7		·	
REFERRAL TO:		ACTION:	•	•	Jam SURVEN COND	e Odla DUCTED BY:	nf 6 B	wishor
INDICTIONS IVE		UOITOIT					\mathcal{O} .	

SIC.	C	COUNTY OF LOS HAZA		DEPAKIMENI ASTE CONTROL			ATE: 511	9-89 P3	2
COMPANY NAME			STREET			CITY & ZIP		DISTRI	
OWNER			PERSON	INTERVIEWED	& TITLE	PHONE NO.	JO.	NO. EM	PLOYEES
L.A. CO. PHL NO.	INDUSTRIAL W	ASTE NO.	EPA NO.			TY SHOWER			
TYPE OF FACILITY &	DESCRIPTION OF OP	ERATION/PRODU	ICTS:		TOILE	NG AREA ET & WASHING FACI I SANITATION ADEC		4TE	
				HAZAR	DOUS WAST	E			I.H.
PROCESS	MATERIAL	TYPE V	OL/LBS	STORAGE	METHOD	DISPOSAL METHOD	MANIFEST	CONTROL	HAZARD
T. let Service	oils ?					Service C	mpen	-	
Vacuumpumps.	oil	wasteoil				onto gr Lasphalt et rear y	pural top		
Undvanlie pump				. ·	e territoria de la composito d	at rear iz	and!	•	
Parts cleaning by blasting of tool skell	Sleel Shot	dust -		-Twept	1-to	domostic trash			ı
						•	•		
NUMBER OF UNDERGROU VOLUME & TYPE OF WA PRIVATE DISPOSAL SY	STE IN UNDERGROUN	D TANK(S):).		CHLORI	TO STORM INLET NATED HYDROCARBO CONNECTION ON PR	N USED: YES	NO	io
REMARKS: AQH	1) For over	nst vapo	N de	gressen			,		
VIOLATIONS:	•	•	,	•		•		(min)	and the same
REFERRAL TO:		A	CTION:	,		SURVEY CON	DUCTED BY:		1

060000 Rear sw

1

SIC.	(TMENT OF HEALTH	SERVICES	E: 5-19-	69 R3	, >
COMPANY NAME	**************************************	P 17 3 Sec. 7	STREET	, , , , , , , , , , , , , , , , , , , ,	CITY & ZIP		DISTRIC	T .
OWNER			PERSON INTER	VIEWED & TITLE	PHONE NO. EMERGENCY NO).	NO. EMP	LOYEES
L.A. CO. PHL NO.	INDUSTRIAL V	ASTE NO.	EPA NO.	SAFET' EATING	Y SHOWER		,	
TYPE OF FACILITY & [DESCRIPTION OF OF	PERATION/PRODU	ICTS:		T & WASHING FACIL SANITATION ADEQU		ΓE	
			rillenvisenvijeni kariliterikernisens sid sidelinite rakes _{ta} liti <u>adad danala pairak</u>	HAZARDOUS WASTE				I.H.
PROCESS	MATERIAL	TYPE V		ORAGE METHOD [MANIFEST	CONTROL	HAZARD
of Steel O	Annyal NHz		704 (là proces			
Parts wiping	rags	oil Elvent	200	veveolcans=	of Pruden hal	overall ser	vice	
()								
NUMBER OF UNDERGROUN VOLUME & TYPE OF WAS PRIVATE DISPOSAL SYS	STE IN UNDERGROUN	ID TANK(S):		CHLORIN	TO STORM INLET ON STORM TO STORM INLET OF STORM INLET OF STORM IN	USED: YES	NÜ	<u> </u>
REMARKS:						,		
VIOLATIONS:								32
REFERRAL TO:		A	CTION:		SURVEY COND	UCTED BY:	-	

March 16, 1984 County of Los Angeles Department of Health **Services Official Notice of Violation**

(OFFICE	ADDRESS]	-Att. Dennis	Community Hea		116/84	ental Management
Town	duters	- Att Dennis	ADDRESS 106	Y BATE A	ORWALL-	SFS 90
IBJECT HAZ	irdons W	usle,	ADDRESS	1 fort		
-y-04	, are	hereta	J118014	24 T.	remark	
bit	Fram	aveno	Im	Ven		rouge
					<u> </u>	-d
			age and the term of the term o			
			·			
				taranta anno anto anto anto anto anto anto		
						gangaran (gipta and ang panahan ang panahan ang panahan da da da a
			·			
is antice shall be co	molied with at rape	ired by: State Health	and Safety Code	California Ad	lministrativa Cadi	e VI os Angeles
ounty Ordinance			City Ordinance		Other Code	

May 19, 1989 County of Los Angeles Department of Health Services Official Notice of Violation and Order to Comply

L .__COUNTY HEALTH SERVICES HAZARDOUS WASTE CONTROL PROGRAM

			. CASE NAME Continental Heart Treatures
ITE	TIME .	INITIALS	REMARKS
5/19/19	Non	JOJAB (Disdrargo of oil waster.
	· · ·		both ale asplicet top
			and onto soil (Swanner or
******************************	and the latest and th		rlan yard
			3) Untafelled barrels this
•		• •	Mr Justy melica tel contained
			cettres PERCar wasto vil
***************************************			(3) Incomplete manifests (no
		•	disposed facility stopul copy
			available)
	:	· (.	4) Feals & bungs missing an suma
	•		al waste barrels
			Has value PHL
	-		
7-25-49		L. 10	Manufort 89485618 - 7/10/59 for removal
		·	of oil/absitanta M. Baskan
			state this was from both the:
			rear area (soil) and displicable y.
•			dun semoide ell violating.
			abated, tacelety has a
			Cartnery problem Worth mineral
· · · · · · · · · · · · · · · · · · ·		·	al diagant on the expliabled
			ava.
		•	•

COUNTY OF LOS ANGELES DEPARTMENT OF HEALTH SERVICES

AZARDOUS MATERIALS CONTROL PROGRAM

Owner James Stall	Date 5-19-89
Business ontinantal Hat trating	Reply refer to:
Address 10643 S Newal K Blue	2615 South Grand Avenue, Room 607 Los Angeles, CA 90007
City, Zip Code 90070	(213) 744- 37 2 3
NOTICE OF VIOLATION AND ORDER TO C	ONPLY Jumes Odling
The following conditions or practices observed at your facilit	y are violations of the California
Code of Regulations (CCR), Title 26, Division 22 or the Califor 20, Chapter 6.5, (H&S) or both, which relate to the disposal, ma of hazardous waste. YOU ARE DIRECTED TO CORRECT THE VIOLATIONS	nagement, transportation, and storage
CORRECTION DATE DISPOSAL:	
1. Discontinue the disposal of hazardous waste (H&S 25189.5).	to an unauthorized point(s).
2. Legally dispose of all hazardous waste and con	taminated materials (H&S 25189.5)
discharged to	
at (H&S 25)	and contaminated materials located
MANAGEMENTY CURWEL DY 6B	
4. Submit to this office a copy of your facility plan and employee training plan. (CCR 67105, 6	
TRANSPORTATION: 5. Discontinue the transport of hazardous waste un	til the following have been mat-
A. Obtain an EPA Identification Number fr Services at (916) 324-1781. (CCR 66472)	
B. Complete a uniform Hazardous Waste Man applicable under State Department of Hea (H&S 25160 and 25143)	
C. Transport all hazardous waste by a (H&S 25163)	State registered hauler.
6. Submit to this office a copy of the completed	hazardous waste manifest(s) used to
dispose of All Youngle led . Name test so Keep copies at your racrity of all completed a minimum of three (3) years and make docume (CCR 66492)	manifests, receipts or both for
STORAGE: 8. Discontinue the storage of hazardous waste f	or longer than 90 days without a
6/19/89 permit from the State Department of Health Store all hazardous waste in compatible contains	Services. (CCR 66508) ners which are closed and in good
condition. (CCR 66241 - 67243) From 10. Properly label all containers with the following	ing: the words, "HAZARDOUS WASTE" - PE
name and address of generator; hazardous prop state of the waste; and the accumulation date.	erties; a composition and physical
OTHER: Wasteril	(cox 66306) Label waste oil
ll. Provide this office with a site assessme contamination at your facility.	ent and mitigation plan for the
— × 12. 0 00 0.	- 1 . 1
and the state of t	a office
a compacted	yero
Failure to fully comply with this Notice and Order may r	equit in further legal action
Variate to fully comply with this Rotice and Order may r	as of the function regar action.
Owner or Authorized Representive	zardous Materials ofectalist

HMCP 2/89

May 25, 2006 City of Santa Fe Springs Fire Department Inspection Report and Notice of Violation

y of Santa Fe Springs Fire Department Environmental Protection Division & Certified Unified Program Agency 11300 Greenstone Ave B Santa Fe Springs CA 90670 (562) 944-9713 FAX (562) 941-1817

INSPECTION REPORT & NOTICE OF VIOLATION

LOW S Merical ariog as were

HWER apreces av) Circ

Page 1 of ____

The following items, if applicable, have been inspected. This document constitutes a Summary of Violations and Notice to Comply if the violation (V) column is checked.

Inspection on the Section Content given by Color Section Content place by Content given by Content given by Content place and the section of	Referei	ce: Titles 19 and 22 of the California Code of Regulatio	ns (CCR), Chapters 6.5, 6.6	7, and 6.95 c	f the I					
NAZARDOUS WASTE GENERATOR VISUALITY	Inspector(s) Ereward Kalman									
SAZARDOUS WASTE GENERATOR	Inspection consent given by Charles Solelo					Contact phone number (%%ス) りくくしている				
Hazardous waste generator permit City Ordinance 97:400 27 Hazardous waste analysts researed for 3 yes CCR 66262-16(c) 28 Permit		HAZARDOUS WASTE GENERA	\TOR		(m) representation	HAZARDOUS WASTE GENER	ATOR			
2 EPA Dr. number (cell DTSC 800-618-04-2) CCR 6026-21-1 29 Personnel training for LDC CR 6026-24-64). Personnel training for generators of waste CR 6026-24-640, CPR 4026-24-640, CPR 4026-24-64	,	SUBJECT SUBJECT	REFERENCE		V		REFERENCE			
Hacardous wasto determination	I									
Proper disposal of heardons waste SIGC 23189-56 30 Contingency plan for LOG CCR 60265-31	×15				16					
S Reckless transgement of haractions waste belief (2 189.6) 31 Benegocy preparadiously waste belief (2 189.6) 32 49 184 requirements for LQGs CCR 6700.3 7 Hazardous waste accumulation time CCR 66052.34(a-d) 32 33 Bleneial report for RCRA LQGs CCR 6700.3 8 Retrogrados/pecularise accumulation (CCR 66052.34(a-d)) 33 Bleneial report for RCRA LQGs CCR 6700.3 9 Satellite accumulation (CCR 66052.34(a-d)) 35 Retrogrados/pecularise accumulation (CCR 66052.34(a-d)) 37 Retrogrados/pecularise accumulation (CCR 66056.34(a-d)) 37 Retrogrados/pecularise accumulation (CCR 66056.34(a-d)) 38 Retrogrados/pecularise accumulation (CCR 66056.34(a-d)) 39 Retrogrados/pecularise accumulation (CCR 66056	3}									
6 Hazardous waste labeling 7 Hazardous waste labeling 8 Retrograde/specularive accumulation in CCR 66625.44(e). 8 Retrograde/specularive accumulation CCR 66625.44(e). 9 Sacilite accumulation CCR 66625.44(e). 10 Containers lesking or not in good condition CCR 66625.44(e). 11 Hazardous waste container closed CCR 66625.17(a). 12 Separation of incompatibles CCR 66625.17(a). 13 Management of empty containers CCR 66625.17(a). 13 Management of empty containers CCR 66625.17(a). 14 Used oil transagement CCR 66625.17(a). 15 Joseph oil filter management CCR 66625.17(a). 16 Containentel sextle management CCR 66625.17(a). 17 Containentel sextle management CCR 66265.17(a). 18 Lineary of the containers CCR 66265.17(a). 19 Containentel sextle management CCR 66265.17(a). 19 Containentel sextle management CCR 66265.17(a). 10 Containentel sextle management CCR 66265.17(a). 10 Containentel sextle management CCR 66265.17(a). 11 Containentel sextle management CCR 66265.17(a). 12 Containentel sextle management CCR 66265.17(a). 13 Containentel sextle management CCR 66265.17(a). 14 Containentel sextle management CCR 66265.17(a). 15 Containentel sextle management CCR 66265.17(a). 16 Containentel sextle management CCR 66265.17(a). 17 Containentel sextle management CCR 66265.17(a). 18 Containentel sextle management CCR 66265.17(a). 19 Containentel sextle management CCR 66265.17(a). 10 Containentel sextle management CCR 66265.17(a). 10 Containentel sextle management CCR 66265.17(a). 11 Containentel sextle management CCR 66265.17(a). 12 Containentel sextle management CCR 66265.17(a). 13 Containentel sextle management CCR 66265.17(a). 14 Containentel sextle management CCR 66265.17(a). 15 Containentel sextle management CCR 66265.17(a). 16 Containentel sextle management CCR 66265.17(a). 17 Containentel sextle management CCR 66265.17(a). 18 Containentel sextle management CCR 66265.17(a). 19 Containentel sextle management CCR 66265.17(a). 10 Containentel sextle management CCR 66265.17(a). 10 Containentel sextle management CCR 66265.17(a). 10 Co	31									
Hazardous waste accumulation time CCR 66626.346-64 33 Biential report for RCA LOGs CCR 66622.04 35 Recyclable material management HSC 251432.0 9 Satellite accumulation CCR 66626.2146 35 Recyclable material report HSC 251432.0 10 Containers leaking or not in good condition CCR 66626.5171 36 Proper management of Universal Waste CCR 6626.5171 11 Hazardous waste container closed CCR 6626.5173 37 rth Olfter hazardous waste container closed CCR 6626.5177 HAZARDOUS MATERIALS BUSINESS PLAN HAZARDOUS MATERIALS BUSINES					200					
8 Retrograde/speculative accumulation QCR 66263-49() Q Sactific accumulation CCR 66263-49() Q Sactific accumulation CCR 66263-49() QCR 66265-173() QCR 66265-174() QCR 66265-	71				3.47					
9 Satellite accumulation CCR 66625.191 35 Recyclable material report HSC 25143 10 10 Containers leaking or not in good condution CCR 66625.171 31 Hazardous waste container closed CCR 66625.177 40 37 Pt. Other hazardous waste violation of incompatibles CCR 66625.177 41 Used of imanagement of compatibles CCR 66625.177 41 Used of imanagement CCR 6626.177 41 Used of imanagement CCR 66625.177 41 Used of imanagement CCR 6626.130 40 Owner/operator information accurate HSC 25509 177 Container storage inspection — weekly CCR 66265.130 40 Owner/operator information accurate CR 565.185 43 To Centainer storage inspection—weekly CCR 66265.130 40 Owner/operator information accurate CR 565.185 43 To Centainer storage inspection—weekly CCR 66265.130 40 Owner/operator information accurate CR 565.185 43 To Centainer storage inspection—weekly CCR 66265.130 40 Owner/operator information accurate CR 566.250 181 41 To Centainer storage inspection—weekly CCR 66265.130 40 Owner/operator information waste transported wo mainfest CCR 6626.230 42 40 Owner/operator information accurate CR 5626.230 42 40 Owner/operator waster transported wo mainfest CCR 6626.230 42 40 Owner/operator waster transported wo mainfest CCR 6626.230 42 40 Owner/operator operator device accurate CR 6626.230 42 50 Owner/operator operator device CR 6626.230 40 Owner/operator operator operator device CR 6626.230 40 Owner/operator operator device CR 6626.230 40 Owner/operator operator op	31									
Containers leaking or not in good condition CCR 66265.171 36 Proper management of Universal Waste CCR 66273	9									
Separation of incompatibles CCR 66265.177 38 HMSP established and filed HSC 25503.5	10	Containers leaking or not in good condition		36		Proper management of Universal Waste	CCR 66273			
Management of empty containers CCR 6626.17 38 HMBP established and filed HSC 25505	11	Hazardous waste container closed	CCR 66265.173(a)	37	Ng.					
14 Used oil management	12	Separation of incompatibles '	CCR 66265.177		 	HAZARDOUS MATERIALS B				
15 Used oil filter management CCR 66266.130 40 Owner/operator information accurate Ch. 695, HSC 17 Container sturge inspection - weekly CCR 66265.114 42 Dischaging industrial waste w/o a permit City Ordinance, Ch. 97 19 Tank inspection - dually CCR 66265.114 42 Dischaging industrial waste w/o a permit City Ordinance, Ch. 97 19 Tank inspection - dually CCR 66265.114 42 Dischaging industrial waste w/o a permit City Ordinance, Ch. 97 10 Tank operating requirements CCR 66265.114 42 Dischaging industrial waste w/o a permit City Ordinance, Ch. 97 11 Hazardous waste management w/o manifest CCR 66262.2010 43 Storm waste premit required (GIASP) City Ordinance, Ch. 52 12 Hazardous waste manifest complete CCR 66262.2010 45 Failure to imperent BMP City Ordinance, Ch. 52 12 Hazardous waste manifest complete CCR 66262.2010 45 Failure to imperent BMP City Ordinance, Ch. 52 12 Hazardous waste manifest complete CCR 66262.2010 46 SPCC plan complete per requirements CHSC 25270.5(c) 13 Manifest complete per requirements HSC 25160.2010 46 SPCC plan complete per requirements CHSC 25270.5(c) 14 Composition of waster trained onsite CCR 66262.2010 47 Uniform Fire Code Uniform Fire Code 15 Convolidated manifest requirements HSC 25160.2010 47 Uniform Fire Code Uniform Fire Code 16 No hazardous waste violation(s) observed on date of inspection Value	13	Management of empty containers				HMBP established and filed				
Contaminated textile management HSC 25144.6	Same and the same			~						
13 Container storage inspection — weekly CCR 66265.174 42 Discharging industrial waste who a permit City Ordinance, Ch. 97	313			40						
19 Tank inspection - daily CCR 66265.195 43 TO Other violation(s)										
To Hank operating requirements CCR 66265.194 I Hazardous waste transported w/o manifest Core 66262.203 Hazardous waste transported w/o manifest Core 66262.23(a) Hazardous waste manifest complete CCR 66262.23(a) Hazardous waste transported w/o manifest Core 66262.23(a) Hazardous waste complete CCR 66262.23(a) Hazardous waste complete CCR 66262.23(a) Hazardous waste complete CCR 66262.23(a) Hazardous waste violation onsite CCR 66262.23(a) Hazardous waste violation onsite CCR 66262.23(a) HSC 25160.2 Consolidated manifest requirements HSC 25160.2 Consolidated manifest requirements CHSC 25270.5(c) Uniform Fire Code No hazardous waste violation(s) observed on date of inspection Notice to Comply: The violation(s) must be corrected by Return "Certificate of Compliance" Return "Certificate of Compliance" Return "Certificate of Compliance" Fee after this date Attention: The lent(s) checked are in violation. A re-inspection may occur at any time to verify compliance. Non-compliance could result in re-inspection, and/or administrative/civilerimanial penalises. Any time granted for correction of the violation(s) costs not precide are uniforment action by this Department or other agencies. The giving of this notice and recent inspection type un ficility is not a representation by the City of Stant & Springs that no other violations exist on your premises. Program(s) inspected: HMBP HMG [TP [PBR RECYCLER [UST £ CALARP & SPC & SW M IW UFC Inspection type: & Routine Other HWG Status: ERCRA LOQ ERCRA SQ & CAONLY ERCYCLER CESQS Silver SPG Inspection type: & Routine Other HWG Status: ERCRA LOQ ERCRA SQ & CAONLY ERCYCLER CESQS Silver SPG Inspection Exception of your ficility is not a representation by the City of Stant & Springs that no other violations exist on your premises. Program(s) inspection of your ficility is not a representation by the City of Stant & Springs that no other violations exist on your premises. The program of the program of the program of the program of th							City Ordinance, Ch. 97			
Hazardous waste transported w/o manifest CCR 66262.2236 44 Storm waste primit required (GIASP) City Ordinance, Ch. 52. CR 22. Hazardous waste manifest complete CCR 66262.23(a)(4) Failure to implement BMPs City Ordinance, Ch. 52.				43	D		KD			
Hazardous waste manifest complete CCR 66256.23(a) 45 Faiture to implement BMPs City Ordinance, Ch. 52					(420					
Manifest copies to DTSC					1000					
Manifest copies retained for 3 years CRS 66262-00(a) 46 CRS SPCC plan complete per requirements CRSC 2570.5(c) UNIFORM FIRE CODE					†					
Consolidated manifest requirements		.,		46	0					
□ No hazardous waste violation(s) observed on date of inspection Notice to Comply: The violation(s) must be corrected by	25	Consolidated manifest requirements	HSC 25160.2							
**Notice to Comply: The violation(s) must be corrected by	26	LDR documents retained onsite	CCR 66268.7(a)(6)	47		Uniform Fire Code	Uniform Fire Code			
Return "Certificate of Compliance" Attention: The item(s) checked are in violation. A re-inspection may occur at any time to verify compliance. Non-compliance could result in re-inspection fees, permit revocation, and/or administrative/civileriminal persistence or violation (s) does not preclude any enforcement action by this Department or other agencies. The giving of this notice and recent inspection of your facility is not a representation by the City of Santa Fe Springs that no other violations exist on your premites. Program(s) inspected: All HMBP HWG TP TP BR RECYCLER UST CALARP SPCC SW W UFC Inspection type: A Routine Other HWG Status: RCRALQG R										
Altention: The item(s) checked are in violation. A re-inspection may occur at any time to verify compliance. Non-compliance could result in re-inspection free, permit revocation, and/or administrative/civil/criminal penalties. Any time granted for correction of the violation(s) does not preclude any enforcement action by this Department or other agencies. The giving of this notice and recent inspection of your facility is not a representation by the City of Santa Fa Springs that no other violations exist on your permitses. Program(s) inspected: A HMBP HWG TP FPR RECYCLER UST CALARP SPCC SW NW WUFC Inspection type: A Routine Other HWG Status: RCRA LQG RCRA SQG CA ONLY RECYCLER CESQG Silver SPG Inspection Category: Single Program Combined Joint Integrated/Multi-Media Number of Employees: SQ Notes: A Secretary Secre	NX	otice to Comply: The violation(s) i	nust be corrected	l by(<u>a </u>	25-3 <u>Ca</u> .				
Altention: The item(s) checked are in violation. A re-inspection may occur at any time to verify compliance. Non-compliance could result in re-inspection free, permit revocation, and/or administrative/civil/criminal penalties. Any time granted for correction of the violation(s) does not preclude any enforcement action by this Department or other agencies. The giving of this notice and recent inspection of your facility is not a representation by the City of Santa Fa Springs that no other violations exist on your permitses. Program(s) inspected: A HMBP HWG TP FPR RECYCLER UST CALARP SPCC SW NW WUFC Inspection type: A Routine Other HWG Status: RCRA LQG RCRA SQG CA ONLY RECYCLER CESQG Silver SPG Inspection Category: Single Program Combined Joint Integrated/Multi-Media Number of Employees: SQ Notes: A Secretary Secre	D R	eturn "Certificate of Compliance")	Ś	F	ee after this date				
administrative/civil/criminal penalties. Any time granted for correction of the violation(s) does not preclude any enforcement action by this Department or other agencies. The giving of this notice and recent inspection of your facility is not a representation by the City of Santa Fe Springs that no other violations exist on your premises. Program(s) inspected: HMBP HWG TP TP PBR RECYCLER TUST RCALARP SPCC SW W W GUFC Inspection type: Routine Other HWG Status: RCRALOG RCRASOG CAONLY RECYCLER CESQG Silver SPG Inspection Category: Single Program Combined Joint Integrated/Multi-Media Number of Employees: So Notes: A STATE OF THE STATE O				-		•	fees, permit revocation, and/or			
Program(s) inspected: St HMBP HWG [TP [PBR RECYCLER [UST R CALARP SPCC SW NW SUFC Inspection type: Secutine [Other HWG Status: [RCRA LQG [RCRA SQG CA ONLY [RECYCLER [CESQG Silver [SPG Inspection Category: [Single Program Secution of Compliance of Employees: ~ So Notes: So	administ	rative/civil/criminal penalties. Any time granted for corr	ection of the violation(s) do	s not preclu	de any	enforcement action by this Department or other age				
Inspection type: & Routine (1) Other HWG Status: [RCRA LQG [RCRA SQG & CA ONLY [RECYCLER [CESQG Silver [SPG]]] Inspection Category: [Single Program & Combined [Combined [Combined [Combined Combined [Combined Combined	and rece	nt inspection of your facility is not a representation by the	e City of Santa Fe Springs th	at no other v	iolatio	ons exist on your premises.				
Inspection type: & Routine (1) Other HWG Status: [RCRA LQG [RCRA SQG & CA ONLY [RECYCLER [CESQG Silver [SPG]]] Inspection Category: [Single Program & Combined [Combined [Combined [Combined Combined [Combined Combined	Prograi	n(s) inspected: # HMBP HWG TP	□ PBR 🎘 RECYCLE	R 🗆 U	ST '	CALARP SSPCC SSW SSIW	√ X UFC			
Inspection Category: Single Program & Combined Number of Employees: So Notes: So 25-26 Carchine with the Treatment Day inspected The Mark of the Recurrent So Carchine with the Treatment Day inspected That Mark of the Recurrent So Carchine with the Recurrent Day of the Recurrent Carchine Carchine with the Recurrent Day of the Recurrent Day of the Advance of the Advance of the Advance of the Recurrent Day of the Day of the Recurrent Day of the Da	21									
Notes: S. S. S. S. Cardinanta) Had Treating Des inspected to this West treating makes maked parts and does copper that we on working parts. The make all the recurrents of any Cuentity Consertation (1866) Free life must implement a program that identifies anylogues that manage has also the there is that he was a treating on the treating program and a description of the training program that make the program of the first bust in the first bust in the first bust. There read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Print name.	9 1		······································							
Therefore maked from and does copper photons on whome a training program that make all the requirements for any Quantity Generator (Local Manager Frontier made all the requirements for any Quantity Generator (Local Manager Frontier made also represent the program of the training program that makes and a description of the training program that makes the requirement and provide documentation to the fire but the fire bu	nispeci		1 C., JOHN AZ IIIGERIA	eo/with-r	reura	Number of	Employees: -= _Sc)			
That made that treating included Excellences to by not having a training program that made it the regularization for all the results of the regularization of the harmonic configuration of the training program that made description of the training program that made description of the fire bup! I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party. Print page.	Notes:	An 5-25-06 Cardinan	T to H list	Keeper	-2 ₄	was marched. Freis	wast was			
That made that treating included Excellences to by not having a training program that made it the regularization for all the results of the regularization of the harmonic configuration of the training program that made description of the training program that made description of the fire bup! I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party. Print page.		the make marke on I	does como	her was	- Jean-	MAD ON INCOME ENGLAND	A			
That most all the recurrents or area and independent a program that the first way of the first way. I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party	\$ 0.00r.	and the same of th	2. mo 6.16	Z-3	<u> </u>	· Not (160 -10 men 1200 120	·			
That most all the recurrents or area and independent a program that the first way of the first way. I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party	75/ (- de la life to transfer de	111 9000	2 D 2.2 1	n / c	· 14- h				
Freeziste was implement a program thick identifies amplique at that manage has been as the state of the free members and provide discount of the fire bust. I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party Print page.	2.27		1 63	T-8-8347	Carrier D		taging 12 Stown			
I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party Print page Print page			et evensor	T 650	-63	Jakonse Widness				
I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party Print page Print page		a trenslant tenn of 1000	all mountons.	de de	Eng.	I test a earlang soft	Lamasa)_			
I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party Print parise Print parise	1,		a die les			J. 90 V 1	70			
I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party Print parts Print parts	1 Y	W-34/2-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	- 7530 Les List 1 72	`	_	thing to order to	1			
I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party Print parts Date		THE MIND THAT PRESENTS IT	2 Frenchlyni	- Je Carry M.	12 No.	I closely but magging	DO THE UNE OR			
I have read and understand the above stated violations. After these violations have been corrected, I will sign and return the "Certification of Compliance" form and submit any other required or requested information. Signature of responsible party Print parts Date	(W	indoference at their by	to the Sin b	wet.	تحييب		~			
any other required or requested information. Print name Print name Date										
any other required or requested information. Print name Print name Date										
any other required or requested information. Print name Print name Date										
any other required or requested information. Print name Print name Date		· · · · · · · · · · · · · · · · · · ·								
any other required or requested information. Print name Print name Date					*****					
Signature of responsible party Print name Date S-25-06	any oth	er required or requested information.	After these violations have	been corr	ected	, I will sign and return the "Certification of Co	ompliance" form and submit			
MulliCille (Marke Sotelo 5-25-06	Signa	ture of responsible party		Print nam	3	1 0 - 1	Date			
	5-25-06									

ty of Santa Fe Springs Fire Department Environmental Protection Division & Certified Unified Program Agency 11300 Greenstone Ave & Santa Fe Springs & CA 90670 (562) 944-9713 FAX (562) 941-1817

INSPECTION REPORT & NOTICE OF VIOLATION

BUSINESS (Safe newfa) Heat Treatment | SITE ADDRESS | O 6 43 Normal V

CONTACT Charles | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY Delivery | DATE INSPECTED | Safe Normal V

INSPECTED BY DELIVERY | DATE INSPECTED | Safe Normal V

INSPECTED BY DELIVERY | DATE INSPECTED | Safe Normal V

INSPECTED BY DELIVERY | DATE INSPECTED | Safe Normal V

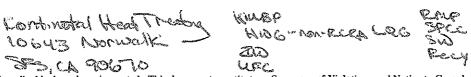
INSPECTED BY DELIVERY | DATE INSPECTED | Safe Normal V

INSPECTED BY DELIVERY | DATE INSPECTED | Safe Normal V

INSPECTED BY DELIVERY | DATE INSPECTED | Safe Normal V

INSPECTED BY DELIVERY | DATE INSPECTED | Safe Normal V

INSPECTED BY DELIVERY | DATE INSPECTED | DATE INSPECT


Reference: Titles 19 and 22 of the California Code of Regulations (CCR), Chapters 6.5, 6.67, and 6.95 of the Health and Safety Code (HSC), and Chapter 97 of the City Code.
32. Contracted Heat Treating must ensure their waste winimized on plan
(Servicion) = to date in reconstruction of the reconstruction
(Sery plan) = 1 to date in accordance with recently of pedated in
1999
37. Continental Heat Treating uplated Deceloraine VE (b) by having
Land wash without Copper Bloom Ing Scandan water much solls in
bro this so a firm on found town this of sense for matter esass les m
m all cases without 24 yours, Facility was pump out controvered and
appropriately manage spilled mothersal waste,
43 Cod neight Host Tredrie and oted City Ordnoric Chapter 52 by hearing
Oil on tree 35d stong. So their Charler. Oil must be removed from the Charles and mantained such that Oil 5 topt out of the sense.
Control Was sometimed grow that are tobe out a top our as the
Extrader "
cy Contracted Heat Treating much ensure treat starmonder polled on presentation
chan is not about The chan on who was dated 1997. Drewe plan is
accorate and stall meets reguldory requirements.
46. Boses ration! Continential Heat Treating has in excess of 1,320
Tallone of potroleum products stoned abovement. Facility is subject
to the requirements
<u> </u>
Cand Undature by 6-25-do
$\mathcal{A}_{l,l}(a) \subseteq \mathcal{O}_{n-l}(a)$
5-25-06

May 9, 2007 City of Santa Fe Springs Fire Department Inspection Report and Notice of Violation

City of Santa Fe Springs Fire Department Environm Protection Division & Certified Unified P am Agency 11300 Greenstone Ave & Santa Fe Springs & CA 90670 (562) 944-9713 FAX (562) 941-1817

INSPECTION REPORT & NOTICE OF VIOLATION

Page 1 of 2

Keserenc	e: Titles 19 and 22 of the California Code of Regulation	ons (CCR), Chapters 6.5, 6.67, ar	d 6.95 oj	f the F	reuin and safety Code (risc), and Chapter 97 of ti	ne City Code.			
Inspector(s) Richard Zallman					Inspection date 5 /	9 /07			
Inspection consent given by Martie 2012					Contact phone number (Sign) (44-880)				
2	HAZARDOUS WASTE GENER			3000000	HAZARDOUS WASTE GENER				
V		REFERENÇE		ΙVΙ	SUBJECT	REFERENCE			
1	Hazardous waste generator permit	City Ordinance 97.400	27		Hazardous waste analysis retained for 3 yrs	CCR 66262.40(c)			
2	EPA ID number (call DTSC 800-618-6942)	CCR 66262.12(a)	28		Personnel training for LQG	CCR 66265.16			
3	Hazardous waste determination	CCR 66262.11	29		Personnel training for generators of waste	CCR 66262.34(d), CFR			
4	Proper disposal of hazardous waste	HSC 25189.5(a)	30		Contingency plan for LQG	CCR 66265.51			
5	Reckless management of hazardous waste	HSC 25189.6	31		Emergency preparedness/prevention	CCR 66265.30			
6	Hazardous waste labeling	CCR 66262.34(f)	32		SB14 requirements for LQGs	CCR 67100.3			
	Hazardous waste accumulation time	CCR 66262.34(a-d)	33		Biennial report for RCRA LQGs	CCR 66262.40			
8	Retrograde/speculative accumulation	CCR 66262.10	34 35		Excluded recyclable material management	HSC 25143.29 HSC 25143.10			
10	Satellite accumulation Containers leaking or not in good condition	CCR 66262.34(e) CCR 66265.171	36	11/	Recyclable material report Proper management of Universal Waste	CCR 66273			
11	Hazardous waste container closed	CCR 66265.173(a)	37	-	Other hazardous waste violation(s)	CCR 00273			
12	Separation of incompatibles	CCR 66265.177	₩ <u>~</u> ′	 	HAZARDOUS MATERIALS I	USINESS PLAN			
13	Management of empty containers	CCR 66261.7	38		HMBP established and filed	HSC 25503.5			
14	Used oil management	CHSC 25250.4	39	0	Inventory and plot plan accurate	HSC 25509			
15	Used oil filter management	CCR 66266.130	40	اطي	Owner/operator information accurate	Ch. 6.95, HSC			
17	Contaminated textile management	HSC 25144.6	1	1	INDUSTRIAL WA				
18	Container storage inspection – weekly	CCR 66265.174	42		Discharging industrial waste w/o a permit	City Ordinance, Ch. 97			
19	Tank inspection - daily	CCR 66265.195	43	0	Other violation(s)				
20	Tank operating requirements	CCR 66265.194			STORM WATE	R			
21	Hazardous waste transported w/o manifest	CCR 66262.20-23	44		Storm water permit required (GIASP)	City Ordinance, Ch. 52			
22	Hazaidous waste manifest complete	CCR 66262.23(a)	45		Failure to implement BMPs	City Ordinance, Ch. 52			
23	Manifest copies to DTSC	CCR 66262.23(a)(4)			ABOVE GROUND PETROLE				
24	Manifest copies retained for 3 years	CCR 66262.40(a)	46		SPCC plan complete per requirements	CHSC 25270.5(c)			
25	Consolidated manifest requirements	HSC 25160.2	127		UNIFORM FIRE C	Uniform Fire Code			
26 □ No	LDR documents retained onsite hazardous waste violation(s) obs	CCR 66268.7(a)(6)	47	0	Uniform Fire Code	1 Omioini riie Code			
Notice to Comply: The violation(s) must be corrected by Return "Certificate of Compliance" \$ Fee after this date Attention: The item(s) checked are in violation. A re-inspection may occur at any time to verify compliance. Non-compliance could result in re-inspection fees, permit revocation, and/or administrative/civil/criminal penalties. Any time granted for correction of the violation(s) does not preclude any enforcement action by this Department or other agencies. The giving of this notice and recent inspection of your facility is not a representation by the City of Santa Fe Springs that no other violations exist on your premises.									
Attention: administra	The item(s) checked are in violation. A re-inspecti ative/civil/criminal penalties. Any time granted for cor	ion may occur at any time to vertection of the violation(s) does no	rify con ot precluc	F plian le any	ce. Non-compliance could result in re-inspection enforcement action by this Department or other ag				
Attention: administra and recen	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the	ion may occur at any time to ve rection of the violation(s) does no the City of Santa Fe Springs that no	rify con ot precluc o other vi	plian le any iolatic	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises.	encies. The giving of this notice			
Attention: administra and recen Program	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG [TP	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that no	erify con of precluc of other vi	iplian le any iolatic	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises.	encies. The giving of this notice			
Attention: administra and recen Program Inspectio	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG St	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be PBR RECYCLER atus:	other vi	inplian le any iolatic ST	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. CAL ARP SPCC SW W IW CA ONLY RECYCLER CESQGS	encies. The giving of this notice UFC Gilver [SPG			
Attention: administra and recen Program Inspectio	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG Ston Category: Single Program Combine	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be PBR RECYCLER atus: RCRALQG RC RC Logical RC	erify convot preclude other vi	iplian le any iolatic ST G []	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. CAL ARP SPCC SW W IW CA ONLY RECYCLER CESQGS Number of	encies. The giving of this notice UFC Silver C SPG f Employees: (C)			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cort inspection of your facility is not a representation by the (s) inspected: HMBP HWG TP HWG Ston Category: Single Program Combine	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Santa	trify control precluces of the recommendation of the recommendatio	iolatic ST G Iedia	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. CALARP SPCC SW IN CAONLY RECYCLER CESQGS Number of Security Secur	UFC Gliver C SPG f Employees: (C)			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG Ston Category: Single Program Combine	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared	trify control precluces of the recommendation of the recommendatio	iolatic ST G Iedia	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. CALARP SPCC SW IN CAONLY RECYCLER CESQGS Number of Security Secur	encies. The giving of this notice UFC Silver C SPG f Employees: (C)			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG Storn Category: Single Program Combine Carbon March 1997.	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be PBR RECYCLER atus: ERCRALQG ROD Integrated/	rify com of precluce of other via CRASQ Multi-M	Inplian le any iolatic	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. **CAL ARP **S SPCC **SW **IW** **CA ONLY **C RECYCLER **C CESQG S** Number of the country of the count	encies. The giving of this notice UFC Silver C SPG f Employees: (C)			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG Storn Category: Single Program Combine Carbon Laws to Mesh Treat	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be PBR RECYCLER atus: E RCRA LOG RCd E Joint Integrated/	rify composition of the preclucion of the rife of the	Poplianile anyiotation	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. **CAL ARP **S SPCC **SW **IW** **CA ONLY **C RECYCLER **C CESQG S** Number of the country of the cou	UFC Gliver C SPG f Employees: (C)			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG Ston Category: Single Program Combine Carbon Laws to Medical Treats	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be PBR RECYCLER atus: E RCRA LOG RCd E Joint Integrated/	rify composition of the preclucion of the rife of the	Poplianile anyiotation	CE. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. CALARP SPCC SW IN CAONLY RECYCLER CESOGS Number of Section 1.	Hencies. The giving of this notice Of UFC Silver [SPG f Employees: (OD) White Exp Well Archer [Magar			
Attention: administra and recen Program Inspectio Inspectio Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Tother HWG Stron Category: Single Program Combine Co	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Santa Compared to the City of Santa Sant	rify completed to other visit Bush SQ Multi-M	Find the second	CE. Non-compliance could result in re-inspection enforcement action by this Department or other agens exist on your premises. **CAL ARP** SPCC** SW** INCAC ANLY RECYCLER CESQGS Number of the property of the prop	Hencies. The giving of this notice Of UFC Gilver [I SPG f Employees: (O) White Section (O) White Section (O)			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG Ston Category: Single Program Combines Candon Market Stones on Category: All Candon Market Stones on Category:	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe	rify completed to other visit Bush SQ Multi-M	Find the second	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. **CAL ARP **S SPCC **SW **IW** CA ONLY **C RECYCLER **C CESOGS ** Number of the country	Hencies. The giving of this notice Of UFC Silver [SPG f Employees: (OD) White Exp Well Archer [Magar			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Other HWG Ston Category: Single Program Combines Candon Market Stones on Category: All Candon Market Stones on Category:	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be	rify completed to other visit Bush SQ Multi-M	Finding the any colation of the color of the	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. **CAL ARP **SPCC **SW **IW** CA ONLY **C RECYCLER **C CESOGS ** Number of the country o	Hencies. The giving of this notice Of UFC Silver [SPG f Employees: (OD) White Exp Well Archer [Magar			
Attention: administra and recen Program Inspectic Inspectic Notes: "7, C	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: A HMBP HWG TP on type: Resoluting Other HWG Ston Category: Single Program Combines on Category: C	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Santa Fe Santa Compared to the City of Santa Fe Santa F	erify compared to the preclucion of the recture of	Finding the any colation of the color of the	CE. Non-compliance could result in re-inspection enforcement action by this Department or other agens exist on your premises. **CAL ARP **SPCC **SW **IW** **CA ONLY **ERCYCLER **E CESOGS ** Number of the property of the	Employees: (OD Williams White Experiments White			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: ** HMBP ** HWG ** TP on type: ** Routine ** Other ** HWG Ston Category: ** Single Program ** Combine ** Cambridge Program ** C	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe	erify compared to the preclucion of the recture of	Finding the any colation of the color of the	CE. Non-compliance could result in re-inspection enforcement action by this Department or other agens exist on your premises. **CAL ARP **SPCC **SW **IW** **CA ONLY **ERCYCLER **E CESOGS ** Number of the property of the	HUFC SILVER COD White Code Market Code White Code			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Tother HWG Ston Category: Single Program Combine Carbon Law to head treat the combine that the combine	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe	unity company of preclucion other visits and the second of	Francisco Franci	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. **CALARP **SPCC **SW **IM** CAONLY **ERCYCLER **C CESOGS ** Number of the country of the	Employees: (O) White Exponential SPG femployees: (O) White Exponential SPG which is a second of the second of			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: A HMBP HWG TP on type: A Routine Tother HWG Ston Category: Single Program Combine Canton Market Treats on Category: Single Program Combine Canton Market Treats of Canton Market Treats o	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Santa Fe Santa Compared to the City of Santa Fe Santa F	Trify company of preclucion other visit of the preclucion of the p	Francisco Franci	CE. Non-compliance could result in re-inspection enforcement action by this Department or other agins exist on your premises. **CALARP** SPCC** SW** INCACALARP** SPCC** SW** INCACALARP** SPCC** Number of Num	encies. The giving of this notice Y UFC Gilver [SPG f Employees: (O) Whitele			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP on type: Routine Tother HWG Ston Category: Single Program Combine Carbon Law to head treat the combine that the combine	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe	erify compared to preclude to other visit of the compared to t	Francisco Franci	CE. Non-compliance could result in re-inspection enforcement action by this Department or other agins exist on your premises. **CALARP** SPCC** SW** INCACALARP** SPCC** SW** INCACALARP** SPCC** Number of Num	encies. The giving of this notice Y UFC Gilver [SPG f Employees: (O) Whitele			
Attention: administra and recen Program Inspectic Inspectic Notes: "7, C	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: HMBP HWG TP TP on type: Routine Tother HWG Stron Category: Single Program Combine Combine Company of the HWG Strong Category: Single Program Combine Combine Company of the HWG Strong Category: Category: Single Program Combine	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe	Trify composition of preclucion of the record of the recor	Finding the policy of the poli	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agons exist on your premises. **CALARP **SPCC **SW **IM** CAONLY **ERCYCLER **C CESOGS ** Number of the country of the	encies. The giving of this notice Y UFC Gilver [SPG f Employees: (O) Whitele			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: A HMBP HWG TP on type: A Routine Tother HWG Ston Category: Single Program & Combine Combi	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Springs that not be compared to the City of Santa Fe Santa Cooperation of the City of Santa Cooperation of the City of Santa Fe Santa Cooperation of the City of Santa Cooperation of City of Santa	Trify company of preclucion of the record of	Finding of the state of the sta	CE. Non-compliance could result in re-inspection enforcement action by this Department or other agains exist on your premises. **CALARP** SPCC** SW** INCAONLY RECYCLER CESOGS Number of the subsection	encies. The giving of this notice Y UFC Gilver [SPG f Employees: (O) Whitele			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: A HMBP HWG TP on type: A Routine Tother HWG Ston Category: Single Program & Combine Combine Company of the com	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared. In the compared of	Trify control preclucion other visit of the control	Finding the state of the state	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agins exist on your premises. **CALARP** SPCC** SW** INCACALARP** SPCC** SW** INCACALARP** SPCC** Number of Num	encies. The giving of this notice V & UFC Gilver [SPG f Employees: (O) Whitises Well When the for larger And Placking Mare than Livernants Completing Completing Completing Completing Completing Completing			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: A HMBP HWG TP on type: A Routine Tother HWG Ston Category: Single Program & Combine Combine Company of the com	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be City of Santa Fe Springs that not be compared. In the compared of	Trify control preclucion other visit of the control	Finding the state of the state	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agins exist on your premises. **CALARP** SPCC** SW** INCACALARP** SPCC** SW** INCACALARP** SPCC** Number of Num	encies. The giving of this notice If UFC Gilver [SPG f Employees: (O) Whitese Well Are for larger Are for larger Are ploting Mare than Livernants Completing Comp			
Attention: administra and recen Program Inspectic Inspectic Notes:	The item(s) checked are in violation. A re-inspectitive/civil/criminal penalties. Any time granted for cortinspection of your facility is not a representation by the (s) inspected: A HMBP HWG TP on type: A Routine Tother HWG Ston Category: Single Program & Combine Combine Company of the com	ion may occur at any time to verection of the violation(s) does not be City of Santa Fe Springs that not be city of Santa	Trify control preclucion other visit of the control	Finding of the control of the contro	ce. Non-compliance could result in re-inspection enforcement action by this Department or other agins exist on your premises. **CALARP** SPCC** SW** INCACALARP** SPCC** SW** INCACALARP** SPCC** Number of Num	encies. The giving of this notice V & UFC Gilver [SPG f Employees: (O) Whitises Well When the for larger And Placking Mare than Livernants Completing Completing Completing Completing Completing Completing			

ty of Santa Fe Springs Fire Departret Environmental Protection Division & Certified Unified Program Agency 11300 Greenstone Ave Santa Fe Springs CA 90670 (562) 944-9713 FAX (562) 941-1817

INSPECTION REPORT & NOTICE OF VIOLATION

BUSINESS C and Mental SITE ADDRESS $\in \wp \cup OJ$ 4 Loevacel Treating. CONTACT Charles Sote DATE INSPECTED < 9-50 INSPECTED BY

Reference: Titles 19 and 22 of the Californic and Safety Code (HSC), and Chapter 97 of th		6.5, 6.67, and 6.95 of the Health
39. Cantinantal Heat Treating	a ordated HECZESOS	by not having an cylinger Strydiger
ass. Continental Heat	betzil ten escu tonu s	as well as welling
Shall be sent to tre F		
43. Condinantal Mosof Tradica Forling to Mainton pro The Fland Stage of tree Must maintain to class	treatment grapment "	Cartendal Heat Treation
- squilm,	V	
entous teeth intrempo ATP	F. H. JOOS-TU KStalora	by not maintaining
The society is good with	try order the flow must be be leaking arm	wher assessed with
themsel of prevent	annoy leak and	en tournd against a
478 Continental Heat Toral	16982321 labola 0 000	M. X L. Manner accorded & M.
Makeral stoned tookhur.	- Acids + Bress were	Amad taxtur m to
Storage once for the Chil	ting department animphorable	filly materials must be
Septented by 20 Feat	or a non-combustil	so front so
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Other Cod-residul Host Tre	admy wolated 1966-	155.60 by ADT Completing
anni than a way	The CalARA was initially	Was Proposed Strades &
	eto be completed by 4:	
Treating amade consider	te tru and and and	the extra fraction
results to the Fire	Beportment.	
	5 5 6 8	
	Yd embolae beena	6-10-07
A A A	A male SoTelo	[-10-07
Sevenal Sevenal	Name	5-10-07
**************************************	* V-0 V - 0 W	

APPENDIX H

CARDNO'S REPORT OF SOIL BORINGS IN SUPPORT OF FORENSIC INVESTIGATION, DATED FEBRUARY 8, 2017

February 8, 2017 Cardno 08115504.R24

Mr. Luis Changkuon
California Regional Water Quality Control Board
Los Angeles Region
320 West 4th Street, Suite 200
Los Angeles, California 90013

Cardno License A/C10-611383

4572 Telephone Road Suite 916 Ventura, CA 93003 USA

Phone 805 644 4157 Fax 805 644 5610

www.cardno.com

SUBJECT Report of Soil Borings In Support of Forensic Investigation

Former ExxonMobil Jalk Fee Property
10607 Norwalk Boulevard
Santa Fe Springs, California
CRWQCB-LAR Case No. 0203; Site I.D. No. 1848000

Mr. Changkuon:

At the request of ExxonMobil Environmental Services (EMES), on behalf of ExxonMobil US Production Company (ExxonMobil), Cardno has prepared this *Report of Soil Borings in Support of Forensic Investigation* for the subject site. The purpose of the report is to document the investigation methodology associated with the advancement of 14 soil borings along the property boundary between the Jalk Fee site and the Continental Heat Treating (CHT) site. This investigation was performed as part of a forensic investigation conducted by Newfields to identify and evaluate the co-occurrence of markers associated with wastes generated from heat treating operations with previously identified PCE in soil at the subject site. The scope of work was to collect 10 samples of native soil beneath and directly surrounding former excavation SB49 (the area directly adjacent to the property boundary with Continental Heat Treating where the highest PCE concentrations have been detected in shallow soil), that exhibited high concentration of VOCs based upon field screening, as well as a background reference location to the west (B33) (Plate 1). These selected samples were then submitted to Newfields for analysis and forensic evaluation.

FIELD ACTIVITIES

Pre-Field Activities

Underground Service Alert of Southern California was notified at least 48 hours prior to conducting the fieldwork. A geophysical survey was conducted to identify subsurface features in the vicinity of the boring locations. No permit was required by the County of Los Angeles Department of Public Health. The fieldwork was conducted under the supervision of a State of California professional geologist. The field protocol for the drilling and sampling of the soil borings is included in Attachment A.

Soil Borings

On October 18 through 21, 2016, soil borings B24 through B37 were advanced to depths ranging from 3 to 20 feet bgs using a direct-push rig and/or hand auger equipment (Plate 1). The borings were continuously cored for field screening and lithologic description to identify the presence of backfill associated with excavation SB49 and determine the depth to native soil (Attachment B). After identifying native soil, the borings were advanced until field screening indicated decreasing concentrations of VOCs. The soil samples with the highest field screening indications of VOCs were preserved using EPA Method 5035 and submitted to Newfields/Alpha Analytical Laboratories, Inc. for laboratory analysis. Samples were not submitted from borings if the respective field screening did not indicate the presence of significant VOCs.

Please refer to Newfields report titled *Forensic Signature of Hydrocarbons*, dated February 7, 2017, for details on the analytical methods, laboratory reports, and COC records.

Waste Management Plan

The soil and decontamination water generated during field activities were temporarily stored on site in DOT-approved and sealed 55-gallon drums. Soil cuttings were transported to Soil Safe, Inc.'s approved facility in Adelanto, California, for recycling. Decontamination water was transported to Crosby & Overton's approved facility in Long California, for disposal. Copies of the manifests are included as Attachment C.

LIMITATIONS

For documents cited that were not generated by Cardno, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

Cardno 08115504.R24 Former ExxonMobil Jalk Fee Property, Santa Fe Springs, California

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

If you have questions regarding this document, please call Mr. James Anderson at 805 644 4157, extension 181805.

Sincerely.

James Anderson

Senior Engineer

for Cardno

Direct Line 805 644 4157, ext. 181805

Email: james.anderson@cardno.com

Andy Nelson

Senior Geologist

P.G. 8360

for Cardno

Direct Line 805 644 4157, ext. 181809

Email: andy.nelson@cardno.com

cc: Ms. Marla Madden, ExxonMobil Environmental Services Company

Enclosures:

Acronym List

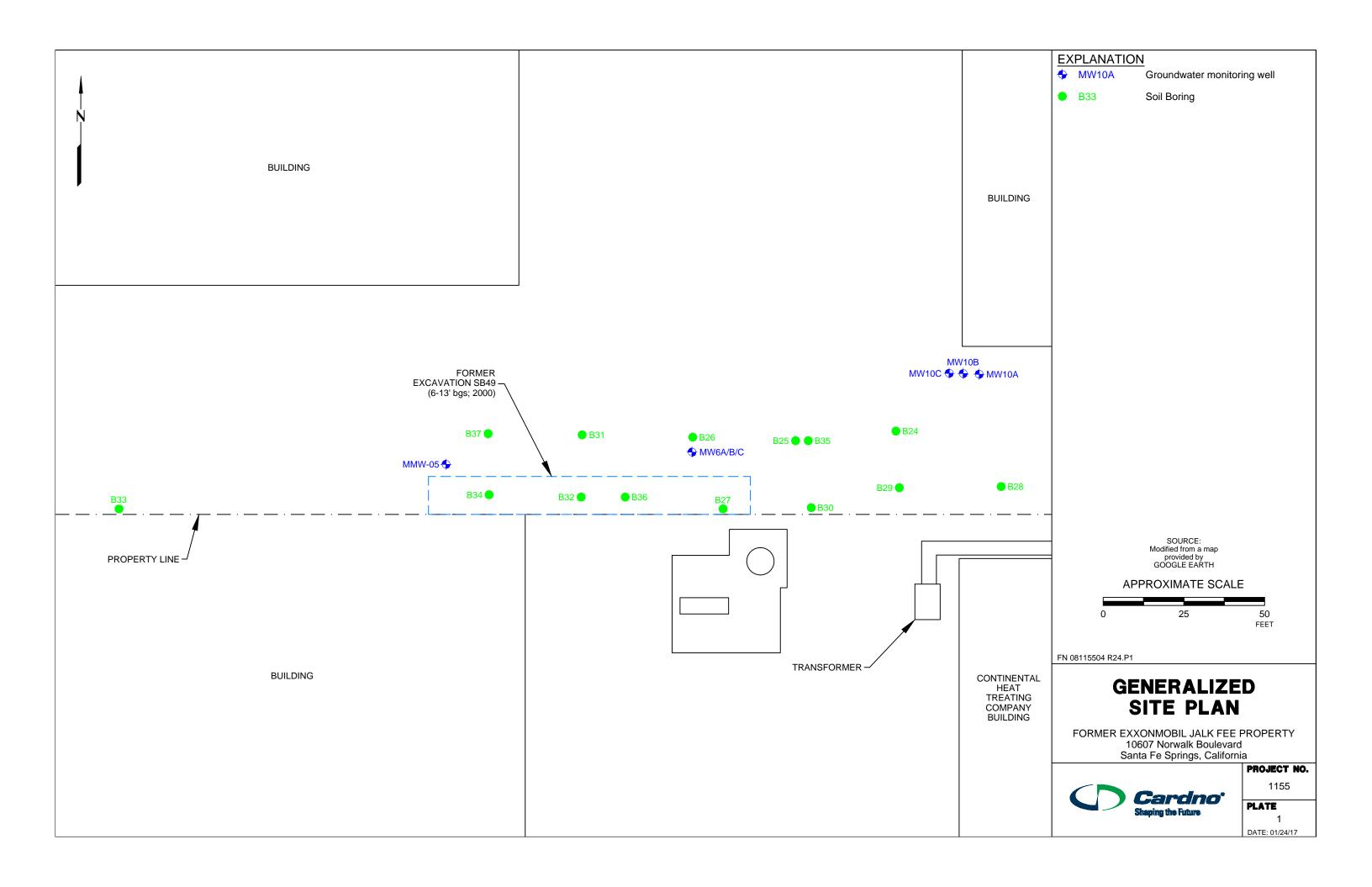
Plate 1

Generalized Site Plan

Attachment A

Field Protocol

Attachment B


Boring Logs

Attachment C

Manifests

ACRONYM LIST

μg/L	Micrograms per liter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
ĠAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHq	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m ³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid	VI O	vapor priade carbon
INAL L	Mon-aqueous phase liquid		

ATTACHMENT A

FIELD PROTOCOL

Cardno Soil Boring and Well Installation Field Protocol

Preliminary Activities

Prior to the onset of field activities at the site, Cardno obtains the appropriate permit(s) from the governing agency(s). Advance notification is made as required by the agency(s) prior to the start of work. Cardno marks the borehole locations and contacts the local one call utility locating service at least 48 hours prior to the start of work to mark buried utilities. Borehole locations may also be checked for buried utilities by a private geophysical surveyor. Prior to drilling, the borehole location is cleared in accordance with the client's procedures. Fieldwork is conducted under the advisement of a registered professional geologist and in accordance with an updated site-specific safety plan prepared for the project, which is available at the job site during field activities.

Drilling and Soil Sampling Procedures

Cardno contracts a licensed driller to advance the boring and collect soil samples. The specific drilling method (e.g., hollow-stem auger, direct push method, or sonic drilling), sampling method [e.g., core barrel or California-modified split spoon sampler (CMSSS)] and sampling depths are documented on the boring log and may be specified in a work plan. Soil samples are typically collected at the capillary fringe and at 5-foot intervals to the total depth of the boring. To determine the depth of the capillary fringe prior to drilling, the static groundwater level is measured with a water level indicator in the closest monitoring well to the boring location, if available.

The borehole is advanced to just above the desired sampling depth. For CMSSSs, the sampler is placed inside the auger and driven to a depth of 18 inches past the bit of the auger. The sampler is driven into the soil with a standard 140-pound hammer repeatedly dropped from a height of 30 inches onto the sampler. The number of blows required to drive the sampler each 6-inch increment is recorded on the boring log. For core samplers (e.g., direct push), the core is driven 18 inches using the rig apparatus.

Soil samples are preserved in the metal or plastic sleeve used with the CMSSS or core sampler, in glass jars or other manner required by the local regulatory agency (e.g., Environmental Protection Agency Method 5035). Sleeves are removed from the sample barrel, and the lowermost sample sleeve is immediately sealed with TeflonTM tape, capped and labeled. Samples are placed in a cooler chilled to 4° Celsius and transported to a state-certified laboratory. The samples are transferred under chain-of-custody (COC) protocol.

Field Screening Procedures

Cardno places the soil from the middle of the sampling interval into a plastic re-sealable bag. The bag is placed away from direct sunlight for approximately 20 minutes, after which the tip of a photo-ionization detector (PID) or similar device is inserted through the plastic bag to measure organic vapor concentrations in the headspace. The PID measurement is recorded on the boring log. At a minimum, the PID or other device is calibrated on a daily basis in accordance with manufacturer's specifications using a hexane or isobutylene standard. The calibration gas and concentration are recorded on a calibration log. Instruments such as the PID are useful for evaluating relative concentrations of volatilized hydrocarbons, but they do not measure the concentration of petroleum hydrocarbons in the soil matrix with the same precision as laboratory analysis. Cardno trained personnel describe the soil in the bag according to the Unified Soil Classification System and record the description on the boring log, which is included in the final report.

Air Monitoring Procedures

Cardno performs a field evaluation for volatile hydrocarbon concentrations in the breathing zone using a calibrated PID or lower explosive level meter.

Groundwater Sampling

A groundwater sample, if desired, is collected from the boring by using HydropunchTM sampling technology or installing a well in the borehole. In the case of using HydropunchTM technology, after collecting the capillary fringe soil sample, the boring is advanced to the top of the soil/groundwater interface and a sampling probe is pushed to approximately 2 feet below the top of the static water level. The probe is opened by partially withdrawing it and thereby exposing the screen. A new or decontaminated bailer is used to collect a water sample from the probe. The water sample is then emptied into laboratory-supplied containers constructed of the correct material and with the correct volume and preservative to comply with the proposed laboratory test. The container is slowly filled with the retrieved water sample until no headspace remains and then promptly sealed with a Teflon-lined cap, checked for the presence of bubbles, labeled, entered onto a COC record and placed in chilled storage at 4° Celsius. Laboratory-supplied trip blanks accompany the water samples as a quality assurance/quality control procedure. Equipment blanks may be collected as required. The samples are kept in chilled storage and transported under COC protocol to a client-approved, state-certified laboratory for analysis.

Backfilling of Soil Boring

If a well is not installed, the boring is backfilled from total depth to approximately 5 feet below ground surface (bgs) with either neat cement or bentonite grout using a tremie pipe. The boring is backfilled from 5 feet bgs to approximately 1 foot bgs with hydrated bentonite chips. The borehole is completed from 1 foot bgs to surface grade with material that best matches existing surface conditions and meets local agency requirements. Sitespecific backfilling details are shown on the respective boring log.

Well Construction

A well (if constructed) is completed using materials documented on the boring log or specified in a work plan. The well is constructed with slotted casing across the desired groundwater sampling depth(s) and completed with blank casing to within 6 inches of surface grade. No further construction is conducted on temporary wells. For permanent wells, the annular space of the well is backfilled with Monterey sand from the total depth to approximately 2 feet above the top of the screened casing. A hydrated granular bentonite seal is placed on top of the sand filter pack. Grout may be placed on top of the bentonite seal to the desired depth using a tremie pipe. The well may be completed to surface grade with a 1-foot thick concrete pad. A traffic-rated well vault and locking cap for the well casing may be installed to protect against surface-water infiltration and unauthorized entry. Site-specific well construction details including type of well, well depth, casing diameter, slot size, length of screen interval and sand size are documented on the boring log or specified in the work plan.

Well Development and Sampling

If a permanent groundwater monitoring well is installed, the grout is allowed to cure a minimum of 48 hours before development. Cardno personnel or a contracted driller use a submersible pump or surge block to develop the newly installed well. Prior to development, the pump is decontaminated by allowing it to run and re-circulate while immersed in a non-phosphate solution followed by successive immersions in potable water and de-ionized water baths. The well is developed until sufficient well casing volumes are removed so that turbidity is within allowable limits and pH, conductivity and temperature levels stabilize in the purge water. The volume of groundwater extracted is recorded on a log.

Following development, groundwater within the well is allowed to recharge until at least 80% of the drawdown is recovered. A new or decontaminated bailer is slowly lowered past the air/water interface in the well, and a water sample is collected and checked for the presence of non-aqueous phase liquid, sheen or emulsions. The water sample is then emptied into laboratory-supplied containers as discussed above.

Surveying

If required, wells are surveyed by a licensed land surveyor relative to an established benchmark of known elevation above mean sea level to an accuracy of +/- 0.01 foot. The casing is notched or marked on one side to identify a consistent surveying and measuring point.

Decontamination Procedures

Cardno or the contracted driller decontaminates soil and water sampling equipment between each sampling event with a non-phosphate solution, followed by a minimum of two tap water rinses. De-ionized water may be used for the final rinse. Downhole drilling equipment is steam-cleaned prior to drilling the borehole and at completion of the borehole.

Waste Treatment and Soil Disposal

Soil cuttings generated from the drilling or sampling are stored on site in labeled, Department of Transportation-approved, 55-gallon drums or other appropriate storage container. The soil is removed from the site and transported under manifest to a client- and regulatory-approved facility for recycling or disposal. Decontamination fluids and purge water from well development and sampling activities, if conducted, are stored on site in labeled, regulatory-approved storage containers. Fluids are subsequently transported under manifest to a client- and regulatory-approved facility for disposal or treated with a permitted mobile or fixed-base carbon treatment system.

ATTACHMENT B

BORING LOGS

Project No.

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B24.bor

25

BORING LOG B24

(Page 1 of 1)

Date Drilled : 10-20-2016 Drilling Co. : JDK Drilling Inc. **Drilling Method** : Direct Push Sampling Method

: Continuous Core Borehole Diameter : 2.5" Casing Diameter : N/A

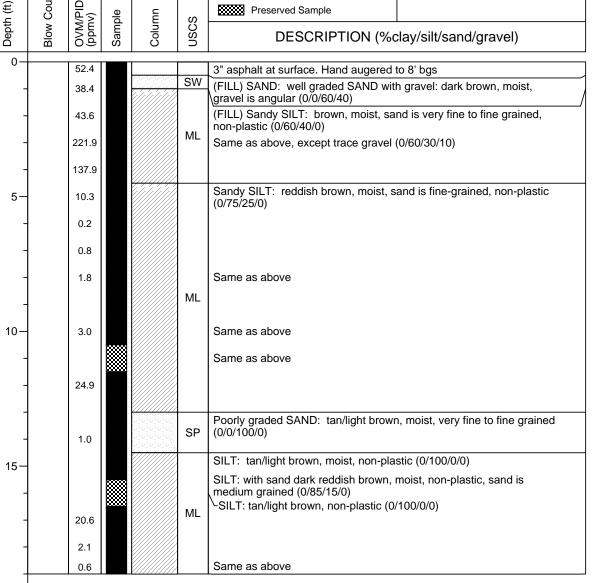
Latitude : 33.937213° : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude : -118.073942° Logged By : Andy Nelson Total Boring Depth : 20' bgs Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Sample Condition Water Levels No Recovery ▼ Groundwater After Completion Sampled Interval Blow Count / 6" □ Groundwater During Drilling Boring: B24 Described Sample OVM/PID (ppmv) Depth (ft) Preserved Sample Sample Column **USCS** DESCRIPTION (%clay/silt/sand/gravel) 0 25.4 3" asphalt at surface. Hand augered to 8' bgs concrete SW (FILL) Well graded SAND with gravel: very fine to coarse grained, 9.0 dark brown, moist, gravel is angular (0/0/50/50) (FILL) Poorly graded Sand with traces of gravel: very fine to fine 19.1 grained, dark brown, moist (0/5/85/10) SP 16.2 23.5 Sandy SILT: light reddish brown, moist, sand is very fine to fine 5 2.1 grained, low-plasticity (0/70/30/0) 0.0 0.0 same as above 13 ML 6.3 10same as above Hydrated Bentonite 0.1 Chips Poorly graded SAND: tan/light brown, moist, very fine to fine grained (0/0/100/0)0.3 SP 15-0.6 same as above 0.4 SILT, tan/light brown, moist, non-plastic (0/100/0/0) ML 0.7 Same as above 20

BORING LOG B25

(Page 1 of 1)

Date Drilled : 10-20-2016 Drilling Co. : JDK Drilling Inc. **Drilling Method** : Direct Push

Sampling Method · Continuous Core Borehole Diameter : 2.5" Casing Diameter : N/A : 33.937212°


Boring: B25

concrete

Longitude : -118.073919° Total Boring Depth : 19' bgs First GW Depth : N/A

Project No. : 081155 Latitude : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Logged By : Andy Nelson Reviewed By : Andy Nelson, P.G. 8360 Signature Sample Condition Water Levels No Recovery ▼ Groundwater After Completion Sampled Interval

Blow Count / 6" Described Sample OVM/PID (ppmv) Preserved Sample Column Sample

Hydrated Béntonite Chips

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B25.bor

20

25

Project No.

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B26.bor

25

BORING LOG B26

(Page 1 of 1)

Date Drilled : 10-18-2016

Drilling Co. : JDK Drilling Inc.

Drilling Method : Direct Push

Sampling Method : Continuous Core

Drilling Method : Direct Push
Sampling Method : Continuous Cord
Borehole Diameter : 2.5"
Casing Diameter : N/A
Latitude : 33.937215°

Latitude : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude : -118.074024° Logged By : Andy Nelson Total Boring Depth : 20' bgs Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Sample Condition Water Levels No Recovery Groundwater After Completion Sampled Interval Blow Count / 6" Boring: B26 Described Sample OVM/PID (ppmv) Depth (ft) Preserved Sample Sample Column **USCS** DESCRIPTION (%clay/silt/sand/gravel) 0 5.3 3" asphalt at surface. Hand augered to 5' bgs concrete (FILL) well graded SAND with gravel: dark brown, moist, gravel is 3.8 angular (0/0/60/40) 5.2 (FILL) Sandy SILT: dark brown, moist, sand is fine grained, (0/75/25/0).7.6 ML 35.7 465 (FILL) Sandy SILT: reddish brown, moist, sand is fine grained, 5 low-plasticity (0/90/10/0) 55.3 (FILL) well graded SAND with gravel: brown, fine to coarse grained, gravel its angular (0/10/60/30) SW 32.4 Sandy SILT: reddish brown, moist, sand is fine grained, low-plasticity (0/60/40/0)10 ML 21.7 Hydrated Bentonite Chips Poorly graded SAND: fine grained, brown, moist (0/0/100/0) 8.3 SP 0.7 15 SILT: grayish brown, moist, low-plasticity, very minor calcification in between 15-15.5' (0/100/0/0) 11.9 ML 1.4 2.6 same as above 20

Project No.

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B27.bor

25

BORING LOG B27

(Page 1 of 1)

Date Drilled : 10-18-2016 : JDK Drilling Inc. Drilling Co. **Drilling Method** : Direct Push Sampling Method · Continuous Core

Borehole Diameter : 2.5"/1.5" Casing Diameter : N/A

Latitude : 33.937154° : 19' bgs

: Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude : -118.073993° Logged By : Andy Nelson Total Boring Depth Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature \$ample Condition Water Levels No Recovery Groundwater After Completion Sampled Interval Blow Count / 6" Boring: B27 Described Sample OVM/PID (ppmv) Depth (ft) Preserved Sample Sample Column USCS DESCRIPTION (%clay/silt/sand/gravel) 0 -Native Soil 0.5 Hand augered to 5' fet bgs. Sandy SILT: sand is fine grained, dark brown, moist, non-plastic 6.0 (5/70/25/0)SILT with sand and clay: brown, wet (possibly from irrigation) sand is 3.7 fine grained, low-plasticty (10/70/15/0) 11.7 54.4 5 85.7 Sandy SILT: sand is fine grained, brown, moist, non-plastic (5/70/15/0) 9.3 ML same as above 16.0 Hydrated Clayey SILT: with sand, brown, moist, high-plasticty, sand is fine 10 351 Béntonite grained (60/25/15/0) Chips 352 Poorly Graded SAND: fine grained, brown, moist (0/0/100/0) SP 2445 15 Calcification, (from 15 to 15.5') chalky white/grey, cemented SILT with sand: light brown, moist, sand is fine grained, non-plastic 53.1 (0/80/20/0)Switched to a 2" long, 1.5" diameter sampler same as above 299 36 20

: Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs

Project No.

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B28.bor

25

BORING LOG B28

(Page 1 of 1)

Date Drilled : 10-19-2016 Drilling Co. : JDK Drilling Inc. **Drilling Method** : Direct Push Sampling Method : Continuous Core

Borehole Diameter : 2.5" Casing Diameter : N/A Latitude : 33.937173°

Longitude : -118.073709° : 20' bgs

Logged By : Andy Nelson Total Boring Depth Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Sample Condition Water Levels No Recovery Groundwater After Completion Sampled Interval Blow Count / 6" Boring: B28 Described Sample OVM/PID (ppmv) Depth (ft) Preserved Sample Sample Column **USCS** DESCRIPTION (%clay/silt/sand/gravel) 0 0.0 3" asphalt at surface. Hand augered to 5' bgs Concrete (FILL) Well graded SAND with gravel: fine to coarse grained, dark 0.1 brown, moist (0/0/70/30) 0.0 Sandy SILT: sand is fine grained, reddish brown, moist, non-plastic (0/65/35/0)0.0 0.7 Same as above 6.9 5 same as above, except with iron oxide staining 0.0 0.2 10 Same as above 0.6 Hydrated Bentonite MLChips 36.7 Sandy SILT: trace clay, sand is fine to medium grained, black, moist, non-plastic, oily staining (5/65/30/0) 83.7 Same as above 15 1.7 1" transition in color; Sandy SILT: trace clay, sand is fine to medium grained, reddish brown, moist non-plastic (5/65/30/0) 22.3 SILT: tan/brown, moist, non-plastic (0/100/0/0) 0.9 Same as above, except light tan 4.6 20

: Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs

Project No.

25

BORING LOG B29

(Page 1 of 1)

Date Drilled : 10-19-2016 Drilling Co. : JDK Drilling Inc. **Drilling Method** : Direct Push

Sampling Method · Continuous Core Borehole Diameter : 2.5"

Casing Diameter : N/A Latitude : 33.937172° Longitude : -118.073813° : 20' bgs

Logged By : Andy Nelson Total Boring Depth Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature \$ample Condition Water Levels No Recovery Groundwater After Completion Sampled Interval Blow Count / 6" Boring: B29 Described Sample OVM/PID (ppmv) Depth (ft) Preserved Sample Column Sample USCS DESCRIPTION (%clay/silt/sand/gravel) 0 0.0 3" asphalt at surface. Hand augered to 5"bgs Concrete SW (FILL) Well graded SAND with gravel: dark brown, moist, fine to 0.0 coarse grained Clayey SILT with sand: trace gravel, reddish brown, sand is fine 0.0 grained, gravel is angular, moist, low plasticity (25/60/10/5) 2.3 4.2 5 0.0 Sand SILT: Sand is fine to medium grained, reddish brown, moist, non-plastic (0/70/30/0) 2.6 ML Same as above 1.0 10 Same as above 5.6 Hydrated Bentonite Chips 11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B29.bor 1.8 Poorly graded SAND: very fine to fine grained, grayish brwon, moist, (0/70/30/0) SP 0.0 15 1.7 Sandy SILT: sand is fine grained, brwon, moist, non-plastic ML (0/70/30/0)Poorly graded SAND with silt: very fine to fine grained, brown (0/20/80/0) SP 0.0 4.2 ML SILT: brown, moist, non-plastic (0/100/0/0) SP Poorly graded SAND: very fine to fine grained, light brown, moist 0.3 (0/0/100/0)MLSILT: tan, moist, non-plastic (0/100/0/0) 20

Project No.

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B30.bor

25

BORING LOG B30

(Page 1 of 1)

Date Drilled : 10-18-2016
Drilling Co. : JDK Drilling Inc.
Drilling Method : Direct Push
Sampling Method : Continuous Core

Drilling Method : Direct Push
Sampling Method : Continuous Cor
Borehole Diameter : 2.5"

Casing Diameter : N/A
Latitude : 33.937155°

: Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude : -118.073903° Logged By : Andy Nelson Total Boring Depth : 16.5' bgs Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Water Levels Sample Condition ▼ Groundwater After Completion No Recovery Sampled Interval Blow Count / 6" □ Groundwater During Drilling Boring: B30 Described Sample OVM/PID (ppmv) Depth (ft) Preserved Sample Column Sample **USCS** DESCRIPTION (%clay/silt/sand/gravel) 0 0.0 Hand Augered to 5' bgs -Native soil Sandy SILT: sand is medium to coarse grained, dark brown.black, 3.5 moist (0/60/40/0) 1.0 Same as above, except brown 0.1 1.9 5 1.8 Same as above 3.3 ML 3.5 Hydrated Bentonite Clayey SILT with sand: snad is fine grained, reddish brown moist Chips (35/50/15/0)10-2.9 4.1 Poorly graded SAND: fine to medium grained, olive brown, moist (0/0/100/0)SP 0.0 15-SILT with sand: olive brown, moist, sand is fine grained (0/90/10/0) ML5.2 Sleeve stuck in shoe- only 0.5 retreived from 16-16.5" 20

11-21-2016 R:\ExxonMobil\ExxonMobil\ FxxonMobil\ Fxxon

25-

BORING LOG B31

(Page 1 of 1)

Date Drilled : 10-20-2016

Drilling Co. : JDK Drilling Inc.

Drilling Method : Driect Push

Sampling Method : Continuous Core

Drilling Method : Driect Push
Sampling Method : Continuous Core
Borehole Diameter : 2.5"
Casing Diameter : N/A

Project Site Logged Review Signatu	l By red By		Andy		-	7 Norwalk Blvd, Santa Fe Springs	: N/A : 33.937217° : -118.074137° : 17' bgs : N/A		
Depth (ft)	Blow Count / 6"	OVM/PID (ppmv)	Sample	Column	nscs	\$ample Condition No Recovery Sampled Interval Described Sample Preserved Sample DESCRIPTION (%classical description)	<u></u> Groundwar	ter After Completion ter During Drilling gravel)	Boring: B31
0-		0.3				3" asphalt at surface, Hand augered to	o 8'		Concrete
-		1.9			sw	(FILL) well graded SAND with gravel: coarse grained, gravel is angular, mois	dark brown, sar	nd is fine to	
-		0.8 5.1 68.5				Sandy SILT with gravel: dark brown, rigrained, non-plastic (0/60/30/10) Same as above except reddish brown		ne to medium	
5-		10.0 0.0 0.0 7.0			ML	same as above, very expansive (pound	ding 2' filler a 4	.' liner)	
10-		1.5 0.0 2.3							Hydrated Bentonite Chips
_		0.0			SP	Poorly granded SAND: tan/light brown (0/0/100/0)	, very fine to fir	ne grained, moist	
-		2.4				SILT: light brown, moist, non-plastic (0	0/100/0/0)		- -
15-		1.0			ML	same as above, except tan			
20-									

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B32.bor

25

BORING LOG B32

(Page 1 of 1)

Date Drilled : 10-19-2016

Drilling Co. : JDK Drilling Inc.

Drilling Method : Direct Push

Drilling Method : Direct Push
Sampling Method : Continuous Core
Borehole Diameter : 2.5"
Casing Diameter : N/A

Project No. : 081155 Latitude : 33.937164° : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude : -118.074138° Logged By : Andy Nelson Total Boring Depth : 20' bgs Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Sample Condition Water Levels No Recovery ▼ Groundwater After Completion Sampled Interval Blow Count / 6" □ Groundwater During Drilling Boring: B32 **Described Sample** OVM/PID (ppmv) Depth (ft) Preserved Sample Column Sample **USCS** DESCRIPTION (%clay/silt/sand/gravel) 0 0.2 3" asphalt at surface, hand augered to 5" bgs Concrete SM (FILL) will graded SAND with gravel: dark brown, moist (0/0/60/40) 0.1 Sandy SILT: trace gravel, brown, dry, non-plastic (0/60/30/10) 0.4 2.2 Same as above 5 3.4 Same as above, except no gravel (0/60/40/0) 7.3 ML Same as above, except reddish brown 290.2 Same as above, except dark reddish brown 10 1279 Hydrated Bentonite Chips Poorly graded SAND: very fine to fine grained, light reddish brown, moist (0/0/100/0) 349 SP 28.7 SILT: light brown, moist (0/100/0/0) 15 94.2 SILT with sand and gravel: sand is very fine to coarse grained, gravel is rounded, tan/brown, moist (0/60/20/20) SILT: tan/brown, moist, non-plastic (0/100/0/0) 84.8 5.2 20

25

BORING LOG B33

(Page 1 of 1)

Date Drilled : 10-21-2016 Drilling Co. : JDK Drilling Inc. **Drilling Method** : Driect Push

Sampling Method : Continuous Core **Borehole Diameter** : 2.5" Casing Diameter : N/A

Project No. : 081155 : 33.937150° Latitude : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs : -118.074610° Longitude Logged By : Andy Nelson Total Boring Depth : 10.5' bgs Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Sample Condition Water Levels ▼ Groundwater After Completion No Recovery Sampled Interval Blow Count / 6" Boring: B33 **Described Sample** OVM/PID (ppmv) Depth (ft) Preserved Sample Sample USCS DESCRIPTION (%clay/silt/sand/gravel) Hand augered to 8' bgs. -Native Soil Sandy SILT: dark brown, wet low-plasticity, some roots and plant 8.5 matrial, sand is fine grained (0/60/40/0) 0.0 Same as above, except reddish brown, moist, no roots and plant 1.5 matrial (0/60/40/0) 2.1 5 0.0 MLHydrated Bentonite 0.4 Same as above Chips 1.2 0.0 Same as above 0.0 10 11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B33.bor 15-20

Reviewed By

BORING LOG B34

(Page 1 of 1)

Date Drilled : 10-20-2016 Drilling Co. : JDK Drilling Inc. **Drilling Method** : Direct Push Sampling Method : Continuous Core

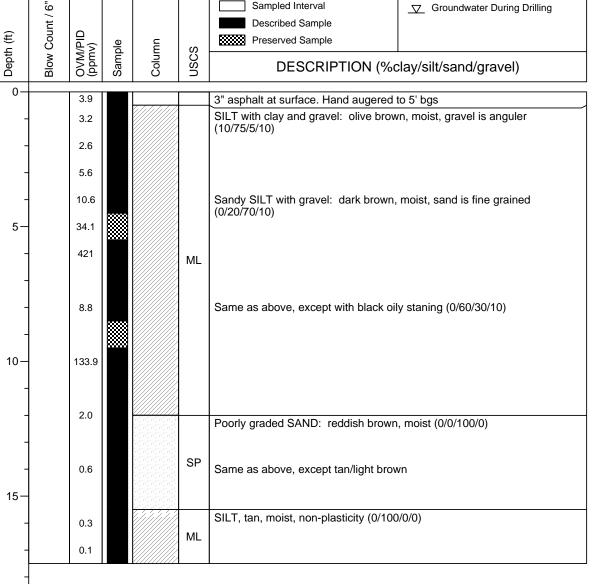
Borehole Diameter : 2.5" Casing Diameter : N/A Latitude : 33.937166° Longitude : -118.074232° Total Boring Depth : 17.5' bgs

: N/A

Boring: B34

Concrete

Hydrated Bentonite Chips


First GW Depth

Project No. : 081155 : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Logged By : Andy Nelson

: Andy Nelson, P.G. 8360

Signature Sample Condition Water Levels ▼ Groundwater After Completion No Recovery Sampled Interval □ Groundwater During Drilling

Described Sample

11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B34.bor

20

25

BORING LOG B35

(Page 1 of 1)

Date Drilled : 10-20-2016 Drilling Co. : Cardno **Drilling Method** : Hand Auger Sampling Method : Slide Hammer

Borehole Diameter : 4" Casing Diameter : N/A

: 33.937212°

Boring: B35

: -118.073906° Total Boring Depth : 3' bgs First GW Depth : N/A

Project No. : 081155 Latitude : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude Logged By : Andy Nelson Reviewed By : Andy Nelson, P.G. 8360 Signature Sample Condition Water Levels

▼ Groundwater After Completion No Recovery Sampled Interval Blow Count / 6" □ Groundwater During Drilling **Described Sample** OVM/PID (ppmv) Preserved Sample Column **USCS**

DESCRIPTION (%clay/silt/sand/gravel)

MLsandy SILT: with gravel brown, moist sand is fine to medium grained, gravel is angular

3" asphalt at aurface, hand augered to 3" bgs

Concrete Hydrated Bentonite Chips

10-11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B35.bor 15-20-

25

Depth (ft)

5

25

BORING LOG B36

(Page 1 of 1)

Date Drilled : 10-21-2016 Drilling Co. : JDK **Drilling Method** : Direct push Sampling Method

: Continuous Core Borehole Diameter : 2.5" Casing Diameter : N/A : 33.937164°

Project No. : 081155 Latitude : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude : -118.074093° Logged By : Andy Nelson Total Boring Depth : 20' bgs Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Sample Condition Water Levels No Recovery ▼ Groundwater After Completion Sampled Interval Blow Count / 6" □ Groundwater During Drilling Boring: B36 Described Sample OVM/PID (ppmv) Depth (ft) Preserved Sample Sample Column **USCS** DESCRIPTION (%clay/silt/sand/gravel) 0 6.2 3" asphalt at surface, hand augered to 5' bgs Concrete SW Well graded SAND: with gravel, dark brown, moist, fine to coarse 9.3 grained (0/0/60/40) 18.5 Sandy SILT with gravel: dark brown, sand is fine to medium grained, non-plasticity (0/55/25/20) Sandy SILT: trace gravel, reddish brown, moist, sand is fine to 22.3 medium grained, non-plastic (0/60/30/10) 254 546 Same as above 5 ML 7.5 Same as above 10-320 Hydrated Bentonite Poorly graded SAND: tan/brown, very fine to fine grained mosit 11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B36.bor Chips (0/0/100/0)2.0 SP 0.9 SILT< tan, moist, non-plastic (0/100/0/) 15 88.7 MLsame as above, except with trace angular gravel (0/80/5/15) 0.6 23.2 20

Project No.

25

BORING LOG B37

(Page 1 of 1)

Date Drilled : 10-21-2016 Drilling Co. : JDK **Drilling Method** : Direct push Sampling Method

: Continuous Core Borehole Diameter : 2.5" Casing Diameter : N/A

Latitude : 33.937218° : Jalk Fee Property 10607 Norwalk Blvd, Santa Fe Springs Longitude : -118.074233° Logged By : Andy Nelson Total Boring Depth : 20' bgs Reviewed By : Andy Nelson, P.G. 8360 First GW Depth : N/A Signature Sample Condition Water Levels No Recovery ▼ Groundwater After Completion Sampled Interval Blow Count / 6" □ Groundwater During Drilling Boring: B37 **Described Sample** OVM/PID (ppmv) Depth (ft) Preserved Sample Sample Column **USCS** DESCRIPTION (%clay/silt/sand/gravel) 0 22.4 3" asphalt at surface, hand augered to 5' bgs Concrete (FILL) Well graded SAND with gravel: dark brown, sand is fine to 28.2 medium grained (0/5/70/25) 20.5 Sandy SILT with gravel: sand is fine to medium grained, moist non-plastic (0/60/25/15) 51.2 Sandy SILT: dark reddish brown, moist, low-plasticity, sand is fine grained (5/60/35/0) 10.8 16.9 5 Same as above ML Same as above 2.0 10-0.4 Hydrated Bentonite 11-21-2016 R:\ExxonMobil\ExxonMobil Projects\081155 (Jalk Fee) Santa Fe Springs\Borelogs\B37.bor Chips Poorly graded SAND: very fine to fine grained, tan/brown, moist 0.0 (0/0/100/0)SP 3.5 15 SILT: trace fine sand, tan/brown, moist, non-plastic (0/80/10/10) 0.0 ML Same as above, except with trace gravel (0/80/10/10) 0.2 0.3 20

ATTACHMENT C

MANIFESTS

,	Date of Shipment:	Responsible for	Payment:	Tra	nsport Truck #	1	Facility #:	Approval Num		Load #
	1 1						A07	4686	4	DODI
						Generator's Phone #: 805-644-4157				
- 8	EXXONMOBIL OIL CORPORATION					to Contact:	y4			
	C/O CARDNO 4572 TELEPHONE RO	OAD #916				4.2	2.1	12 11	-	
	VENTURA, CA 93003		1.0		FAX#:			Customer Acco	ount Number	
	Consultant's Name and Billing Address:					Iltant's Phone	e #: *			
					Person	n to Contact:			7	
	-3- 4				1			1		
		FAX#:		1	Customer Acco	ount Number				
1.0	Generation Site (Transport fro	Site Pl	none #:							
	JALK FEE					n to Contact:		1	-100	
ant	10607 NORWALK E	The state of the s	(6) 7/05/9	4 1	Tagrett f		1 2 2			
Consultant	SANTA FE SPRING	IS, CA BUDIU	97	1	FAX#:					
	Designated Facility (Transpor		y Phone #:	450	-					
and/oi	SOIL SAFE					00) 862-8	7. 7.5.1		- 10	
- 4	12328 HIBISCUS	110	Person to Contact: JOE PROVANSAL							
enerator	ADELANTO, CA 92301					X#:		1		1 2 1
ener				2 10		(760) 246-8004				
- Ge	Transporter Name and Mailing Address:					porter's Phor 9-460-52		CAR000183913		
	BELSHIRE 25971 TOWNE CENTRE DRIVE FOOTHILL RANCH, CA 92610 BESI: 276236					n to Contact:	1100			1
Ď					E		OTHART		450647	
					FAX#	9-460-52	10	Customer Acco	ount Number	
	Description of Soil	Moisture Content	Contaminate	ed by:	Approx. Qty:		otion of Delivery	Gross Weight	Tare Weigh	Net Weigh
	Sand Organic Other O	0-10% □ 10-20% □	Gas Diesel	0	001 DM	(No.	38100	23/18	224
	A STATE OF THE STA	20% - over	Other	0	001	>	oil	20100	2/400	100
	Sand □ Organic □ Clay □ Other □	10 - 20%	Diesel Other	0						.36
	List any exception to items list			-44		S	cale Ticket #	131	1/17	
de la	Scale Ticket # 13 () Generator's and/or consultant's certification: I/We certify that the soil referenced herein is taken entirely from those soils descried in the Soil Data									
Ŋ	Sheet completed and certified by me/us for the Generation Site shown above and nothing has been added or done to such soil that would alter it									
	in any way. Print or Type Name: Gene	erator 🗆 Consu	ltant 🗆	3 40	Signature a	and date:	17		Month	Day Year
i		of BESI on beh	The second second	ator	J. J		en		13	22 16
9.	Transporter's certification				referenced ab	ove and cei	rtify that such so	il is being delive		
Transporte	condition as when receive							eration Site to	the Designa	ted Facilit
sus	without off-loading, adding Print or Type Name:	ig to, subtracting fr	om or in any	way a	Signature		site.	Section 1	Month	Day Year
E	Tlan	mai Rin	6		D.B.I.a.		7	77	12	22 16
-	Discrepancies:			7.	75.5					
ا			4 19		35.7		٨	7 71		
ility	No.			ij.		- ()1- V			1. X	
Facility										4.00
	Recycling Facility certifie	Recycling Facility certifies the receipt of the soil covered by this manifest						Y Topic of the second		1.30
	Recycling Facility certifier Print or Type Name:	s the receipt of the s								
Recycling Facility	Print or Type Name:	PROVANSAL				- >	A	- 1	-11-	17
Recycling	Print or Type Name:					/	A	1	-11:	17

NON-HAZARDOUS WASTE DATA FORM

		BESI# 277014	
	Generator's Name and Mailing Address	Generator's Site Address (if different than mailing address)	
	EXXONMOBIL OIL CORPORATION C/O CARDNO 4572 TELEPHONE ROAD #916 VENTURA, CA 93003	Talk Fee 10607 Norwalk Blud, Sarta Fe gprays 11 A	
	Generator's Phone: 805-644-4157		
	Container type removed from site:	Container type transported to receiving facility:	
	☐ Drums ☐ Vacuum Truck ☐ Roll-off Truck ☐ Dump Truck	☐ Drums Vacuum Truck ☐ Roll-off Truck	☐ Dump Truck
	Mother Tank mcR	Olher	
POR	Quantity 30 gills	Quantity Volume	
GENERATOR	WASTE DESCRIPTION NON-HAZARDOUS WATER	GENERATING PROCESS PURGED GROUN	IDWATER
E I	COMPONENTS OF WASTE PPM %	COMPONENTS OF WASTE	PPM %
G	,WATER 99-100%	3	
	2. TPH <1%	4	
	Waste Profile 12820 PROPERTIES: pH _7	7-10 SOLID XX LIQUID SLUDGE SLURRY	OTHER
	Generator Printed/Typed Name on behalf Signature ALEX Chair 2 UF XVM	D14	0 469 Month Day Year
	The Generator certilies that the waste as described is 100% non-hazardous		
8	Iransporter 1 Company Name CARDNO	(805) 69	14-4157
RTER	Transporter 1 Printed/Typed Name Signature		Month Day Year
	Transporter Acknowledgment of Receipt of Materials		11/30/16
SP	Transporter 2 Company Name	Phone∉	
TRANSPO	NIETO & SONS TRUCKING, INC.	714-990-6855	
片	Transporter 2 Printed/Typed Name Signature	2 91	Month Day Year
	Transporter Acknowledgment of Receipt of Materials	010	1 10 17
7	Designated Facility Name and Site Address CROSBY & OVERTON	Phone# 582-432-5445	
	1630 W. 17TH STREET	302-432-3443	
AC	LONG BEACH, CA 90813		
(5)	The second second		2 a 1 h
N			
EIS	Printed/Typed Nerral Signature	, A	Month Cay, Year
RECEIVING FACILITY	Designated Facility Owner or Operator: Certification of global of materials covered by this data form.	9	1/1/01/7

10607NOR 1529479

APPENDIX I

NEWFIELDS' FORENSIC SIGNATURE OF HYDROCARBONS
IN SOIL AT THE FORMER JALK FEE FACILITY, DATED
FEBRUARY 7, 2017

Forensic Signature of Hydrocarbons in Soil at the Former Jalk Fee Facility

February 7, 2017

Prepared for: ExxonMobil Oil Corporation

Prepared by:

Mark J. Benotti, Ph.D. and Scott A. Stout, Ph.D.

300 Ledgewood Place, Suite 305 Rockland, MA 02370

Contents

List of Tables	ii
List of Figures	ii
List of Appendices	ii
Executive Summary	iii
Introduction	1
Site History	1
Previous Forensic Investigation of Soil Hydrocarbons	1
2016 Samples	2
Soil Samples	2
Neat Oil Samples	2
Sample Analysis	3
TPH (EPA Method 8015)	3
PAHs (EPA Method 8270)	4
Petroleum Biomarkers (EPA Method 8270)	4
PIANO VOCs (EPA Method 8260)	4
Standard VOCs (EPA Method 8260)	4
Analysis of Inorganic Contaminants	5
Data Packages	5
Results - Concentrations of PCE and Hydrocarbons	5
Chlorinated VOCs	5
Hydrocarbons	6
Chlorine Isotopic Signature of PCE	9
Results - Character of Petroleum in the Soils Studied	10
TPH Fingerprints in 2016 Soil Samples	10
Crude Oil vs. 2016 Soils	11
Diesel Fuel vs. 2016 Soils	13
Quench Oils vs. Soil Sample	14
PAH Character and Content in Soil Samples	16
Petroleum Biomarkers in Soil Samples	18
Other Data	20
Conclusions	21
Attachment 1 – Raw Data for Soil Samples Analyzed in 2012	1
Attachment B – Raw Data for Soil Samples Analyzed in 2016	1
Attachment C – Raw Data for Oil Samples Analyzed in 2016	

List of Tables

Table 1: Inventory and character of site soils previously studied (2012)

Table 2: Oils analyzed to demonstrate the types of hydrocarbon signatures that may be attributable to heat treating or metalworking operations

Table 3: PCE, TCE, C12DCE, T12DCE, 11DCE and VC concentrations

Table 4: Hydrocarbon concentrations and selected metrics for the Site soil samples

Table 5: Chlorine isotope data for PCE measured in soil samples

Table 6: Average and standard deviation of R_{CI}^{PCE} for single PCE sources compared to soil data

List of Figures

Figure 1: Sample locations showing PCE and TPH concentrations of 2016 soil samples

Figure 2: TPH fingerprints of the eight soil samples collected in 2016

Figure 3: TPH fingerprints of the three crude oil-impacted soil samples collected in 2012 (top) compared to the DRO- and RRO-dominant (non-crude oil) petroleums in soils samples collected in 2016

Figure 4: TPH fingerprints of a weathered diesel fuel (unrelated to the Jalk Fee property study) compared to the DRO-dominant petroleum in the S-9-B32 soil sample collected in 2016

Figure 5: TPH fingerprints of fresh and used quench oil compared to the DRO-dominant petroleum in the S-9-B32 soil sample collected in 2016

Figure 6: Comparison of the TPH-normalized concentrations of total PAHs (TPAH) in representative soils from the Site containing severely weathered crude oil (S-15-B10), non-crude petroleum enriched in DRO- and RRO- components, and used quench oil

Figure 7: Cross-plots of petroleum biomarker diagnostic ratios showing the consistent character of the local (Santa Fe Springs) crude oil in the 2012 soils and heterogeneity among the diverse non-crude oil petroleums in the 2016 soils

List of Appendices

Attachment A – Raw Data for Soil Samples Analyzed in 2012

Attachment B - Raw Data for Soil Samples Analyzed in 2016

Attachment C – Raw Data for Oil Samples Analyzed in 2016

Executive Summary

An investigation of the forensic signature of contamination, specifically perchloroethylene (PCE) and hydrocarbons, in soil at the former Jalk Fee facility (the Site) was conducted to determine the nature and likely source of these contaminants. Soil samples were collected along the southern boundary of the Site in the area that historically exhibited the highest PCE concentrations in shallow soils. This area is also adjacent to the Continental Heat Treating, Inc. (CHT) property, a facility known to have stored, used and released PCE and oils used in the cleaning and heat treatment of metal parts for more than 25 years. Soil samples were analyzed for volatile organic compounds (including PCE and its degradation products), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), petroleum biomarkers, and other organic and inorganic analytes. Resultant data were compared to 1) a forensic study of soil samples collected at the Site in 2012 that showed the presence of weathered crude oil in the subsurface, and 2) the forensic analysis of fifteen oils used in the heat treating and metalworking process.

The ten (10) soil samples collected and analyzed in 2016 exhibited PCE concentrations from 0.0030 – 1,100 mg/kg, and the PCE was largely undegraded. The chlorine isotopic signature of PCE varied much more than would be expected had the PCE stemmed from a single release. Rather, because PCE stable isotope ratios will vary over time between manufacturer's production batches, the relatively large variability among the chlorine isotopic signature of PCE in soils is consistent with multiple releases or chronic release of PCE over time. Isotopically-variable PCE would be expected from recurrent or ongoing releases by the CHT degreasing operations, which used PCE from different chemical origins over a period of more than 25 years.

The soil samples collected and analyzed in 2016 exhibited TPH concentrations between non-detect (< 2.6 mg/kg) and 1,760 mg/kg. The GC/FID chromatograms for the eight soil samples containing measurable TPH showed hydrocarbon signatures that were composed of diesel-range organics (DRO; C_{10} - C_{28} range) and/or residual range organics (RRO; C_{28} + range). These hydrocarbon signatures were clearly distinct from those measured in the 2012 crude oil-impacted soil samples, and there is no mechanism(s) by which crude oil might produce the hydrocarbon signatures observed in the 2016 soil samples along the property boundary. In other words, weathering of the 2012 crude oil-impacted hydrocarbon signatures could not possibly produce the 2016 hydrocarbon signatures. Similarly, the hydrocarbon signature of diesel fuel, which was likely used during historic oil field Site operation, is clearly distinguished from the hydrocarbon signatures of the 2016 soil samples, leaving an offsite, noncrude oil and non-diesel fuel, release as the most reasonable source of hydrocarbons present in the shallow soils along the CHT property boundary.

In order to further assess this possibility, the hydrocarbon signatures of the 2016 soil samples were compared to those of oils typically used in heat treating and metalworking to determine the extent to which these oils might explain the hydrocarbon signatures observed in soils along the property boundary. Results indicate that the soil samples with the largest DRO component exhibited characteristics comparable to used quench oil. First, the soil samples and used quench oil both exhibited a similarly-shaped unresolved complex mixture (UCM) with a maximum at C₂₂. Second, they both contained aliphatic hydrocarbons consistent with a paraffinic quench oil; the used quench oil contained both n-alkanes and isoprenoids, whereas the soil sample only contained isoprenoids, a phenomenon attributed to loss of n-alkanes due to biodegradation in the soil. Third, the broader UCM

in the soil samples was consistent with the broadening of the UCM evident upon comparing fresh and used quench oil, which is attributed to the formation of sludge and the deterioration of the quench oil during its normal usage in heat treatment operations. Fourth, as explained further below, the soil samples had a low aromatic (PAH) content consistent with the dearomatized nature of quench oils.

The PAH and petroleum biomarker data were also studied to further assess the similarity (or dissimilarity) between the hydrocarbons in the soil samples collected along the property boundary in 2016 and the 2012 crude-oil impacted samples or the oils used in heat treating/metalworking. The 2016 soil samples exhibited relatively low PAH content (normalized to TPH) compared to the 2012 crude-oil impacted soil samples. Conversely, the PAH content of the 2016 soil samples (particularly that of the most DRO-dominated soil sample bearing the TPH signature that was most similar to that of the used quench oil as discussed in the previous paragraph) was similar to that of the used quench oil. A relatively low PAH content is consistent with the dearomatized nature of quench oils – and inconsistent with crude oil. Additionally, the petroleum biomarkers in the 2012 crude oil-impacted soil samples show similar diagnostic source ratios—an indication that the crude oil in these samples arose from a similar source (i.e., local Monterey Formation crude oil from the Santa Fe Springs oil field). Conversely, the 2016 soil samples exhibit a range of petroleum biomarker diagnostic ratios that were distinct from the local crude oil, indicating they were derived from a variety of different sources of petroleum, such as might be anticipated for quench (or other mineral) oils used and discharged over time.

In summary, the PCE present in soils along the southern boundary of the Jalk Fee property is attributable to multiple or chronic release of isotopically-variable PCE over time, such as wastes from CHT's degreasing operations over a period of more than 25 years. The PCE occurs in soils coincident with petroleum, of which multiple lines of chemical fingerprinting evidence (i.e. the TPH, PAHs and petroleum biomarker data) clearly demonstrates the hydrocarbons are; 1) consistent with mixtures of used quench oils and other waste (mineral) oils, such as were known to be used and generated by CHT, and 2) distinct from local Santa Fe Springs Field crude oil or diesel fuel associated with ExxonMobil's historic oil field operations. When coupled with the fact that there is a record of improper disposal of waste oil onto the ground and asphalt on the CHT property, the only reasonable conclusion to be drawn is that the source of both PCE and hydrocarbon contamination in soil along the southern property boundary at the Site resulted from spills and discharges by, and/or the disposal practices of CHT, which have migrated onto the Jalk Fee property.

Introduction

Site History

The Jalk Fee property is located within a small portion of the prolific Santa Fe Springs oil field. Crude oil production at the Site spanned from approximately the 1920s until 1996. The property was originally operated as a crude oil production facility by ExxonMobil, and later leased and operated by Hathaway Oil Company. Crude oil impacts to soils on the property are reasonably attributable to historic oil production activities and/or are naturally-occurring to the region. However, PCE was not used by ExxonMobil or Hathway Oil Company. In 2001, ExxonMobil sold the property to SFS Norwalk.

Bordering the former Jalk Fee property to the South is the Continental Heat Treating, Inc. (CHT) property. CHT is a metal heat treating facility that, as part of its operations, engaged in degreasing practices and used chlorinated solvents from approximately 1969 to 1995. In addition, the heat treatment of metals utilized multiple petroleum products (e.g., quench oils and associated mineral oils), and CHT thereby also generated petroleum wastes. In fact, it is documented that waste oil from the property was disposed of "onto the ground and asphalt top at rear yard". Any waste that was released along the paved surface near the property boundary would have contaminated the unpaved Jalk Fee property following a rain event. Thus, independent of the chemical evidence presented below, there is a historic and practical basis upon which to conclude it is likely that the PCE and waste oil in the subsurface soil at the Jalk Fee property is attributable to CHT operations and disposal practices.

For a more detailed description of the Site History and/or CHT operations, see "Cardno's Request to Name Continental Heat Treating as Discharger", dated March 25, 2015.

Previous Forensic Investigation of Soil Hydrocarbons

In 2012, four soil samples collected from three borings on the Jalk Fee property were analyzed by hydrocarbon fingerprinting (Table 1). The locations of these samples, as well as the sample depth, perchloroethyene (PCE) concentration and total petroleum hydrocarbons (TPH) concentration are depicted on Figure 1. Tables of raw concentration data for these 2012 soil are provided in Attachment A. The soil depths sampled from the B10 (15 and 80 ft. below ground surface, bgs) and B11 (80 ft. bgs) borings were targeted because screening analysis had indicated elevated TPH, including gasoline-range organics (GRO), diesel-range organics (DRO) and oil-range organics (ORO), existed at these depths/locations. Borings B10 and B11 were located in the southeastern part of the Site (east of the soils collected and analyzed in 2016, which are described below). The B19 boring's sample (25 ft bgs) was collected in an area/depth apparently unimpacted by hydrocarbons. The objective of this limited 2012 forensic investigation was to characterize the nature of the hydrocarbons found in the three soil samples from borings B10 and B11 that had exhibited elevated concentrations of TPH.

¹ May 19, 1989 County of Los Angeles Survey Report (Appendix I of "Request to Name Continental Heat Treating as Discharger", dated March 25, 2015)

Table 1: Inventory and character of site soils previously studied (2012).

Client ID	Date	TPH C ₉ -C ₄₀	TPAH	mgTPAH/	Description of Petroleum Present
Client ib	Collected	(mg/kg)	(mg/kg)	kgTPH	Description of Petroleum Present
S-15-B10	Aug. 13, 2012	2,880	33.2	11,500	Severely weathered local crude oil
S-80-B10	Aug. 14, 2012	145	2.5	17,100	Severely weathered local crude oil
S-80-B11	Aug. 21, 2012	271	2.7	9,900	Severely weathered local crude oil
S-25-B19	Sept. 29, 2012	0.6	na	na	"clean" background

The 2012 soil samples were analyzed for TPH, an extended list of parent and alkylated polycyclic aromatic hydrocarbons (PAHs), and petroleum biomarkers (as described in detail below). From the resultant data, it was determined that three of the soil samples (i.e., the sample collected from B11 and the two samples collected from B10) contained severely weathered crude oil. The fourth sample (i.e., the sample collected from B19) contained a very low concentration of TPH, typical of soil unimpacted by hydrocarbons. Detailed analysis of the oils' petroleum biomarkers, discussed in more detail later in this report, showed the crude oil present in the B10 and B11 soils was typical of Monterey Formation (Miocene) crude oil, as expected for oil production within the Santa Fe Springs oil field. These 2012 chemical fingerprinting results are relevant to the current analysis because these crude oil-impacted soils analyzed in 2012 exhibit clear differences from the "non-crude" hydrocarbon signatures found in soils collected and analyzed in 2016. The differences are described later in this report.

2016 Samples

Soil Samples

Between October 18 and 21, 2016, soil samples were collected by ExxonMobil's contractor Cardno from the former Jalk Fee property in the area that historically contained the highest PCE concentrations (i.e., proximal to the southern boundary of the property, adjacent to the CHT facility). The locations of these borings, labeled B24-B37, are shown on Figure 1. For the metals analysis (see discussion of analyses, below), a sample from B33, which was outside the area that historically contained the highest PCE concentrations to determine background concentrations of metals. Details of the method used to screen for samples as well as the technique for soil sample collection and handling are provided elsewhere².

Neat Oil Samples

Subsequent to the collection and analysis of the soils collected in 2016 from the Site, fifteen (15) neat oils that are used in metal heat treating and/or metalworking were also analyzed for TPH, PAHs and petroleum biomarkers and results were compared to data collected from the 2012 and 2016 soil samples (Table 2). All but two of these neat oils were commercially available and purchased for this study. These purchased oils included various types of mineral oils, spindle oils, way oils, and cutting oils. The results of the forensic analyses on these oils were considered but not relied upon in this report due to uncertainty regarding which specific types of oils were used in CHT's operations. The remaining two oil samples, however, represented a "fresh" and a "used" quench oil collected from an operating metal

² "Report of Soil Borings in Support of Forensic Evaluation" dated February 3, 2017 (Appendix H of "Additional Evidence for Request to Name Continental Heat Treating as Discharger" dated February 6, 2017

heat treating facility (unrelated to CHT). These fresh and used quench oils were of obvious relevance since CHT used large quantities of quench oils in its operations. CHT's use, storage and disposal practices are documented in multiple CHT regulatory submittals (e.g., CHT's 1982 Applications to SCAQMD; CHT's 1969 Degreaser Application to LAC APCD; CHT's 1982 Electrostatic Precipitator Application to SCAQMD; CHT's LAC Fire Department Hazardous Material Contingency Plan). In the absence of actual samples of quench oils from the CHT facility, the fresh and used quench oil samples considered in this study are considered generally representative of those used/produced at the CHT facility, and therefore particularly relevant to this study.

Table 2: Oils analyzed to demonstrate the types of hydrocarbon signatures that may be attributable to heat treating or metalworking operations.

Oil	Description	Flash point (°F)
Brownells Tough Quench [™]	Paraffinic Quench Oil	355
100 Quenching Oil – Black Bear	Naphthenic Quench Oil	370
Advantage Quench 1021	Paraffinic Quench Oil	365
Used Advantage Quench 1021	Used Paraffinic Quench Oil	(365)
Tap Magic Cutting Fluid	Cutting Oil	300
MobilMet® 426 Cutting Oil	Cutting Oil	381
Mobil™ Velocite™ No. 3	High-speed spindle/machine tool lubricant	183
Mobil™ Velocite™ No. 6	High-speed spindle/machine tool lubricant	356
Mobil™ Velocite™ No. 10	High-speed spindle/machine tool lubricant	414
Mobil™ Vactra™ No. 2	Slideaway lubricant	228
Mobil™ Vactra™ No. 4	Slideaway lubricant	240
Crystal Plus Tech Grade Min. Oil 70T	Technical Grade White Mineral Oil	365
Crystal Plus Tech Grade Min. Oil 200T	Technical Grade White Mineral Oil	436
Crystal Plus Tech Grade Min. Oil 350T	Technical Grade White Mineral Oil	471
Crystal Plus Tech Grade Min. Oil 500T	Technical Grade White Mineral Oil	520

Sample Analysis

The soils and neat oils were each prepared and analyzed using multiple chemical fingerprinting analytical methods specifically designed for the forensic characterization of petroleum. These methods have been described in detail elsewhere³ and are summarized in the following sections.

TPH (EPA Method 8015)

Soil and neat oil samples were analyzed by a modified EPA Method 8015 for TPH and to determine the gas chromatography fingerprint. This analysis allows for the quantitative determination of TPH concentration, as well as a qualitative understanding of the relevant characteristics (e.g., boiling range, degree of weathering, oil type) of the hydrocarbons in the sample. TPH concentrations in soils and oil are reported as mg/kg_{dry} and mg/kg_{oil}, respectively, and represent all hydrocarbons measured between

³ Douglas, G.D., Emsbo-Mattingly, S.D., Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2015) Chemical fingerprinting of hydrocarbons and polychlorinated biphenyls. In: *Introduction to Environmental Forensics, 3rd Ed.*, B. Murphy and R. Morrison, Eds., Academic Press, New York, pp. 201-345.

 C_9 and C_{40} . For the soils (only), the TPH present within the diesel range organics (DRO; C_{10} - C_{28}) was determined, thereby allowing the percentage of TPH as DRO to be calculated.

PAHs (EPA Method 8270)

Soil and neat oil samples were analyzed by a modified EPA Method 8270 to determine concentrations of 71 semi-volatile compounds or compound groups, including decalins, Priority Pollutant PAHs, alkylated PAH groups and individual isomers, and sulfur-containing aromatics (S-PAH). The concentrations of target analytes in soils and oils were reported in $\mu g/kg_{dry}$ and mg/kg_{oil} , respectively. The total PAHs (TPAH) is defined as the sum of all 50 PAH and S-PAH analytes ranging from naphthalene to benzo(qhi)perylene.

In addition to providing a basis to compare PAH distributions (fingerprints) among samples, the concentration of TPAH normalized to the concentration of TPH provides a measure of the aromaticity of different petroleums – and also allows comparison between soils and neat oils (despite matrix differences). In this study, the total mg of TPAH per kg of TPH has been used in this manner.

Petroleum Biomarkers (EPA Method 8270)

Soil and neat oil samples were analyzed by a modified EPA Method 8270 to determine concentrations of 54 petroleum biomarkers, including tri- and pentacyclic triterpanes, regular and rearranged steranes, and triaromatic steroids. Petroleum biomarkers are molecular fossils of the biomolecules in the original organic matter that gave rise to the fossil fuel and are extremely resistant to weathering. As such, they provide a high degree of specificity, and thereby can be used to unequivocally link hydrocarbon contamination to a particular source, or conversely, demonstrate that hydrocarbon contamination did not stem from a particular source. The concentrations of target analytes in soils and oils were reported in $\mu g/kg_{dry}$ and mg/kg_{oil} , respectively.

PIANO VOCs (EPA Method 8260)

Soil samples were analyzed using a modified EPA Method 8260 for quantification of 88 volatile hydrocarbons contained in the five compound classes, paraffins, isoparaffins, aromatics, naphthenes, and olefins (PIANO). In addition, various oxygenated compounds commonly found in oxygenated and reformulated gasolines were targeted, viz., tert-butyl alcohol (TBA), methyl-tert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl-tert-butyl ether (ETBE), and tert-amyl-methyl ether (TAME). Lead scavengers historically used (1,2-dichloroethane and 1,2-dibromoethane) and various volatile sulfur species were also targeted. These results provide a basis to characterize and distinguish different types of gasoline and other light petroleum products if present from these samples. The concentrations of target compounds in the soils are reported in mg/kg_{dry}.

Standard VOCs (EPA Method 8260)

Soil samples were analyzed using conventional EPA Method 8260 to determine concentrations of PCE; its degradation products trichloroethylene (TCE), *cis*-1,2-dichloroethylene (C12DCE), *trans*-1,2-dichloroethylene (T12DCE), 1,1-dichlorethylene (11DCE), and vinyl chloride (VC); as well as other volatile organic compounds.

⁴ Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide. Prentice Hall, London, UK.

Stable Isotope Analysis of Chlorine in PCE

The isotopic signature of the chlorine atoms associated with PCE in site samples was measured to determine whether the PCE in the study area resulted from a single release or multiple chronic releases over an extended period. Because isotopic ratios vary between PCE production batches received from the manufacturer, a small range of isotopic ratios is consistent with a single large release or releases over a relatively short period of time, while a larger range of isotopic PCE ratios is consistent with longer-term, chronic releases of PCE.

The chlorine isotopic ratio (R_{Cl}^{PCE}) of PCE in each sample was calculated using data collected using EPA Method 8260. R_{Cl}^{PCE} was calculated from the area of the PCE m/z 166 peak ($A_1^{m/z166}$; isotopologue $^{12}C_2^{35}Cl_3^{37}Cl$) and the PCE m/z 164 peak ($A_2^{m/z164}$; isotopologue $^{12}C_2^{35}Cl_3^{37}Cl$) 5 :

$$R_{Cl}^{PCE} = \frac{1}{4} \times \frac{A_1^{m/z_{166}}}{A_2^{m/z_{164}}} \tag{1}$$

These data were used to calculate the variability of PCE isotopic signatures at locations sampled for this study, thereby allowing the project team to determine whether PCE contamination originated from a single source of PCE release or a longer-term or chronic release with multiple sources of PCE related to the degreasing operations at CHT.

Analysis of Inorganic Contaminants

Other analytes, including metals and cyanide, were measured to investigate the presence of other contaminants in soil samples that, if present, can be used to forensically determine the source of contamination. The concentrations of twenty-eight (28) metals in soil samples were measured using EPA Method 6020A. The concentration of mercury in soil samples was measured using SW-846 Test Method 7474. The concentration of cyanide was measured using Standard Method 4500-CN.

Data Packages

Tables of raw data for all soil samples and neat oil samples analyzed in 2016 are provided in Attachments B and C, respectively.

Results - Concentrations of PCE and Hydrocarbons

Figure 1 shows the locations of the 2012 and 2016 soil samples, as well as the PCE and TPH concentrations detected at each location/depth. General features of these results are discussed in the following sections.

Chlorinated VOCs

Concentrations of PCE in soil samples ranged from 0.003 mg/kg to 1,100 mg/kg (Table 3). In each of these soil samples, PCE was the dominant species of chlorinated VOCs, compared to its degradation products (TCE, C12DCE, T12DCE, 11DCE, and VC). The percent of PCE (%PCE), defined as PCE divided by PCE plus all its degradation products, ranged from 88-100%. Therefore, PCE in these soil samples was largely undegraded. This result is not unusual given that highly chlorinated compounds, such as PCE,

⁵Aeppli, C., Holmstrand, H., Andersson, P., and O. Gustafsson. 2010. Direct Compound-Specific Stable Chlorine Isotope Analysis of Organic Compounds with Quadrupole GC/MS Using Standard Isotope Bracketing. *Analytical Chemistry*. 82: 420-426.

can be persistent. Degradations rates will be site-specific and will depend on aerobic vs. anaerobic conditions, availability of co-metabolic substrates and numerous other factors.

Table 3: PCE, TCE, C12DCE, T12DCE, 11DCE and VC concentrations (nd = not detected)

Client ID	PCE	TCE	C12DCE	T12DCE	11DCE	VC	%PCE
S-16-B26	4.9	0.033	0.10	0.61	nd	nd	97%
S-14-B27	62	nd	nd	nd	nd	nd	100%
S-16-B30	1.1	0.0053	0.00017	nd	nd	nd	99%
S-6-B28	0.0030	0.00040	nd	nd	nd	nd	88%
S-9-B32	1,100	0.44	nd	nd	nd	nd	100%
S-8-B24	0.038	0.00087	0.40	nd	nd	nd	97%
S-5-B34	61	2.5	2.5	nd	nd	nd	92%
S-9-B34	59	2.0	1.3	nd	nd	nd	95%
S-3-B35	35	0.077	nd	nd	nd	nd	100%
S-5-B36	180	0.56	0.20	nd	nd	nd	100%

Hydrocarbons

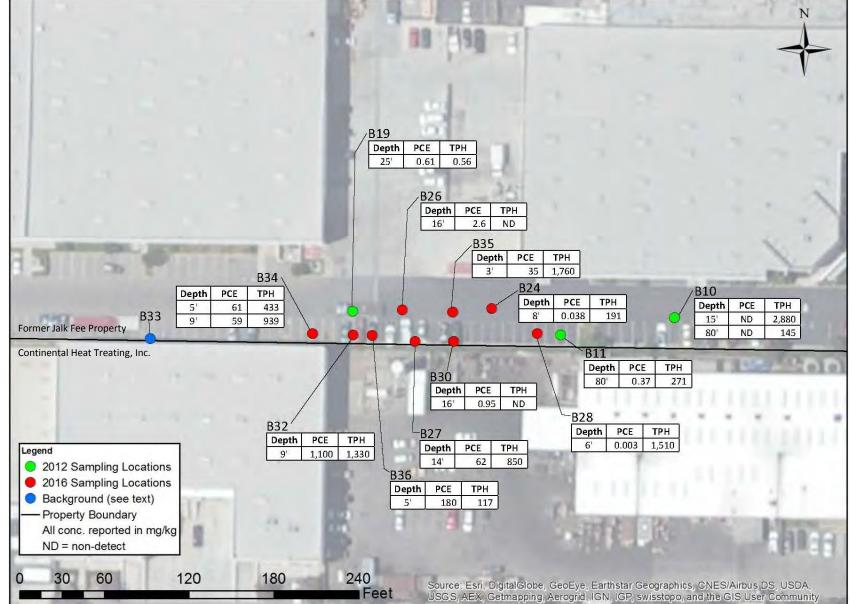

The concentrations of TPH measured during the 2016 sampling event ranged from non-detected (nd: < $2.6 \text{ mg/kg}_{\text{soil}}$) to 1,760 mg/kg_{soil} and the concentrations of TPAH ranged from 0.01 to 9.7 mg/kg_{soil} (Table 4). For those soils containing detectable TPH, the mass of PAHs per mass of TPH ranged from 520 to 6,400 mg_{TPAH}/kg_{TPH}. Notably, and as will be highlighted further below, the relative concentration of PAHs in the petroleum in the 2016 soils is markedly lower than was observed in the severely weathered crude oils from the 2012 soils (9,960-17,200 mg_{TPAH}/kg_{TPH}; Table 1). The significance of this difference is discussed later in this report.

Table 4: Hydrocarbon concentrations and selected metrics for the Site soil samples (nd = not detected; nc = not calculable)

Client ID	Date Collected	TPH C ₉ -C ₄₀ (mg/kg)	%TPH as DRO (C ₁₀ -C ₂₈)	TPAH (mg/kg)	mg _{тран} / kg _{трн}
S-9-B32	10/19/2016	1,330	73	1.2	940
S-14-B27	10/18/2016	850	60	0.7	820
S-5-B36	10/21/2016	117	49	0.1	520
S-9-B34	10/20/2016	939	38	3.9	4,200
S-5-B34	10/20/2016	433	33	1.0	2,200
S-6-B28	10/19/2016	1,510	31	9.7	6,400
S-8-B24	10/20/2016	191	20	0.7	3,600
S-3-B35	10/20/2016	1,760	9	4.8	2,700
S-16-B26	10/18/2016	nd	nd	0.01	nc
S-16-B30	10/18/2016	nd	nd	0.01	nc

Although limited by the number of samples, the distribution of TPH concentrations in the soils studied revealed no obvious centralized location (e.g., "hot spot") or depth where petroleum was encountered (Figure 1). In other words, TPH concentrations appear to vary throughout the study area, laterally and with depth, indicating there was no single location, such as from a tank or pipeline, from which the petroleum seemed to emanate. All eight soils collected between 3 ft. and 9 ft. bgs contained measurable TPH (117 to 1,760 mg/kg), whereas the two deepest samples collected (B26 and B30 16 ft. bgs) each had no detectable TPH (nd: < 2.6 mg/kg). The latter is consistent with the absence of TPH detected in the 25 foot deep soil from B19 studied in 2012 (Table 1) that was collected in this same area (Figure 1). Thus, the available data suggest the TPH impacts to soils in this area of the Site may be limited to the soils shallower than ~15 ft., indicating a near surface/surface source(s) of the petroleum. This contrasts with the deep (80 ft. bgs) soil impacts of severely weathered crude oil in the B10 and B11 soils further to the east (Table 1; Figure 1), likely derived from a subsurface (likely naturally-occurring) source. The specific character of the TPH in the soils analyzed in 2016 is discussed further below.

Chlorine Isotopic Signature of PCE

In order to determine whether the PCE found during the 2016 sampling event along the Jalk Fee property boundary with CHT resulted from a single large release or multiple releases over an extended time period, it was necessary to determine how variable the chlorine isotopic signature was for the PCE present in these soil samples. The basis for this approach is that heterogeneity among the PCE chlorine isotopic signatures would signify that multiple releases of PCE over time had occurred. Homogeneity among chlorine isotopic signature would imply a single release of PCE had occurred.

Table 5 lists the results of the investigation of chlorine isotopic signature in the soil samples, including the areas of the PCE m/z 166 and 164 peaks ($A_1^{m/z166}$ and $A_2^{m/z164}$, respectively) and the chlorine isotopic ratio (R_{Cl}^{PCE}) for each sample. (See section above entitled "Stable Isotope Analysis - Chlorine in PCE" for a description of the methodology.) Table 6 lists the average and standard deviation of R_{Cl}^{PCE} for three single sources of PCE as reported in the literature⁶.

	$A_1^{m/z166}$	$A_1^{m/z164}$	R_{Cl}^{PCE}
S-16-B26	6311936	5214208	0.30263
S-14-B27	961984	748288	0.32139
S-16-B30	1308672	1025152	0.31914
S-6-B28	3583	2933	0.30540
S-9-B32	821120	659584	0.31123
S-8-B24	59688	47816	0.31207
S5-B34	969216	763904	0.31719
S-9-B34	846400	655552	0.32278
S-3-B35	568320	447680	0.31737
S-5-B36	551680	440832	0.31286

Table 5: Chlorine isotope data for PCE measured in soil samples

Table 6: Average and standard deviation of R_{CL}^{PCE} for single PCE sources compared to soil data

	R_{Cl}^{PCE} , average (±standard deviation)	Comment
PCE#1 (n=8-10)	0.32300 (±0.00023)	Single source of PCE
PCE#5 (n=8-10)	0.32211 (±0.00020)	Single source of PCE
PCE PPG (n=8-10)	0.31782 (±0.00037)	Single source of PCE
Soil Samples (n=10)	0.31421 (±0.00663)	-

The standard deviation of the n=10 R_{Cl}^{PCE} values in the 2016 soil samples was more than an order of magnitude greater than the standard deviations of n=8-10 replicate measurements of three separate PCE source materials (Table 6). Therefore, the chlorine isotopic signature of the PCE measured in the

⁶ Aeppli, C., Holmstrand, H., Andersson, P., and O. Gustafsson. 2010. Direct Compound-Specific Stable Chlorine Isotope Analysis of Organic Compounds with Quadrupole GC/MS Using Standard Isotope Bracketing. *Analytical Chemistry*. 82: 420-426.

soil samples is heterogeneous and cannot have been derived from a single release of PCE bearing the same isotopic signature. Rather, the isotopic heterogeneity of the PCE measured in soil samples is consistent with a longer-term release or multiple releases composed of PCE with varying isotopic compositions.

Results - Character of Petroleum in the Soils Studied

The general character of the petroleum(s) in each of the 2016 soils studied is revealed by the GC/FID chromatograms ("fingerprints") obtained in the course of TPH analysis. Additional details of the petroleum(s) are revealed by the relative and/or absolute abundance and composition of PAHs and petroleum biomarkers. In the sections that follow, the petroleum encountered in the 2016 soils studied (i.e., the eight samples containing measurable TPH; Table 4) are described, compared to one another, and compared to candidate source petroleum samples, including local crude oil as represented by the 2012 soils studied, diesel fuel #2, and neat quench oils, the latter of which are common to the metal heat treating industry.

TPH Fingerprints in 2016 Soil Samples

Similar to the isotopic heterogeneity among the PCE in the 2016 soils, the petroleum found in the 2016 soils was also heterogeneous. This, of course, indicates that the petroleum also did not come from a single release of a specific type of petroleum, but rather to multiple releases of different types of petroleum. Heterogeneity is evident in the varying boiling ranges of the petroleums within the impacted soils, as reflected by the proportions of DRO (C_{10} - C_{28}) and residual range organics (RRO; C_{28} +).

The GC/FID chromatograms for the eight soil samples collected in 2016 containing measurable TPH are shown in Figure 2. The samples are arranged (top-to-bottom) in order of the decreasing percentage of TPH within the DRO range (or increasing proportion of RRO range; per Table 3). In other words, the average boiling point of the petroleum in each soil increases from top-to-bottom in Figure 2. The petroleum in S-9-B32 soil contained the greatest proportion of DRO (73%) whereas that in the S-3-B35 soil contained the least (9%). None of the soils studied contained measurable TPH within the GRO (<C₁₀) range.

As noted above, the variability in the character of TPH among the soils studied argues they do not contain a single type of petroleum. Even the most severe forms of weathering of a single petroleum source cannot explain the heterogeneity among the hydrocarbon signatures present in these soils. Therefore, the heterogeneity evident among the soils indicates the presence of at least two different types of petroleum present in the soils studied: a DRO-dominant petroleum and a RRO-dominant petroleum. The DRO-dominant component is dominated by an unresolved complex mixture (UCM) that appears as a "hump" on the chromatogram beginning at approximately C_{15} and reaching a maximum around C_{22} (see S-9-B32; Figure 2). The RRO-dominant component is dominated by a variable and high boiling UCM with a maximum around C_{35} (see S-3-B-35; Figure 2).

As will be demonstrated in the sections that follow, the DRO-dominant and RRO-dominant petroleum components evident in the 2016 soils are not reasonably attributable to historic oil field operations in which crude oil and fuels (e.g., diesel fuel) could have been potential sources. On the other hand, these DRO- and RRO-dominant petroleum components are reasonably attributable to the types of wastes produced from metal heat treating.

Crude Oil vs. 2016 Soils

Previous analyses of the soils collected in 2012 reveals the presence of severely weathered crude oil in the B10 and B11 borings (Figure 1; Table 1). Figure 3 shows the GC/FID chromatograms for these three soils, along with those of the S-9-B32 (DRO-dominant) and S-3-B35 (RRO-dominant) soils (reproduced from Figure 2). The disparate character of the crude oils in the 2012 soils versus the range of petroleums found in the 2016 soils, as represented by the DRO-dominant and RRO-dominant "endmembers" is obvious. The crude oils are much broader boiling and are dominated by a UCM that spans the entire practical boiling range of crude oil (C₉-C₄₀; Figure 3). The severity of weathering of the crude oil is evident by the complete absence of n-alkanes, and the shallowest soil (S-15-B10) is even devoid of isoprenoids. Despite the severe biodegradation, the crude oils each contain an abundance of lower boiling hydrocarbons, which are absent from the petroleums identified in the 2016 samples. The crude oil could not reasonably weather (evaporate) so severely so as to resemble the DRO- or RRO-dominant petroleums encountered in the 2016 soils. Natural evaporation could not achieve a UCM maximum at C₂₂ or higher.⁷ Thus, the petroleums encountered in the 2016 soils simply cannot be comprised of weathered (biodegraded and evaporated) crude oil – they must represent some form(s) of refined petroleum products (discussed below). Additional confirmation that the 2016 soils do not contain crude oil, but rather refined petroleum products, is achieved when the PAH relative concentrations (mg_{TPAH}/kg_{TPH}) and biomarker distributions are considered (see below).

⁷ Stout, S.A. and Wang, Z. (2016). Chemical fingerprinting methods and factors affecting petroleum fingerprints in the environment. In: Standard Handbook of Oil Spill Environmental Forensics: Fingerprinting and Source Identification, 2nd Ed., S.A. Stout and Z. Wang, Eds., Elsevier Publishing Co., Boston, MA, p. 61-130.

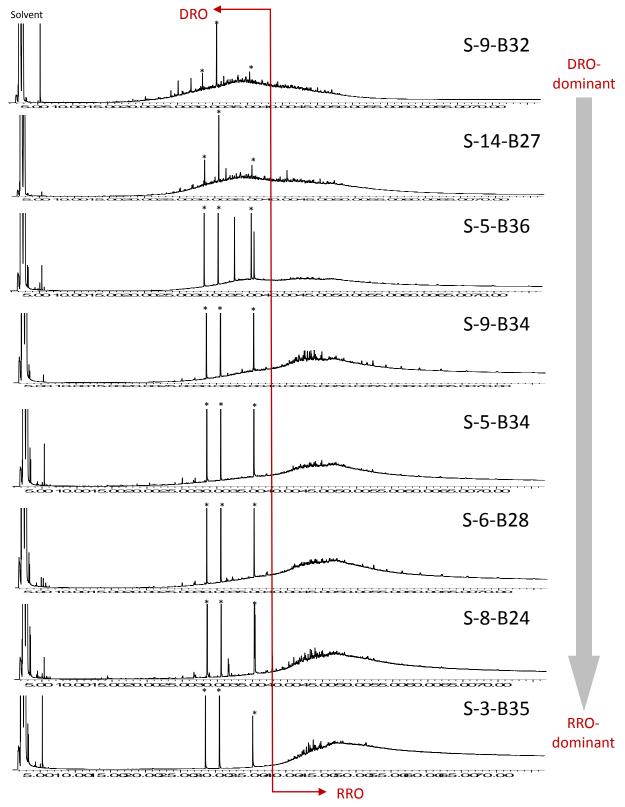
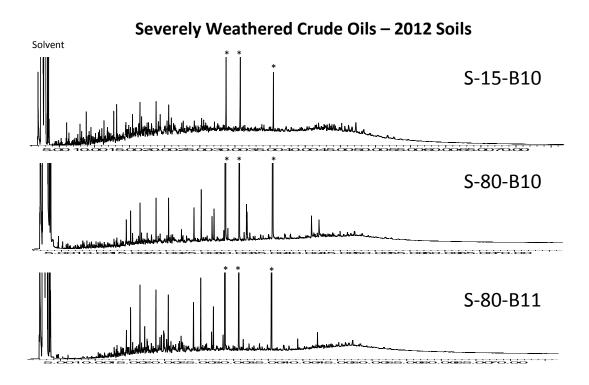



Figure 2: TPH fingerprints of the eight soil samples collected in 2016. Samples are arranged by % DRO from Table 3, as indicated by the arrow to the right; * = internal standards.

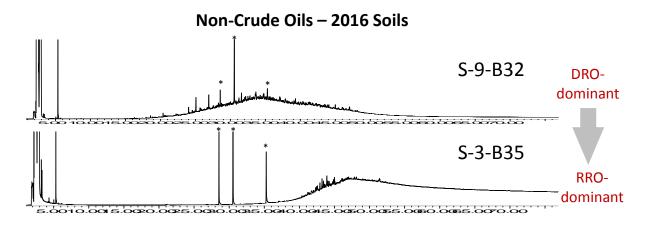


Figure 3: TPH fingerprints of the three crude oil-impacted soil samples collected in 2012 (top) compared to the DRO- and RRO-dominant (non-crude oil) petroleums in soils samples collected in 2016 (from Fig. 2). * = internal standards.

Diesel Fuel vs. 2016 Soils

It is worth noting that the DRO-dominant petroleum component in the 2016 soils is also inconsistent with diesel fuel. The basis for this disparity is seen in Figure 4, which shows the lower boiling character of severely weathered diesel fuel (reference sample; unrelated to the Site obtained from NewFields' database). The DRO-range UCM present in the diesel fuel reaches a maximum around C₁₅, which is much lower than exhibited by the DRO-dominant petroleum in the S-9-B32 soil (max. $^{\sim}C_{22}$; Figure 4). As was also true of the crude oil, additional weathering (natural evaporation) of diesel fuel could not reasonably resemble the DRO-dominant petroleum found in the 2016 soils. Thus, diesel fuel can also be ruled-out as a possible source of the DRO-dominant petroleum.

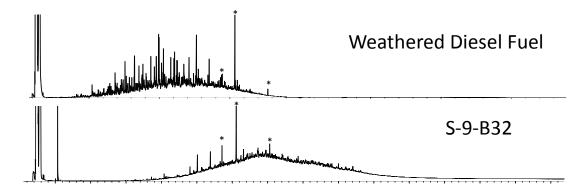


Figure 4: TPH fingerprints of a weathered diesel fuel (reference sample, unrelated to the Jalk Fee property study) compared to the DRO-dominant petroleum in the S-9-B32 soil sample collected in 2016 (from Fig. 2). * = internal standards.

Quench Oils vs. Soil Sample

Because the 2016 soils clearly did not contain petroleum that might be attributed to historic oil field operations (e.g., crude oil or diesel fuel), and because documents from the neighboring CHT facility had indicated the use of quench (mineral) oils and release of waste oil "onto the ground and asphalt top at rear yard"⁸, it was prudent to compare the DRO- and RRO-dominant petroleums found in the 2016 soils to the oils used and wastes generated by the heat treating of metal.

As background, quenching is the process of cooling metal parts to achieve the desired properties (microstructure, hardness, or toughness)⁹. For many applications, quench oils (rather than water or gas solutions) are used to achieve the desired results. Quench oils are typically dearomatized mineral oils (i.e., they are low in aromatic compounds) and thereby classified as either paraffinic or naphthenic. Quench oil is circulated and re-used many times in the heat treating operation but eventually becomes oxidized and contaminated with sludge reducing its efficacy (and clogging heat exchangers and filters). The used quench oil must be replaced and the sludge, which can settle out in holding tanks, must be removed from tanks and disposed of. Liscic et al. (2003) state that "cleaning and sludge disposal are

⁸ May 19, 1989 County of Los Angeles Survey Report (Appendix I of "Request to Name Continental Heat Treating as Discharger", dated March 25, 2015)

⁹ Liscic, B., H.M. Tensi, G.E. Totten, G.M. Webster (2003). Non-lubricating process fluids: Steel quenching technology. In: Fuels and Lubricants Handbook, G.E. Totten, Ed., ASTM Manual Series, MNL37WCD, p. 587-634.

growing problems for the heat treating industry". As discussed previously, CHT used large quantities of quench oils and their use, storage and disposal are documented in multiple CHT regulatory submittals (e.g., CHT's 1982 Applications to SCAQMD; CHT's 1969 Degreaser Application to LAC APCD; CHT's 1982 Electrostatic Precipitator Application to SCAQMD; CHT's LAC Fire Department Hazardous Material Contingency Plan).

Two of the neat mineral oils analyzed for this study were a fresh and used quench oil obtained from an out-of-state metal heat treating facility (unrelated to CHT). The GC/FID chromatograms for these quench oils are shown in Figure 5 along with that of the S-9-B32 soil, which was the most DRO-dominant petroleum component among 2016 soils studied. The overall comparability between the used quench oil and the petroleum in the S-9-B32 soil is evident.

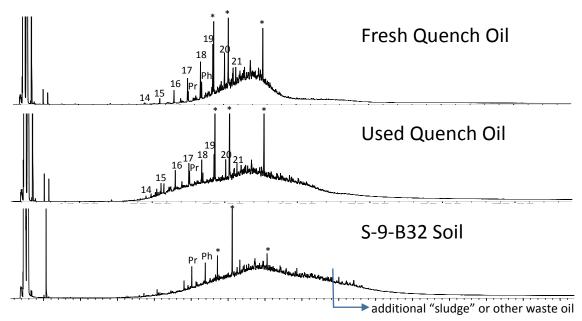


Figure 5: TPH fingerprints of fresh and used quench oil compared to the DRO-dominant petroleum in the S-9-B32 soil sample collected in 2016 (from Fig. 2).

* = internal standards; # = n-alkane carbon number; Pr=pristane; Ph=phytane.

Fresh quench oil is a distilled petroleum that ranges from about C_{14} to C_{27} and reaches a maximum around C_{22} (Figure 5). Most of the mass of the fresh quench oil occurs within a UCM "hump" that exhibits the relatively smooth profile typical of a distilled petroleum product. Resolved peaks include selected n-alkanes (n- C_{14} to n- C_{22}) and isoprenoids (pristane and phytane). (These features suggest this particular quench oil is a paraffinic type of quench oil). The used quench oil ranges from about C_{13} to C_{35} as seen in its broader UCM "hump". The maximum at C_{22} is still evident, as are the resolved n-alkanes and isoprenoids (Figure 5). The broadening of the UCM in the used quench oil compared to the fresh quench oil is consistent with the presence of a sludge component within the used oil, which as noted above, is commonly formed over time with repeated use of the quench oil.

The chromatogram of the used quench oil exhibits a remarkable similarity to that of the DRO-dominant petroleum in the S-9-B32 soil sample (Figure 5). The soil's UCM is slightly broader (higher boiling) than

the used quench oil but clearly still exhibits the maximum around C₂₂ and isoprenoids. The n-alkanes are no longer present, which would be consistent with the loss of these susceptible compounds due to weathering (biodegradation) in the S-9-B32 soil. The comparability in TPH fingerprints indicates that the S-9-B32 soil contains a petroleum consistent with a weathered, used quench oil. The somewhat broader (higher boiling) UCM in the soil suggests that the used quench oil in this soil may have contained a somewhat greater amount of sludge compared to the used quench oil reference sample studied herein. Alternatively, the S-9-B32 soil sample may contain some additional, RRO-range waste oil component (e.g., high temperature mineral oil). For example, this type of RRO-range waste oil component may be represented by the RRO-dominant component found in the S-3-B35 soil (Figure 2). Thus, the continuum of petroleums found in the 2016 soils (Figure 2) likely represents varying mixtures of used quench oil containing varying amounts of used quench oil sludge and/or varying amounts of unspecific RRO-dominant waste oils.

In summary, based upon the TPH fingerprints the petroleum compounds present in the eight soils collected in 2016 (that contained measurable TPH; Table 3) is:

- 1) inconsistent with severely weathered crude oil (Figure 3),
- 2) inconsistent with weathered diesel fuel (Figure 4), and
- 3) consistent with used quench oil containing varying amounts of sludge and/or RRO-range waste oil (Figure 5).

PAH Character and Content in Soil Samples

The PAH data measured in the 2012 and 2016 soils, as well as the fresh and used quench oils, provide another line of evidence to support the conclusions evident from the TPH fingerprints (summarized above). This can be performed through a comparison of the concentration of PAHs present in the soils. However, *absolute* concentrations of PAHs, of course, depend upon the amount of petroleum present within a given soil sample (which varied, as evidenced by varying TPH concentrations; Tables 1 and 4). Therefore, the *relative* abundance of PAHs is a more useful means of comparing the PAHs in the soil samples to one another. The relative abundance of PAH can be obtained by normalizing the absolute concentration of TPAH to the absolute concentration of TPH in each soil (i.e., mg_{TPAH}/kg_{TPH}). This ratio is a measure of the concentration of TPAH in the oil found in the sample. This same normalization step can be applied to the TPAH and TPH concentrations in the neat quench oils, allowing for the direct comparison among all relevant samples. Note that that the mg_{TPAH}/kg_{TPH} concentrations for the 2012 and 2016 soils are provided in Tables 1 and 4.

Figure 6 shows a histogram comparing the TPH-normalized concentrations of TPAH in the shallow crude oil-impacted soil from 2012 (S-15-B10), the most DRO-dominant (S-9-B32) and RRO-dominant (S-3-B35) soils from 2016, and the used quench oil studied. Inspection shows that the crude oil, despite being severely weathered, had a relatively high concentration of PAHs, with the shallowest soil studied (S-15-B10) containing 11,500 mg_{TPAH}/kg_{TPH}. [Note that the deeper crude oil-impacted soils from 2012 also contained elevated TPAH/TPH concentrations (Table 1; Avg. 12,800 mg_{TPAH}/kg_{TPH}).]

This relatively high concentration of PAHs is not atypical of crude oil, but is clearly higher than the petroleums found in the 2016 soils studied (Table 4; Avg. 2,700 mg_{TPAH}/kg_{TPH}). For example, the most DRO-dominant and RRO-dominant "end-member" petroleums found in the 2016 soils contained only 940 mg_{TPAH}/kg_{TPH} and 2,700 mg_{TPAH}/kg_{TPH}, respectively (Figure 6). Additional weathering of the S-15-B10

type crude oil, which is already severely weathered, could not reasonably explain this large (~5- to 14-fold) disparity in relative PAH concentration. This disparity, thereby, provides another line of evidence that the hydrocarbons present within the 2016 soils studied did not stem from crude oil.

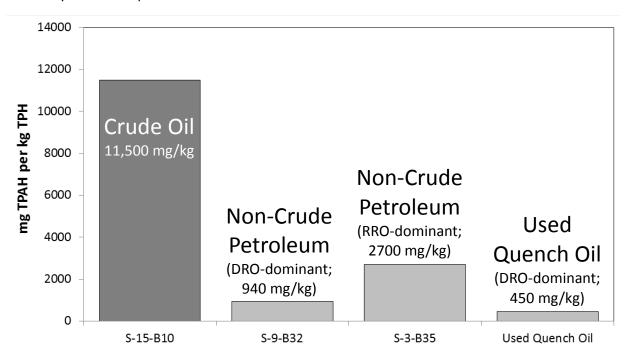


Figure 6: Comparison of the TPH-normalized concentrations of total PAHs (TPAH) in representative soils from the Site containing severely weathered crude oil (S-15-B10), non-crude petroleum enriched in DRO- and RRO- components, and used quench oil.

On the other hand, and as expected and owing to the fact quench oils are dearomatized during their refining, the used quench oils studied contained relatively low concentrations of PAHs ($450 \text{ mg}_{TPAH}/\text{kg}_{TPH}$; Figure 6). The relative concentration of PAHs in the used quench oil is comparable to concentrations found in the three soils containing the greatest proportions of DRO-dominant petroleum (S-9-B32, S-14-B27, and S-5-B36), which ranged from 520 to 940 mg_{TPAH}/kg_{TPH} (Table 4). Thus, the comparably low relative concentrations of PAHs in these DRO-dominant soils and in used quench oil supports the conclusion evident from the TPH fingerprints: these 2016 soils contain petroleum consistent with used quench oil and inconsistent with crude oil.

The remaining increasingly RRO-dominant soils from 2016 contained somewhat higher relative concentrations of PAHs than used quench oil (Table 4), although these signatures do not simply represent an incremental blending of crude oil with used quench oil. Specifically, while the total PAH concentration in any of these samples (e.g., S-3-B35, Figure 6) may be "mathematically achieved" by mixing crude and quench oils, the presence of crude oil is not observed in the TPH fingerprints of any of these samples (Figures 2 and 3). [Similarly, the distributions of individual PAHs in severely weathered crude oil are clearly distinct from those present in these soils; data not shown.] Therefore, the higher relative abundance of PAHs in the RRO-dominant soils compared to the DRO-dominant soils requires another explanation.

We conclude that the RRO-dominant petroleum in these soils is explained by (1) the presence of a more PAH-rich form of used quench oil/sludge (than was available for this study; e.g. "pure" sludge as opposed to used quench oil containing sludge) or (2) some unspecific RRO-range waste oil. This conclusion would be consistent with the TPH fingerprints of these RRO-dominant soils' petroleums (see discussion above; Figure 2). The second possibility has some support from the fact that waste oils (e.g., used vacuum and hydraulic pump oils) were reportedly generated by CHT and disposed of "onto ground and asphalt top at rear yard" of the CHT property¹⁰ making the presence of other such RRO-range petroleums (i.e., not only used quench oil) in these soils not unexpected.

In summary, the petroleums present in the 2016 soils studied contain relatively low concentrations of PAH relative to the concentration of TPH. This feature is atypical of most petroleum, including crude oil and distillate fuels, but is a signature of petroleums that have been dearomatized (PAHs reduced during refining), such as quench oil and other mineral oils. As such, the low relative concentrations of PAHs in the 2016 soils indicates these soils contain petroleum that is 1) inconsistent with severely weathered crude oil and 2) consistent with used quench oil containing varying amounts of sludge and/or waste oil (Figure 6), which confirms the TPH fingerprinting results discussed above.

Petroleum Biomarkers in Soil Samples

As noted above, petroleum biomarkers provide a high degree of specificity among petroleums derived from different sources. This specificity varies among crude oils from different geologic sources and is (largely) transferred to "daughter" products refined from different "parent" crude oil feedstocks. Thus, in this study, petroleum biomarkers provide an additional means to compare the local Santa Fe Springs crude oil, as represented by the three soils studied in 2012, to the petroleums found in the eight soils containing petroleum from 2016. Because most biomarkers occur within the RRO-range, their comparison is particularly useful in assessing the specific character of the RRO-dominant petroleum components present in the 2016 soils studied.

While the TPH signatures and PAH content of the fresh and used quench oil bear some similarity to the 2016 soil samples as discussed above, there is no expectation that biomarkers in the fresh and used quench oils studied (which were sourced from an out-of-area heat treating facility) have any relevance to the quench oil/sludge found in the 2016 soil samples because these oils at the site would have been derived from completely different sources. Thus, the biomarker results for the quench oils are provided but have not been compared to those found in the 2016 soil samples. Because of their complexity, biomarker distributions in different petroleums are commonly compared using diagnostic ratios. ¹¹ These are ratios between the concentrations of individual biomarkers that are, based on decades of study of petroleum geochemistry, known to reflect differences in the specific nature of petroleum and are stable upon weathering. Figure 7 shows cross-plots of three common diagnostic biomarker ratios for the soil samples studied. The x-axis on each plot is the same and reflects the relative abundance of 28,30-bisnorhopane (BNH) relative to hopane (HOP). The two y-axes show the relative abundances of

¹⁰ May 19, 1989 County of Los Angeles Survey Report (Appendix I of "Request to Name Continental Heat Treating as Discharger", dated March 25, 2015)

¹¹ For example: Stout, S.A. and Wang, Z. (2008) Diagnostic compounds for fingerprinting petroleum in the environment. In: *Environmental Forensics*, R.E. Hester and R.M. Harrison, Eds., Royal Soc. Chem., Issues in Environmental Science and Technology Publ. No. 26, London, pp. 54-104.

oleanane to hopane (OL/HOP) and diacholestanes to $14\alpha(H)$, $17\alpha(H)$ cholestanes (C27d/C27) in the soils studied.

Figure 7 shows that the three soil samples from 2012 appear highly consistent with one another as they form tight clusters on each of the plots. This consistency is anticipated since these three soils tested were each recognized to contain severely weathered crude oil (see above), which in each sample, is reasonably believed to represent the local crude oil from the Santa Fe Springs oil field. The eight soil samples from 2016, on the other hand, exhibit considerable scatter within each plot. This scatter indicates that the petroleums in these soils is heterogeneous and clearly is not comprised of Santa Fe Springs crude oil. Interestingly, the two 2016 soil samples that contained a higher proportion of DRO-dominant petroleum (S-9-B32 and S-14-B27; Figure 2) appear fairly comparable to one another (plotting close to one another; Figure 7), perhaps suggesting these two soils contain a highly similar used quench oil/sludge. Heterogeneity among the other six 2016 soil samples that had contained increasing proportions of RRO-dominant petroleums (Figure 2) suggests these soils contain a variety of different quench oil sludges and/or RRO-range waste oils (e.g., high boiling mineral oils).

Therefore the biomarker results, like the results based upon TPH fingerprints and PAH abundance, indicate that local crude oil is not present in any of these soils. Rather, a variety of different types and mixtures of quench oil/sludge and other waste oils are indicated, as would be consistent with the documented disposal practices of CHT.

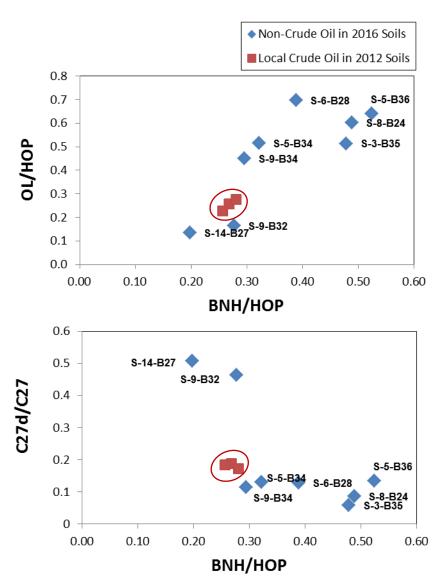


Figure 7: Cross-plots of petroleum biomarker diagnostic ratios showing the consistent character of the local (Santa Fe Springs) crude oil in the 2012 soils and heterogeneity among the diverse non-crude oil petroleums in the 2016 soils.

Other Data

Additional data that were collected as part of this effort but are not discussed in this report are included in Attachment B. These data include PIANO compounds, other volatile organics (Method 8260), and inorganics (including metals, mercury and cyanide). In many cases, compounds were not detected in soil samples, or were detected at concentrations similar to the reference (background) location site (e.g. metals), and therefore did not contribute to the interpretation of the forensic signature of contamination along the property boundary.

Conclusions

Chemical fingerprinting using isotopic and molecular methods was conducted on shallow soils collected from the area along Jalk Fee's property boundary with CHT that historically exhibited the highest PCE concentrations in shallow soil. These soils were compared to soils known to be impacted with local crude oil, and to other potential source materials such as diesel fuel and oils used in the heat treatment of metals. The results collectively show that the PCE and petroleum in these shallow soils along the property boundary with CHT are consistent with multiple discharges of chlorinated solvents (PCE) and quench oils with varying amounts of sludges and/or waste (mineral) oils such as would have been used or generated during the metal heat treating process, and discharged by CHT. Contamination in these soils is inconsistent with crude oil or diesel fuel and can not be associated with ExxonMobil's historic crude oil production operations on the property. PCE and quench oils were not used, handled or stored by ExxonMobil but were used, handled, and stored in large volumes by CHT. When coupled with the fact that there is a record of improper disposal of waste on the CHT property, the only reasonable conclusion to be drawn is that the source of both PCE and hydrocarbon contamination in soil along the southern property boundary at the Site resulted from spills and discharges by, and/or the disposal practices of CHT, which have migrated onto the Jalk Fee property.

Attachment 1 – Raw Data for Soil Samples Analyzed in 2012

Project Name: Cardno ERI - Former XOM Jalk Fee Property

Project	Number:	850.0087.000
---------	---------	--------------

Client ID	Method Blank
Lab ID	TS082212B15
Matrix	Soil
Reference Method	SHC
Batch ID	TS082212B15
Date Collected	N/A
Date Received	N/A
Date Prepped	08/22/2012
Date Analyzed	08/27/2012
Sample Size (wet)	20
% Solid	100.00
File ID	A919971.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	3.30
, •	

Class	Abbrev	Analytes	Result	SSRL
SHC	TDU	Total Patralaum Hydrocarbons (C0 C44)	0.122	2 20

Surrogates (% Recovery)	
ortho-Terphenyl	105
d50-Tetracosane	100

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Client ID	Laboratory Control Sample
Lab ID	TS082212LCS06
Matrix	Soil
Reference Method	SHC
Batch ID	TS082212B15
Date Collected	N/A
Date Received	N/A
Date Prepped	08/22/2012
Date Analyzed	08/27/2012
Sample Size (wet)	20
% Solid	100.00
File ID	A919973.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	3.30

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
SHC	C9	n-Nonane (C9)	0.791	S	0.100	79	1.00	50	130
SHC	C10	n-Decane (C10)	0.829	S	0.100	83	1.00	50	130
SHC	C12	n-Dodecane (C12)	0.827	S	0.100	83	1.00	50	130
SHC	C14	n-Tetradecane (C14)	0.888	S	0.100	89	1.00	50	130
SHC	C16	n-Hexadecane (C16)	0.956	S	0.100	96	1.00	50	130
SHC	C18	n-Octadecane (C18)	0.985	S	0.100	98	1.00	50	130
SHC	C19	n-Nonadecane (C19)	0.929	S	0.100	93	1.00	50	130
SHC	C20	n-Eicosane (C20)	0.955	S	0.100	96	1.00	50	130
SHC	C22	n-Docosane (C22)	0.958	S	0.100	96	1.00	50	130
SHC	C24	n-Tetracosane (C24)	0.972	S	0.100	97	1.00	50	130
SHC	C26	n-Hexacosane (C26)	0.971	S	0.100	97	1.00	50	130
SHC	C28	n-Octacosane (C28)	0.973	S	0.100	97	1.00	50	130
SHC	C30	n-Triacontane (C30)	0.977	S	0.100	98	1.00	50	130
SHC	C36	n-Hexatriacontane (C36)	0.934	S	0.100	93	1.00	50	130
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	13.6		3.30				

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

102

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Client ID	Laboratory Control Sample Dup
Lab ID	TS082212LCSD06
Matrix	Soil
Reference Method	SHC
Batch ID	TS082212B15
Date Collected	N/A
Date Received	N/A
Date Prepped	08/22/2012
Date Analyzed	08/27/2012
Sample Size (wet)	20
% Solid	100.00
File ID	A919975.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	3.30

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
SHC	C9	n-Nonane (C9)	0.796	S	0.100	80	1.00	50	130	1	30
SHC	C10	n-Decane (C10)	0.829	S	0.100	83	1.00	50	130	0	30
SHC	C12	n-Dodecane (C12)	0.822	S	0.100	82	1.00	50	130	1	30
SHC	C14	n-Tetradecane (C14)	0.885	S	0.100	89	1.00	50	130	0	30
SHC	C16	n-Hexadecane (C16)	0.954	S	0.100	95	1.00	50	130	0	30
SHC	C18	n-Octadecane (C18)	0.983	S	0.100	98	1.00	50	130	0	30
SHC	C19	n-Nonadecane (C19)	0.929	S	0.100	93	1.00	50	130	0	30
SHC	C20	n-Eicosane (C20)	0.957	S	0.100	96	1.00	50	130	0	30
SHC	C22	n-Docosane (C22)	0.959	S	0.100	96	1.00	50	130	0	30
SHC	C24	n-Tetracosane (C24)	0.975	S	0.100	98	1.00	50	130	0	30
SHC	C26	n-Hexacosane (C26)	0.972	S	0.100	97	1.00	50	130	0	30
SHC	C28	n-Octacosane (C28)	0.976	S	0.100	98	1.00	50	130	0	30
SHC	C30	n-Triacontane (C30)	0.977	S	0.100	98	1.00	50	130	0	30
SHC	C36	n-Hexatriacontane (C36)	0.930	S	0.100	93	1.00	50	130	0	30
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	12.5		3.30						

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

101

Projec	t Name: Card	no ERI - Forme	er XOM Ja	alk Fee Proper	ty
Projec	t Number: 850	0.0087.000			

.,			
Client ID			

Client ID	S-80-B10	S-80-B10
Lab ID	1208037-02	1208037-02D
Matrix	Soil	Soil
Reference Method	SHC	SHC
Batch ID	TS082212B15	TS082212B15
Date Collected	08/14/2012	08/14/2012
Date Received	08/21/2012	08/21/2012
Date Prepped	08/22/2012	08/22/2012
Date Analyzed	08/27/2012	08/28/2012
Sample Size (wet)	20.08	20.04
% Solid	96.58	96.58
File ID	A919981.D	A919983.D
Units	mg/Kg	mg/Kg
Final Volume	2	2
Dilution	1	1
Reporting Limit	3.40	3.41

Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD Limit
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	145	3.40	140	3.41	4	30
		Surrogates (% Recovery)						
		ortho-Terphenyl	89		90			
		d50-Tetracosane	83		83			

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Oli ID	Aleste Neath Olean Occurs
Client ID	Alaska North Slope Crude
Lab ID	TS051412ANS02
Matrix	Oil
Reference Method	SHC
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	05/09/2012
Sample Size (wet)	0.10058
% Solid	100.00
File ID	A917902.D
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	3280

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Page A6 February 2017

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 850.0087.000

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

SHC T	PH	Total Petroleum Hydrocarbons (C9-C44)	2880	16.3	145	3.40
Class A	Abbrev	Analytes	Result	SSRL	Result	SSRI
		Reporting Limit	16.3		3.40	
		Dilution	1		1	
		Final Volume	8		2	
		Units	mg/Kg		mg/Kg	
		File ID	A919979.D		A919981.D	
		% Solid	80.24		96.58	
		Sample Size (wet)	20.2		20.08	
		Date Analyzed	08/27/2012		08/27/2012	
		Date Prepped	08/22/2012		08/22/2012	
		Date Received	08/21/2012		08/21/2012	
		Date Collected	08/13/2012		08/14/2012	
		Batch ID	TS082212B15	1	S082212B15	
		Reference Method	SHC		SHC	
		Matrix	Soil		Soil	
		Lab ID	1208037-01		1208037-02	
		Client ID	S-15-B10		S-80-B10	

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- U: The analyte was analyzed for but not detected at the sample specific level reported. B: Found in associated blank as well as sample. J: Estimated value, below quantitation limit.

- E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable
- D: Secondary Dilution Performed D1: Tertiary Dilution Performed

- D1: Iertrary Dilution Performed

 3: Value outside of QC Limits,

 5: Surrogate value outside of acceptable range.

 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

 G: Matrix Interference.
- G: Matrix Interference.
 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.
 I: Due to interference, the lower value is reported.
 N: Spike recovery outside control limits.
 E: Estimated due to Interference. (Metals)
 I: Duplicate outside control limits.
 P: Spike compound. (Metals)
 J: Below CRDL, Project DL, or RL but greater than or equal to MDL
 C: Sample concentration is > 4 times the spike level, recovery limits do not apply. (Metals)
 S: Spike Compound. (Organics)
 F: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)
 T: Tentatively identified corexit compound.
 C: Co-elution.
 Z: Result not surrogate corrected.

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Client ID	Method Blank
Lab ID	TS090712B03
Matrix	Soil
Reference Method	SHC
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/10/2012
Sample Size (wet)	5
% Solid	100.00
File ID	C696450.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	13.2

Class	Abbrev	Analytes	Result	SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	1.54 J	13.2

Surrogates (% Recovery)	
ortho-Terphenyl	93
d50-Tetracosane	91

Client ID	Laboratory Control Sample
Lab ID	TS090712LCS02
Matrix	Soil
Reference Method	SHC
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/10/2012
Sample Size (wet)	5
% Solid	100.00
File ID	C696452.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	13.2

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
SHC	C9	n-Nonane (C9)	3.20	S	0.400	80	4.00	50	130
SHC	C10	n-Decane (C10)	3.38	S	0.400	85	4.00	50	130
SHC	C12	n-Dodecane (C12)	3.59	S	0.400	90	4.00	50	130
SHC	C14	n-Tetradecane (C14)	3.56	S	0.400	89	4.00	50	130
SHC	C16	n-Hexadecane (C16)	3.92	S	0.400	98	4.00	50	130
SHC	C18	n-Octadecane (C18)	3.89	S	0.400	97	4.00	50	130
SHC	C19	n-Nonadecane (C19)	3.64	S	0.400	91	4.00	50	130
SHC	C20	n-Eicosane (C20)	3.80	S	0.400	95	4.00	50	130
SHC	C22	n-Docosane (C22)	3.78	S	0.400	94	4.00	50	130
SHC	C24	n-Tetracosane (C24)	3.83	S	0.400	96	4.00	50	130
SHC	C26	n-Hexacosane (C26)	3.80	S	0.400	95	4.00	50	130
SHC	C28	n-Octacosane (C28)	3.78	S	0.400	94	4.00	50	130
SHC	C30	n-Triacontane (C30)	3.86	S	0.400	97	4.00	50	130
SHC	C36	n-Hexatriacontane (C36)	3.72	S	0.400	93	4.00	50	130
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	54.6		13.2				

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

93

Client ID	Laboratory Control Sample Dup
Lab ID	TS090712LCSD02
Matrix	Soil
Reference Method	SHC
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/10/2012
Sample Size (wet)	5
% Solid	100.00
File ID	C696454.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	13.2

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
SHC	C9	n-Nonane (C9)	3.17	S	0.400	79	4.00	50	130	1	30
SHC	C10	n-Decane (C10)	3.41	S	0.400	85	4.00	50	130	1	30
SHC	C12	n-Dodecane (C12)	3.61	S	0.400	90	4.00	50	130	0	30
SHC	C14	n-Tetradecane (C14)	3.62	S	0.400	91	4.00	50	130	2	30
SHC	C16	n-Hexadecane (C16)	3.98	S	0.400	99	4.00	50	130	2	30
SHC	C18	n-Octadecane (C18)	3.94	S	0.400	99	4.00	50	130	1	30
SHC	C19	n-Nonadecane (C19)	3.67	S	0.400	92	4.00	50	130	1	30
SHC	C20	n-Eicosane (C20)	3.86	S	0.400	97	4.00	50	130	2	30
SHC	C22	n-Docosane (C22)	3.84	S	0.400	96	4.00	50	130	2	30
SHC	C24	n-Tetracosane (C24)	3.89	S	0.400	97	4.00	50	130	1	30
SHC	C26	n-Hexacosane (C26)	3.86	S	0.400	97	4.00	50	130	2	30
SHC	C28	n-Octacosane (C28)	3.84	S	0.400	96	4.00	50	130	2	30
SHC	C30	n-Triacontane (C30)	3.92	S	0.400	98	4.00	50	130	2	30
SHC	C36	n-Hexatriacontane (C36)	3.79	S	0.400	95	4.00	50	130	2	30
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	50.3		13.2						

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Page A11 February 2017

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 850.0087.000

	Total Petroleum Hydrocarbons (C9-C44)	271	13.6 307	12.3 12 3
v	Analytes	Result	SSRL Result	
	Reporting Limit	13.6	12.3	
	Dilution	1	1	
	Final Volume	2	2	
	Units	mg/Kg	mg/Kg	
	File ID	C696458.D	C696460.D	
	% Solid	93.02	93.02	
	Sample Size (wet)	5.2	5.77	
	Date Analyzed	09/11/2012	09/11/2012	
	Date Prepped	09/07/2012	09/07/2012	
	Date Received	08/23/2012	08/23/2012	
	Date Collected	08/21/2012	08/21/2012	
	Batch ID	TS090712B03	TS090712B03	
	Reference Method	SHC	SHC	
	Matrix	Soil	Soil	
	Lab ID	1208051-01	1208051-01D	
	Client ID	S-80-B11	S-80-B11	

	lass Abbrev		Result	SSRL	Result
SI	HC TPH	Total Petroleum Hydrocarbons (C9-C44)	271	13.6	307
		Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane	89 86		90 87

 Class
 Abbrev
 Analytes
 Result
 SSRL
 % Rec
 Spike Conc.
 Lower Limit
 Upper Limit

 SHC
 TPH
 Total Petroleum Hydrocarbons (C9-C44)
 581000
 3280
 107
 54000
 65
 135

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Client ID	S-80-B11
Lab ID	1208051-01
Matrix	Soil
Reference Method	SHC
Batch ID	TS090712B03
Date Collected	08/21/2012
Date Received	08/23/2012
Date Prepped	09/07/2012
Date Analyzed	09/11/2012
Sample Size (wet)	5.2
% Solid	93.02
File ID	C696458.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	13.6

Class	Abbrev	Analytes	Result	SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	271	13.6

Surrogates (% Recovery)
ortho-Terphenyl 8:
d50-Tetracosane 8:

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- U: The analyte was analyzed for but not detected at the sample specific level reported. B: Found in associated blank as well as sample. J: Estimated value, below quantitation limit.

- E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable

- NA: Not Applicable
 D: Secondary Dilution Performed
 D: Tertiary Dilution Performed

 \$! Value outside of QC Limits.
 S: Surrogate value outside of acceptable range.
 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.
 G: Matrix Interference.
- G: Matrix Interference.
 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.
 I: Due to interference, the lower value is reported.
 N: Spike recovery outside control limits.
 E: Estimated due to Interference. (Metals)
 I: Duplicate outside control limits.
 P: Spike compound. (Metals)
 J: Below CRDL, Project DL, or RL but greater than or equal to MDL
 C: Sample concentration is > 4 times the spike level, recovery limits do not apply. (Metals)
 S: Spike Compound. (Organics)
 F: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)
 T: Tentatively identified corexit compound.
 C: Co-elution.
 Z: Result not surrogate corrected.

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

,	
Client ID	Method Blank
Lab ID	TS101012B01
Matrix	Soil
Reference Method	SHC
Batch ID	TS101012B01
Date Collected	N/A
Date Received	N/A
Date Prepped	10/10/2012
Date Analyzed	10/16/2012
Sample Size (wet)	30
% Solid	100.00
File ID	e28250.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	2.20

Class	Abbrev	Analytes	Result	SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	0.589 J	2.20

Surrogates (% Recovery)	
ortho-Terphenyl	95
d50-Tetracosane	92

Client ID	Laboratory Control Sample
Lab ID	TS101012LCS01
Matrix	Soil
Reference Method	SHC
Batch ID	TS101012B01
Date Collected	N/A
Date Received	N/A
Date Prepped	10/10/2012
Date Analyzed	10/16/2012
Sample Size (wet)	30
% Solid	100.00
File ID	e28252.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	2.20

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
SHC	C9	n-Nonane (C9)	0.439	S	0.0667	66	0.667	50	130
SHC	C10	n-Decane (C10)	0.517	S	0.0667	78	0.667	50	130
SHC	C12	n-Dodecane (C12)	0.539	S	0.0667	81	0.667	50	130
SHC	C14	n-Tetradecane (C14)	0.566	S	0.0667	85	0.667	50	130
SHC	C16	n-Hexadecane (C16)	0.634	S	0.0667	95	0.667	50	130
SHC	C18	n-Octadecane (C18)	0.637	S	0.0667	96	0.667	50	130
SHC	C19	n-Nonadecane (C19)	0.610	S	0.0667	91	0.667	50	130
SHC	C20	n-Eicosane (C20)	0.618	S	0.0667	93	0.667	50	130
SHC	C22	n-Docosane (C22)	0.627	S	0.0667	94	0.667	50	130
SHC	C24	n-Tetracosane (C24)	0.636	S	0.0667	95	0.667	50	130
SHC	C26	n-Hexacosane (C26)	0.636	S	0.0667	95	0.667	50	130
SHC	C28	n-Octacosane (C28)	0.632	S	0.0667	95	0.667	50	130
SHC	C30	n-Triacontane (C30)	0.645	S	0.0667	97	0.667	50	130
SHC	C36	n-Hexatriacontane (C36)	0.593	S	0.0667	89	0.667	50	130
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	9.35		2.20				

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

rphenyl racosane

Client ID
Lab ID
Matrix
Reference Method
Batch ID
Date Collected
Date Received
Date Prepped
Date Analyzed
Sample Size (wet)
% Solid
File ID
Units
Final Volume
Dilution
Reporting Limit Laboratory Control Sample Dup TS101012LCS001 Soil SHC TS101012B01 N/A N/A 10/10/2012 10/16/2012

10/16/2012 30 100.00 e28254.D mg/Kg 2

Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
SHC	C9	n-Nonane (C9)	0.438	0.0667	66	0.667	50	130	0	30
SHC	C10	n-Decane (C10)	0.526	0.0667	79	0.667	50	130	2	30
SHC	C12	n-Dodecane (C12)	0.558	0.0667	84	0.667	50	130	4	30
SHC	C14	n-Tetradecane (C14)	0.584	0.0667	88	0.667	50	130	3	30
SHC	C16	n-Hexadecane (C16)	0.648	0.0667	97	0.667	50	130	2	30
SHC	C18	n-Octadecane (C18)	0.649	0.0667	97	0.667	50	130	2	30
SHC	C19	n-Nonadecane (C19)	0.622	0.0667	93	0.667	50	130	2	30
SHC	C20	n-Eicosane (C20)	0.631	0.0667	95	0.667	50	130	2	30
SHC	C22	n-Docosane (C22)	0.639	0.0667	96	0.667	50	130	2	30
SHC	C24	n-Tetracosane (C24)	0.648	0.0667	97	0.667	50	130	2	30
SHC	C26	n-Hexacosane (C26)	0.647	3 0.0667	97	0.667	50	130	2	30
SHC	C28	n-Octacosane (C28)	0.645	3 0.0667	97	0.667	50	130	2	30
SHC	C30	n-Triacontane (C30)	0.656	3 0.0667	98	0.667	50	130	2	30
SHC	C36	n-Hexatriacontane (C36)	0.605	0.0667	91	0.667	50	130	2	30
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	9.58	2.20						

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Pro	ojeo	t Nar	ne:	Cardno	ERI	- Former	XOM .	Jalk F	ee P	roperty

Project Number: 850.0087.000

,	Analytes	Result	SSRL Result	SSRL RPD
	Reporting Limit	2.68	2.65	
	Dilution	1	1	
	Final Volume	2	2	
	Units	mg/Kg	mg/Kg	
	File ID	e28258.D	e28260.D	
	% Solid	81.04	81.04	
	Sample Size (wet)	30.41	30.78	
	Date Analyzed	10/16/2012	10/16/2012	
	Date Prepped	10/10/2012	10/10/2012	
	Date Received	10/02/2012	10/02/2012	
	Date Collected	09/28/2012	09/28/2012	
	Batch ID	TS101012B01	TS101012B01	
	Reference Method	SHC	SHC	
	Matrix	Soil	Soil	
	Lab ID	1210010-01	1210010-01D	
	Client ID	S-25-B19	S-25-B19	
	Client ID	S-25-B19	S-25-B19	

Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD L
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	0.558 JB	2.68	0.602 JB	2.65	8	30
		O						
		Surrogates (% Recovery)	00		00			
		ortho-Terphenyl	93		92			
		d50-Tetracosane	89		87			

Client ID	Alaska North Slope Crude
Lab ID	TW090712ANS01
Matrix	Oil
Reference Method	SHC
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	09/05/2012
Sample Size (wet)	0.10058
% Solid	100.00
File ID	E27116.D
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	3280

Class Abbrev Analytes
SHC TPH Total Petroleum Hydrocarbons (C9-C44)

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

Project Name: Cardno ERI - Former XOM Jalk Fee Property

Project Number:	850.0087.000
-----------------	--------------

Client ID	S-25-B19
Lab ID	1210010-01
Matrix	Soil
Reference Method	SHC
Batch ID	TS101012B01
Date Collected	09/28/2012
Date Received	10/02/2012
Date Prepped	10/10/2012
Date Analyzed	10/16/2012
Sample Size (wet)	30.41
% Solid	81.04
File ID	e28258.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	2.68

Class	Abbrev	Analytes	Result		SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	0.558 J	В	2.68

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- U: The analyte was analyzed for but not detected at the sample specific level reported. B: Found in associated blank as well as sample. J: Estimated value, below quantitation limit.

- E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable
- D: Secondary Dilution Performed D1: Tertiary Dilution Performed

- D1: Iertrary Dilution Performed

 3: Value outside of QC Limits,

 5: Surrogate value outside of acceptable range.

 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

 G: Matrix Interference.
- G: Matrix Interference.
 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.
 I: Due to interference, the lower value is reported.
 N: Spike recovery outside control limits.
 E: Estimated due to Interference (Metals)
 I: Duplicate outside control limits.
 P: Spike compound. (Metals)
 J: Below CRDL, Project DL, or RL but greater than or equal to MDL
 C: Sample concentration is > 4 times the spike level, recovery limits do not apply. (Metals)
 S: Spike Compound. (Organics)
 S: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)
 T: Tentatively identified corexit compound.
 C: Co-elution.
 Z: Result not surrogate corrected.
 DL: Surrogate result diluted out of sample.

Client ID	Method Blank
Lab ID	TS082212B15
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS082212B15
Date Collected	N/A
Date Received	N/A
Date Prepped	08/22/2012
Date Analyzed	09/26/2012
Sample Size (wet)	20
% Solid	100.00
File ID	A90008580.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	1.00

		Reporting Limit	1.00		
Class	Abbrev	Analytes	Result		SSRL
2	D0	cis/trans-Decalin	0.215	J	1.00
2	D1	C1-Decalins		U	1.00
2	D2	C2-Decalins		U	1.00
2	D3	C3-Decalins		U	1.00
2	D4	C4-Decalins		U	1.00
2	BT0	Benzothiophene		U	1.00
2	BT1	C1-Benzo(b)thiophenes		Ü	1.00
2	BT2	C2-Benzo(b)thiophenes		Ü	1.00
2	BT3	C3-Benzo(b)thiophenes		U	1.00
2	BT4	C4-Benzo(b)thiophenes		Ü	1.00
2	N0	Naphthalene	0.0804	Ĵ	1.00
2	N1	C1-Naphthalenes	0.109	j	1.00
2	N2	C2-Naphthalenes		Ū	1.00
2	N3	C3-Naphthalenes		Ū	1.00
2	N4	C4-Naphthalenes		Ü	1.00
2	В	Biphenyl	0.0394		1.00
3	DF	Dibenzofuran	0.0004	Ŭ	1.00
3	AY	Acenaphthylene		U	1.00
3	AE	Acenaphthene		Ü	1.00
3	F0	Fluorene	0.0404		1.00
3	F1	C1-Fluorenes	0.0404	Ü	1.00
3	F2	C2-Fluorenes		U	1.00
3	F3	C3-Fluorenes		U	1.00
3	A0	Anthracene		U	1.00
3	P0	Phenanthrene	0.0486		1.00
3	PA1	C1-Phenanthrenes/Anthracenes	0.0486	U	1.00
3	PA1	C2-Phenanthrenes/Anthracenes C2-Phenanthrenes/Anthracenes		U	1.00
3	PA3	C3-Phenanthrenes/Anthracenes		U	1.00
3	PA4	C4-Phenanthrenes/Anthracenes		U	1.00
3	RET DBT0	Retene		U	1.00
3		Dibenzothiophene	0.0211		
3	DBT1	C1-Dibenzothiophenes		U	1.00
	DBT2	C2-Dibenzothiophenes		U	
3	DBT3	C3-Dibenzothiophenes		U	1.00
3	DBT4	C4-Dibenzothiophenes		U	1.00
4	BF	Benzo(b)fluorene		U	1.00
4	FL0	Fluoranthene	0.0226		1.00
4	PY0	Pyrene	0.0193		1.00
4	FP1	C1-Fluoranthenes/Pyrenes		U	1.00
4	FP2	C2-Fluoranthenes/Pyrenes		U	1.00
4	FP3	C3-Fluoranthenes/Pyrenes		U	1.00
4	FP4	C4-Fluoranthenes/Pyrenes		U	1.00
4	NBT0	Naphthobenzothiophenes		U	1.00
4	NBT1	C1-Naphthobenzothiophenes		U	1.00
4	NBT2	C2-Naphthobenzothiophenes		U	1.00
4	NBT3	C3-Naphthobenzothiophenes		U	1.00
4	NBT4	C4-Naphthobenzothiophenes		U	1.00
4	BA0	Benz[a]anthracene		U	1.00
4	C0	Chrysene/Triphenylene		U	1.00
4	BC1	C1-Chrysenes		U	1.00
4	BC2	C2-Chrysenes		U	1.00
4	BC3	C3-Chrysenes		U	1.00
4	BC4	C4-Chrysenes		U	1.00
5	BBF	Benzo[b]fluoranthene		U	1.00
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene		U	1.00
5	BAF	Benzo[a]fluoranthene		U	1.00
5	BEP	Benzo[e]pyrene		U	1.00
5	BAP	Benzo[a]pyrene		U	1.00
5	PER	Perylene		Ū	1.00
6	IND	Indeno[1,2,3-cd]pyrene		Ū	1.00
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene		U	1.00
6	GHI	Benzo[g,h,i]perylene		Ü	1.00
-	CAR	Carbazole		U	1.00
	0,11	W 00 0 00 00 00 00		Ŭ	1.00

Client ID	Method Blank
Lab ID	TS082212B15
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS082212B15
Date Collected	N/A
Date Received	N/A
Date Prepped	08/22/2012
Date Analyzed	09/26/2012
Sample Size (wet)	20
% Solid	100.00
File ID	A90008580.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	1.00

Class	Abbrev	Analytes	Result	SSRI
3	4MDT	4-Methyldibenzothiophene	U	1.00
3	2MDT	2/3-Methyldibenzothiophene	U	
3	1MDT	1-Methyldibenzothiophene	U	
3	3MP	3-Methylphenanthrene	U	
3	2MP	2-Methylphenanthrene	U	
3	2MA	2-Methylanthracene	U	
3	9MP	9/4-Methylphenanthrene	u.	
3	1MP	1-Methylphenanthrene	u	
t23 t24	T4 T5	C23 Tricyclic Terpane	U	
t24 t25	T6	C24 Tricyclic Terpane	U	
te24	T6a	C25 Tricyclic Terpane	U	
	T6b	C24 Tetracyclic Terpane	U	
t26S t26R	T6c	C26 Tricyclic Terpane-22S C26 Tricyclic Terpane-22R	U	
128S	T7	C28 Tricyclic Terpane-22R C28 Tricyclic Terpane-22S	U	
t28R	T8		U	
t29S	T9	C28 Tricyclic Terpane-22R	U	
t29S t29R	T10	C29 Tricyclic Terpane-22S C29 Tricyclic Terpane-22R	U	
Ts	T10	18a-22,29,30-Trisnorneohopane-TS	U	
t30S	T11a	C30 Tricyclic Terpane-22S	U	
130S 130R	T11b	C30 Tricyclic Terpane-22S C30 Tricyclic Terpane-22R	U	
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	U	
BNH	T14a	17a/b,21b/a 28,30-Hisnorhopane	Ü	
25N	T14b	17a(H),21b(H)-25-Norhopane	U	
H29	T15	30-Norhopane	U	
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	Ü	
X	X	17a(H)-Diahopane	U	
M29	T17	30-Normoretane	U	
OL	T18	18a(H)&18b(H)-Oleananes	Ü	
H30	T19	Hopane	Ü	
M30	T20	Moretane	ŭ	
H31S	T21	30-Homohopane-22S	ŭ	
H31R	T22	30-Homohopane-22R	ŭ	
T22A	T22A	T22a-Gammacerane/C32-diahopane	ū	
H32S	T26	30,31-Bishomohopane-22S	ū	
H32R	T27	30.31-Bishomohopane-22R	ū	
H33R	T30	30,31-Trishomohopane-22S	ū	
H33S	T31	30,31-Trishomohopane-22R	Ü	
H34R	T32	Tetrakishomohopane-22S	Ü	1.00
H34S	T33	Tetrakishomohopane-22R	U	1.00
H35S	T34	Pentakishomohopane-22S	U	1.00
H35R	T35	Pentakishomohopane-22R	U	1.00
d27S	S4	13b(H),17a(H)-20S-Diacholestane	U	1.00
d27R	S5	13b(H),17a(H)-20R-Diacholestane	U	1.00
d28S	S8	13b,17a-20S-Methyldiacholestane	U	1.00
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	U	1.00
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	U	1.00
d29R	S18	Unknown Sterane (S18)	U	1.00
d29S	S19	13a,17b-20S-Ethyldiacholestane	U	1.00
aa28S	S20	14a,17a-20S-Methylcholestane	U	1.00
aa28R	S24	14a,17a-20R-Methylcholestane	U	
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	U	
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	U	
bb27R	S14	14b(H),17b(H)-20R-Cholestane	U	
bb27S	S15	14b(H),17b(H)-20S-Cholestane	U	
bb28R	S22	14b,17b-20R-Methylcholestane	U	
bb28S	S23	14b,17b-20S-Methylcholestane	U	
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	U	
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	U	
RC26/SC27TA		C26,20R-+C27,20S- triaromatic steroid	U	
SC28TA	SC28TA	C28,20S-triaromatic steroid	U	
RC27TA	RC27TA	C27,20R-triaromatic steroid	U	
RC28TA	RC28TA	C28,20R-triaromatic steroid	U	1.00

 Surrogates (% Recovery)
 88

 Naphthalene-db
 88

 Phenanthrene-d10
 108

 Benzo[alpyrene-d12
 1115

 5B(H)Cholane
 N/A

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000						
		Client ID	Laboratory Control Sample					
		Lab ID	TS082212LCS06					
		Matrix Reference Method	Soil Modified 8270D					
		Batch ID	TS082212B15					
		Date Collected Date Received	N/A					
		Date Received Date Prepped	N/A 08/22/2012					
		Date Analyzed	09/26/2012					
		Sample Size (wet) % Solid	20 100.00					
		76 SOIID File ID	A90008581.D					
		Units	μg/Kg					
		Final Volume Dilution	2					
		Reporting Limit	1.00					
Class	Abbrev	Analytes	Result	cepi	e/ Bee	Spike Conc. Lo	uner Limit Her	or Limit
2	D0	cis/trans-Decalin	U	1.00	70 Net	apine Curic. Li	wei Lillit Opt	iei Lillit
2	D1	C1-Decalins	U					
2	D2 D3	C2-Decalins C3-Decalins	U					
2	D4	C4-Decalins	ŭ					
2	BT0	Benzothiophene	U	1.00				
2	BT1 BT2	C1-Benzo(b)thiophenes	U	1.00				
2	BT3	C2-Benzo(b)thiophenes C3-Benzo(b)thiophenes	U					
2	BT4	C4-Benzo(b)thiophenes	U	1.00				
2	N0	Naphthalene	38.2 S		76	50.0	50	130
2	N1 N2	C1-Naphthalenes C2-Naphthalenes	U					
2	N3	C3-Naphthalenes	ŭ					
2	N4	C4-Naphthalenes	U					
2	B DF	Biphenyl Dibenzofuran	U					
3	AY	Acenaphthylene	43.0 S		86	50.0	50	130
3	AE	Acenaphthene	43.5 S	1.00	87	50.0	50	130
3	F0 F1	Fluorene C1-Fluorenes	45.5 S		91	50.0	50	130
3	F2	C2-Fluorenes	ŭ					
3	F3	C3-Fluorenes	U	1.00				
3	A0 P0	Anthracene Phenanthrene	37.6 S 47.7 S		75 95	50.0 50.0	50 50	130 130
3	PA1	C1-Phenanthrenes/Anthracenes	47.7 S		90	50.0	50	130
3	PA2	C2-Phenanthrenes/Anthracenes	U	1.00				
3	PA3 PA4	C3-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes	U					
3	RET	C4-Phenanthrenes/Anthracenes Retene						
3	DBT0	Dibenzothiophene	ű	1.00				
3	DBT1	C1-Dibenzothiophenes	U					
3	DBT2 DBT3	C2-Dibenzothiophenes C3-Dibenzothiophenes	U					
3	DBT4	C4-Dibenzothiophenes	ū					
4	BF	Benzo(b)fluorene	U					
4	FL0 PY0	Fluoranthene Pyrene	50.7 S 53.3 S		101	50.0 50.0	50 50	130
4	FP1	C1-Fluoranthenes/Pyrenes	U		101	50.0	50	100
4	FP2	C2-Fluoranthenes/Pyrenes	U					
4	FP3 FP4	C3-Fluoranthenes/Pyrenes C4-Fluoranthenes/Pyrenes	U					
4	NBT0	Naphthobenzothiophenes	ŭ					
4	NBT1	C1-Naphthobenzothiophenes	U					
4	NBT2 NBT3	C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes	U					
4	NBT4	C4-Naphthobenzothiophenes	ŭ					
4	BA0	Benz[a]anthracene	46.3 S		93	50.0	50	130
4	C0 BC1	Chrysene/Triphenylene C1-Chrysenes	46.5 S		93	50.0	50	130
4	BC2	C2-Chrysenes	U					
4	BC3	C3-Chrysenes	Ú	1.00				
4	BC4	C4-Chrysenes	U			50.0	50	400
5	BBF BJKF	Benzo[b]fluoranthene Benzo[j]fluoranthene/Benzo[k]fluoranthene	48.2 S 51.5 S		96 103	50.0 50.0	50 50	130 130
5	BAF	Benzo[a]fluoranthene	Ü	1.00				
5	BEP	Benzo[e]pyrene	U			50.0	50	400
5	BAP PER	Benzo(a)pyrene Perviene	48.1 S		96	50.0	50	130
6	IND	Indeno[1,2,3-cd]pyrene	50.3 S	1.00	101	50.0	50	130
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	48.9 S		98	50.0	50	130
6	GHI CAR	Benzo(g,h,i)perylene Carbazole	47.4 S		95	50.0	50	130
		****	· ·	1.00				

		Project Name: Cardno ERI - Former XOM Jalk Fee Property			
		Project Number: 850.0087.000			
		Client ID	Laboratory Control Sample		
		Lab ID Matrix	TS082212LCS06 Soil		
		Matrix Reference Method	Modified 8270D		
		Batch ID	TS082212B15		
		Date Collected	N/A N/A		
		Date Received Date Prepped	N/A 08/22/2012		
		Date Analyzed	09/26/2012		
		Sample Size (wet)	20		
		% Solid File ID	100.00 A90008581 D		
		Units	µg/Кg		
		Final Volume	2		
		Dilution Reporting Limit	1		
Class	Abbrev	Analytes	Result	SSRL % Rec	Spike Conc. Lower Limit Upper Limit
3	4MDT 2MDT	4-Methyldibenzothiophene 2/3-Methyldibenzothiophene	U	1.00	
3	1MDT	1-Methyldibenzothiophene	u	1.00	
3	3MP	3-Methylphenanthrene	U		
3	2MP 2MA	2-Methylphenanthrene 2-Methylanthracene	u		
3	9MP	9/4-Methylphenanthrene	Ü		
3	1MP	1-Methylphenanthrene	U		
123 124	T4 T5	C23 Tricyclic Terpane	U		
125	T6	C24 Tricyclic Terpane C25 Tricyclic Terpane	ü		
te24	T6a	C24 Tetracyclic Terpane	Ü		
126S 126R	T6b T6c	C26 Tricyclic Terpane-22S C26 Tricyclic Terpane-22R	u		
120K 128S	T7	C26 Tricyclic Terpane-22R C28 Tricyclic Terpane-22S	ň		
128R	T8	C28 Tricyclic Terpane-22R	ū		
129S	T9	C29 Tricyclic Terpane-22S	u		
t29R Ts	T10 T11	C29 Tricyclic Terpane-22R 18a-22.29.30-Trisnorneohopane-TS	u	1.00	
t30S	T11a	C30 Tricyclic Terpane-22S	U	1.00	
t30R	T11b	C30 Tricyclic Terpane-22R	u		
Tm BNH	T12 T14a	17a(H)-22,29,30-Trisnorhopane-TM 17a/b,21b/a 28,30-Bisnorhopane	U		
25N	T14b	17a(H),21b(H)-25-Norhopane	Ü	1.00	
H29	T15	30-Norhopane	U	1.00	
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	U		
X M29	X T17	17a(H)-Diahopane 30-Normoretane	U		
OL	T18	18a(H)&18b(H)-Oleananes	Ü	1.00	
H30	T19	Hopane	u	1.00	
M30 H31S	T20 T21	Moretane 30-Homohopane-22S	U		
H31R	T22	30-Homohopane-22R	Ü	1.00	
T22A	T22A	T22a-Gammacerane/C32-diahopane	U	1.00	
H32S H32R	T26 T27	30,31-Bishomohopane-22S 30,31-Bishomohopane-22R	U		
H33R	T30	30,31-Trishomohopane-22S	ŭ		
H33S	T31	30,31-Trishomohopane-22R	U		
H34R H34S	T32 T33	Tetrakishomohopane-22S Tetrakishomohopane-22R	U		
H35S	T34	Pentakishomohopane-22S	Ü		
H35R	T35	Pentakishomohopane-22R	U	1.00	
d27S	S4	13b(H),17a(H)-20S-Diacholestane	U		
d27R d28S	S5 S8	13b(H),17a(H)-20R-Diacholestane 13b,17a-20S-Methyldiacholestane	u		
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	U	1.00	
aa27R d29R	S17 S18	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	U		
d29R d29S	S18 S19	Unknown Sterane (S18) 13a,17b-20S-Ethyldiacholestane	U		
aa28S	S20	14a,17a-20S-Methylcholestane	Ü	1.00	
aa28R	S24	14a,17a-20R-Methylcholestane	U		
aa29S aa29R	S25 S28	14a(H),17a(H)-20S-Ethylcholestane 14a(H),17a(H)-20R-Ethylcholestane	u		
bb27R	S14	14b(H),17b(H)-20R-Cholestane	Ü		
bb27S	S15	14b(H),17b(H)-20S-Cholestane	u		
bb28R bb28S	S22 S23	14b,17b-20R-Methylcholestane 14b,17b-20S-Methylcholestane	u		
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	Ü		
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	Ü		
RC26/SC27TA SC28TA	RC26/SC27TA SC28TA	C26,20R-+C27,20S- triaromatic steroid C28,20S-triaromatic steroid	u	1.00	
RC27TA	RC27TA	C27,20R-triaromatic steroid	u	1.00	
RC28TA	RC28TA	C28,20R-triaromatic steroid	ū		
		Surrogates (% Recovery) Naphthalene-d8	86		
		Naphthalene-d8 Phenanthrene-d10	108		
		Benzo[a]pyrene-d12	108		
		5B(H)Cholane	N/A		

Project Name:	Cardno	ERI-	Former	XOM	Jalk	Fee	Property

Client ID	Laboratory Control Sample Dup
Lab ID	TS082212LCSD06
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS082212B15
Date Collected	N/A
Date Received	N/A
Date Prepped	08/22/2012
Date Analyzed	09/26/2012
Sample Size (wet)	20
% Solid	100.00
File ID	A90008582.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	1.00

		Reporting Limit		.00							
Class	Abbrev	Analytes	Pe	sult	SSR	1 % Pec	Spike Conc.	Lower Limit	Unner Limit	PPD	RPD Limit
2	D0	cis/trans-Decalin	r.c		J 1.0		Spike Curc.	LOWER LITTLE	Opper Linit	KFD	KFD DIIII
2	D1	C1-Decalins			J 1.0						
2	D2	C2-Decalins			J 1.0						
2	D3	C3-Decalins			J 1.0						
2	D4	C4-Decalins			J 1.0						
2	BT0	Benzothiophene			J 1.0						
2	BT1	C1-Benzo(b)thiophenes			J 1.0						
2	BT2	C2-Benzo(b)thiophenes			J 1.0						
2	BT3				J 1.0						
2	BT4	C3-Benzo(b)thiophenes C4-Benzo(b)thiophenes			J 1.0						
2	NO NO	Naphthalene		8.1 3			50.0	50	130	0	30
2	N1	C1-Naphthalenes			J 1.0		30.0	30	130	0	30
	N2										
2		C2-Naphthalenes									
2	N3	C3-Naphthalenes			J 1.0						
2	N4	C4-Naphthalenes			J 1.0						
2	В	Biphenyl			J 1.0						
3	DF	Dibenzofuran			J 1.0						
3	AY	Acenaphthylene		2.7			50.0	50	130	1	30
3	AE	Acenaphthene		3.4 \$			50.0	50	130	0	30
3	F0	Fluorene		5.6			50.0	50	130	0	30
3	F1	C1-Fluorenes			J 1.0						
3	F2	C2-Fluorenes			J 1.0						
3	F3	C3-Fluorenes			J 1.0						
3	A0	Anthracene		7.7	3 1.0	75	50.0	50	130	0	30
3	P0	Phenanthrene		8.2 \$	3 1.0	96	50.0	50	130	1	30
3	PA1	C1-Phenanthrenes/Anthracenes		ı	J 1.0	1					
3	PA2	C2-Phenanthrenes/Anthracenes		ı	J 1.0	1					
3	PA3	C3-Phenanthrenes/Anthracenes			J 1.0	1					
3	PA4	C4-Phenanthrenes/Anthracenes		ı	J 1.0	1					
3	RET	Retene			J 1.0	1					
3	DBT0	Dibenzothiophene			J 1.0	1					
3	DBT1	C1-Dibenzothiophenes		- 1	J 1.0	1					
3	DBT2	C2-Dibenzothiophenes			J 1.0						
3	DBT3	C3-Dibenzothiophenes			J 1.0						
3	DBT4	C4-Dibenzothiophenes			J 1.0						
4	BF BF	Benzo(b)fluorene			J 1.0						
4	FLO	Fluoranthene		1.3			50.0	50	130	1	30
4	PY0	Pyrene		3.7			50.0	50	130	1	30
4	FP1	C1-Fluoranthenes/Pyrenes			J 1.0		50.0		100		50
4	FP2	C2-Fluoranthenes/Pyrenes			J 1.0						
4	FP3	C3-Fluoranthenes/Pyrenes			J 1.0						
4	FP4	C4-Fluoranthenes/Pyrenes			J 1.0						
4											
	NBT0	Naphthobenzothiophenes			J 1.0						
4	NBT1	C1-Naphthobenzothiophenes			J 1.0						
	NBT2	C2-Naphthobenzothiophenes			J 1.0						
4	NBT3	C3-Naphthobenzothiophenes			J 1.0						
4	NBT4	C4-Naphthobenzothiophenes			J 1.0						
4	BA0	Benz[a]anthracene		5.9			50.0	50	130	1	30
4	C0	Chrysene/Triphenylene		6.4			50.0	50	130	0	30
4	BC1	C1-Chrysenes			J 1.0						
4	BC2	C2-Chrysenes		ı							
4	BC3	C3-Chrysenes			J 1.0						
4	BC4	C4-Chrysenes			J 1.0						
5	BBF	Benzo[b]fluoranthene		7.8			50.0	50	130	1	30
5	BJKF	Benzo(j)fluoranthene/Benzo(k)fluoranthene		1.1 3	3 1.0	102	50.0	50	130	1	30
5	BAF	Benzo(a)fluoranthene		t	J 1.0	1					
5	BEP	Benzo[e]pyrene		ı	J 1.0						
5	BAP	Benzo(a)pyrene		8.0			50.0	50	130	0	30
5	PER	Perylene			J 1.0			-		-	
6	IND	Indeno[1,2,3-cd]pyrene		7.2			50.0	50	130	6	30
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene		7.7			50.0	50	130	2	30
6	GHI	Benzo[q,h,i]perylene		6.4			50.0	50	130	2	30
	CAR	Carbazole			J 1.0		30.0	30	.50	-	50
		W 400 W 400 W 400 W		,	- 1.0						

		Project Name: Cardno ERI - Former XOM Jalk Fee Property								
		Project Number: 850.0087.000								
		Client ID	Laboratory Control Sample Dup							
		Lab ID	TS082212LCSD06							
		Matrix	Soil Modified 8270D							
		Reference Method Batch ID	Modified 82/0D TS082212B15							
		Date Collected	N/A							
		Date Received	N/A							
		Date Prepped Date Analyzed	08/22/2012 09/26/2012							
		Sample Size (wet)	09/20/2012 20							
		% Solid	100.00							
		File ID	A90008582.D							
		Units Final Volume	μg/Kg 2							
		Dilution	1							
		Reporting Limit	1.00							
Class	Abbrev	Analytes	Result		SSRL	% Per	Snike Conc	Lower Limi	t Upper Limit	RPD RPD Limit
3	4MDT	4-Methyldibenzothiophene	Result		1.00	76 REC	Spike Curc.	LOWEI LIIII	COPPEI LIIIIC	KFD KFD BIIII
3	2MDT	2/3-Methyldibenzothiophene			1.00					
3	1MDT 3MP	1-Methyldibenzothiophene 3-Methylphenanthrene			1.00					
3	2MP	2-Methylphenanthrene			1.00					
3	2MA	2-Methylanthracene		U	1.00					
3	9MP	9/4-Methylphenanthrene			1.00					
3 t23	1MP T4	1-Methylphenanthrene C23 Tricyclic Terpane			1.00					
124	T5	C24 Tricyclic Terpane C24 Tricyclic Terpane			1.00					
t25	T6	C25 Tricyclic Terpane			1.00					
te24 t26S	T6a T6b	C24 Tetracyclic Terpane C26 Tricyclic Terpane-22S			1.00					
126S 126R	T6c	C26 Tricyclic Terpane-22S C26 Tricyclic Terpane-22R			1.00					
t28S	T7	C28 Tricyclic Terpane-22S		U	1.00					
t28R	T8	C28 Tricyclic Terpane-22R			1.00					
129S 129R	T9 T10	C29 Tricyclic Terpane-22S C29 Tricyclic Terpane-22R			1.00					
Ts.	T11	18a-22,29,30-Trisnomeohopane-TS			1.00					
130S	T11a	C30 Tricyclic Terpane-22S			1.00					
130R	T11b	C30 Tricyclic Terpane-22R			1.00					
Tm BNH	T12 T14a	17a(H)-22,29,30-Trisnorhopane-TM 17a/b,21b/a 28,30-Bisnorhopane			1.00					
25N	T14b	17a(H),21b(H)-25-Norhopane			1.00					
H29	T15	30-Norhopane			1.00					
C29Ts X	T16 X	18a(H)-30-Norneohopane-C29Ts 17a(H)-Diahopane			1.00					
M29	Ť17	30-Normoretane		Ü	1.00					
OL	T18	18a(H)&18b(H)-Oleananes		U	1.00					
H30	T19	Hopane Moretane			1.00					
M30 H31S	T20 T21	Moretane 30-Homohopane-22S			1.00					
H31R	T22	30-Homohopane-22R		U	1.00					
T22A	T22A	T22a-Gammacerane/C32-diahopane			1.00					
H32S H32R	T26 T27	30,31-Bishomohopane-22S 30,31-Bishomohopane-22R			1.00					
H33R	T30	30,31-Trishomohopane-22S		Ü	1.00					
H33S	T31	30,31-Trishomohopane-22R		U	1.00					
H34R H34S	T32 T33	Tetrakishomohopane-22S			1.00					
H35S	T34	Tetrakishomohopane-22R Pentakishomohopane-22S			1.00					
H35R	T35	Pentakishomohopane-22R			1.00					
d27S	S4	13b(H),17a(H)-20S-Diacholestane			1.00					
d27R d28S	S5 S8	13b(H),17a(H)-20R-Diacholestane 13b,17a-20S-Methyldiacholestane			1.00					
8827S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)			1.00					
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)			1.00					
d29R d29S	S18 S19	Unknown Sterane (S18)			1.00					
aa28S	S20	13a,17b-20S-Ethyldiacholestane 14a,17a-20S-Methylcholestane			1.00					
aa28R	S24	14a,17a-20R-Methylcholestane		U	1.00					
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane			1.00					
aa29R bb27R	S28 S14	14a(H),17a(H)-20R-Ethylcholestane 14b(H),17b(H)-20R-Cholestane			1.00					
bb27S	S15	14b(H),17b(H)-20S-Cholestane		U	1.00					
bb28R	S22	14b,17b-20R-Methylcholestane		U	1.00					
bb28S bb29R	S23 S26	14b,17b-20S-Methylcholestane			1.00					
bb29K bb29S	S26 S27	14b(H),17b(H)-20R-Ethylcholestane 14b(H),17b(H)-20S-Ethylcholestane			1.00					
RC26/SC27TA	RC26/SC27TA	C26,20R-+C27,20S- triaromatic steroid		U	1.00					
SC28TA	SC28TA	C28,20S-triaromatic steroid			1.00					
RC27TA RC28TA	RC27TA RC28TA	C27,20R-triaromatic steroid C28,20R-triaromatic steroid			1.00					

		Project Name: Cardno ERI - Former XOM Jalk Fee Property							
		Project Number: 850.0087.000 Project Number: 850.0087.000							
		Client ID	S-80-B10		S-80-B10				
		Lab ID	1208037-02		1208037-02D				
		Matrix Reference Method	Soil Modified 8270D		Soil Modified 8270D				
		Batch ID	TS082212B15		TS082212B15				
		Date Collected	08/14/2012		08/14/2012				
		Date Received	08/21/2012 08/22/2012		08/21/2012 08/22/2012				
		Date Prepped Date Analyzed	08/22/2012		09/22/2012				
		Sample Size (wet)	20.08		20.04				
		% Solid	96.58		96.58				
		File ID Units	A90008584.D		A90008585.D				
		Final Volume	μg/Kg 2		μg/Kg 2				
		Dilution	1		1				
		Reporting Limit	1.03		1.03				
Class 2	Abbrev D0	Analytes cis/trans-Decalin	Result 45.1	SSRL 1.03	Result 38.5	SSRL 1.03	RPD 16	RPD Lim	nit
2	D0	C1-Decalins	208	1.03	36.5 187	1.03	11	30	
2	D2	C2-Decalins	298	1.03	283	1.03	5	30	
2	D3	C3-Decalins	186	1.03	184	1.03	1	30	
2	D4 BT0	C4-Decalins	182	1.03	190	1.03	4	30	
2	BT1	Benzothiophene C1-Benzo(b)thiophenes	8.06	1.03	8.48	1.03	5	30 30	N/A
2	BT2	C2-Benzo(b)thiophenes	12.7	1.03	12.9	1.03	2	30	
2	BT3	C3-Benzo(b)thiophenes	27.7	1.03	28.2	1.03	1	30	
2	BT4	C4-Benzo(b)thiophenes	23.3	1.03	25.2	1.03	8	30	
2	N0 N1	Naphthalene C1-Naphthalenes	10.0 221	1.03	11.2 218	1.03	11	30 30	
2	N2	C2-Naphthalenes	491	1.03	498	1.03	1	30	
2	N3	C3-Naphthalenes	360	1.03	372	1.03	3	30	
2	N4	C4-Naphthalenes	199	1.03	206	1.03	3	30	
2	В	Biphenyl	1.95	1.03	3.14	1.03	47	30	п
3	DF AY	Dibenzofuran Acenaphthylene	4.43 2.04	1.03	4.42 2.23	1.03	9	30 30	
3	AE AE	Acenaphthene	8.77	1.03	9.09	1.03	4	30	
3	F0	Fluorene	29.8	1.03	30.6	1.03	3	30	
3	F1	C1-Fluorenes	71.0	1.03	72.8	1.03	3	30	
3	F2	C2-Fluorenes	95.9	1.03	99.7	1.03	4	30	
3	F3 A0	C3-Fluorenes Anthracene	77.4 U	1.03	80.1 U	1.03	4	30 30	N/A
3	P0	Phenanthrene	55.0	1.03	56.9	1.03	3	30	IN/A
3	PA1	C1-Phenanthrenes/Anthracenes	132	1.03	137	1.03	4	30	
3	PA2	C2-Phenanthrenes/Anthracenes	149	1.03	152	1.03	2	30	
3	PA3 PA4	C3-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes	106 42.5	1.03	107	1.03	2	30 30	
3	RET	Retene	42.5 U		44.4 U	1.03	4	30	N/A
3	DBT0	Dibenzothiophene	9.07	1.03	9.29	1.03	2	30	
3	DBT1	C1-Dibenzothiophenes	31.4	1.03	32.1	1.03	2	30	
3	DBT2	C2-Dibenzothiophenes	44.4	1.03	45.3	1.03	2	30	
3	DBT3 DBT4	C3-Dibenzothiophenes C4-Dibenzothiophenes	35.5 16.5	1.03	37.2 16.3	1.03	5 1	30 30	
4	BF BF	Benzo(b)fluorene	3.35	1.03	3.45	1.03	3	30	
4	FL0	Fluoranthene	2.08	1.03	2.08	1.03	0	30	
4	PY0	Pyrene	4.90	1.03	5.11	1.03	4	30	
4	FP1 FP2	C1-Fluoranthenes/Pyrenes C2-Fluoranthenes/Pyrenes	21.2	1.03	21.5 32.1	1.03	2	30 30	
4	FP3	C3-Fluoranthenes/Pyrenes	34.1	1.03	35.0	1.03	2	30	
4	FP4	C4-Fluoranthenes/Pyrenes	29.1	1.03	29.3	1.03	1	30	
4	NBT0	Naphthobenzothiophenes	2.88	1.03	2.94	1.03	2	30	
4	NBT1	C1-Naphthobenzothiophenes	9.57	1.03	9.66	1.03	1	30	
4	NBT2 NBT3	C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes	14.4 11.7	1.03	13.9 11.1	1.03	3 5	30 30	
4	NBT4	C4-Naphthobenzothiophenes	11.8	1.03	12.0	1.03	2	30	
4	BA0	Benz[a]anthracene	1.51	1.03	1.49	1.03	1	30	
4	C0	Chrysene/Triphenylene	6.27	1.03	6.46	1.03	3	30	
4	BC1 BC2	C1-Chrysenes	17.0 24.0	1.03	17.6 23.8	1.03	3	30 30	
4	BC3	C2-Chrysenes C3-Chrysenes	31.2	1.03	23.8 31.3	1.03	0	30	
4	BC4	C4-Chrysenes	18.4	1.03	18.3	1.03	0	30	
5	BBF	Benzo[b]fluoranthene	1.00 J	1.03	1.04	1.03	4	30	
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	U		U			30	N/A
5 5	BAF BEP	Benzo[a]fluoranthene Benzo[e]pyrene	1.28	1.03	1.25	1.03	2	30 30	N/A
5	BAP	Benzo[a]pyrene	0.493 J		0.499 J	1.03	1	30	
5	PER	Perylene	6.80	1.03	7.01	1.03	3	30	
6	IND	Indeno[1,2,3-cd]pyrene	0.124 J		0.113 J	1.03	10	30	
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	0.237 J		0.231 J	1.03	3	30	
6	GHI CAR	Benzo[g,h,i]perylene Carhazole	0.335 J 1.58	1.03	0.368 J 1.71	1.03	9	30 30	
			1.50	1.00	1	1.00	0	00	

		Project Names Contra EDI. France VOM Juli For December							
		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000							
		Client ID	S-80-B10		S-80-B10				
		Lab ID Matrix	1208037-02 Soil		1208037-02D Soil				
		Reference Method	Modified 8270D		Modified 8270D				
		Batch ID Date Collected	TS082212B15 08/14/2012		TS082212B15 08/14/2012				
		Date Received	08/21/2012		08/21/2012				
		Date Prepped Date Analyzed	08/22/2012 09/26/2012		08/22/2012 09/27/2012				
		Sample Size (wet)	20.08		20.04				
		% Solid	96.58		96.58				
		File ID Units	A90008584.D μg/Kg		A90008585.D μg/Kg				
		Final Volume	2		2				
		Dilution Reporting Limit	1 1.03		1 1.03				
Class 3	Abbrev 4MDT	Analytes 4-Methyldibenzothiophene	Result 14.8	1.03	Result 14.9	1.03	RPD 1	RPD Limit	
3	2MDT	2/3-Methyldibenzothiophene	11.8	1.03	12.2	1.03	3	30	
3	1MDT 3MP	1-Methyldibenzothiophene 3-Methylphenanthrene	4.07 37.9	1.03	4.26 38.4	1.03	5 1	30 30	
3	2MP	2-Methylphenanthrene	41.8	1.03	42.4	1.03	1	30	
3	2MA	2-Methylanthracene	2.56	1.03	2.65	1.03	4	30	
3	9MP 1MP	9/4-Methylphenanthrene 1-Methylphenanthrene	27.7 20.8	1.03	28.8 21.2	1.03	4	30 30	
t23	T4	C23 Tricyclic Terpane	12.9	1.03	12.7	1.03	1	30	
t24	T5	C24 Tricyclic Terpane	10.0	1.03	10.6	1.03	5	30	
t25 te24	T6 T6a	C25 Tricyclic Terpane C24 Tetracyclic Terpane	10.9 1.04	1.03	10.8 1.16	1.03	1	30 30	
t26S	T6b	C26 Tricyclic Terpane-22S	5.33	1.03	5.34	1.03	0	30	
t26R t28S	T6c T7	C26 Tricyclic Terpane-22R C28 Tricyclic Terpane-22S	4.81 6.76	1.03	5.04 7.03	1.03	5 4	30 30	
t28R	T8	C28 Tricyclic Terpane-22R	7.15	1.03	6.90	1.03	4	30	
t29S	T9	C29 Tricyclic Terpane-22S	7.80	1.03	8.16	1.03	5	30	
t29R Ts	T10 T11	C29 Tricyclic Terpane-22R 18a-22,29,30-Trisnorneohopane-TS	7.71 4.03	1.03	7.74 4.41	1.03	9	30 30	
t30S	T11a	C30 Tricyclic Terpane-22S	7.68		8.25 0		7	30	
t30R Tm	T11b T12	C30 Tricyclic Terpane-22R 17a(H)-22,29,30-Trisnorhopane-TM	6.37 (5.66	G 1.03	6.42 G 5.81	1.03	1	30 30	
BNH	112 T14a	17a(H)-22,29,30-1 risnomopane-1 M 17a/b,21b/a 28,30-Bisnorhopane	5.66	1.03	5.81	1.03	0	30	
25N	T14b	17a(H),21b(H)-25-Norhopane	5.14	1.03	4.84	1.03	6	30	
H29 C29Ts	T15 T16	30-Norhopane 18a(H)-30-Norneohopane-C29Ts	21.1 4.06	1.03	20.8 4.74	1.03	1 15	30 30	
X	X	17a(H)-Diahopane		U 1.03	4.74		13	30	N/A
M29	T17	30-Normoretane	6.54	1.03	5.69	1.03	14	30	
OL H30	T18 T19	18a(H)&18b(H)-Oleananes Hopane	13.1 47.3	1.03	12.2 48.0	1.03	7	30 30	
M30	T20	Moretane	7.51	1.03	7.33	1.03	2	30	
H31S H31R	T21 T22	30-Homohopane-22S	12.6 16.8 (1.03 G 1.03	11.7 16.0 G	1.03	8 5	30 30	
T22A	T22A	30-Homohopane-22R T22a-Gammacerane/C32-diahopane	4.39	1.03	3.46	1.03	24	30	
H32S	T26	30,31-Bishomohopane-22S	8.41	1.03	8.47	1.03	1	30	
H32R H33R	T27 T30	30,31-Bishomohopane-22R 30,31-Trishomohopane-22S	7.22 6.98	1.03	6.52 7.49	1.03	10 7	30 30	
H33S	T31	30,31-Trishomohopane-22R	5.39	1.03	5.28	1.03	2	30	
H34R	T32	Tetrakishomohopane-22S	4.55	1.03	3.94	1.03	14	30	
H34S H35S	T33 T34	Tetrakishomohopane-22R Pentakishomohopane-22S	2.84 3.21	1.03	3.05 3.17	1.03	7	30 30	
H35R	T35	Pentakishomohopane-22R	5.89	G 1.03	6.25	1.03	6	30	
d27S d27R	S4 S5	13b(H),17a(H)-20S-Diacholestane 13b(H),17a(H)-20R-Diacholestane	13.8 6.62	1.03	14.2 7.24	1.03	3	30 30	
d28S	S8	13b,17a-20S-Methyldiacholestane	13.5	1.03	13.9	1.03	3	30	
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	44.7	1.03	44.1	1.03	1	30	
aa27R d29R	S17 S18	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) Unknown Sterane (S18)	74.1 3.07	1.03	74.3 3.11	1.03	0	30 30	
d29S	S19	13a,17b-20S-Ethyldiacholestane	1.84	1.03	1.82	1.03	1	30	
aa28S aa28R	S20 S24	14a,17a-20S-Methylcholestane 14a,17a-20R-Methylcholestane	37.1 65.2	1.03	37.8 67.5	1.03	2	30 30	
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	31.6	1.03	32.2	1.03	2	30	
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	42.1	1.03	43.0	1.03	2	30	
bb27R bb27S	S14 S15	14b(H),17b(H)-20R-Cholestane 14b(H),17b(H)-20S-Cholestane	36.0 33.5	1.03	36.3 34.4	1.03	1	30 30	
bb28R	S22	14b,17b-20R-Methylcholestane	49.0	1.03	49.9	1.03	2	30	
bb28S	S23	14b,17b-20S-Methylcholestane	48.9	1.03	48.7	1.03	0	30	
bb29R bb29S	S26 S27	14b(H),17b(H)-20R-Ethylcholestane 14b(H),17b(H)-20S-Ethylcholestane	36.1 17.8	1.03	37.3 17.3	1.03	3	30 30	
RC26/SC27TA	RC26/SC27TA	C26,20R- +C27,20S- triaromatic steroid	152	1.03	155	1.03	2	30	
SC28TA RC27TA	SC28TA RC27TA	C28,20S-triaromatic steroid C27,20R-triaromatic steroid	52.4 84.3	1.03	54.0 85.7	1.03	3	30 30	
RC27TA RC28TA	RC27TA RC28TA	C27,20R-triaromatic steroid C28,20R-triaromatic steroid	84.3 44.7	1.03	45.3	1.03	1	30	
		Surrogates (% Recovery)			70				
		Naphthalene-d8 Phenanthrene-d10	71 95		75 97				
		Benzo[a]pyrene-d12	104		105				
		5B(H)Cholane	N/A		N/A				

Client ID
Lab ID
Matrix
Reference Method
Batch ID
Jate Collected
Date Received
Date Received
Date Analyzed
Sample Size (wet)
% Solid
File ID
Units
Final Volume
Dibution
Reporting Limit Alaska North Slope Crude SS091812ANS01 SS091812ANS01
Oil
Modified 8270D
N/A
N/A
N/A
N/A
09/182/012
0.05076
100.00
A90008487.D
mg/Kg
10
1
1.97

		Reporting Limit	1.97					
Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
2	D0	cis/trans-Decalin	459	1.97	90	508.70	65	135
2	D1	C1-Decalins	772	1.97	101	761.10	65	135
2	D2	C2-Decalins	682	1.97	106	641.90	65	135
2	D3	C3-Decalins	415	1.97	123	338.20	65	135
2	D4	C4-Decalins	386	1.97	128	300.90	65	135
2	BT0	Benzothiophene	5.63		106	5.30	65	135
2	BT1	C1-Benzo(b)thiophenes	30.3		102	29.80	65	135
2	BT2	C2-Benzo(b)thiophenes	52.6	1.97	105	50.10	65	135
2	BT3	C3-Benzo(b)thiophenes	110		107	103.30	65	135
2	BT4 N0	C4-Benzo(b)thiophenes	103 502	1.97 1.97	121 87	84.90 577.60	65 65	135 135
2	N1	Naphthalene C1-Naphthalenes	1160	1.97	94	1242.00	65	135
2	N2	C2-Naphthalenes	1440	1.97	98	1472.00	65	135
2	N3	C3-Naphthalenes	1080	1.97	102	1053.40	65	135
2	N4	C4-Naphthalenes	647	1.97	117	552.70	65	135
2	В	Biphenyl	135	1.97	89	152.50	65	135
3	DF	Dibenzofuran	50.4	1.97	94	53.50	65	135
3	AY	Acenaphthylene	6.46	1.97	91	7.10	65	135
3	AE	Acenaphthene	24.2	1.97	129	18.70	65	135
3	F0	Fluorene	74.3		94	79.40	65	135
3	F1	C1-Fluorenes	184		105	175.10	65	135
3	F2	C2-Fluorenes	283		110	256.50	65	135
3	F3	C3-Fluorenes	271	1.97	113	238.70	65	135
3	A0	Anthracene		U 1.97				
3	P0 PA1	Phenanthrene	207 471	1.97	93 107	222.00 440.50	65 65	135 135
3	PA1 PA2	C1-Phenanthrenes/Anthracenes C2-Phenanthrenes/Anthracenes	516	1.97 1.97	111	464.90	65	135
3	PA2 PA3	C3-Phenanthrenes/Anthracenes C3-Phenanthrenes/Anthracenes	363	1.97	118	307.70	65	135
3	PA4	C4-Phenanthrenes/Anthracenes	141	1.97	115	122.90	65	135
3	RET	Retene	141	U 1.97	113	122.30	03	155
3	DBT0	Dibenzothiophene	139	1.97	95	146.10	65	135
3	DBT1	C1-Dibenzothiophenes	288	1.97	96	299.00	65	135
3	DBT2	C2-Dibenzothiophenes	432		110	392.90	65	135
3	DBT3	C3-Dibenzothiophenes	372	1.97	106	350.50	65	135
3	DBT4	C4-Dibenzothiophenes	180	1.97	95	189.20	65	135
4	BF	Benzo(b)fluorene	7.08					
4	FL0	Fluoranthene	4.28		104	4.10	65	135
4	PY0	Pyrene	14.6		110	13.30	65	135
4	FP1	C1-Fluoranthenes/Pyrenes	66.0		100	66.10	65	135
4	FP2 FP3	C2-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes	92.3 106		91 87	100.90 120.80	65 65	135 135
4	FP4	C3-Fluoranthenes/Pyrenes C4-Fluoranthenes/Pyrenes	86.5	1.97	82	120.80	65	135
4	NBT0	Naphthobenzothiophenes	42.6		94	45.10	65	135
4	NBT1	C1-Naphthobenzothiophenes	112		90	124.10	65	135
4	NBT2	C2-Naphthobenzothiophenes	143		85	168.90	65	135
4	NBT3	C3-Naphthobenzothiophenes	104	1.97	77	136.10	65	135
4	NBT4	C4-Naphthobenzothiophenes	66.3		71	93.90	65	135
4	BA0	Benz[a]anthracene	2.44		122	2.00	65	135
4	C0	Chrysene/Triphenylene	39.2		105	37.40	65	135
4	BC1	C1-Chrysenes	62.0		97	63.90	65	135
4	BC2	C2-Chrysenes	77.0		89	86.60	65	135
4	BC3	C3-Chrysenes	86.7		87	99.60	65	135
4	BC4	C4-Chrysenes	41.6		67	62.20	65	135
5	BBF	Benzo[b]fluoranthene	5.87	1.97	111	5.30	65	135
5	BJKF BAF	Benzo[j]fluoranthene/Benzo[k]fluoranthene		U 1.97 U 1.97				
5	BEP	Benzo[a]fluoranthene	10.6		110	9.60	65	135
5	BAP	Benzo[e]pyrene	10.6		90	2.00	65	135
5	PER	Benzo[a]pyrene Perylene	2.67	1.97	99	2.70	65	135
6	IND	Indeno[1,2,3-cd]pyrene	0.627		23	2.70	00	133
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	1.07					
6	GHI	Benzo[g,h,i]perylene	3.30	1.97	107	3.10	65	135
	CAR	Carbazole	7.84	1.97	121	6.50	65	135

Client ID	Alaska North Slope Crude
Lab ID	SS091812ANS01
Matrix	Oil
Reference Method	Modified 8270D
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	09/18/2012
Sample Size (wet)	0.05076
% Solid	100.00
File ID	A90008487.D
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	1.97

Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Lim
5 5	4MDT	4-Methyldibenzothiophene	140	1.97	97	143.50	65	13
	2MDT	2/3-Methyldibenzothiophene	102	1.97	99	103.10	65	13
	1MDT	1-Methyldibenzothiophene	45.6	1.97	97	46.80	65	13
	3MP	3-Methylphenanthrene	99.0	1.97	108	91.80	65	13
	2MP	2-Methylphenanthrene	108	1.97	108	99.60	65	13
	2MA	2-Methylanthracene	3.07	1.97	99	3.10	65	13
	9MP	9/4-Methylphenanthrene	154	1.97	106	145.90	65	13
	1MP	1-Methylphenanthrene	106	1.97	109	97.60	65	13
23	T4	C23 Tricyclic Terpane	58.8	1.97	88	67.10	65	13
24	T5	C24 Tricyclic Terpane	37.2	1.97	88	42.30	65	13
25	T6	C25 Tricyclic Terpane	37.7	1.97	92	40.90	65	13
24	T6a	C24 Tetracyclic Terpane	13.2	1.97	92	14.30	65	13
26S	T6b	C26 Tricyclic Terpane-22S	15.9	1.97	94	17.00	65	13
26R	T6c	C26 Tricyclic Terpane-22R	14.4	1.97	96	15.00	65	13
28S	T7	C28 Tricyclic Terpane-22S	16.5	1.97	101	16.30	65	13
28R	T8	C28 Tricyclic Terpane-22R	16.6	1.97	94	17.70	65	13
29S	T9	C29 Tricyclic Terpane-22S	19.1	1.97	92	20.70	65	13
29R	T10	C29 Tricyclic Terpane-22R	19.6	1.97	93	21.10	65	13
S	T11	18a-22,29,30-Trisnorneohopane-TS	27.5	1.97	90	30.60	65	13
30S	T11a	C30 Tricyclic Terpane-22S	15.2	1.97	96	15.80	65	13
30S 30R								
m .	T11b T12	C30 Tricyclic Terpane-22R	13.6 33.8	1.97 1.97	86 92	15.80 36.70	65 65	13:
		17a(H)-22,29,30-Trisnorhopane-TM						
NH	T14a	17a/b,21b/a 28,30-Bisnorhopane	7.94	1.97	110	7.20	65	13
5N	T14b	17a(H),21b(H)-25-Norhopane	8.53	1.97	99	8.60	65	13
129	T15	30-Norhopane	92.5	1.97	95	97.50	65	13
29Ts	T16	18a(H)-30-Norneohopane-C29Ts	23.5	1.97	96	24.40	65	13
	X	17a(H)-Diahopane	13.5	1.97	94	14.30	65	13
129	T17	30-Normoretane	9.77	1.97	85	11.50	65	13
L	T18	18a(H)&18b(H)-Oleananes		U 1.97				
30	T19	Hopane	160	1.97	94	171.10	65	13
30	T20	Moretane	16.8	1.97	101	16.60	65	13
I31S	T21	30-Homohopane-22S	68.7	1.97	93	73.80	65	13
131R	T22	30-Homohopane-22R	58.1	1.97	92	63.40	65	13
22A	T22A	T22a-Gammacerane/C32-diahopane	12.6	1.97		00.10	00	10
132S	T26	30,31-Bishomohopane-22S	48.4	1.97	92	52.50	65	13
32R	T27	30.31-Bishomohopane-22R	34.7	1.97	90	38.40	65	13
32R 33R	T30		36.4	1.97	88	41.10	65	13
		30,31-Trishomohopane-22S						
338	T31	30,31-Trishomohopane-22R	27.3	1.97	100	27.40	65	13
34R	T32	Tetrakishomohopane-22S	26.9	1.97	90	30.00	65	13
134S	T33	Tetrakishomohopane-22R	19.9	1.97	96	20.70	65	13
35S	T34	Pentakishomohopane-22S	27.8	1.97	92	30.20	65	13
35R	T35	Pentakishomohopane-22R	25.2	1.97	109	23.20	65	13
27S	S4	13b(H),17a(H)-20S-Diacholestane	55.3	1.97	112	49.20	65	13
27R	S5	13b(H),17a(H)-20R-Diacholestane	28.3	1.97	112	25.30	65	13
28S	S8	13b,17a-20S-Methyldiacholestane	25.9	1.97	111	23.30	65	13
27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	73.4	1.97	114	64.20	65	13
27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	82.0	1.97	109	75.50	65	13
29R	S18	Unknown Sterane (S18)	24.3	1.97	117	20.70	65	13
29S	S19	13a,17b-20S-Ethyldiacholestane	4.52	1.97	108	4.20	65	13
128S	S20	14a,17a-20S-Methylcholestane	37.1	1.97	101	36.70	65	13
28R	S24	14a,17a-20R-Methylcholestane	35.2	1.97	107	33.00	65	13
1298	S25	14a(H),17a(H)-20S-Ethylcholestane	45.1	1.97	87	51.90	65	13
29R	S28	14a(H),17a(H)-20R-Ethylcholestane	42.0	1.97	106	39.70	65	13
27R	S14	14b(H),17b(H)-20R-Cholestane	43.0	1.97	107	40.10	65	13
27S	S15	14b(H),17b(H)-20S-Cholestane	43.8	1.97	108	40.70	65	13
28R	S22	14b,17b-20R-Methylcholestane	47.8	1.97	107	44.80	65	13
28S	S23	14b,17b-20S-Methylcholestane	62.2	1.97	115	54.00	65	13
29R	S26	14b(H),17b(H)-20R-Ethylcholestane	67.3	1.97	114	59.20	65	13
o29S	S27	14b(H),17b(H)-20S-Ethylcholestane	40.1	1.97	99	40.60	65	13
C26/SC27TA	RC26/SC27TA	C26,20R-+C27,20S- triaromatic steroid	265	1.97	87	304.20	65	13
C28TA	SC28TA	C28.20S-triaromatic steroid	168	1.97	88	191.80	65	13
C27TA	RC27TA	C27,20R-triaromatic steroid	161	1.97	86	186.40	65	13

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000				
		or up	0.45.040		S-80-B10	
		Client ID Lab ID	S-15-B10 1208037-01		S-80-B10 1208037-02	
		Matrix	Soil		Soil	
		Reference Method	Modified 8270D		Modified 8270D	
		Batch ID Date Collected	TS082212B15 08/13/2012		TS082212B15 08/14/2012	
		Date Received	08/21/2012		08/21/2012	
		Date Prepped	08/22/2012		08/22/2012	
		Date Analyzed	09/26/2012		09/26/2012	
		Sample Size (wet) % Solid	20.2 80.24		20.08 96.58	
		File ID	A90008583.D		A90008584.D	
		Units	μg/Kg		μg/Kg	
		Final Volume Dilution	8		2	
		Reporting Limit	4.94		1.03	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL
2	D0	cis/trans-Decalin	3240	4.94	45.1	1.03
2	D1	C1-Decalins	8920	4.94	208	1.03
2	D2 D3	C2-Decalins	9470 5210	4.94 4.94	298 186	1.03
2	D3 D4	C3-Decalins C4-Decalins	5210 4930	4.94 4.94	186	1.03
2	BT0	Benzothiophene	4930	U 4.94	102	
2	BT1	C1-Benzo(b)thiophenes	125	4.94	8.06	1.03
2	BT2	C2-Benzo(b)thiophenes	171	4.94	12.7	1.03
2	BT3 BT4	C3-Benzo(b)thiophenes C4-Benzo(b)thiophenes	526 581	4.94 4.94	27.7	1.03
2	N0	Naphthalene	51.8	4.94	10.0	1.03
2	N1	C1-Naphthalenes	40.9		221	1.03
2	N2	C2-Naphthalenes	951	4.94	491	1.03
2	N3	C3-Naphthalenes	2050	4.94	360	1.03
2	N4 B	C4-Naphthalenes Biphenyl	3960 9.56	4.94 4.94	199 1.95	1.03
3	DF	Dibenzofuran	113	4.94	4.43	1.03
3	AY	Acenaphthylene	7.01	4.94	2.04	1.03
3	AE	Acenaphthene	192	4.94	8.77	1.03
3	F0	Fluorene	162	4.94	29.8	1.03
3	F1 F2	C1-Fluorenes C2-Fluorenes	1860 2980	4.94 4.94	71.0 95.9	1.03
3	F3	C3-Fluorenes	2280	4.94	77.4	1.03
3	A0	Anthracene	71.4	4.94		J 1.03
3	P0	Phenanthrene		U 4.94	55.0	1.03
3	PA1 PA2	C1-Phenanthrenes/Anthracenes C2-Phenanthrenes/Anthracenes	228 2600	4.94 4.94	132 149	1.03
3	PA3	C3-Phenanthrenes/Anthracenes	2990	4.94	106	1.03
3	PA4	C4-Phenanthrenes/Anthracenes	1220	4.94	42.5	1.03
3	RET	Retene		U 4.94		J 1.03
3	DBT0 DBT1	Dibenzothiophene	39.3	4.94 4.94	9.07	1.03
3	DBT2	C1-Dibenzothiophenes C2-Dibenzothiophenes	687 1330	4.94	31.4 44.4	1.03 1.03
3	DBT3	C3-Dibenzothiophenes	1020	4.94	35.5	1.03
3	DBT4	C4-Dibenzothiophenes	476	4.94	16.5	1.03
4	BF	Benzo(b)fluorene	102	4.94	3.35	1.03
4	FL0 PY0	Fluoranthene Pyrene	50.2 138	4.94 4.94	2.08	1.03
4	FP1	C1-Fluoranthenes/Pyrenes	598	4.94	21.2	1.03
4	FP2	C2-Fluoranthenes/Pyrenes	936	4.94	30.8	1.03
4	FP3	C3-Fluoranthenes/Pyrenes	994	4.94	34.1	1.03
4	FP4 NBT0	C4-Fluoranthenes/Pyrenes Naphthobenzothiophenes	804 94.9	4.94 4.94	29.1 2.88	1.03
4	NBT0 NBT1	C1-Naphthobenzothiophenes	291	4.94	9.57	1.03
4	NBT2	C2-Naphthobenzothiophenes	405	4.94	14.4	1.03
4	NBT3	C3-Naphthobenzothiophenes	315	4.94	11.7	1.03
4	NBT4	C4-Naphthobenzothiophenes	319	4.94	11.8	1.03
4	BA0 C0	Benz[a]anthracene Chrysene/Triphenylene	45.1 186	4.94 4.94	1.51 6.27	1.03
4	BC1	C1-Chrysenes	493	4.94	17.0	1.03
4	BC2	C2-Chrysenes	724	4.94	24.0	1.03
4	BC3	C3-Chrysenes	751	4.94	31.2	1.03
4	BC4	C4-Chrysenes	437	4.94	18.4	1.03
5 5	BBF BJKF	Benzo[b]fluoranthene Benzo[j]fluoranthene/Benzo[k]fluoranthene	24.3 4.43	4.94 J 4.94	1.00 . L	
5	BAF	Benzo[a]fluoranthene		U 4.94	i	
5	BEP	Benzo[e]pyrene	32.2	4.94	1.28	1.03
5	BAP	Benzo[a]pyrene	10.3	4.94	0.493	
5 6	PER IND	Perylene Indeno[1,2,3-cd]pyrene	88.4 3.29	4.94 J 4.94	6.80 0.124	1.03 J 1.03
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	4.85	J 4.94 J 4.94	0.124	
6	GHI	Benzo[g,h,i]perylene	8.82	4.94	0.335	J 1.03
	CAR	Carbazole	43.9	4.94	1.58	1.03

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000					
		Client ID	S-15-B10		S-80-B10		
		Lab ID Matrix	1208037-01		1208037-02		
		Reference Method	Soil Modified 8270D		Soil Modified 8270D		
		Batch ID	TS082212B15		TS082212B15		
		Date Collected Date Received	08/13/2012 08/21/2012		08/14/2012 08/21/2012		
		Date Prepped	08/22/2012		08/22/2012		
		Date Analyzed Sample Size (wet)	09/26/2012		09/26/2012		
		% Solid	80.24		96.58		
		File ID	A90008583.D		A90008584.D		
		Units Final Volume	μg/Kg 8		μg/Kg 2		
		Dilution	1		1		
		Reporting Limit	4.94		1.03		
Class	Abbrev	Analytes	Result	SSRL	Result		SRL
3	4MDT 2MDT	4-Methyldibenzothiophene 2/3-Methyldibenzothiophene	413 137	4.94 4.94	14.8 11.8		1.03
3	1MDT	1-Methyldibenzothiophene	122	4.94	4.07		1.03
3	3MP 2MP	3-Methylphenanthrene	13.0	4.94	37.9		1.03
3	2MP 2MA	2-Methylphenanthrene 2-Methylanthracene	6.20 93.7	4.94 4.94	41.8 2.56		1.03
3	9MP	9/4-Methylphenanthrene	96.2	4.94	27.7	1	1.03
3 t23	1MP T4	1-Methylphenanthrene C23 Tricyclic Teroane	23.8 310	4.94 4.94	20.8 12.9		1.03
124	T5	C24 Tricyclic Terpane C24 Tricyclic Terpane	268	4.94	10.0		1.03
t25	T6	C25 Tricyclic Terpane	282	4.94	10.9		1.03
te24 t26S	T6a T6b	C24 Tetracyclic Terpane C26 Tricyclic Terpane-22S	24.4 140	4.94 4.94	1.04 5.33		1.03
t26R	T6c	C26 Tricyclic Terpane-22R	126	4.94	4.81	1	1.03
t28S t28R	T7 T8	C28 Tricyclic Terpane-22S	186 176	4.94 4.94	6.76 7.15		1.03
t29S	T9	C28 Tricyclic Terpane-22R C29 Tricyclic Terpane-22S	199	4.94	7.15		1.03
t29R	T10	C29 Tricyclic Terpane-22R	188	4.94	7.71	1	1.03
Ts t30S	T11 T11a	18a-22,29,30-Trisnorneohopane-TS C30 Tricyclic Terpane-22S	97.8 205	4.94 G 4.94	4.03 7.68		1.03
t30R	T11b	C30 Tricyclic Terpane-22R	159	G 4.94	6.37	G 1	1.03
Tm BNH	T12 T14a	17a(H)-22,29,30-Trisnorhopane-TM	131 309	4.94 4.94	5.66 13.3		1.03
25N	T14a	17a/b,21b/a 28,30-Bisnorhopane 17a(H),21b(H)-25-Norhopane	120	4.94	5.14		1.03
H29	T15	30-Norhopane	507	4.94	21.1	1	1.03
C29Ts X	T16 X	18a(H)-30-Norneohopane-C29Ts 17a(H)-Diahopane	126 39.4	4.94 4.94	4.06		1.03
M29	T17	30-Normoretane	126	4.94	6.54	1	1.03
OL	T18 T19	18a(H)&18b(H)-Oleananes	296 1150	4.94 4.94	13.1 47.3		1.03
H30 M30	T20	Hopane Moretane	1150	4.94	47.3 7.51		1.03
H31S	T21	30-Homohopane-22S	274	4.94	12.6		1.03
H31R T22A	T22 T22A	30-Homohopane-22R T22a-Gammacerane/C32-diahopane	384 73.7	G 4.94 4.94	16.8 4.39		1.03
H32S	T26	30,31-Bishomohopane-22S	197	4.94	8.41		1.03
H32R H33R	T27 T30	30,31-Bishomohopane-22R	146	4.94 4.94	7.22		1.03
H33R H33S	T31	30,31-Trishomohopane-22S 30,31-Trishomohopane-22R	170 118	4.94	6.98 5.39		1.03
H34R	T32	Tetrakishomohopane-22S	104	4.94	4.55	1	1.03
H34S H35S	T33 T34	Tetrakishomohopane-22R Pentakishomohopane-22S	69.7 73.9	4.94 4.94	2.84 3.21		1.03
H35R	T35	Pentakishomohopane-22R	191		5.89		1.03
d27S	S4	13b(H),17a(H)-20S-Diacholestane	372	4.94	13.8		1.03
d27R d28S	S5 S8	13b(H),17a(H)-20R-Diacholestane 13b,17a-20S-Methyldiacholestane	173 368	4.94 4.94	6.62 13.5		1.03
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	1120	4.94	44.7		1.03
aa27R d29R	S17 S18	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	1780 77.1	4.94 4.94	74.1 3.07		1.03
d29S	S19	Unknown Sterane (S18) 13a,17b-20S-Ethyldiacholestane	36.0	4.94	1.84		1.03
aa28S	S20	14a,17a-20S-Methylcholestane	917	4.94	37.1	1	1.03
aa28R aa29S	S24 S25	14a,17a-20R-Methylcholestane 14a(H),17a(H)-20S-Ethylcholestane	1610 801	4.94 4.94	65.2 31.6		1.03
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	1040	4.94	42.1		1.03
bb27R bb27S	S14 S15	14b(H),17b(H)-20R-Cholestane	905 860	4.94 4.94	36.0 33.5		1.03
bb27S bb28R	S15 S22	14b(H),17b(H)-20S-Cholestane 14b.17b-20R-Methylcholestane	1280	4.94	33.5 49.0		1.03
bb28S	S23	14b,17b-20S-Methylcholestane	1190	4.94	48.9		1.03
bb29R bb29S	S26 S27	14b(H),17b(H)-20R-Ethylcholestane 14b(H),17b(H)-20S-Ethylcholestane	807 566	4.94 4.94	36.1 17.8		1.03
RC26/SC27TA	RC26/SC27TA	C26,20R-+C27,20S- triaromatic steroid	3720	4.94	152	1	1.03
SC28TA	SC28TA	C28,20S-triaromatic steroid C27,20R-triaromatic steroid	1260	4.94	52.4 84.3		1.03
RC27TA RC28TA	RC27TA RC28TA	C27,20R-triaromatic steroid C28,20R-triaromatic steroid	2060 1090	4.94 4.94	84.3 44.7		1.03
		Surrogates (% Recovery)					
		Naphthalene-d8	72		71		
		Phenanthrene-d10 Benzo(a)pyrene-d12	93 98		95 104		
		5B(H)Cholane	N/A		N/A		

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- U: The analyte was analyzed for but not detected at the sample specific level reported. B: Found in associated blank as well as sample. J: Estimated value, below quantitation limit.

- E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable
- D: Secondary Dilution Performed D1: Tertiary Dilution Performed

- D1: Iertrary Dilution Performed

 3: Value outside of QC Limits,

 5: Surrogate value outside of acceptable range.

 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

 G: Matrix Interference.
- G: Matrix Interference.
 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.
 I: Due to interference, the lower value is reported.
 N: Spike recovery outside control limits.
 E: Estimated due to Interference. (Metals)
 I: Duplicate outside control limits.
 P: Spike compound. (Metals)
 J: Below CRDL, Project DL, or RL but greater than or equal to MDL
 C: Sample concentration is > 4 times the spike level, recovery limits do not apply. (Metals)
 S: Spike Compound. (Organics)
 F: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)
 T: Tentatively identified corexit compound.
 C: Co-elution.
 Z: Result not surrogate corrected.

Client ID	Method Blank
Lab ID	TS090712B03
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/27/2012
Sample Size (wet)	5
% Solid	100.00
File ID	A90008589.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	4.00

		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
Class	Abbrev	Analytes	Result SSR
2	D0	cis/trans-Decalin	0.709 J 4.00
2	D1	C1-Decalins	U 4.00
2	D2 D3	C2-Decalins C3-Decalins	U 4.00 U 4.00
2	D3 D4		U 4.00
2	BT0	C4-Decalins Benzothiophene	U 4.00
2	BT1	C1-Benzo(b)thiophenes	U 4.00
2	BT2		U 4.00
2	BT3	C2-Benzo(b)thiophenes C3-Benzo(b)thiophenes	U 4.00
2	BT4	C4-Benzo(b)thiophenes	U 4.00
2	NO	Naphthalene	0.295 J 4.00
2	N1	C1-Naphthalenes	0.295 J 4.00 0.596 J 4.00
2	N2	C2-Naphthalenes	1.33 J 4.00
2	N3	C3-Naphthalenes	1.52 J 4.00
2	N4	C4-Naphthalenes	U 4.00
2	В	Biphenyl	0.298 J 4.00
3	DF	Dibenzofuran	U 4.00
3	AY	Acenaphthylene	0.190 J 4.00
3	AE	Acenaphthene	U 4.00
3	F0	Fluorene	0.297 J 4.00
3	F1	C1-Fluorenes	U 4.00
3	F2	C2-Fluorenes	U 4.00
3	F3	C3-Fluorenes	U 4.00
3	A0	Anthracene	U 4.00
3	P0	Phenanthrene	0.398 J 4.00
3	PA1	C1-Phenanthrenes/Anthracenes	0.650 J 4.00
3	PA2	C2-Phenanthrenes/Anthracenes	U 4.00
3	PA3	C3-Phenanthrenes/Anthracenes	U 4.00
3	PA4	C4-Phenanthrenes/Anthracenes	U 4.00
3	RET	Retene	U 4.00
3	DBT0	Dibenzothiophene	0.155 J 4.00
3	DBT1	C1-Dibenzothiophenes	0.371 J 4.00
3	DBT2	C2-Dibenzothiophenes	1.60 J 4.00
3	DBT3	C3-Dibenzothiophenes	U 4.00
3	DBT4	C4-Dibenzothiophenes	U 4.00
4	BF	Benzo(b)fluorene	U 4.00
4	FL0	Fluoranthene	0.0932 J 4.00
4	PY0	Pyrene	0.120 J 4.00
4	FP1	C1-Fluoranthenes/Pyrenes	U 4.00
4	FP2	C2-Fluoranthenes/Pyrenes	U 4.00
4	FP3	C3-Fluoranthenes/Pyrenes	U 4.00
4	FP4	C4-Fluoranthenes/Pyrenes	U 4.00
4	NBT0	Naphthobenzothiophenes	U 4.00
4	NBT1	C1-Naphthobenzothiophenes	U 4.00
4	NBT2	C2-Naphthobenzothiophenes	U 4.00
4	NBT3	C3-Naphthobenzothiophenes	U 4.00
4	NBT4	C4-Naphthobenzothiophenes	U 4.00
4	BA0	Benz[a]anthracene	U 4.00
4	C0	Chrysene/Triphenylene	U 4.00
4	BC1	C1-Chrysenes	U 4.00
4	BC2	C2-Chrysenes	U 4.00
4	BC3	C3-Chrysenes	U 4.00
4	BC4	C4-Chrysenes	U 4.00
5	BBF	Benzo[b]fluoranthene	U 4.00
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	U 4.00
5	BAF	Benzo[a]fluoranthene	U 4.00
5	BEP	Benzo[e]pyrene	U 4.00
5	BAP	Benzo[a]pyrene	U 4.00
5	PER	Perylene	U 4.00
6	IND	Indeno[1,2,3-cd]pyrene	U 4.00
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	U 4.00
6	GHI	Benzo[g,h,i]perylene	U 4.00
	CAR	Carbazole	U 4.00

Client ID	Method Blank
Lab ID	TS090712B03
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/27/2012
Sample Size (wet)	5
% Solid	100.00
File ID	A90008589.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	4.00

Class	Abbrev	Analytes	Result		SSRL
3	4MDT	4-Methyldibenzothiophene	0.103	J	4.00
3	2MDT	2/3-Methyldibenzothiophene		U	4.00
3	1MDT	1-Methyldibenzothiophene	0.102	J	4.00
3	3MP	3-Methylphenanthrene	0.134	J	4.00
3	2MP	2-Methylphenanthrene	0.0848	J	4.00
3	2MA	2-Methylanthracene	0.450	U	4.00
3	9MP	9/4-Methylphenanthrene	0.158		4.00
3	1MP T4	1-Methylphenanthrene	0.101	IJ	4.00
t23	T5	C23 Tricyclic Terpane		-	4.00
t24 t25	T6	C24 Tricyclic Terpane		U	4.00 4.00
t25 te24	T6a	C25 Tricyclic Terpane C24 Tetracyclic Terpane		U	4.00
				U	4.00
t26S t26R	T6b T6c	C26 Tricyclic Terpane-22S		U	4.00
	T7	C26 Tricyclic Terpane-22R			
t28S		C28 Tricyclic Terpane-22S		U	4.00
t28R	T8	C28 Tricyclic Terpane-22R		U	4.00
t29S	T9	C29 Tricyclic Terpane-22S		U	4.00
t29R	T10	C29 Tricyclic Terpane-22R		U	4.00
Ts	T11	18a-22,29,30-Trisnorneohopane-TS		U	4.00
t30S	T11a	C30 Tricyclic Terpane-22S		U	4.00
t30R	T11b	C30 Tricyclic Terpane-22R		U	4.00
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM		U	4.00
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane		U	4.00
25N	T14b	17a(H),21b(H)-25-Norhopane		U	4.00
H29	T15	30-Norhopane		U	4.00
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts		U	4.00
X	X	17a(H)-Diahopane		U	4.00
M29	T17	30-Normoretane		U	4.00
OL	T18	18a(H)&18b(H)-Oleananes		U	4.00
H30	T19	Hopane		U	4.00
M30	T20	Moretane		U	4.00
H31S	T21	30-Homohopane-22S		U	4.00
H31R	T22	30-Homohopane-22R		U	4.00
T22A	T22A T26	T22a-Gammacerane/C32-diahopane		U	4.00 4.00
H32S		30,31-Bishomohopane-22S			
H32R	T27 T30	30,31-Bishomohopane-22R		U	4.00 4.00
H33R	T31	30,31-Trishomohopane-22S			4.00
H33S H34R	T32	30,31-Trishomohopane-22R		U	4.00
		Tetrakishomohopane-22S			
H34S	T33	Tetrakishomohopane-22R		U	4.00
H35S H35R	T34 T35	Pentakishomohopane-22S Pentakishomohopane-22R		U	4.00 4.00
	S4			U	4.00
d27S d27R	S5	13b(H),17a(H)-20S-Diacholestane		U	4.00
d28S	S8	13b(H),17a(H)-20R-Diacholestane 13b,17a-20S-Methyldiacholestane		U	4.00
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)		U	4.00
aa278	S12 S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S12)		U	4.00
d29R	S17			U	4.00
		Unknown Sterane (S18)		U	4.00
d29S aa28S	S19 S20	13a,17b-20S-Ethyldiacholestane 14a,17a-20S-Methylcholestane		U	4.00
aa28R	S24	14a,17a-20S-Methylcholestane		U	4.00
aa29S	S25	14a,17a-20K-weinyicholestane		U	4.00
aa29S aa29R	S28	14a(H),17a(H)-20S-Ethylcholestane		U	4.00
	S14			U	4.00
bb27R bb27S	S14 S15	14b(H),17b(H)-20R-Cholestane 14b(H),17b(H)-20S-Cholestane		U	4.00
bb28R	S22	14b(H),17b(H)-20S-Cholestane 14b,17b-20R-Methylcholestane		U	4.00
	S23			U	4.00
bb28S bb29R	S23 S26	14b,17b-20S-Methylcholestane 14b(H),17b(H)-20R-Ethylcholestane		U	4.00
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane		U	4.00
RC26/SC27TA	RC26/SC27TA	C26,20R- +C27,20S- triaromatic steroid		U	4.00 4.00
SC28TA	SC28TA	C28,20S-triaromatic steroid		U	
RC27TA	RC27TA	C27,20R-triaromatic steroid		U	4.00 4.00
RC28TA	RC28TA	C28,20R-triaromatic steroid		U	4.00

 Surrogates (% Recovery)
 77

 Naphthalene-d8
 77

 Phenanthrene-d10
 98

 Benzo[a]pyrene-d12
 103

 5B(H)Cholane
 N/A

Client ID	Laboratory Control Sample
Lab ID	TS090712LCS02
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/27/2012
Sample Size (wet)	5
% Solid	100.00
File ID	A90008590.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	4.00

Class	Abbrev	Analytes	Resu	l+	SSRL	% Pan	Spike Conc.	Lower Limit	Unner Limit
2	D0	cis/trans-Decalin	Resu	U	4.00	% Rec	Spike Conc.	Lower Limit	Opper Limit
2	D1	C1-Decalins		U					
2	D2	C2-Decalins		Ū	4.00				
2	D3	C3-Decalins		Ü	4.00				
2	D4	C4-Decalins		Ū	4.00				
2	BT0	Benzothiophene		U	4.00				
2	BT1	C1-Benzo(b)thiophenes		U	4.00				
2	BT2	C2-Benzo(b)thiophenes		U	4.00				
2	BT3	C3-Benzo(b)thiophenes		U	4.00				
2	BT4	C4-Benzo(b)thiophenes		U	4.00				
2	N0	Naphthalene	15	B S	4.00	79	200	50	130
2	N1	C1-Naphthalenes		U	4.00				
2	N2	C2-Naphthalenes		U	4.00				
2	N3	C3-Naphthalenes		U	4.00				
2	N4	C4-Naphthalenes		U	4.00				
2	В	Biphenyl		U	4.00				
3	DF	Dibenzofuran		U	4.00				
3	AY	Acenaphthylene		6 S	4.00	93	200	50	130
3	AE	Acenaphthene		4 S		92	200	50	130
3	F0	Fluorene	19	2 S		96	200	50	130
3	F1	C1-Fluorenes		U	4.00				
3	F2	C2-Fluorenes		U	4.00				
3	F3 A0	C3-Fluorenes Anthracene	20	U 5 S	4.00 4.00	102	200	50	130
	P0	Phenanthrene			4.00	97	200		130
3	PA1	C1-Phenanthrenes/Anthracenes	19	4 S U	4.00	97	200	50	130
3	PA2	C1-Prieriaritrieries/Anthracenes C2-Phenanthrenes/Anthracenes		U	4.00				
3	PA3	C3-Phenanthrenes/Anthracenes		U	4.00				
3	PA4	C4-Phenanthrenes/Anthracenes		U	4.00				
3	RET	Retene		U	4.00				
3	DBT0	Dibenzothiophene		U	4.00				
3	DBT1	C1-Dibenzothiophenes		U	4.00				
3	DBT2	C2-Dibenzothiophenes		Ū	4.00				
3	DBT3	C3-Dibenzothiophenes		Ü	4.00				
3	DBT4	C4-Dibenzothiophenes		U	4.00				
4	BF	Benzo(b)fluorene		U	4.00				
4	FL0	Fluoranthene	21	5 S	4.00	108	200	50	130
4	PY0	Pyrene	21	9 S	4.00	110	200	50	130
4	FP1	C1-Fluoranthenes/Pyrenes		U	4.00				
4	FP2	C2-Fluoranthenes/Pyrenes		U	4.00				
4	FP3	C3-Fluoranthenes/Pyrenes		U	4.00				
4	FP4	C4-Fluoranthenes/Pyrenes		U	4.00				
4	NBT0	Naphthobenzothiophenes		U	4.00				
4	NBT1	C1-Naphthobenzothiophenes		U	4.00				
4	NBT2	C2-Naphthobenzothiophenes		U	4.00				
4	NBT3	C3-Naphthobenzothiophenes		U	4.00				
4	NBT4	C4-Naphthobenzothiophenes		U	4.00	_			
4	BA0	Benz[a]anthracene		4 S	4.00	97	200	50	130
4	C0	Chrysene/Triphenylene	18	9 S		95	200	50	130
4	BC1	C1-Chrysenes		U	4.00				
4	BC2 BC3	C2-Chrysenes		U	4.00				
4	BC3 BC4	C3-Chrysenes			4.00				
5	BC4 BBF	C4-Chrysenes Benzo[b]fluoranthene	20	U	4.00 4.00	101	200	50	130
5	BJKF	Benzo[i]fluoranthene Benzo[k]fluoranthene		2 S 4 S	4.00	101	200	50	130
5	BAF	Benzojjnuorantnene/Benzojkjnuorantnene Benzo[a]fluoranthene	20	4 S	4.00	102	200	50	130
5	BEP	Benzo[e]pyrene		U					
5	BAP	Benzo[a]pyrene	24	4 S	4.00	107	200	50	130
5	PER	Perylene	21	u U	4.00	107	200	50	130
6	IND	Indeno[1,2,3-cd]pyrene	19	BS		99	200	50	130
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene		1 S	4.00	101	200	50	130
6	GHI	Benzo[g,h,i]perylene		4 S	4.00	97	200	50	130
•	CAR	Carbazole	10		4.00		_00	00	
	0,	**···		9	1.00				

Client ID	Laboratory Control Sample
Lab ID	TS090712LCS02
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/27/2012
Sample Size (wet)	5
% Solid	100.00
File ID	A90008590.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	4.00

Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
3	4MDT	4-Methyldibenzothiophene	L					
3	2MDT	2/3-Methyldibenzothiophene	L					
3	1MDT	1-Methyldibenzothiophene	L					
3	3MP	3-Methylphenanthrene	L					
3	2MP	2-Methylphenanthrene	L					
3	2MA	2-Methylanthracene	L					
3	9MP	9/4-Methylphenanthrene	Ļ					
3	1MP	1-Methylphenanthrene	Ļ					
t23	T4	C23 Tricyclic Terpane	Ļ					
t24	T5	C24 Tricyclic Terpane	Ľ					
t25	T6	C25 Tricyclic Terpane	L					
te24	T6a T6b	C24 Tetracyclic Terpane	L L	1.00				
t26S t26R	T6c	C26 Tricyclic Terpane-22S C26 Tricyclic Terpane-22R						
t28S	T7	C28 Tricyclic Terpane-22S	ı					
t28R	T8	C28 Tricyclic Terpane-228	i					
t29\$	T9	C29 Tricyclic Terpane-22S	ı					
t29R	T10	C29 Tricyclic Terpane-22R	i					
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	Ĺ					
t30S	T11a	C30 Tricyclic Terpane-22S	ĭ					
t30R	T11b	C30 Tricyclic Terpane-22R	i					
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	ĭ					
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	ī					
25N	T14b	17a(H),21b(H)-25-Norhopane	ĭ					
H29	T15	30-Norhopane	ũ					
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	Ü					
X	X	17a(H)-Diahopane	Ü					
M29	T17	30-Normoretane	L	4.00				
OL	T18	18a(H)&18b(H)-Oleananes	L	4.00				
H30	T19	Hopane	L	4.00				
M30	T20	Moretane	L	4.00				
H31S	T21	30-Homohopane-22S	L	4.00				
H31R	T22	30-Homohopane-22R	L	4.00				
T22A	T22A	T22a-Gammacerane/C32-diahopane	L	4.00				
H32S	T26	30,31-Bishomohopane-22S	L	4.00				
H32R	T27	30,31-Bishomohopane-22R	L	4.00				
H33R	T30	30,31-Trishomohopane-22S	L	1.00				
H33S	T31	30,31-Trishomohopane-22R	L	4.00				
H34R	T32	Tetrakishomohopane-22S	L					
H34S	T33	Tetrakishomohopane-22R	L					
H35S	T34	Pentakishomohopane-22S	L					
H35R	T35	Pentakishomohopane-22R	Ļ					
d27S	S4	13b(H),17a(H)-20S-Diacholestane	Ļ					
d27R	S5	13b(H),17a(H)-20R-Diacholestane	Ļ					
d28S	S8	13b,17a-20S-Methyldiacholestane	Ļ					
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	L.					
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	Ļ					
d29R	S18 S19	Unknown Sterane (S18)	L.					
d29S		13a,17b-20S-Ethyldiacholestane	L					
aa28S aa28R	S20 S24	14a,17a-20S-Methylcholestane	L					
aa28K aa29S	S24 S25	14a,17a-20R-Methylcholestane 14a(H),17a(H)-20S-Ethylcholestane	L.					
			· ·					
aa29R bb27R	S28 S14	14a(H),17a(H)-20R-Ethylcholestane 14b(H),17b(H)-20R-Cholestane	L L					
bb27S	S15	14b(H),17b(H)-20S-Cholestane	· ·					
bb28R	\$15 \$22	14b,17b-20R-Methylcholestane	L L					
bb28S	\$22 \$23	14b,17b-20R-Methylcholestane						
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane						
bb29K bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	Ĺ					
RC26/SC27TA		C26,20R-+C27,20S- triaromatic steroid						
SC28TA	SC28TA	C28,20S-triaromatic steroid	· ·					
		C27,20R-triaromatic steroid	Ĺ					
RC27TA	RC27TA							

 Surrogates (% Recovery)
 81

 Naphthalene-d8
 81

 Phenanthrene-d10
 102

 Benzo[a]pyrene-d12
 100

 5B(H)Cholane
 N/A

Laboratory Control Sample Dup
TS090712LCSD02
Soil
Modfied 8270D
TS090712B03
N/A
N/A
09(07/2012
09/27/2012
09/27/2012
100.00
A90008591.D
µg/Kg
2
2
1
4.00 Client II D
Lab ID
Matrix
Reference Method
Batch ID
Date Collected
Date Received
Date Received
Date Received
Date Analyzed
Sample Size (wet)
% Solid
File ID
Units
Final Volume
Dilution
Reporting Limit

Ni			Reporting Limit	4.00							
2	Class	Abbrev	Analytes	Result	SS	RL % Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
2											
2		D1	C1-Decalins		U 4.0	0					
2	2	D2	C2-Decalins		U 4.0	0					
STO	2	D3	C3-Decalins		U 4.0	0					
ST12 C Benrucy (Infropherens U											
ST12 C Benrucy (Infropherens U	2	BT0	Benzothiophene		U 4.0	0					
ST2 C3-8 incorplin-planems											
STA		BT2									
Section Sect	2	BT3	C3-Benzo(b)thiophenes		U 4.0	0					
No	2	BT4			U 4.0	0					
N1		N0		161			200	50	130	2	30
No.		N1			U 4.0	0					
No.											
No. CA-Naphthalenes U. 4.00 V. 4.00	2	N3			U 4.0	0					
Section											
Section Sect											
AY Acenqathylene 189 8 400 94 200 50 130 2 3 3 3 4 4 4 4 5 5 4 5 5 5											
AE							200	50	130	2	30
FO Fluorene 18 S 400 67 200 50 130 1 2 3 3 400 47 200 50 130 1 3 3 400 400 5 5 400 400 5											30
F1											30
F2							200	30	.50		
F3											
AD											
PO Phenanthrene							200	50	130	- 1	30
PA1											30
PA2 C2-Phenanthrenes/Anthracenes							200	30	130		30
PAS C3-Phenanthrenes/Authracenes											
PAM											
RET											
DBT0											
DBT1											
DBT2 C2-Dibenzothiophenes U 4.00 U 4.00											
DBT3 C3-Dibenzothiophenes U 4.00 U 4.00											
Section Sect											
BF											
FLO Floranthene Flo Floranthene Floranthenes Floranthe											
PYO Pyrene Pyre							200	50	420		30
4 FP1 C1-Flooranthenes/Pyrenes U 4.00 V											30
FP2							200	50	130		30
FP3											
FF4											
NBT0											
NBT1 C1-Naphthoberozthiophenes U 4.00 V											
NBT2 C2-Naphthoberzothiophenes											
NBT3 C3-Naphthoberoxthiophenes											
4 NBT4 C4-Naphthoberzothiophenes U 4.00 4 BA0 Benzejamtracene 195 S 4.00 97 200 50 130 0 3 4 C0 Chrysenel Triphenylene 193 S 4.00 96 200 50 130 2 3 4 BC1 C1-Chrysenes U 4.00 4 BC2 C2-Chrysenes U 4.00 4 BC3 C3-Chrysenes U 4.00 5 BBF Benzejijluoranthene 5 BBF Benzejijluoranthene 204 S 4.00 102 200 50 130 1 3 1 3 5 BKF Benzejijluoranthene U 4.00 5 BBF Benzejijluoranthene U 4.00 6 BAP Benzejapyrene U 4.00 6 BAP Benzejapyrene U 4.00 6 BND Indenoi(1.23-cajpyrene) 0 196 S 4.00 98 200 50 130 1 3 3											
BAO Benz[a]anthracene 195 S 4.00 97 200 50 130 0 32 33 40 37 400 50 130 0 33 34 34 35 34 35 34 35 34 35 34 35 34 35 34 35 35											
Color							000		400	_	20
4 BC1 C1-Chrysenes U 4.00 4 BC2 C2-Chrysenes U 4.00 4 BC3 C3-Chrysenes U 4.00 4 BC4 C4-Chrysenes U 4.00 5 BBF Benzolpilluoranthene/Benzo(kjiluoranthene 204 \$ 4.00 102 200 \$ 50 130 1 1 3 5 5 BJKF Benzolajiluoranthene/Benzo(kjiluoranthene 207 \$ 4.00 103 200 50 130 1 3 3 1 3 5 5 BAF Benzolajiluoranthene U 4.00 5 BEP Benzolajiluoranthene 215 \$ 4.00 108 200 50 130 0 3 3 5 5 BAP Benzolajiluoranthene 215 \$ 4.00 108 200 50 130 0 3 3 5 5 BAP Benzolajiluoranthene 215 \$ 4.00 108 200 50 130 0 3 3 5 6 IND Indenoit 1,23-cdjpyrene 98 200 50 130 1 3 1 3 3											30
4 BC2 C2-Chrysenes U 4:00 4 BC3 C3-Chrysenes U 4:00 5 BBF Benzo[h]tuoranthene 5 BBF Benzo[h]tuoranthene 6 BEP Benzo[a]huoranthene 7 BEP Benzo[a]huoranthene 7 BEP Benzo[a]huoranthene 8 BEP Benzo[a]huoranthene 8 BEP Benzo[a]huoranthene 9 U 4:00 5 BBP Benzo[a]huoranthene 9 U 4:00 5 BBP Benzo[a]huoranthene 9 U 4:00 5 BEP Benzo[a]huoranthene 9 U 4:00 6 BEP Benzo[a]huoranthene							200	50	130	2	30
4 BC3 C3-Chrysenes U 4,00 4 BC4 C4-Chrysenes U 4,00 5 BBF Benzolpijluoranthene 5 BBF Benzolpijluoranthene 6 BAF Benzolpijluoranthene 6 BEP Benzolpijluoranthene 7 U 4,00 7 S 4,00 103 200 50 130 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3											
4 BC4 C4-Chrysenes U 4.00 5 BBF Bercup[hjuoranthene] 204 \$ 4.00 102 200 50 130 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 3 1 3 3 3 3 1 3											
5 BBF Berczo[jilucranthene 204 S 4.00 102 200 50 130 1 3 3 5 BJKF Berczo[jilucranthene/Benzo[k]fluoranthene 207 S 4.00 103 20 50 130 1 3 3 5 BAF Berczo[ajtworanthene U 4.00 U 4.00 </td <td></td>											
5 BJKF Benzo[j]thoranthene/Benzo[k]thoranthene 207 S 4.00 103 200 50 130 1 3 5 BAF Benzo[a]thoranthene U 4.00 V 4.00 V									,		
5 BAF Bercza[a]fluoranthene U 4.00 5 BEP Bercza[a]pyrene U 4.00 5 BAP Bercza[a]pyrene 215 S 4.00 108 200 50 130 0 3 5 PER Perlylene U 4.00 6 IND Indeno[1.2,3-cd]pyrene 196 S 4.00 98 200 50 130 1 33											30
5 BEP Benzo[e]gyrene U 4.00 3.00 5.00 1.00							200	50	130	1	30
5 BAP Benzo[a]pyrene 215 S 4.00 108 200 50 130 0 3 5 PER Perlylene U 4.00 V V V V V 1 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 3 0 3 0 0 1 3 0 3 0 0 1 3 0 0 1 3 0 0 3 0 0 3 0 0 3 0 0 3 0 </td <td></td>											
5 PER Perylene U 4.00 5 1ND Indenci(1,2,3-cd)pyrene 196 S 4.00 98 200 50 130 1 3											
6 IND Indeno[1,2,3-cd]pyrene 196 S 4.00 98 200 50 130 1 3							200	50	130	0	30
											30
	6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene				200	50		0	30
	6						200	50	130	0	30
CAR Carbazole U 4.00		CAR	Carbazole		U 4.0	0					

Client ID	Laboratory Control Sample Dup
Lab ID	TS090712LCSD02
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS090712B03
Date Collected	N/A
Date Received	N/A
Date Prepped	09/07/2012
Date Analyzed	09/27/2012
Sample Size (wet)	5
% Solid	100.00
File ID	A90008591.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	4.00

01	***	Austria	B #		0001	o/ D	0.1.0			222	DDD I
Class 3	Abbrev 4MDT	Analytes 4-Methyldibenzothiophene	Result		SSRL 4.00	% Rec	Spike Cor	nc.	Lower Limit Upper Limi	KPD	RPD Limit
3	2MDT	2/3-Methyldibenzothiophene			4.00						
3	1MDT	1-Methyldibenzothiophene			4.00						
3	3MP	3-Methylphenanthrene			4.00						
3	2MP	2-Methylphenanthrene			4.00						
3	2MA	2-Methylanthracene			4.00						
3	9MP	9/4-Methylphenanthrene			4.00						
3	1MP	1-Methylphenanthrene	1	U	4.00						
t23	T4	C23 Tricyclic Terpane	1	U	4.00						
t24	T5	C24 Tricyclic Terpane	1	U	4.00						
t25	T6	C25 Tricyclic Terpane			4.00						
te24	T6a	C24 Tetracyclic Terpane			4.00						
t26S	T6b	C26 Tricyclic Terpane-22S			4.00						
t26R	T6c	C26 Tricyclic Terpane-22R			4.00						
t28S	T7	C28 Tricyclic Terpane-22S			4.00						
t28R	T8	C28 Tricyclic Terpane-22R			4.00						
t29S	T9	C29 Tricyclic Terpane-22S			4.00						
t29R	T10	C29 Tricyclic Terpane-22R			4.00						
Ts	T11	18a-22,29,30-Trisnorneohopane-TS			4.00						
t30S t30R	T11a T11b	C30 Tricyclic Terpane-22S C30 Tricyclic Terpane-22R			4.00 4.00						
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM			4.00						
BNH	T14a	17a/h,21b/a 28,30-Bisnorhopane			4.00						
25N	T14b	17a(H),21b(H)-25-Norhopane			4.00						
H29	T15	30-Norhopane			4.00						
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts			4.00						
X	X	17a(H)-Diahopane			4.00						
M29	T17	30-Normoretane			4.00						
OL	T18	18a(H)&18b(H)-Oleananes			4.00						
H30	T19	Hopane			4.00						
M30	T20	Moretane		U	4.00						
H31S	T21	30-Homohopane-22\$	1	U	4.00						
H31R	T22	30-Homohopane-22R	1	U	4.00						
T22A	T22A	T22a-Gammacerane/C32-diahopane	1	U	4.00						
H32S	T26	30,31-Bishomohopane-22S			4.00						
H32R	T27	30,31-Bishomohopane-22R			4.00						
H33R	T30	30,31-Trishomohopane-22S			4.00						
H33S	T31	30,31-Trishomohopane-22R			4.00						
H34R	T32	Tetrakishomohopane-22S			4.00						
H34S	T33	Tetrakishomohopane-22R			4.00						
H35S	T34	Pentakishomohopane-22S			4.00						
H35R d27S	T35 S4	Pentakishomohopane-22R			4.00 4.00						
d27S d27R	S5	13b(H),17a(H)-20S-Diacholestane 13b(H),17a(H)-20R-Diacholestane			4.00						
d28S	S8	13b,17a-20S-Methyldiacholestane			4.00						
aa27\$	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)			4.00						
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)			4.00						
d29R	S18	Unknown Sterane (S18)			4.00						
d29S	S19	13a,17b-20S-Ethyldiacholestane			4.00						
aa28S	S20	14a,17a-20S-Methylcholestane			4.00						
aa28R	S24	14a,17a-20R-Methylcholestane			4.00						
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane			4.00						
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane		U	4.00						
bb27R	S14	14b(H),17b(H)-20R-Cholestane	1		4.00						
bb27S	S15	14b(H),17b(H)-20S-Cholestane	1	U	4.00						
bb28R	S22	14b,17b-20R-Methylcholestane	1		4.00						
bb28S	\$23	14b,17b-20S-Methylcholestane			4.00						
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	1		4.00						
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane			4.00						
RC26/SC27T/		C26,20R-+C27,20S- triaromatic steroid			4.00						
SC28TA	SC28TA	C28,20S-triaromatic steroid			4.00						
RC27TA	RC27TA	C27,20R-triaromatic steroid			4.00						
RC28TA	RC28TA	C28,20R-triaromatic steroid		U	4.00						

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

Client ID	S-80-B11	S-80-B11
Lab ID	1208051-01	1208051-01D
Matrix	Soil	Soil
Reference Method	Modified 8270D	Modified 8270D
Batch ID	TS090712B03	TS090712B03
Date Collected	08/21/2012	08/21/2012
Date Received	08/23/2012	08/23/2012
Date Prepped	09/07/2012	09/07/2012
Date Analyzed	09/27/2012	09/27/2012
Sample Size (wet)	5.2	5.77
% Solid	93.02	93.02
File ID	A90008592.D	A90008593.D
Units	μg/Kg	μg/Kg
Final Volume	2	2
Dilution	1	1
Poporting Limit	4 1 4	2 72

		Reporting Limit	4.14			3.73					
Class	Abbrev	Analytes	Result		SSRL	Result		SSRL	RPD		it
2	D0	cis/trans-Decalin	96.0		4.14	120		3.73	23	30	
2	D1	C1-Decalins	317		4.14	382		3.73	18	30	
2	D2	C2-Decalins	529		4.14	624		3.73	17	30	
2	D3	C3-Decalins	342		4.14	394		3.73	14	30	
2	D4	C4-Decalins	353		4.14	401		3.73	13	30	
2	BT0	Benzothiophene		U	4.14		U	3.73		30	N/A
2	BT1	C1-Benzo(b)thiophenes	15.1		4.14	15.0		3.73	0	30	
2	BT2	C2-Benzo(b)thiophenes	13.6		4.14	14.9		3.73	9	30	
2	BT3	C3-Benzo(b)thiophenes	50.1		4.14	54.2		3.73	8	30	
2	BT4	C4-Benzo(b)thiophenes	49.5		4.14	56.0		3.73	12	30	
2	N0	Naphthalene	3.84	J	4.14	4.30		3.73	11	30	
2	N1	C1-Naphthalenes	4.30	G	4.14	4.74	G	3.73	10	30	
2	N2	C2-Naphthalenes	66.2		4.14	75.5		3.73	13	30	
2	N3	C3-Naphthalenes	260		4.14	292		3.73	11	30	
2	N4	C4-Naphthalenes	369		4.14	409		3.73	10	30	
2	В	Biphenyl	0.945	JB	4.14	1.03	JB	3.73	9	30	
3	DF	Dibenzofuran	6.83	JD	4.14	7.64	JD	3.73	11	30	
3	AY	Acenaphthylene	4.05		4.14	4.85		3.73	18	30	
3	AE	Acenaphthene	4.05		4.14	14.4		3.73	9	30	
3	F0	Fluorene				61.3		3.73	12	30	
	F0 F1		54.3		4.14						
3		C1-Fluorenes	125		4.14	139		3.73	11	30	
3	F2	C2-Fluorenes	197		4.14	213		3.73	8	30	
3	F3	C3-Fluorenes	165		4.14	174		3.73	5	30	
3	A0	Anthracene		U	4.14		U	3.73		30	N/A
3	P0	Phenanthrene	1.41		4.14	1.69	JB	3.73	18	30	
3	PA1	C1-Phenanthrenes/Anthracenes	21.2		4.14	22.5		3.73	6	30	
3	PA2	C2-Phenanthrenes/Anthracenes	191		4.14	199		3.73	4	30	
3	PA3	C3-Phenanthrenes/Anthracenes	215		4.14	224		3.73	4	30	
3	PA4	C4-Phenanthrenes/Anthracenes	85.8		4.14	96.1		3.73	11	30	
3	RET	Retene		U	4.14		U	3.73		30	N/A
3	DBT0	Dibenzothiophene	20.0		4.14	21.7		3.73	8	30	
3	DBT1	C1-Dibenzothiophenes	46.8		4.14	51.1		3.73	9	30	
3	DBT2	C2-Dibenzothiophenes	98.3		4.14	104		3.73	5	30	
3	DBT3	C3-Dibenzothiophenes	77.9		4.14	84.0		3.73	8	30	
3	DBT4	C4-Dibenzothiophenes	37.9		4.14	39.0		3.73	3	30	
4	BF	Benzo(b)fluorene	6.64		4.14	6.20		3.73	7	30	
4	FL0	Fluoranthene	5.26		4.14	5.56		3.73	6	30	
4	PY0	Pyrene	10.7		4.14	11.5		3.73	7	30	
4	FP1	C1-Fluoranthenes/Pyrenes	43.8		4.14	45.6		3.73	4	30	
4	FP2	C2-Fluoranthenes/Pyrenes	64.5		4.14	68.8		3.73	6	30	
4	FP3	C3-Fluoranthenes/Pyrenes	69.4		4.14	73.6		3.73	6	30	
4	FP4	C4-Fluoranthenes/Pyrenes	59.7		4.14	64.4		3.73	8	30	
4	NBT0	Naphthobenzothiophenes	7.27		4.14	6.69		3.73	8	30	
4	NBT1	C1-Naphthobenzothiophenes	22.4		4.14	22.4		3.73	0	30	
4	NBT2	C2-Naphthobenzothiophenes	36.6		4.14	38.4		3.73	5	30	
4	NBT3	C3-Naphthobenzothiophenes	28.2		4.14	33.0		3.73	16	30	
4	NBT4	C4-Naphthobenzothiophenes	29.0		4.14	31.3		3.73	8	30	
4	BA0	Benz[a]anthracene	3.26		4.14	3.79		3.73	15	30	
4	C0	Chrysene/Triphenylene	11.7		4.14	12.7		3.73	9	30	
4	BC1	C1-Chrysenes	32.5		4.14	34.6		3.73	6	30	
4	BC2	C2-Chrysenes	47.1		4.14	52.0		3.73	10	30	
4	BC3	C3-Chrysenes	67.0		4.14	69.7		3.73	4	30	
4	BC4		41.7		4.14	46.7		3.73	11	30	
	BC4 BBF	C4-Chrysenes	2.70	J	4.14	2.79	J	3.73	3	30	
5	BJKF	Benzo[b]fluoranthene									
5		Benzo[j]fluoranthene/Benzo[k]fluoranthene	1.39		4.14	1.27	J	3.73	8	30	NI/A
5	BAF	Benzo[a]fluoranthene		U	4.14		U	3.73	_	30	N/A
5	BEP	Benzo[e]pyrene	3.41		4.14	3.73		3.73	9	30	
5	BAP	Benzo[a]pyrene	1.86		4.14	2.30	J	3.73	21	30	
5	PER	Perylene	13.3		4.14	13.6		3.73	2	30	
6	IND	Indeno[1,2,3-cd]pyrene	1.59		4.14	1.92	J	3.73	19	30	
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	0.710		4.14	1.09	J	3.73	42	30	¤
6	GHI	Benzo[g,h,i]perylene	2.35		4.14	2.95	J	3.73	22	30	
	CAR	Carbazole	3.22	J	4.14	3.27	J	3.73	2	30	

		Project Name: Cardno ERI - Former XOM Jalk Fee Property			
		Project Number: 850.0087.000			
		Client ID	S-80-B11	S-80-B11	
		Lab ID Matrix	1208051-01 Soil	1208051-01D Soil	
		Reference Method	Modified 8270D	Modified 8270D	
		Batch ID Date Collected	TS090712B03	TS090712B03 08/21/2012	
		Date Received	08/21/2012 08/23/2012	08/23/2012	
		Date Prepped	09/07/2012	09/07/2012	
		Date Analyzed	09/27/2012	09/27/2012	
		Sample Size (wet) % Solid	5.2 93.02	5.77 93.02	
		File ID	A90008592.D	A90008593.D	
		Units	μg/Kg	μg/Kg	
		Final Volume Dilution	2	2	
		Reporting Limit	4.14	3.73	
Class	Abbrev	Analytes	Result SSF	RL Result	SSRL RPD RPD Limit
3	4MDT	4-Methyldibenzothiophene	29.9 4.1		3.73 8 30
3	2MDT 1MDT	2/3-Methyldibenzothiophene 1-Methyldibenzothiophene	6.06 4.1 9.05 4.1		3.73 9 30 3.73 9 30
3	3MP	3-Methylphenanthrene	3.36 J 4.1		3.73 12 30
3	2MP	2-Methylphenanthrene	1.66 J 4.1	4 1.86	J 3.73 11 30
3	2MA	2-Methylanthracene	4.78 4.1		3.73 8 30
3	9MP 1MP	9/4-Methylphenanthrene 1-Methylphenanthrene	5.81 4.1 5.39 4.1		3.73 18 30 3.73 6 30
t23	T4	C23 Tricyclic Terpane	28.1 4.1		3.73 9 30
t24	T5	C24 Tricyclic Terpane	22.3 4.1		3.73 5 30
t25 te24	T6 T6a	C25 Tricyclic Terpane C24 Tetracyclic Terpane	22.9 4.1 3.83 J 4.1		3.73 8 30 3.73 2 30
t26S	T6b	C26 Tricyclic Terpane-22S	10.7 4.1		3.73 7 30
t26R	T6c	C26 Tricyclic Terpane-22R	9.81 4.1		3.73 12 30
t28S t28R	T7 T8	C28 Tricyclic Terpane-22S C28 Tricyclic Terpane-22R	14.2 4.1 15.5 4.1		3.73 11 30 3.73 0 30
t29S	T9	C29 Tricyclic Terpane-22S	17.8 4.1		3.73 4 30
t29R	T10	C29 Tricyclic Terpane-22R	16.1 4.1		3.73 7 30
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	11.5 4.1		3.73 20 30
t30S t30R	T11a T11b	C30 Tricyclic Terpane-22S C30 Tricyclic Terpane-22R	16.9 4.1 14.9 4.1		3.73 8 30 3.73 1 30
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	17.3 4.1		3.73 2 30
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	29.8 4.1		3.73 6 30
25N H29	T14b T15	17a(H),21b(H)-25-Norhopane 30-Norhopane	10.7 4.1 58.1 4.1		3.73 6 30 3.73 2 30
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	12.8 4.1		3.73 0 30
X	X	17a(H)-Diahopane	4.27 4.1		3.73 2 30
M29 OL	T17 T18	30-Normoretane 18a(H)&18b(H)-Oleananes	12.1 4.1 26.3 4.1		3.73 12 30 3.73 14 30
H30	T19	Hopane	116 4.1		3.73 4 30
M30	T20	Moretane	17.0 4.1		3.73 9 30
H31S H31R	T21 T22	30-Homohopane-22S 30-Homohopane-22R	30.8 4.1 37.4 G 4.1		3.73 12 30 G 3.73 11 30
T22A	T22A	T22a-Gammacerane/C32-diahopane	9.44 4.1		3.73 29 30
H32S	T26	30,31-Bishomohopane-22S	21.9 4.1		3.73 0 30
H32R H33R	T27 T30	30,31-Bishomohopane-22R 30,31-Trishomohopane-22S	17.2 4.1 20.6 4.1		3.73 3 30 3.73 4 30
H33S	T31	30,31-Trishomohopane-22R	15.2 4.1		3.73 19 30
H34R	T32	Tetrakishomohopane-22S	12.6 4.1		3.73 1 30
H34S	T33	Tetrakishomohopane-22R	8.27 4.1		3.73 11 30
H35S H35R	T34 T35	Pentakishomohopane-22S Pentakishomohopane-22R	10.6 4.1 16.5 G 4.1		3.73 0 30 G 3.73 3 30
d27S	S4	13b(H),17a(H)-20S-Diacholestane	31.0 4.1		3.73 11 30
d27R	S5	13b(H),17a(H)-20R-Diacholestane	16.0 4.1		3.73 5 30
d28S aa27S	S8 S12	13b,17a-20S-Methyldiacholestane 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	34.1 4.1 99.8 4.1		3.73 5 30 3.73 3 30
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	156 4.1		3.73 11 30
d29R	S18	Unknown Sterane (S18)	8.01 4.1		3.73 21 30
d29S aa28S	S19 S20	13a,17b-20S-Ethyldiacholestane 14a,17a-20S-Methylcholestane	3.30 J 4.1 76.8 4.1		3.73 19 30 3.73 17 30
aa28R	S24	14a,17a-20R-Methylcholestane	137 4.1		3.73 11 30
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	71.2 4.1	4 85.2	3.73 18 30
aa29R bb27R	S28 S14	14a(H),17a(H)-20R-Ethylcholestane 14b(H),17b(H)-20R-Cholestane	92.4 4.1 74.1 4.1		3.73 17 30 3.73 9 30
bb27S	S15	14b(H),17b(H)-20S-Cholestane	74.1 4.1 69.9 4.1		3.73 9 30 3.73 9 30
bb28R	S22	14b,17b-20R-Methylcholestane	103 4.1	4 111	3.73 8 30
bb28S bb29R	S23 S26	14b,17b-20S-Methylcholestane 14b(H),17b(H)-20R-Ethylcholestane	102 4.1 71.4 4.1		3.73 11 30 3.73 12 30
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	71.4 4.1 50.7 4.1		3.73 12 30
RC26/SC27TA	RC26/SC27TA	C26,20R- +C27,20S- triaromatic steroid	329 4.1	4 372	3.73 12 30
SC28TA	SC28TA	C28,20S-triaromatic steroid	121 4.1		3.73 17 30
RC27TA RC28TA	RC27TA RC28TA	C27,20R-triaromatic steroid C28,20R-triaromatic steroid	187 4.1 101 4.1		3.73 10 30 3.73 22 30
		Surrogates (% Recovery)			
		Naphthalene-d8	75 07	73	
		Phenanthrene-d10 Benzo[a]pyrene-d12	97 99	98 101	
		5B(H)Cholane	N/A	N/A	

Client ID	Alaska North Slope Crude
Lab ID	SS091812ANS01
Matrix	Oil
Reference Method	Modified 8270D
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	09/18/2012
Sample Size (wet)	0.05076
% Solid	100.00
File ID	A90008487.D
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	1.97

		roporting Emili						
Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
2	D0	cis/trans-Decalin	459	1.97	90	508.70	65	135
2	D1	C1-Decalins	772	1.97	101	761.10	65	135
2	D2	C2-Decalins	682	1.97	106	641.90	65	135
2	D3	C3-Decalins	415	1.97	123	338.20	65	135
2	D4	C4-Decalins	386	1.97	128	300.90	65	135
2	BT0	Benzothiophene	5.63	1.97	106	5.30	65	135
2	BT1	C1-Benzo(b)thiophenes	30.3	1.97	102	29.80	65	135
2	BT2	C2-Benzo(b)thiophenes	52.6	1.97	105	50.10	65	135
2	BT3	C3-Benzo(b)thiophenes	110	1.97	107	103.30	65	135
2	BT4	C4-Benzo(b)thiophenes	103	1.97	121	84.90	65	135
2	NO	Naphthalene	502	1.97	87	577.60	65	135
2	N1	C1-Naphthalenes	1160	1.97	94	1242.00	65	135
2	N2	C2-Naphthalenes	1440	1.97	98	1472.00	65	135
2	N3	C3-Naphthalenes	1080	1.97	102	1053.40	65	135
2	N4	C3-Naphthalenes	647	1.97	117	552.70	65	135
2	B B	C4-Naprimalenes Biphenyl	135	1.97	89	152.50	65	135
3	DF		50.4	1.97	94	53.50	65	135
		Dibenzofuran						
3	AY	Acenaphthylene	6.46	1.97	91	7.10	65	135
3	AE	Acenaphthene	24.2	1.97	129	18.70	65	135
3	F0	Fluorene	74.3	1.97	94	79.40	65	135
3	F1	C1-Fluorenes	184	1.97	105	175.10	65	135
3	F2	C2-Fluorenes	283	1.97	110	256.50	65	135
3	F3	C3-Fluorenes	271	1.97	113	238.70	65	135
3	A0	Anthracene	U	1.97				
3	P0	Phenanthrene	207	1.97	93	222.00	65	135
3	PA1	C1-Phenanthrenes/Anthracenes	471	1.97	107	440.50	65	135
3	PA2	C2-Phenanthrenes/Anthracenes	516	1.97	111	464.90	65	135
3	PA3	C3-Phenanthrenes/Anthracenes	363	1.97	118	307.70	65	135
3	PA4	C4-Phenanthrenes/Anthracenes	141	1.97	115	122.90	65	135
3	RET	Retene	141		113	122.50	03	133
3	DBT0	Dibenzothiophene	139	1.97	95	146.10	65	135
3	DBT1		288		96	299.00	65	135
		C1-Dibenzothiophenes		1.97				
3	DBT2	C2-Dibenzothiophenes	432	1.97	110	392.90	65	135
3	DBT3	C3-Dibenzothiophenes	372	1.97	106	350.50	65	135
3	DBT4	C4-Dibenzothiophenes	180	1.97	95	189.20	65	135
4	BF	Benzo(b)fluorene	7.08	1.97				
4	FL0	Fluoranthene	4.28	1.97	104	4.10	65	135
4	PY0	Pyrene	14.6	1.97	110	13.30	65	135
4	FP1	C1-Fluoranthenes/Pyrenes	66.0	1.97	100	66.10	65	135
4	FP2	C2-Fluoranthenes/Pyrenes	92.3	1.97	91	100.90	65	135
4	FP3	C3-Fluoranthenes/Pyrenes	106	1.97	87	120.80	65	135
4	FP4	C4-Fluoranthenes/Pyrenes	86.5	1.97	82	105.60	65	135
4	NBT0	Naphthobenzothiophenes	42.6	1.97	94	45.10	65	135
4	NBT1	C1-Naphthobenzothiophenes	112	1.97	90	124.10	65	135
4	NBT2	C2-Naphthobenzothiophenes	143	1.97	85	168.90	65	135
4	NBT3	C3-Naphthobenzothiophenes	104	1.97	77	136.10	65	135
4	NBT4	C4-Naphthobenzothiophenes	66.3	1.97	71	93.90	65	135
4	BA0	Benz[a]anthracene	2.44	1.97	122	2.00	65	135
4	C0	Chrysene/Triphenylene	39.2	1.97	105	37.40	65	135
4	BC1	C1-Chrysenes	62.0	1.97	97	63.90	65	135
4	BC2	C2-Chrysenes	77.0	1.97	89	86.60	65	135
	BC3							
4		C3-Chrysenes	86.7	1.97	87	99.60	65	135
4	BC4	C4-Chrysenes	41.6	1.97	67	62.20	65	135
5	BBF	Benzo[b]fluoranthene	5.87	1.97	111	5.30	65	135
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	L					
5	BAF	Benzo[a]fluoranthene	L					
5	BEP	Benzo[e]pyrene	10.6	1.97	110	9.60	65	135
5	BAP	Benzo[a]pyrene	1.80 J	1.97	90	2.00	65	135
5	PER	Perylene	2.67	1.97	99	2.70	65	135
6	IND	Indeno[1,2,3-cd]pyrene	0.627 J	1.97				
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	1.07 J	1.97				
6	GHI	Benzo[g,h,i]perylene	3.30	1.97	107	3.10	65	135
-	CAR	Carbazole	7.84	1.97	121	6.50	65	135
	0,		7.04			0.00	00	.00

Client ID	Alaska North Slope Crude
Lab ID	SS091812ANS01
Matrix	Oil
Reference Method	Modified 8270D
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	09/18/2012
Sample Size (wet)	0.05076
% Solid	100.00
File ID	A90008487.D
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	1.97

Class	Abbrev	Analytes	Result 140	SSRL	% Rec			
3	4MDT	4-Methyldibenzothiophene		1.97	97	143.50	65	135
3	2MDT	2/3-Methyldibenzothiophene	102	1.97	99	103.10	65	135
3	1MDT	1-Methyldibenzothiophene	45.6	1.97	97	46.80	65	135
3	3MP	3-Methylphenanthrene	99.0	1.97	108	91.80	65	135
3	2MP	2-Methylphenanthrene	108	1.97	108	99.60	65	135
3	2MA 9MP	2-Methylanthracene	3.07	1.97	99	3.10	65	135 135
3	1MP	9/4-Methylphenanthrene	154	1.97	106 109	145.90	65 65	135
t23	T4	1-Methylphenanthrene C23 Tricyclic Terpane	106 58.8	1.97 1.97	88	97.60 67.10	65	135
t24	T5	C24 Tricyclic Terpane	37.2	1.97	88	42.30	65	135
t25	T6	C25 Tricyclic Terpane	37.7	1.97	92	40.90	65	135
te24	T6a	C24 Tetracyclic Terpane	13.2	1.97	92	14.30	65	135
t26S	T6b	C26 Tricyclic Terpane-22S	15.9	1.97	94	17.00	65	135
t26R	T6c	C26 Tricyclic Terpane-22R	14.4	1.97	96	15.00	65	135
t28S	T7	C28 Tricyclic Terpane-22S	16.5	1.97	101	16.30	65	135
t28R	T8	C28 Tricyclic Terpane-22R	16.6	1.97	94	17.70	65	135
t29S	T9	C29 Tricyclic Terpane-22S	19.1	1.97	92	20.70	65	135
t29R	T10	C29 Tricyclic Terpane-22R	19.6	1.97	93	21.10	65	135
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	27.5	1.97	90	30.60	65	135
t30S	T11a	C30 Tricyclic Terpane-22S	15.2	1.97	96	15.80	65	135
t30R	T11b	C30 Tricyclic Terpane-22R	13.6	1.97	86	15.80	65	135
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	33.8	1.97	92	36.70	65	135
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	7.94	1.97	110	7.20	65	135
25N	T14b	17a(H),21b(H)-25-Norhopane	8.53	1.97	99	8.60	65	135
H29	T15	30-Norhopane	92.5	1.97	95	97.50	65	135
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	23.5	1.97	96	24.40	65	135
X	X	17a(H)-Diahopane	13.5	1.97	94	14.30	65	135
M29	T17	30-Normoretane	9.77	1.97	85	11.50	65	135
OL	T18	18a(H)&18b(H)-Oleananes	U	1.97				
H30	T19	Hopane	160	1.97	94	171.10	65	135
M30	T20	Moretane	16.8	1.97	101	16.60	65	135
H31S	T21	30-Homohopane-22S	68.7	1.97	93	73.80	65	135
H31R	T22	30-Homohopane-22R	58.1	1.97	92	63.40	65	135
T22A	T22A	T22a-Gammacerane/C32-diahopane	12.6	1.97				
H32S	T26	30,31-Bishomohopane-22S	48.4	1.97	92	52.50	65	135
H32R	T27 T30	30,31-Bishomohopane-22R	34.7 36.4	1.97 1.97	90	38.40	65 65	135 135
H33R H33S	T31	30,31-Trishomohopane-22S		1.97	88	41.10 27.40	65	135
H34R	T32	30,31-Trishomohopane-22R Tetrakishomohopane-22S	27.3 26.9	1.97	100 90	30.00	65	135
H34S	T33	Tetrakishomohopane-22R	19.9	1.97	96	20.70	65	135
H35S	T34	Pentakishomohopane-22S	27.8	1.97	92	30.20	65	135
H35R	T35	Pentakishomohopane-22R	25.2	1.97	109	23.20	65	135
d27S	S4	13b(H),17a(H)-20S-Diacholestane	55.3	1.97	112	49.20	65	135
d27R	S5	13b(H),17a(H)-20R-Diacholestane	28.3	1.97	112	25.30	65	135
d28S	S8	13b,17a-20S-Methyldiacholestane	25.9	1.97	111	23.30	65	135
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	73.4	1.97	114	64.20	65	135
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	82.0	1.97	109	75.50	65	135
d29R	S18	Unknown Sterane (S18)	24.3	1.97	117	20.70	65	135
d29S	S19	13a,17b-20S-Ethyldiacholestane	4.52	1.97	108	4.20	65	135
aa28S	S20	14a,17a-20S-Methylcholestane	37.1	1.97	101	36.70	65	135
aa28R	S24	14a,17a-20R-Methylcholestane	35.2	1.97	107	33.00	65	135
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	45.1	1.97	87	51.90	65	135
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	42.0	1.97	106	39.70	65	135
bb27R	S14	14b(H),17b(H)-20R-Cholestane	43.0	1.97	107	40.10	65	135
bb27S	S15	14b(H),17b(H)-20S-Cholestane	43.8	1.97	108	40.70	65	135
bb28R	S22	14b,17b-20R-Methylcholestane	47.8	1.97	107	44.80	65	135
bb28S	S23	14b,17b-20S-Methylcholestane	62.2	1.97	115	54.00	65	135
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	67.3	1.97	114	59.20	65	135
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	40.1	1.97	99	40.60	65	135
RC26/SC27TA	RC26/SC27TA	C26,20R- +C27,20S- triaromatic steroid	265	1.97	87	304.20	65	135
SC28TA	SC28TA	C28,20S-triaromatic steroid	168	1.97	88	191.80	65	135
RC27TA	RC27TA	C27,20R-triaromatic steroid	161	1.97	86	186.40	65	135
RC28TA	RC28TA	C28,20R-triaromatic steroid	136	1.97	86	158.30	65	135

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

Client ID	S-80-B11
Lab ID	1208051-01
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS090712B03
Date Collected	08/21/2012
Date Received	08/23/2012
Date Prepped	09/07/2012
Date Analyzed	09/27/2012
Sample Size (wet)	5.2
% Solid	93.02
File ID	A90008592.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	4.14

Class	Abbrev	Analytes	Result SSF
2	D0	cis/trans-Decalin	96.0 4.1
2	D1	C1-Decalins	317 4.1
2	D2	C2-Decalins	529 4.1
2	D3	C3-Decalins	342 4.1
2	D4	C4-Decalins	353 4.1
2	BT0	Benzothiophene	U 4.1
2	BT1	C1-Benzo(b)thiophenes	15.1 4.1
2	BT2	C2-Benzo(b)thiophenes	13.6 4.1
2	BT3	C3-Benzo(b)thiophenes	50.1 4.1
2	BT4	C4-Benzo(b)thiophenes	49.5 4.1
2	N0	Naphthalene	3.84 J 4.1
2	N1	C1-Naphthalenes	4.30 G 4.1
2	N2	C2-Naphthalenes	66.2 4.1
2	N3	C3-Naphthalenes	260 4.1
2	N4	C4-Naphthalenes	369 4.1
2	В	Biphenyl	0.945 JB 4.1
3	DF	Dibenzofuran	6.83 4.1
3	AY	Acenaphthylene	4.05 J 4.1
3	AE	Acenaphthene	13.2 4.1
3	F0	Fluorene	54.3 4.1
3	F1	C1-Fluorenes	125 4.1
3	F2	C2-Fluorenes	197 4.1
3	F3	C3-Fluorenes	165 4.1
3	A0	Anthracene	U 4.1
3	P0	Phenanthrene	1.41 JB 4.1
3	PA1	C1-Phenanthrenes/Anthracenes	21.2 4.1
3	PA2	C2-Phenanthrenes/Anthracenes	191 4.1
3	PA3	C3-Phenanthrenes/Anthracenes	215 4.1
3	PA4	C4-Phenanthrenes/Anthracenes	85.8 4.1
3	RET	Retene	U 4.1
3	DBT0	Dibenzothiophene	20.0 4.1
3	DBT1	C1-Dibenzothiophenes	46.8 4.1
3	DBT2	C2-Dibenzothiophenes	98.3 4.1
3	DBT3	C3-Dibenzothiophenes	77.9 4.1
3	DBT4	C4-Dibenzothiophenes	37.9 4.1
4	BF	Benzo(b)fluorene	6.64 4.1
4	FL0	Fluoranthene	5.26 4.1
4	PY0	Pyrene	10.7 4.1
4	FP1	C1-Fluoranthenes/Pyrenes	43.8 4.1
4	FP2	C2-Fluoranthenes/Pyrenes	64.5 4.1
4	FP3 FP4	C3-Fluoranthenes/Pyrenes	69.4 4.1 59.7 4.1
4	NBT0	C4-Fluoranthenes/Pyrenes	59.7 4.1 7.27 4.1
4	NBT1	Naphthobenzothiophenes C1-Naphthobenzothiophenes	7.27 4.1 22.4 4.1
4	NBT2		36.6 4.1
4	NBT3	C2-Naphthobenzothiophenes C3-Naphthobenzothiophenes	28.2 4.1
4	NBT4	C4-Naphthobenzothiophenes	29.0 4.1
4	BA0	Benz[a]anthracene	3.26 J 4.1
4	C0	Chrysene/Triphenylene	11.7 4.1
4	BC1	C1-Chrysenes	32.5 4.1
4	BC2	C2-Chrysenes	47.1 4.1
4	BC3	C3-Chrysenes	67.0 4.1
4	BC4	C4-Chrysenes	41.7 4.1
5	BBF	Benzo[b]fluoranthene	2.70 J 4.1
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	1.39 J 4.1
5	BAF	Benzo[a]fluoranthene	1.39 J 4.1 U 4.1
5	BEP	Benzo[e]pyrene	3.41 J 4.1
5	BAP	Benzo[a]pyrene	1.86 J 4.1
5	PER	Perylene	13.3 4.1
6	IND	Indeno[1,2,3-cd]pyrene	1.59 J 4.1
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	0.710 J 4.1
	DA	Sisterial indicate of District additional and the second	
6	GHI	Benzo[g,h,i]perylene	2.35 J 4.1

Client ID	S-80-B11	
Lab ID	1208051-01	
Matrix	Soil	
Reference Method	Modified 8270D	
Batch ID	TS090712B03	
Date Collected	08/21/2012	
Date Received	08/23/2012	
Date Prepped	09/07/2012	
Date Analyzed 09/		
Sample Size (wet)	5.2	
% Solid	93.02	
File ID	A90008592.D	
Units	μg/Kg	
Final Volume	2	
Dilution	1	
Reporting Limit	4.14	

Class	Abbrev	Analytes	Result		SSRL
3	4MDT	4-Methyldibenzothiophene	29.9		4.14
3	2MDT 1MDT	2/3-Methyldibenzothiophene	6.06 9.05		4.14 4.14
3	3MP	1-Methyldibenzothiophene 3-Methylphenanthrene	3.36	J	4.14
3	2MP	2-Methylphenanthrene	1.66	J	4.14
3	2MA	2-Methylanthracene	4.78	J	4.14
3	9MP	9/4-Methylphenanthrene	5.81		4.14
3	1MP	1-Methylphenanthrene	5.39		4.14
t23	T4	C23 Tricyclic Terpane	28.1		4.14
t24	T5	C24 Tricyclic Terpane	22.3		4.14
t25	T6	C25 Tricyclic Terpane	22.9		4.14
te24	T6a	C24 Tetracyclic Terpane	3.83	J	4.14
t26S	T6b	C26 Tricyclic Terpane-22S	10.7		4.14
t26R	T6c	C26 Tricyclic Terpane-22R	9.81		4.14
t28S	T7	C28 Tricyclic Terpane-22S	14.2		4.14
t28R	T8	C28 Tricyclic Terpane-22R	15.5		4.14
t29S	T9	C29 Tricyclic Terpane-22S	17.8		4.14
t29R	T10	C29 Tricyclic Terpane-22R	16.1		4.14
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	11.5		4.14
t30S	T11a	C30 Tricyclic Terpane-22S	16.9		4.14
t30R	T11b	C30 Tricyclic Terpane-22R	14.9		4.14
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	17.3		4.14
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	29.8		4.14
25N	T14b	17a(H),21b(H)-25-Norhopane	10.7		4.14
H29	T15	30-Norhopane	58.1		4.14
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	12.8		4.14
X	X	17a(H)-Diahopane	4.27		4.14
M29	T17	30-Normoretane	12.1		4.14
OL	T18	18a(H)&18b(H)-Oleananes	26.3		4.14
H30	T19	Hopane	116		4.14
M30	T20	Moretane	17.0		4.14
H31S	T21	30-Homohopane-22S	30.8		4.14
H31R	T22	30-Homohopane-22R	37.4	G	4.14
T22A	T22A	T22a-Gammacerane/C32-diahopane	9.44		4.14
H32S	T26	30,31-Bishomohopane-22S	21.9		4.14
H32R	T27	30,31-Bishomohopane-22R	17.2		4.14
H33R	T30	30,31-Trishomohopane-22S	20.6		4.14
H33S	T31	30,31-Trishomohopane-22R	15.2		4.14
H34R	T32	Tetrakishomohopane-22S	12.6		4.14
H34S	T33	Tetrakishomohopane-22R	8.27		4.14
H35S	T34	Pentakishomohopane-22S	10.6		4.14
H35R	T35	Pentakishomohopane-22R	16.5	G	4.14
d27S	S4	13b(H),17a(H)-20S-Diacholestane	31.0		4.14
d27R	S5	13b(H),17a(H)-20R-Diacholestane	16.0		4.14
d28S	S8	13b,17a-20S-Methyldiacholestane	34.1		4.14
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	99.8		4.14
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	156		4.14
d29R	S18	Unknown Sterane (S18)	8.01		4.14
d29S	S19	13a,17b-20S-Ethyldiacholestane	3.30	J	4.14
aa28S	S20	14a,17a-20S-Methylcholestane	76.8		4.14
aa28R	S24	14a,17a-20R-Methylcholestane	137		4.14
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	71.2		4.14
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	92.4		4.14
bb27R	S14	14b(H),17b(H)-20R-Cholestane	74.1		4.14
bb27S	S15	14b(H),17b(H)-20S-Cholestane	69.9		4.14
bb28R	S22	14b,17b-20R-Methylcholestane	103		4.14
bb28S	S23	14b,17b-20S-Methylcholestane	102		4.14
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	71.4		4.14
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	50.7		4.14
RC26/SC27T/		C26,20R- +C27,20S- triaromatic steroid	329		4.14
SC28TA	SC28TA	C28,20S-triaromatic steroid	121		4.14
RC27TA	RC27TA	C27,20R-triaromatic steroid	187		4.14
RC28TA	RC28TA	C28,20R-triaromatic steroid	101		4.14

 Surrogates (% Recovery)
 75

 Naphthalene-d8
 75

 Phenanthrene-d10
 97

 Benzo[al]yrene-d12
 99

 5B(H)Cholane
 N/A

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- U: The analyte was analyzed for but not detected at the sample specific level reported. B: Found in associated blank as well as sample. J: Estimated value, below quantitation limit.

- E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable
- D: Secondary Dilution Performed D1: Tertiary Dilution Performed

- D1: Iertrary Dilution Performed

 3: Value outside of QC Limits,

 5: Surrogate value outside of acceptable range.

 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

 G: Matrix Interference.
- G: Matrix Interference.
 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.
 I: Due to interference, the lower value is reported.
 N: Spike recovery outside control limits.
 E: Estimated due to Interference. (Metals)
 I: Duplicate outside control limits.
 P: Spike compound. (Metals)
 J: Below CRDL, Project DL, or RL but greater than or equal to MDL
 C: Sample concentration is > 4 times the spike level, recovery limits do not apply. (Metals)
 S: Spike Compound. (Organics)
 F: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)
 T: Tentatively identified corexit compound.
 C: Co-elution.
 Z: Result not surrogate corrected.

Project Name: FORMER XOM JALK FEE PROPERTY

Project	Number:	CARDNO	ERI
---------	---------	--------	-----

Client ID	Laboratory Method BI
Lab ID	WG557459-3
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG557459
Date Collected	NA
Date Received	8/28/2012
Date Prepped	8/27/2012
Date Analyzed	8/27/2012
Sample Size(wet)	15 g
% Solid	100
File ID	0827A04.D
Units	ug/kg
Final Volume	0.1
Dilution	1
Reporting Limit	50

	Abbrev	Analytes	Result	SSRL
С	DCM	METHYLENE CHLORIDE	U	500
С	11DCA	1,1-DICHLOROETHANE	U	75
С	CF	CHLOROFORM	U	75
С	CT	CARBON TETRACHLORIDE	U	50
С	12DCP	1,2-DICHLOROPROPANE	U	180
В	DBCM	DIBROMOCHLOROMETHANE	U	50
С	112TCA	1,1,2-TRICHLOROETHANE	U	75
С	PCE	TETRACHLOROETHENE	U	50
С	CB	CHLOROBENZENE	U	50
F	TCTFM	TRICHLOROFLUOROMETHANE	U	250
ADD	12DCA	1,2-DICHLOROETHANE	U	50
С	111TCA	1,1,1-TRICHLOROETHANE	U	50
В	BDCM	BROMODICHLOROMETHANE	U	50
С	T13DCP	TRANS-1,3-DICHLOROPROPENE	U	50
С	C13DCP	CIS-1,3-DICHLOROPROPENE	U	50
В	BF	BROMOFORM	U	200
С	1122PCA	1,1,2,2-TETRACHLOROETHANE	U	50
Α	В	BENZENE	U	50
Α	T	TOLUENE	U	75
Α	EB	ETHYLBENZENE	Ü	50
В	BM	BROMOMETHANE	Ü	100
С	VC	VINYL CHLORIDE	Ü	100
č	CF	CHLOROETHANE	Ũ	100
č	11DCE	1,1-DICHLOROETHENE	Ũ	50
č	T12DCE		Ū	75
č	TCE	TRICHLOROETHENE	Ü	50
č	12DCB	1,2-DICHLOROBENZENE	Ü	250
č	13DCB	1,3-DICHLOROBENZENE	Ü	250
č	14DCB	1.4-DICHLOROBENZENE	Ü	250
OX	MTBF	METHYL TERT BUTYL ETHER	Ü	100
A	MPX	P/M-XYLENE	Ü	100
Ä	OX	O-XYLENE	Ü	100
ĉ		CIS-1,2-DICHLOROETHENE	Ü	50
Č	123TCP	1.2.3-TRICHLOROPROPANE	Ü	500
A	STY	STYRENE	Ü	100
Ê	DCFM	DICHLORODIFLUOROMETHANE	Ü	500
0	ACE	ACETONE	U	1800
Ö	MEK	2-BUTANONE	Ü	500
0	MIBK	4-METHYL-2-PENTANONE	U	500
0	THE		U	
		TETRAHYDROFURAN		1000
ADD	12DBE	1,2-DIBROMOETHANE	U	200
C		1,1,1,2-TETRACHLOROETHANE	U	50
A	BUTB	N-BUTYLBENZENE	U	50
A	TBB	TERT-BUTYLBENZENE	U	250
C	2CT	O-CHLOROTOLUENE	U	250
С	HCB	HEXACHLOROBUTADIENE	U	250
Α	IPB	ISOPROPYLBENZENE	U	50
		P-ISOPROPYLTOLUENE	U	50
2	N0	NAPHTHALENE	U	250
Α	PROPB		U	50
С		1,2,4-TRICHLOROBENZENE	U	250
Α	135TMB	1,3,5-TRIMETHYLBENZENE	U	250
Α	124TMB	1,2,4-TRIMETHYLBENZENE	U	250
0	DIE	ETHYL ETHER	U	250

Surrogates (% Recovery) 1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE DIBROMOFLUOROMETHANE 100 98 98 102

Project Name: FORMER XOM JALK FEE PROPERTY

Project Numbe	r: CARDNO ERI
---------------	---------------

Client ID	Laboratory Control S
Lab ID	WG557459-1
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG557459
Date Collected	NA
Date Received	8/28/2012
Date Prepped	8/27/2012
Date Analyzed	8/27/2012
Sample Size(wet)	15 g
% Solid	100
File ID	0827A02.D
Units	%
Final Volume	0.1
Dilution	1
Reporting Limit	50

		reporting Limit	30					
Class	Abbrev	Analytes	Result		% REC	Spike Conc.	Lower Limit	
C	DCM 11DCA	METHYLENE CHLORIDE 1,1-DICHLOROETHANE	1110 1000	500 75	111 100	1000 1000	70 70	130 130
C	CF	CHLOROFORM	1020	75 75	100	1000	70	130
Č	CT	CARBON TETRACHLORIDE	1010	50	101	1000	70	130
č	12DCP	1,2-DICHLOROPROPANE	1010	180	101	1000	70	130
В	DBCM	DIBROMOCHLOROMETHANE	995	50	100	1000	70	130
С	112TCA	1,1,2-TRICHLOROETHANE	1030	75	103	1000	70	130
С	PCE	TETRACHLOROETHENE	991	50	99	1000	70	130
С	CB	CHLOROBENZENE	996	50	100	1000	70	130
F	TCTFM	TRICHLOROFLUOROMETHANE	1080	250	108	1000	70	139
ADD	12DCA	1,2-DICHLOROETHANE	1000	50	100	1000	70	130
C B	111TCA BDCM	1,1,1-TRICHLOROETHANE BROMODICHLOROMETHANE	983 994	50 50	98 99	1000 1000	70 70	130 130
С	T13DCP	TRANS-1,3-DICHLOROPROPENE	994	50	99	1000	70	130
C	C13DCP	CIS-1,3-DICHLOROPROPENE	1000	50	100	1000	70	130
Č	11DCP	1,1-DICHLOROPROPENE	986	250	99	1000	70	130
В	BF	BROMOFORM	990	200	99	1000	70	130
Č	1122PCA	1,1,2,2-TETRACHLOROETHANE	986	50	99	1000	70	130
Ā	В	BENZENE	997	50	100	1000	70	130
A	Ť	TOLUENE	957	75	96	1000	70	130
Α	EB	ETHYLBENZENE	993	50	99	1000	70	130
С	CM	CHLOROMETHANE	1030	250	103	1000	52	130
В	BM	BROMOMETHANE	1180	100	118	1000	57	147
С	VC	VINYL CHLORIDE	1060	100	106	1000	67	130
С	CE	CHLOROETHANE	1080	100	108	1000	50	151
С	11DCE	1,1-DICHLOROETHENE	995	50	100	1000	65	135
С	T12DCE	TRANS-1,2-DICHLOROETHENE	998	75	100	1000	70	130
С	TCE	TRICHLOROETHENE	995	50	100	1000	70	130
C	12DCB	1,2-DICHLOROBENZENE	998	250	100	1000	70	130
C	13DCB 14DCB	1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	999 991	250 250	100 99	1000 1000	70 70	130 130
OX	MTBE	METHYL TERT BUTYL ETHER	996	100	100	1000	66	130
A	MPX	P/M-XYLENE	2010	100	100	2000	70	130
Ä	OX	O-XYLENE	2040	100	102	2000	70	130
Ċ	C12DCE	CIS-1,2-DICHLOROETHENE	1010	50	101	1000	70	130
В	DBM	DIBROMOMETHANE	1040	500	104	1000	70	130
С	14DC	1,4-DICHLOROBUTANE	988	500	99	1000	70	130
С	123TCP	1,2,3-TRICHLOROPROPANE	889	500	89	1000	68	130
Α	STY	STYRENE	2080	100	104	2000	70	130
F	DCFM	DICHLORODIFLUOROMETHANE	1140	500	114	1000	30	146
0	ACE	ACETONE	1070	1800	107	1000	54	140
S	CD	CARBON DISULFIDE	991	500	99	1000	59	130
0	MEK	2-BUTANONE	1110	500	111	1000	70	130
0	VA MIBK	VINYL ACETATE	1040	500 500	104 93	1000	70 70	130 130
0	MBK	4-METHYL-2-PENTANONE 2-HEXANONE	931 978	500	93 98	1000	70	130
O	WIDI	ETHYL METHACRYLATE	882	500	88	1000	70	130
		ACRYLONITRILE	1060	200	106	1000	70	130
В	BCM	BROMOCHLOROMETHANE	1020	250	102	1000	70	130
0	THE	TETRAHYDROFURAN	1040	1000	104	1000	66	130
С	22DCP	2,2-DICHLOROPROPANE	996	250	100	1000	70	130
ADD	12DBE	1,2-DIBROMOETHANE	982	200	98	1000	70	130
С	13DCP	1,3-DICHLOROPROPANE	999	250	100	1000	69	130
С		1,1,1,2-TETRACHLOROETHANE	988	50	99	1000	70	130
В	BB	BROMOBENZENE	981	250	98	1000	70	130
Α	BUTB	N-BUTYLBENZENE	1020	50	102	1000	70	130
A	SECBUT	SEC-BUTYLBENZENE	994	50	99	1000	70	130
A	TBB 2CT	TERT-BUTYLBENZENE	986	250	99	1000	70	130
C	4CT	O-CHLOROTOLUENE P-CHLOROTOLUENE	996 988	250 250	100 99	1000 1000	70 70	130 130
В	12DB3CP		1000	250	100		68	130
С	HCR	1,2-DIBROMO-3-CHLOROPROPANE HEXACHLOROBUTADIENE	978	250 250	98	1000 1000	67	130
A	IPB	ISOPROPYLBENZENE	979	50	98	1000	70	130
^	5	P-ISOPROPYLTOLUENE	1000	50	100	1000	70	130
2	N0	NAPHTHALENE	947	250	95	1000	70	130
Ā	PROPB	N-PROPYLBENZENE	986	50	99	1000	70	130
С	123TCB	1,2,3-TRICHLOROBENZENE	968	250	97	1000	70	130
С	124TCB	1,2,4-TRICHLOROBENZENE	979	250	98	1000	70	130
Α	135TMB	1,3,5-TRIMETHYLBENZENE	1000	250	100	1000	70	130
Α	124TMB	1,2,4-TRIMETHYLBENZENE	1010	250	101	1000	70	130
_		TRANS-1,4-DICHLORO-2-BUTENE	992	250	99	1000	70	130
0	DIE	ETHYL ETHER	1010	250	101	1000	67	130

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 98

 TOLUENE-D8
 101

 4-BROMOFLUOROBENZENE
 97

 DIBROMOFLUOROMETHANE
 100

Project Name: FORMER XOM JALK FEE PROPERTY Project Number: CARDNO ERI

Client ID	LCS Duplicate
Lab ID	WG557459-2
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG557459
Date Collected	NA
Date Received	8/28/2012
Date Prepped	8/27/2012
Date Analyzed	8/27/2012
Sample Size(wet)	15 g
% Solid	100
File ID	0827A01.D
Units	%
Final Volume	0.1
Dilution	1
Poporting Limit	50

Class	Abbrev	Analytes	Result	SSRL	% REC	Spike Conc. Low	er Limit Upp	er Limit RPD	RPD Limit
С	DCM	METHYLENE CHLORIDE	1110	500	111	1000	70	130	0 30
C C	11DCA CF	1,1-DICHLOROETHANE	1020 1020	75 75	102 102	1000	70 70	130	2 30 0 30
C	CT	CHLOROFORM CARBON TETRACHLORIDE	1060	50	102	1000 1000	70	130 130	5 30
č	12DCP	1,2-DICHLOROPROPANE	1010	180	101	1000	70	130	0 30
В	DBCM	DIBROMOCHLOROMETHANE	990	50	99	1000	70	130	1 30
С	112TCA	1,1,2-TRICHLOROETHANE	1010	75	101	1000	70	130	2 30
C	PCE	TETRACHLOROETHENE	1030	50	103	1000	70	130	4 30
C F	CB	CHLOROBENZENE	1020	50	102	1000	70	130	2 30
ADD	TCTFM 12DCA	TRICHLOROFLUOROMETHANE 1,2-DICHLOROETHANE	1160 990	250 50	116 99	1000 1000	70 70	139 130	7 30 1 30
C	111TCA	1,1,1-TRICHLOROETHANE	1020	50	102	1000	70	130	4 30
В	BDCM	BROMODICHLOROMETHANE	1010	50	101	1000	70	130	2 30
С	T13DCP	TRANS-1,3-DICHLOROPROPENE	992	50	99	1000	70	130	0 30
С	C13DCP	CIS-1,3-DICHLOROPROPENE	1000	50	100	1000	70	130	0 30
С	11DCP	1,1-DICHLOROPROPENE	1030	250	103	1000	70	130	4 30
В	BF	BROMOFORM	983	200	98	1000	70	130	1 30
C A	1122PCA B	1,1,2,2-TETRACHLOROETHANE BENZENE	973 1020	50 50	97 102	1000 1000	70 70	130 130	2 30 2 30
A	T	TOLUENE	994	75	99	1000	70	130	3 30
Α	EB	ETHYLBENZENE	1010	50	101	1000	70	130	2 30
С	CM	CHLOROMETHANE	1070	250	107	1000	52	130	4 30
В	BM	BROMOMETHANE	1310	100	131	1000	57	147	10 30
С	VC	VINYL CHLORIDE	1100	100	110	1000	67	130	4 30
С	CE	CHLOROETHANE	1120	100	112	1000	50	151	4 30
C	11DCE T12DCE	1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	1050 1020	50 75	105 102	1000 1000	65 70	135 130	5 30 2 30
C	TCE	TRICHLOROETHENE	1030	50	102	1000	70	130	3 30
č	12DCB	1,2-DICHLOROBENZENE	1000	250	100	1000	70	130	0 30
Ċ	13DCB	1,3-DICHLOROBENZENE	1010	250	101	1000	70	130	1 30
С	14DCB	1,4-DICHLOROBENZENE	1000	250	100	1000	70	130	1 30
OX	MTBE	METHYL TERT BUTYL ETHER	978	100	98	1000	66	130	2 30
A	MPX	P/M-XYLENE	2060	100	103	2000	70	130	3 30
A C	OX C12DCE	O-XYLENE CIS-1,2-DICHLOROETHENE	2080 1030	100 50	104 103	2000 1000	70 70	130 130	2 30 2 30
В	DBM	DIBROMOMETHANE	1030	500	103	1000	70	130	1 30
Č	14DC	1,4-DICHLOROBUTANE	979	500	98	1000	70	130	1 30
С	123TCP	1,2,3-TRICHLOROPROPANE	905	500	90	1000	68	130	1 30
Α	STY	STYRENE	2100	100	105	2000	70	130	1 30
F	DCFM	DICHLORODIFLUOROMETHANE	1220	500	122	1000	30	146	7 30
0	ACE	ACETONE CARRON DISTRICTOR	1170	1800	117	1000	54	140	9 30
S O	CD MEK	CARBON DISULFIDE 2-BUTANONE	1040 1160	500 500	104 116	1000 1000	59 70	130 130	5 30 4 30
ŏ	VA	VINYL ACETATE	1040	500	104	1000	70	130	0 30
ō	MIBK	4-METHYL-2-PENTANONE	915	500	92	1000	70	130	1 30
0	MBK	2-HEXANONE	974	500	97	1000	70	130	1 30
		ETHYL METHACRYLATE	874	500	87	1000	70	130	1 30
	DOM	ACRYLONITRILE	1020	200	102	1000	70	130	4 30
B O	BCM THF	BROMOCHLOROMETHANE TETRAHYDROFURAN	1060 999	250 1000	106 100	1000 1000	70 66	130 130	4 30 4 30
Č	22DCP	2,2-DICHLOROPROPANE	1030	250	103	1000	70	130	3 30
ADD	12DBE	1,2-DIBROMOETHANE	968	200	97	1000	70	130	1 30
С	13DCP	1,3-DICHLOROPROPANE	987	250	99	1000	69	130	1 30
С	1112PCA	1,1,1,2-TETRACHLOROETHANE	1010	50	101	1000	70	130	2 30
В	BB	BROMOBENZENE	986	250	99	1000	70	130	1 30
A A	BUTB SECBUT	N-BUTYLBENZENE	1060	50 50	106 103	1000 1000	70 70	130 130	4 30 4 30
A	TBB	SEC-BUTYLBENZENE TERT-BUTYLBENZENE	1030 1030	250	103	1000	70 70	130	4 30 4 30
ĉ	2CT	O-CHLOROTOLUENE	1020	250	103	1000	70	130	2 30
č	4CT	P-CHLOROTOLUENE	1000	250	100	1000	70	130	1 30
В	12DB3CP	1,2-DIBROMO-3-CHLOROPROPANE	969	250	97	1000	68	130	3 30
С	HCB	HEXACHLOROBUTADIENE	1000	250	100	1000	67	130	2 30
Α	IPB	ISOPROPYLBENZENE	1010	50	101	1000	70	130	3 30
	NO	P-ISOPROPYLTOLUENE	1040	50	104	1000	70	130	4 30
2	N0	NAPHTHALENE	937	250	94	1000	70 70	130	1 30
A C	PROPB 123TCB	N-PROPYLBENZENE 1.2.3-TRICHLOROBENZENE	1020 964	50 250	102 96	1000 1000	70 70	130 130	3 30 1 30
č	124TCB	1,2,4-TRICHLOROBENZENE	979	250	98	1000	70	130	0 30
A	135TMB	1,3,5-TRIMETHYLBENZENE	1030	250	103	1000	70	130	3 30
Α	124TMB	1,2,4-TRIMETHYLBENZENE	1030	250	103	1000	70	130	2 30
_	D. F.	TRANS-1,4-DICHLORO-2-BUTENE	999	250	100	1000	70	130	1 30
0	DIE	ETHYL ETHER	1000	250	100	1000	67	130	1 30

Surrogates (% Recovery) 1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE DIBROMOFLUOROMETHANE 96 100 99 100

Project Name: FORMER XOM JALK FEE PROPERTY
Project Number: CARDNO ERI

Client ID	S-15-B10	S-80-B10
Lab ID	L1214919-01	L1214919-02
Matrix	SOIL	SOIL
Matrix Description		
Reference Method	8260C	8260C
Batch ID	WG557459	WG557459
Date Collected	8/13/2012	8/14/2012
Date Received	8/21/2012	8/21/2012
Date Prepped	8/27/2012	8/27/2012
Date Analyzed	8/27/2012	8/27/2012
Sample Size(wet)	15.5 g	15.6 g
% Solid	80.6	96.8
File ID	0827A08.D	0827A09.D
Units	ug/kg	ug/kg
Final Volume	0.1	0.1
Dilution	1	1
Reporting Limit	72	51

Class	Abbrev	Analytes	Result	SSRL	Result	SSRL
С	DCM	METHYLENE CHLORIDE	430 J	720	360 J	510
Ċ	11DCA	1,1-DICHLOROETHANE	U	110	U	77
С	CF	CHLOROFORM	U	110	U	77
C	CT	CARBON TETRACHLORIDE	Ü	72	Ü	51
Ċ	12DCP	1,2-DICHLOROPROPANE	Ú	250	Ü	180
В	DBCM	DIBROMOCHLOROMETHANE	Ü	72	Ü	51
c	112TCA	1.1.2-TRICHLOROETHANE	ŭ	110	Ū	77
Č	PCE	TETRACHLOROETHENE	Ŭ	72	Ŭ	51
č	CB	CHLOROBENZENE	ŭ	72	ŭ	51
F	TCTFM	TRICHLOROFLUOROMETHANE	Ŭ	360	Ŭ	260
ADD	12DCA	1,2-DICHLOROETHANE	Ü	72	Ü	51
C		1,1,1-TRICHLOROETHANE	Ü	72	Ü	51
В	BDCM	BROMODICHLOROMETHANE	Ŭ	72	Ŭ	51
C		TRANS-1,3-DICHLOROPROPENE	Ü	72	Ü	51
c		CIS-1,3-DICHLOROPROPENE	U	72	Ü	51
В	BF	BROMOFORM	Ü	290	Ü	200
C		1.1.2.2-TETRACHLOROETHANE	Ü	72	Ü	51
A	B B	BENZENE	U	72	IJ	51
	T					
A A	FB.	TOLUENE ETHYLBENZENE	U	110 72	U	77 51
В						
	BM	BROMOMETHANE	U	140	U	100
С	VC	VINYL CHLORIDE	U	140	U	100
С	CE	CHLOROETHANE	U	140	U	100
С	11DCE	1,1-DICHLOROETHENE	U	72	U	51
С		TRANS-1,2-DICHLOROETHENE	U	110	U	77
C	TCE	TRICHLOROETHENE	120	72	U	51
С	12DCB	1,2-DICHLOROBENZENE	U	360	U	260
С	13DCB	1,3-DICHLOROBENZENE	U	360	U	260
С	14DCB	1,4-DICHLOROBENZENE	U	360	U	260
OX	MTBE	METHYL TERT BUTYL ETHER	U	140	U	100
Α	MPX	P/M-XYLENE	U	140	U	100
Α	OX	O-XYLENE	U	140	U	100
С	C12DCE	CIS-1,2-DICHLOROETHENE	380	72	U	51
С	123TCP	1,2,3-TRICHLOROPROPANE	U	720	U	510
Α	STY	STYRENE	U	140	U	100
F	DCFM	DICHLORODIFLUOROMETHANE	U	720	U	510
0	ACE	ACETONE	320 J	2600	170 J	1800
0	MEK	2-BUTANONE	U	720	U	510
0	MIBK	4-METHYL-2-PENTANONE	U	720	U	510
0	THF	TETRAHYDROFURAN	U	1400	U	1000
ADD	12DBE	1,2-DIBROMOETHANE	U	290	U	200
С	1112PCA	1,1,1,2-TETRACHLOROETHANE	U	72	U	51
Α	BUTB	N-BUTYLBENZENE	U	72	72	51
Α	TBB	TERT-BUTYLBENZENE	62 J	360	U	260
С	2CT	O-CHLOROTOLUENE	U	360	U	260
Ċ	HCB	HEXACHLOROBUTADIENE	Ú	360	Ü	260
A	IPB	ISOPROPYLBENZENE	75	72	47 J	51
		P-ISOPROPYLTOLUENE	U	72	Ü	51
2	N0	NAPHTHALENE	ũ	360	Ũ	260
A	PROPB	N-PROPYLBENZENE	Ũ	72	110	51
ĉ		1.2.4-TRICHLOROBENZENE	Ü	360	U	260
A	135TMB	1,3,5-TRIMETHYLBENZENE	Ü	360	Ü	260
Ä	124TMB	1,2,4-TRIMETHYLBENZENE	Ü	360	Ü	260
ô	DIE	ETHYL ETHER	Ü	360	Ü	260
	UIL	Enneemen	- 0	500	- 0	200

Surrogates (% Recovery)		
1,2-DICHLOROETHANE-D4	95	93
TOLUENE-D8	112	100
4-BROMOFLUOROBENZENE	158 Q	117
DIDDOMOELLIODOMETLIANE	06	00

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- List of Potential Qualifiers

 A: Spectra identified as "Aldol Condensation Product".

 B: The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DCD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. reporting limit.
- C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

 D: Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

 E: Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

- E: Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 G: The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.

 H: The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 I: The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.

 J: Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL). This represents an estimated concentration for Tentatively Identified Compounds (TICs).

- NB: Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

 ND: Not detected at the method detection limit (MDL) for the sample.

 NJ: Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

 P: The RPD between the results for the two columns exceeds the method-specified criteria.

 Q: The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all
- associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R: Analytical results are from sample re-analysis.
- RE: Analytical results are from sample re-extraction.
 U: Not detected at the reported detection limit for the sample

Project Name: FORMER XOM JALK FEE PROPERTY

Project Nu	mber: C	ARDNO	ERI
------------	---------	-------	-----

Client ID Lab ID Matrix	Laboratory Method BI WG557459-6 SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG557459
Date Collected	NA
Date Received	8/29/2012
Date Prepped	8/28/2012
Date Analyzed	8/28/2012
Sample Size(wet)	15 g
% Solid	100
File ID	0828A03.D
Units	ug/kg
Final Volume	0.1
Dilution	1
Reporting Limit	50

	Abbrev	Analytes	Result	SSRL
C	DCM 11DCA	METHYLENE CHLORIDE	U	500 75
C	CF	1,1-DICHLOROETHANE	U	75 75
		CHLOROFORM		
C	CT	CARBON TETRACHLORIDE	U	50
С	12DCP	1,2-DICHLOROPROPANE	U	180
В	DBCM	DIBROMOCHLOROMETHANE	U	50
С	112TCA	1,1,2-TRICHLOROETHANE	U	75
C	PCE	TETRACHLOROETHENE	U	50
С	CB	CHLOROBENZENE	U	50
F	TCTFM	TRICHLOROFLUOROMETHANE	U	250
ADD	12DCA	1,2-DICHLOROETHANE	U	50
С	111TCA		U	50
В	BDCM	BROMODICHLOROMETHANE	U	50
С	T13DCP		U	50
С		CIS-1,3-DICHLOROPROPENE	U	50
В	BF	BROMOFORM	U	200
С	1122PCA	1,1,2,2-TETRACHLOROETHANE	U	50
Α	В	BENZENE	U	50
Α	T	TOLUENE	U	75
Α	EB	ETHYLBENZENE	U	50
В	BM	BROMOMETHANE	U	100
С	VC	VINYL CHLORIDE	U	100
С	CE	CHLOROETHANE	U	100
С	11DCE	1,1-DICHLOROETHENE	U	50
С	T12DCE	TRANS-1,2-DICHLOROETHENE	U	75
С	TCE	TRICHLOROETHENE	U	50
Ċ	12DCB	1,2-DICHLOROBENZENE	Ü	250
С	13DCB	1,3-DICHLOROBENZENE	U	250
C	14DCB	1.4-DICHLOROBENZENE	Ü	250
ΟX	MTBF	METHYL TERT BUTYL ETHER	ŭ	100
A	MPX	P/M-XYLENE	ũ	100
Α	OX	O-XYLENE	ŭ	100
C	C12DCE	CIS-1,2-DICHLOROETHENE	Ū	50
Č	123TCP	1.2.3-TRICHLOROPROPANE	Ü	500
A	STY	STYRENE	Ü	100
F	DCFM	DICHLORODIFLUOROMETHANE	Ü	500
0	ACE	ACETONE	Ü	1800
ŏ	MEK	2-BUTANONE	Ü	500
Ô	MIBK	4-METHYL-2-PENTANONE	IJ	500
Ô	THE	TETRAHYDROFURAN	IJ	1000
ADD	12DBF	1.2-DIBROMOETHANE	U	200
C		1,1,1,2-TETRACHLOROETHANE	U	50
A	BUTB	N-BUTYLBENZENE	U	50
A	TBB	TERT-BUTYLBENZENE	U	250
C	2CT	O-CHLOROTOLUENE	U	250 250
	HCB	HEXACHLOROBUTADIENE	U	
Α	IPB	ISOPROPYLBENZENE		50
_		P-ISOPROPYLTOLUENE	U	50
2	N0	NAPHTHALENE	U	250
A	PROPB		U	50
С	124TCB		U	250
Α	135TMB		U	250
Α	124TMB	1,2,4-TRIMETHYLBENZENE	U	250
0	DIE	ETHYL ETHER	U	250

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 107

 TOLUENE-D8
 89

 4-BROMOFLUOROBENZENE
 81

 DIBROMOFLUOROMETHANE
 94

Project Name: FORMER XOM JALK FEE PROPERTY

Project Numbe	r: CARDNO ERI
---------------	---------------

Client ID Lab ID	Laboratory Control S WG557459-4
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG557459
Date Collected	NA
Date Received	8/29/2012
Date Prepped	8/28/2012
Date Analyzed	8/28/2012
Sample Size(wet)	15 9
% Solid	100
File ID	0828A01.D
Units	%
Final Volume	0.1
Dilution	1
Reporting Limit	50

	Abbrev	Analytes	Result		% REC		Lower Limit	
C	DCM	METHYLENE CHLORIDE	785	500	78	1000	70	130
C	11DCA CF	1,1-DICHLOROETHANE CHLOROFORM	885 968	75 75	88 97	1000 1000	70 70	130 130
Č	CT	CARBON TETRACHI ORIDE	1260	50	126	1000	70	130
C	12DCP	1,2-DICHLOROPROPANE	792	180	79	1000	70	130
В	DBCM	DIBROMOCHLOROMETHANE	1060	50	106	1000	70	130
C	112TCA	1.1.2-TRICHLOROETHANE	922	75	92	1000	70	130
č	2CEVE	2-CHLOROETHYLVINYL ETHER	1140	1000	114	1000	70	130
С	PCE	TETRACHLOROETHENE	1040	50	104	1000	70	130
С	CB	CHLOROBENZENE	917	50	92	1000	70	130
F	TCTFM	TRICHLOROFLUOROMETHANE	1020	250	102	1000	70	139
ADD	12DCA	1,2-DICHLOROETHANE	1060	50	106	1000	70	130
С	111TCA	1,1,1-TRICHLOROETHANE	997	50	100	1000	70	130
В	BDCM	BROMODICHLOROMETHANE	987	50	99	1000	70	130
C	T13DCP	TRANS-1,3-DICHLOROPROPENE	847	50	85	1000	70	130
С	C13DCP	CIS-1,3-DICHLOROPROPENE	849	50	85	1000	70	130
С	11DCP	1,1-DICHLOROPROPENE	954	250	95	1000	70	130
В	BF	BROMOFORM	1030	200 50	103	1000 1000	70 70	130 130
C A	1122PCA B	1,1,2,2-TETRACHLOROETHANE BENZENE	843 868	50 50	84 87	1000	70	130
A	T	TOLUENE	901	75	90	1000	70	130
Â	EB	ETHYLBENZENE	921	50	92	1000	70	130
c	CM	CHLOROMETHANE	844	250	84	1000	52	130
В	BM	BROMOMETHANE	877	100	88	1000	57	147
c	VC	VINYL CHLORIDE	999	100	100	1000	67	130
č	CE	CHLOROETHANE	838	100	84	1000	50	151
C	11DCE	1,1-DICHLOROETHENE	884	50	88	1000	65	135
С	T12DCE	TRANS-1,2-DICHLOROETHENE	916	75	92	1000	70	130
C	TCE	TRICHLOROETHENE	945	50	94	1000	70	130
С	12DCB	1,2-DICHLOROBENZENE	897	250	90	1000	70	130
С	13DCB	1,3-DICHLOROBENZENE	915	250	92	1000	70	130
С	14DCB	1,4-DICHLOROBENZENE	886	250	89	1000	70	130
OX	MTBE	METHYL TERT BUTYL ETHER	856	100	86	1000	66	130
A	MPX	P/M-XYLENE	1810	100	90	2000	70	130
A	OX	O-XYLENE	1820	100	91	2000	70	130
С	C12DCE DBM	CIS-1,2-DICHLOROETHENE	914 982	50	91 98	1000	70	130
B C	14DC	DIBROMOMETHANE 1.4-DICHLOROBUTANE	982 814	500 500	98 81	1000 1000	70 70	130 130
c	123TCP	1,2,3-TRICHLOROPROPANE	905	500	90	1000	68	130
A	STY	STYRENE	1810	100	90	2000	70	130
F	DCFM	DICHLORODIFLUOROMETHANE	746	500	75	1000	30	146
O	ACF	ACETONE	888	1800	89	1000	54	140
s	CD	CARBON DISULFIDE	744	500	74	1000	59	130
ō	MEK	2-BUTANONE	852	500	85	1000	70	130
0	VA	VINYL ACETATE	852	500	85	1000	70	130
O	MIBK	4-METHYL-2-PENTANONE	779	500	78	1000	70	130
0	MBK	2-HEXANONE	881	500	88	1000	70	130
		ETHYL METHACRYLATE	870	500	87	1000	70	130
0	ACR	ACROLEIN	827	1200	83	1000		
		ACRYLONITRILE	853	200	85	1000	70	130
В	BCM	BROMOCHLOROMETHANE	916	250	92	1000	70	130
0	THF	TETRAHYDROFURAN	872	1000	87	1000	66	130
С	22DCP	2,2-DICHLOROPROPANE	883	250	88	1000	70	130
ADD	12DBE	1,2-DIBROMOETHANE	1060	200	106	1000	70	130
C	13DCP	1,3-DICHLOROPROPANE	923	250	92	1000	69	130
C B	1112PCA BB	1,1,1,2-TETRACHLOROETHANE BROMOBENZENE	1050 922	50 250	105 92	1000 1000	70 70	130 130
A	BUTB	N-BUTYLBENZENE	965	50	96	1000	70	130
Ä	SECBUT	SEC-BUTYLBENZENE	918	50	92	1000	70	130
Ä	TBB	TERT-BUTYLBENZENE	943	250	94	1000	70	130
,,		TRICHLOROBENZENE	991	200	99	1000	70	139
С	2CT	O-CHLOROTOLUENE	908	250	91	1000	70	130
č	4CT	P-CHLOROTOLUENE	897	250	90	1000	70	130
В	12DB3CP	1,2-DIBROMO-3-CHLOROPROPANE	959	250	96	1000	68	130
С	HCB	HEXACHLOROBUTADIENE	1030	250	103	1000	67	130
Α	IPB	ISOPROPYLBENZENE	940	50	94	1000	70	130
		P-ISOPROPYLTOLUENE	949	50	95	1000	70	130
2	N0	NAPHTHALENE	867	250	87	1000	70	130
Α	PROPB	N-PROPYLBENZENE	912	50	91	1000	70	130
C	123TCB	1,2,3-TRICHLOROBENZENE	938	250	94	1000	70	130
C	124TCB	1,2,4-TRICHLOROBENZENE	955	250	96	1000	70	130
Α	135TMB	1,3,5-TRIMETHYLBENZENE	944	250	94	1000	70	130
	4047		934	250	93	1000 1000	70	130 130
Α	124TMB	1,2,4-TRIMETHYLBENZENE						
Α		TRANS-1,4-DICHLORO-2-BUTENE	938	250	94		70	
	124TMB DIE	TRANS-1,4-DICHLORO-2-BUTENE ETHYL ETHER	830	250	83	1000	67	130
Α		TRANS-1,4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE	830 910	250 1000	83 91	1000 1000	67 65	130 130
A O	DIE	TRANS-1,4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE	830 910 981	250 1000 1000	83 91 98	1000 1000 1000	67 65 70	130 130 130
A O N	DIE	TRANS-1,4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE CYCLOHEXANE	830 910 981 834	250 1000 1000 1000	83 91 98 83	1000 1000 1000 1000	67 65 70 70	130 130 130 130
A O N ADD	DIE CH TBA	TRANS-1,4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE CYCLOHEXANE TERT-BUTYL ALCOHOL	830 910 981 834 4200	250 1000 1000 1000 5000	83 91 98 83 84	1000 1000 1000 1000 5000	67 65 70 70 70	130 130 130 130 130
A O N ADD OX	DIE CH TBA ETBE	TRANS-1.4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE CYCLOHEXANE TERT-BUTYL ALCOHOL ETHYL-TERT-BUTYL-ETHER	830 910 981 834 4200 772	250 1000 1000 1000 5000 200	83 91 98 83 84 77	1000 1000 1000 1000 5000 1000	67 65 70 70 70 70	130 130 130 130 130 130
A O N ADD	DIE CH TBA	TRANS-1,4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE CYCLOHEXANE TERT-BUTYL ALCOHOL	830 910 981 834 4200	250 1000 1000 1000 5000	83 91 98 83 84	1000 1000 1000 1000 5000	67 65 70 70 70	130 130 130 130 130
A O N ADD OX O O	CH TBA ETBE TAME	TRANS-1.4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE CYCLOHEXANE TERT-BUTYL ALCOHOL ETHYL-TERT-BUTYL-ETHER TERTIARY-AMYL METHYL ETHER 1,4-DIOXANE	830 910 981 834 4200 772 742 42400	250 1000 1000 1000 5000 200 200 5000	83 91 98 83 84 77 74	1000 1000 1000 1000 5000 1000 1000 50000	67 65 70 70 70 70 70	130 130 130 130 130 130 130 130
A O N ADD OX O	CH TBA ETBE TAME 14D	TRANS-1.4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE CYCLOHEXANE TERT-BUTYL ALCOHOL ETHYL-TERT-BUTYL-ETHER TERTIARY-AMYL METHYL ETHER 1.4-DIOXANE METHYL CYCLOHEXANE	830 910 981 834 4200 772 742	250 1000 1000 1000 5000 200 200 5000 200	83 91 98 83 84 77 74 85	1000 1000 1000 1000 5000 1000 50000 1000	67 65 70 70 70 70 70 65	130 130 130 130 130 130 130 136 130
A O N ADD OX O O N	CH TBA ETBE TAME 14D MCYH	TRANS-1.4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE ETHYL ACETATE CYCLOHEXANE TERT-BUTYL ALCOHOL ETHYL-TERT-BUTYL-ETHER TERTIARY-AMYL METHYL ETHER 1,4-DIOXANE	830 910 981 834 4200 772 742 42400 868	250 1000 1000 1000 5000 200 200 5000	83 91 98 83 84 77 74 85	1000 1000 1000 1000 5000 1000 1000 50000	67 65 70 70 70 70 70 70 65 70	130 130 130 130 130 130 130 130
A O N ADD OX O O N	CH TBA ETBE TAME 14D MCYH	TRANS-1.4-DICHLORO-2-BUTENE ETHYL ETHER METHYL ACETATE CYCLOHEXANE TERT-BUTYL ALCOHOL ETHYL-TERT-BUTYL-ETHER TERTIARY-AMYL METHYL ETHER 1.4-DIOXANE METHYL CYCLOHEXANE 1,1-2-TIRICHLORO-1.2,2-TRIJFLUOROETHANE	830 910 981 834 4200 772 742 42400 868 970	250 1000 1000 1000 5000 200 200 5000 200 1000	83 91 98 83 84 77 74 85 87	1000 1000 1000 1000 5000 1000 50000 1000	67 65 70 70 70 70 70 65 70	130 130 130 130 130 130 130 136 130

 Surrogates (% Recovery)
 1,2-DiCHLOROETHANE-D4
 115

 TOLUENE-D8
 90

 4-BROMOFLUOROBENZENE
 88

 DIBROMOFLUOROMETHANE
 98

Project Name: FORMER XOM JALK FEE PROPERTY Project Number: CARDNO ERI

Client ID	LCS Duplicate
Lab ID	WG557459-5
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG557459
Date Collected	NA
Date Received	8/29/2012
Date Prepped	8/28/2012
Date Analyzed	8/28/2012
Sample Size(wet)	15 g
% Solid	100
File ID	0828A02.D
Units	%
Final Volume	0.1
Dilution	1
Reporting Limit	50

Color			Reporting Limit	50						
C				Result	SSRL	% REC				
C P C	C									
C CT CARRON TETRACHICATION 1980 150 162 1000 70 130 15 30 15 30 30 30 30 30 30 30 3	C									
B BORD BIRCHOLDICARGOMETHANE \$85 \$0. 80 \$1000 70 \$130 \$10 \$2 \$0 \$0 \$1000 \$70 \$130 \$10 \$2 \$0 \$0 \$0 \$1000 \$70 \$130 \$10 \$2 \$0 \$0 \$0 \$0 \$0 \$0 \$	č									
C 1172CA 11.2-TRIOLARORETHMAE 1004 70 85 1000 70 130 8 3 0 8 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 8 1 100 70 130 8 3 0 1 10 10 10 10 10 10 10 10 10 10 10 10	С									
C 2002 C	В									
C C B CHERORELEXIENE	С									
C C B CHERORELEXIENE	C								100	
F TOTEM TRICLEOROPELOROMETHANE	C									
ADD 120CA 1.2-DIGHLOROFHAME 943 SO 94 1000 70 130 12 20 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 12 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 87 1000 70 130 11 30 CT 1170CA 1.1-TROCHOLOROFHAME 874 SO 8			TRICHLOROFLUOROMETHANE							
C 110CA 11.1.TRICALOROSETHANE	ADD	12DCA		943	50		1000	70	130	12 30
C TISDCP TRANS-1-3 DICH-LOROPROPENE 783 50 76 1000 70 130 11 30 10	С									
C 110CP 1-1-DICHARDROPROPENE										
C 110CP 1-1-DICHARDROPROPENE	C									
B B BROMOFORM 941 200 94 1000 70 130 10 30 3	Č									
C 1122PC 11.2.7ETRACHIOROGETHANE 760 50 76 1000 70 130 10 30 11 30										
A B BENZENE 779 50 78 1000 70 130 11 30 11		1122PCA		760	50	76	1000		130	10 30
A	Α		BENZENE	778		78	1000			11 30
C M ORLOROMETHANE 736 250 74 1000 52 130 13 30 13 30 15 30 1										
B M	A									
C VC	C									13 30
C C 11DCC TILOCH-CONCETHANE 775 9. 78 1000 50 151 10 30 C TILOCH-CONCETHANE 775 9. 78 1000 50 151 10 30 C TILOCH-CONCETHANE 775 9. 78 1000 70 130 11 30 10 30 C TILOCH-CONCETHANE 833 75 8.8 1000 70 130 11 30 10 30 C TILOCH-CONCETHANE 833 75 8.8 1000 70 130 8.3 30 C TILOCH-CONCENENCE 848 250 88 1000 70 130 8.3 30 C TILOCH-CONCENENCE 848 250 88 1000 70 130 8.3 30 C TILOCH-CONCENENCE 848 250 88 1000 70 130 8.3 30 C TILOCH-CONCENENCE 848 250 88 1000 70 130 8.3 30 C TILOCH-CONCENENCE 848 250 84 1000 70 130 0 TILOCH-CONCENENCE 848 250 84 1000 70 130 0 TILOCH-CONCENENCE 848 250 TIL										
C 11DCE 1.1-DICH_OROETHENE	č									
C TOE TRICHLORGETHENE	С	11DCE	1,1-DICHLOROETHENE		50					12 30
C TOE TRICHLORGETHENE	С		TRANS-1,2-DICHLOROETHENE	823	75	82	1000	70		11 30
C 14DCB 1.4-DICHLOROBENZENE 840 250 84 1000 70 130 6 30 11 30 13	С									
C 14DCB 1.4-DICHLOROBENZENE 840 250 84 1000 70 130 6 30 11 30 13	C									
OX MTEM METHYL TERT BUTVLETHER 772 100 77 1000 66 130 11 30 A AVX PMAXYLENE 1660 100 83 2000 70 130 8 30 C C12DCE CEL CC C12DCE CEL ASTAN SON 83 2000 70 130 8 30 B CEL <	C									
A MPX OX OXYLENE 1650 100 83 2000 70 130 8 30 30 C G 120C										
A OX C-XVLENE C C12DCC (C12DCC (C15-12-DICHOROCTHENE) S 55 (C15-12-DICHOROCTHENE) S 50 (R4 1000) DIBROMOMETHANE R 77 500 88 1000 70 130 11 30 R 10 DBM DIBROMOMETHANE R 78 500 88 1000 70 130 11 30 R 10 DBM DIBROMOMETHANE R 78 500 88 1000 70 130 11 30 R 10 30 R 12 23TCP 1.2.3.TRICHLOROFROPANE R 78 500 88 1000 70 130 11 30 R 10 30 R 12 23TCP 1.2.3.TRICHLOROFROPANE R 16 50 100 82 20 00 70 130 19 30 R 10 30										
C 12DCE CIS-12-DICHLORGETHENE 875 50 84 1000 70 130 8 30 C 14DC 1BROMMERHANE 877 500 88 1000 70 130 11 30 11 30 C 14DC 14-DICHLOROBUTANE 731 500 73 1000 70 130 11 30 10 30 C 14DC 14-DICHLOROBUTANE 817 500 82 1000 70 130 10 30 9 30 A 5YF STYRENE 1650 100 82 1000 70 130 10 30 9 30 A 5YF STYRENE 1650 100 82 1000 70 130 10 30 8 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 9 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 9 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 9 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 A 5YF STYRENE 1650 100 83 1200 70 130 18 30 A 5YF STYRENE 1650 100 120 120 120 120 120 120 120 120 12										
C 14DC 1,4-DICHLOROBUTANE 731 500 73 1000 70 130 10 30 10 30 10 10 10 10 10 10 10 10 10 10 10 10 10	С	C12DCE	CIS-1,2-DICHLOROETHENE	835	50	84	1000	70	130	8 30
C 123TCP 1,2,3-FRICHLOROPROPANE										
AS STY STYRENE STYRENE (1650 100 83 2000 70 130 83 00 C D C D CAREON DISULFLOROMETHANE (619 500 62 1000 30 146 19 30 C ACE ACETONE (650 500 62 1000 59 130 133 30 C MEK 2-BUTANONE (650 500 65 1000 70 130 17 30 C MISK 2-BUTANONE (718 500 72 1000 70 130 17 30 C MISK 4-METHYL2-PENTANONE (685 500 68 1000 70 130 11 30 C MISK 4-METHYL2-PENTANONE (685 500 68 1000 70 130 11 30 C MISK 4-METHYL2-PENTANONE (718 500 74 1000 70 130 11 30 C MISK 4-METHYL2-PENTANONE (718 500 74 1000 70 130 11 30 C MISK 5-MEXANONE (718 500 74 1000 70 130 11 30 C MISK 5-MEXANONE (718 500 74 1000 70 130 11 30 C MISK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MISK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MISK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MISK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MISK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 11 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 13 30 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-MEXANONE (718 500 74 1000 70 130 130 C MACK 6-	С									
F										
OA ACETONE ACETONE 742 1800 74 1000 54 140 18 30 O MEK 2-BUTANONE 718 500 72 1000 70 130 17 30 O MEK 2-BUTANONE 784 500 72 1000 70 130 11 30 O MISK 4-METHYL-2-PENTANONE 685 500 68 1000 70 130 0 14 30 MISK 4-METHYL-2-PENTANONE 685 500 68 1000 70 130 0 14 30 MISK 4-METHYL-X-PENTANONE 685 500 78 1000 70 130 11 30 ACRYLONTRILLE 732 200 73 1000 70 130 15 30 OT 115 115 115 115 130 130 13 13 30 12 DHALDROMORPANA <t< td=""><td>A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	A									
S CD CARBON DISULFIDE 650 500 65 1000 59 130 13 30 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 10 13 30 11 13										
O MEK VA 2-BUTANONE 718 500 72 1000 70 130 17 30 O VA MIRIX VINIVI ACETATE 764 500 76 1000 70 130 11 30 O MBK MARIA 4-HEXANONE 742 500 74 1000 70 130 11 30 O ACR ACROLEIN 742 1500 78 1000 70 130 11 30 O ACR ACROLEIN 747 1200 75 1000 70 130 15 30 O THF TETRAHYDROFURAN 732 200 73 1000 76 130 18 30 ADD 12-DIBROMOETHANE 935 200 94 1000 70 130 13 30 C 1112-CA 11,1-2TETRACHLOROETHANE 935 200 94 1000 70 130 13 30 C1	S									
O VA VINIT ACETATE 764 500 76 1000 70 130 11 30 O MBK MEX ETHAL METHAGYLATE 742 500 74 1000 70 130 17 30 O AGR ACROLEIN 747 1200 75 1000 70 130 17 30 B BCM ACRYLONITRILE 732 200 73 1000 70 130 19 30 B BCM ACRYLONITRILE 840 250 84 1000 70 130 19 30 C 22DCP 2-2-DICHLOROPROPANE 773 250 77 1000 70 130 13 30 C 13DCP 1-3-DISCHLOROPROPANE 832 250 84 1000 70 130 13 30 C 112CPA 1-3-DISCHLOROPROPANE 832 250 83 1000 69 130 10 30 B BB 2-2-BISCHLOR	ŏ		2-BUTANONE							
O MIBK N 4-METHYL-2-PENTANONE 685 500 68 1000 70 130 Q 14 30 O MCR 2-HEXANONE 742 550 74 1000 70 130 11 30 O ACR ACROLEIN 747 120 75 1000 70 130 11 30 O ACR ACROLEIN 747 120 75 1000 70 130 15 30 B BOM BROMOCHOLKOMETHANE 840 250 84 1000 70 130 18 30 ADD 12DEE 12-DIBROMOETHANE 935 200 94 1000 70 130 13 30 C 13DCP 1,3-DICHOROPROPANE 832 250 97 1000 70 130 13 30 B BB BB ROMOBENEZENE 848 250 85 1000 70 130 10 3										
No. Color Colo	0		4-METHYL-2-PENTANONE							
OP ACR ACROLEIN ACR (ACRYLONITRILE) 747 1200 75 1000 70 130 15 30 B B BCM BROMOCHLOROMETHANE 840 250 84 11000 70 130 9 30 C 2DCP 2 - 2-DICHLOROPROPANE 773 250 77 1000 70 130 18 30 C 2DCP 1 2-DICHLOROPROPANE 773 250 77 1000 70 130 13 30 ADD 12DEE 1 2-DIBROMOETHANE 935 200 94 1000 70 130 12 20 C 13DCP 1 3-DICHLOROPROPANE 832 250 83 1000 69 130 10 30 B B B ROMOSENZENE 848 250 85 1000 70 130 8 30 A B EDBUT SERS 1 1000 70 130 83 30 8 20 90 100 70 130 10 30 A I T SER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	MBK								
ACRYLONTRILE			ETHYL METHACRYLATE					70	130	
B B CM OF THE STRAMPOREURAN 840 CP STRAMPOREURAN 250 R4 STRAMPOREURAN 30 STRAMPOREURAN <t< td=""><td>0</td><td>ACR</td><td></td><td></td><td></td><td></td><td></td><td>70</td><td>400</td><td></td></t<>	0	ACR						70	400	
O THF TERRAHYDROFURAN 732 1000 73 1000 66 130 18 30 ADD 2DDE 2.2-DIGHOROPROPANE 73 250 77 1000 70 130 12 30 ADD 13DCP 1.3-DICHLOROPROPANE 935 200 94 1000 70 130 12 30 C 13DCP 1.3-DICHLOROPROPANE 832 250 83 1000 69 130 12 30 B BB BROMOBENZENE 882 250 85 1000 70 130 8 30 A BUTS BENEVILIBENZENE 867 50 87 1000 70 130 10 30 A TBE FERT-BUTLIBENZENE 852 50 85 1000 70 130 10 30 A TBE TERT-BUTLIBENZENE 850 50 82 1000 70 130 10	ь	DCM								
C 22DCP 22-DICHLOROPROPANE 773 250 77 1000 70 130 13 30 ADD 12DBER DIAS-DIBROMOETHANE 935 200 94 1000 70 130 12 30 C 13DCP 1.3DICHLOROPROPANE 832 250 83 1000 69 130 10 30 B BB BROMOBENZENE 848 250 85 1000 70 130 8 30 A BUTB N-BUTYLBENZENE 867 50 87 1000 70 130 10 30 A SECBUT SECHUTYLBENZENE 854 250 85 1000 70 130 11 30 A TBB TERT-BUTYLBENZENE 854 250 85 1000 70 130 11 30 C 2CT O-CHLOROTOLUENE 854 250 85 1000 70 130 10 30 <td></td>										
ADD 12DBE 12-DIBROMOETHANE 935 200 94 1000 70 130 12 30 12 30 12 30 13 30 13 30 13 30 13 30 13 30 13 30 13 30 13 30 13 30 13 30 13 30 13 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 30 30 30 30 30 30 3	č		2.2-DICHLOROPROPANE			77				13 30
C 1112PCA 1.1,1,2-TETRACHLOROETHANE 970 50 97 1000 70 130 8 30 A B BB BROMOBENZENE 848 250 85 1000 70 130 8 30 A SEDBUTY SEC-BUTYLENZENE 820 50 82 1000 70 130 11 30 A TBB TERT-BUTYLENZENE 824 250 85 1000 70 130 11 30 C 2CT O-CHLOROTOLUENE 854 250 85 1000 70 130 8 30 C 4CT O-CHLOROTOLUENE 835 250 84 1000 70 130 8 30 C 4CT O-CHLOROTOLUENE 839 250 82 1000 70 130 8 30 C HCB HAXACHLOROBUADIENE 819 250 82 1000 70 130 10				935	200		1000	70	130	
B B B BROMOBENZENE 848 250 85 1000 70 130 8 3 30 A SECBUT SECRUTIVEENZENE 867 50 87 1000 70 130 10 30 A SECBUT SECRUTIVEENZENE 854 250 85 1000 70 130 11 30 B TERT-BUTYLBENZENE 854 250 85 1000 70 130 11 30 B TERT-BUTYLBENZENE 854 250 85 1000 70 130 11 30 C 2 CT O-CHLOROTOLUENE 835 250 84 11000 70 130 8 30 C 4CT P-CHLOROTOLUENE 819 250 82 11000 70 130 9 30 B 12DBSCP 12-DIBROMO-3-CHLOROPROPANE 819 250 82 11000 67 130 16 30 C HCB HEXACHLOROBUTADIENE 833 250 93 1000 67 130 10 30 B 12DBSCP 12-DIBROMO-3-CHLOROPROPANE 819 250 82 11000 70 130 10 30 B 12DBSCP 12-DIBROMO-3-CHLOROPROPANE 819 250 82 11000 70 130 10 30 C HCB HEXACHLOROBUTADIENE 857 50 86 1000 70 130 10 30 C N PROP PISOPROPYLIBENZENE 850 50 85 1000 70 130 10 30 C 123TCB 12,3-TRICHLOROBUTADIENE 819 50 82 1000 70 130 10 30 C 123TCB 12,4-TRICHLOROBUTADIENE 866 250 87 1000 70 130 8 30 C 124TCB 12,4-TRICHLOROBENZENE 898 250 90 1000 70 130 6 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 12,4-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 124-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 124-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 124-TRIBETHYLBENZENE 860 250 86 1000 70 130 9 30 C 124TTB 124-TRIBETHYLBENZENE 860 250 86 1000 70 130	С	13DCP		832	250	83	1000	69	130	
A SUTUL SENZENE 867 50 87 1000 70 130 10 30 A SEGUAL SEC-BUTYLENZENE 820 50 82 1000 70 130 11 30 A TBB TERT-BUTYLENZENE 854 250 85 1000 70 130 11 30 C TRICHLOROBENZENE 821 200 92 1000 70 130 13 30 C 4CT O-CHLOROTOLUENE 835 250 84 1000 70 130 8 30 C 4CT O-CHLOROTOLUENE 819 250 82 1000 68 130 16 30 C HCB HEXACHLOROBENZENE 819 250 82 1000 68 130 16 30 C HCB HEXACHLOROBUTADIENE 835 250 93 1000 67 130 10 30 C HCB HEXACHLOROBUTADIENE 850 50 85 1000 70 130 10 30 C HCB HEXACHLOROBUTADIENE 850 50 85 1000 70 130 10 30 C HCB HEXACHLOROBUTADIENE 850 50 86 1000 70 130 10 30 C HCB HEXACHLOROBUTADIENE 857 50 86 1000 70 130 10 30 C HCB HEXACHLOROBUTADIENE 857 50 86 1000 70 130 10 30 C HCB HEXACHLOROBUTZENE 819 50 82 1000 70 130 8 30 C 123TOS 1,23-TRICHLOROBUTZENE 866 250 87 1000 70 130 8 30 C 123TOS 1,23-TRICHLOROBUTZENE 898 250 90 1000 70 130 8 30 C 124TOS 1,23-TRICHLOROBUTZENE 898 250 90 1000 70 130 9 30 C 124TOS 1,23-TRICHLOROBUTZENE 898 250 90 1000 70 130 9 30 C 124TOS 1,23-TRICHLOROBUTZENE 898 250 90 1000 70 130 9 30 C 124TOS 1,23-TRICHLOROSENZENE 898 250 97 1000 70 130 9 30 C 124TOS 1,23-TRICHLOROSENZENE 898 250 97 1000 70 130 9 30 C 124TOS 1,24-TRICHLOROSENZENE 898 250 97 1000 70 130 9 30 C 124TOS 1,24-TRICHLOROSENZENE 898 250 97 1000 70 130 9 30 C 124TOS 1,24-TRICHLOROSENZENE 898 250 97 1000 70 130 9 30 C 124TOS 1,24-TRICHLOROSENZENE 898 250 97 1000 70 130 9 30 C 124TOS 1,24-TRICHLOROSENZENE 898 250 97 1000 70 130 9 30 C 124TOS 1,24-TRICHLOROSENZENE 898 1000 70 130 9 30 C 124TOS 1,24-TRICHLOROS	С		1,1,1,2-TETRACHLOROETHANE							
A SECBUT SECRUTIVEENZENE 854 250 85 1000 70 130 11 30 10 30 10 30										
A BB TERT-BUTYLBENZENE 854 250 85 1000 70 130 10 30										
TRICHLOROBENZENE	Α									
C 2CT C-HLOROTOLUENE 835 250 84 1000 70 130 8 30 C 4CT P-CHLOROTOLUENE 819 250 82 1000 70 130 8 30 B 12DB3CP 1,2-DIBROMO-3-CHLOROPROPANE 819 250 82 1000 68 130 16 30 C HCB HEXACHLOROBUTADIENE 850 50 85 1000 67 130 10 30 C HCB HEXACHLOROBUTADIENE 850 50 85 1000 70 130 10 30 N PISOPROPVLEDIZENE 857 50 86 1000 70 130 10 30 A PROPB N-PROPPULBENZENE 819 50 82 1000 70 130 10 30 C 123TEGIA 1,3,3 TEIGHLOROBENZENE 866 250 87 1000 70 130 8 30	-	100								
C 4CT P-CHLOROTOLUENE 819 250 82 1000 70 130 9 30 C HCB 12/DBROMO-3-CHLOROPROPANE 819 250 82 1000 68 130 16 30 C HCB HEXACHLOROBUTADIENE 850 50 85 1000 67 130 10 30 A IPB ISOPROPYLEDIZENE 850 50 85 1000 70 130 10 30 2 NPROPB ISOPROPYLEDILUENE 857 50 86 1000 70 130 10 30 2 NPROPB NPROPPUBENZENE 819 50 82 1000 70 130 10 30 C 123TCB 12,3-TRICHLOROBENZENE 866 250 87 1000 70 130 8 30 C 124TB 12,4-TRICHLOROBENZENE 866 250 86 1000 70 130	С	2CT								
B 12DB3CP 1,2-DIBROMO-3-CHLOROPROPANE 819 250 82 1000 68 130 16 30	С	4CT	P-CHLOROTOLUENE	819	250	82	1000	70	130	9 30
PB	В		1,2-DIBROMO-3-CHLOROPROPANE							
PISOPROPYLTOLUENE										.0 00
2 NO	Α	IPB								
A PROPR N-PROPYLBENZENE 819 50 82 1000 70 130 10 30	2	NO								
C 123TCB 1,2,3-TRICHLOROBENZENE 866 250 87 1000 70 130 8 30 C 124TCB 1,2,4-TRICHLOROBENZENE 898 250 90 1000 70 130 6 30 A 135TMB 1,3,5-TRIMETHYLBENZENE 850 250 85 1000 70 130 9 30 A 124TMB 1,2,4-TRIMETHYLBENZENE 854 250 85 1000 70 130 9 30 E TRAINS-1,4-DICHLORO-2-BUTENE 793 250 78 1000 70 130 17 30 ETHYL ETHER 783 250 78 1000 67 130 6 30 ETHYL ETHER 783 250 78 1000 65 130 19 30 N CH CYCLOHEXANE 700 1000 70 1000 70 130 17 30 13 10 30										
C 124TCB 1.2.4-TRICHLOROSENZENE 898 250 90 10000 70 130 6 30 A 135TMB 1.3.5-TRIMETHYLEBENZENE 860 250 86 1000 70 130 9 30 A 124TMB 1.2.4-TRIMETHYLBENZENE 854 250 85 1000 70 130 9 30 O DIE TRANS-1.4-DICHLORO-2-BUTENE 783 250 78 1000 70 130 6 30 ETHYL ACETATE 782 1000 75 1000 65 130 19 30 N CH CYCLOHEXANE 700 1000 70 130 19 30 OX ETBE ETHYL.ACETATE 808 1000 76 5000 70 130 19 30 OX ETBE ETHYL.ACETATE 700 1000 76 5000 70 130 17 30 OX	С									
A 135TMB 1,3.5-TRIMETHYLBENZENE 850 250 86 1000 70 130 9 30 A 124TMB 1,2.4-TRIMETHYLBENZENE 854 250 85 1000 70 130 9 30 A 124TMB 1,2.4-TRIMETHYLBENZENE 854 250 85 1000 70 130 9 30 A 124TMB 1,2.4-TRIMETHYLBENZENE 854 250 85 1000 70 130 9 30 A 124TMB 1,2.4-TRIMETHYLBENZENE 854 250 78 1000 70 130 6 30 A 125TMB 1,2.4-TRIMETHYLBENZENE 783 250 78 1000 67 130 6 30 A 125TMB 1,2.4-TRIMETHYLBENZENE 783 250 78 1000 65 130 19 30 A 125TMB 1,2.4-TRIMETHYLBENZENE 752 1000 75 1000 70 130 19 30 A 125TMB 1,2.4-TRIMETHYLBENZENE 750 200 71 1000 70 130 8 30 A 125TMB 1,2.4-TRIMETHYLBENZENE 741 200 71 5000 75 130 8 30 A 125TMB 1,2.4-TRICHORO-12,2-TRIFLUOROETHANE 741 1000 79 1000 70 130 20 30 A 125TMB 1,2.4-TRICHORO-12,2-TRIFLUOROETHANE 741 1000 79 1000 70 130 20 30 30 30 30 30 30 30 30 30 30 30 30 30	č									
A 124TMB 1,2.4-TRIMETHYLBENZENE 854 250 85 1000 70 130 9 30 1 30 17 30 17 30 17 30 18 18 30 18 30 18 30 18 30 18 30 19 30 18 3	Α	135TMB	1,3,5-TRIMETHYLBENZENE	860	250	86	1000	70	130	9 30
OD DIE ETHYL ETHER 783 250 78 1000 67 130 63 30 METHYL ACETATE 752 1000 75 1000 65 130 19 30 N CH CYCLOHEXANE 700 1000 70 1000 70 130 19 30 ADD TBA TERT-BUTYL ALCOHOL 3810 5000 76 5000 70 130 13 30 OX ETBE ETHYL-TERT-BUTYL-ETHER 707 200 71 1000 70 130 8 30 OX TAME TERT-BUTYL-ETHER 674 200 71 1000 70 130 8 30 OX TAME TERT-BUTYL-ETHER 77 200 71 1000 70 130 8 30 OX TAME TERT-BUTYL-ETHER 674 200 67 1000 70 130 8 30		124TMB	1,2,4-TRIMETHYLBENZENE							
METHYL ACETATE METHYL ACETATE 100 75 1000 65 130 19 30 10 10 10 10 10 10 10	_	B. E								
FIFT FIT	0	DIE								
N CH CYCLOHEXANE 700 1000 70 1000 70 130 17 30			MEINTL ACETATE							
ADD TBA TERT-BUTYL ALCOHOL 3810 5000 76 5000 70 130 10 30	N	CH								
OX ETBE ETHYL-TERT-BUTYL-ETHER 707 200 71 1000 70 130 8 30 O TAME TERTIARY-AMYL METHYL ETHER 674 200 67 1000 70 130 0 10 30 O 14D 1,4-DIOXANE 35300 5000 71 50000 65 136 18 30 N MCYH METHYL CYCLOHEXANE 741 200 74 1000 70 130 16 30 F F13 1,1,2-TRIGHLORO-1,2,2-TRIFLUOROETHANE 794 1000 79 1000 70 130 20 30 1-4-ETHYLOULENE 901 200 90 1000 70 130 10 30 4-ETHYLOULENE 880 200 88 1000 70 130 9 3										
O TAME TERTIARY-AMYL METHYL ETHER 674 200 67 1000 70 130 Q 10 30 N MCYH 1,4-DIOXANE 3500 5000 71 50000 65 136 18 30 F F113 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 794 1000 79 1000 70 130 20 30 1,4-DIETHYLBENZENE 901 200 90 1000 70 130 10 30 4-ETHYLTOLUENE 880 200 88 1000 70 130 9 30										
O 14D 1,4-DIOXANE 35300 5000 71 50000 65 136 18 30 N MCYH METHYL CYCLOHEXANE 741 200 74 1000 70 130 16 30 F F113 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 794 1000 79 1000 70 130 20 30 1,4-DIETHYLBERZENE 901 200 90 1000 70 130 10 30 +ETHYLTOLUENE 880 200 88 1000 70 130 9 30										
F F113 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 794 1000 79 1000 70 130 20 30 1.4-DIETHYLBENZENE 901 200 90 1000 70 130 10 30 4-ETHYLTOLUENE 880 200 88 1000 70 130 9 30			1,4-DIOXANE							
1,4-DIETHYLBENZENE 901 200 90 1000 70 130 10 30 4-ETHYLTOLUENE 880 200 88 1000 70 130 9 30										
4-ETHYLTOLUENE 880 200 88 1000 70 130 9 30	F	F113								
A 12-7-1111 1/2,7-10-11-11-11-11-11-11-11-11-11-11-11-11-	Δ	12/15TMD								
		127JIVIP	1,5,1,0°1ETTOWETTTEDENZENE	0/0	200	00	1000	70	130	0 30

Surrogates (% Recovery) 1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE DIBROMOFLUOROMETHANE

Project Name: FORMER XOM JALK FEE PROPERTY Project Number: CARDNO ERI

Client ID	S-80-B11	Duplicate Sample
Lab ID	L1215112-01	WG557459-7
Matrix	SOIL	SOIL
Matrix Description		
Reference Method	8260C	8260C
Batch ID	WG557459	WG557459
Date Collected	8/21/2012	NA
Date Received	8/23/2012	8/29/2012
Date Prepped	8/28/2012	8/28/2012
Date Analyzed	8/28/2012	8/28/2012
Sample Size(wet)	15.7 g	15.7 g
% Solid	93.7	100
File ID	0828A17.D	0828A18.D
Units	ug/kg	ug/kg
Final Volume	0.1	0.1
Dilution	1	1
Reporting Limit	54	54

	Abbrev	Analytes	Result	SSF	RL	Result	SSRL	RPD	RPD Limit
С	DCM	METHYLENE CHLORIDE	290 J		540	330 J			30 NC
С	11DCA	1,1-DICHLOROETHANE	U		82	ι			30 NC
С	CF	CHLOROFORM	U		82	ι			30 NC
С	CT	CARBON TETRACHLORIDE	U		54	ι			30 NC
С	12DCP	1,2-DICHLOROPROPANE	U		190	ι			30 NC
В	DBCM	DIBROMOCHLOROMETHANE	U		54	ι			30 NC
С		1,1,2-TRICHLOROETHANE	U	J	82	ι	J 82		30 NC
С	PCE	TETRACHLOROETHENE	370		54	380	54		30
С	CB	CHLOROBENZENE	U		54	ι			30 NC
F	TCTFM	TRICHLOROFLUOROMETHANE	U		270	ι			30 NC
ADD	12DCA	1,2-DICHLOROETHANE	U		54	L	J 54		30 NC
С		1,1,1-TRICHLOROETHANE	U		54	L			30 NC
В	BDCM	BROMODICHLOROMETHANE	U		54	ι			30 NC
С		TRANS-1,3-DICHLOROPROPENE	U		54	ι			30 NC
С		CIS-1,3-DICHLOROPROPENE	U		54	L			30 NC
В	BF	BROMOFORM	U		220	ι			30 NC
С		1,1,2,2-TETRACHLOROETHANE	U		54	L			30 NC
Α	В	BENZENE	U		54	L			30 NC
Α	T	TOLUENE	U		82	ι			30 NC
Α	EB	ETHYLBENZENE	U		54	ι			30 NC
В	BM	BROMOMETHANE	U		110	L			30 NC
С	VC	VINYL CHLORIDE	U		110	ι			30 NC
С	CE	CHLOROETHANE	U		110	L			30 NC
С	11DCE	1,1-DICHLOROETHENE	U		54	ι			30 NC
С	T12DCE	TRANS-1,2-DICHLOROETHENE	U	J	82	L	J 82		30 NC
С	TCE	TRICHLOROETHENE	U		54	ι			30 NC
С	12DCB	1,2-DICHLOROBENZENE	U		270	ι			30 NC
С	13DCB	1,3-DICHLOROBENZENE	U	J 2	270	L	J 270)	30 NC
С	14DCB	1,4-DICHLOROBENZENE	U	J 2	270	L	J 270)	30 NC
OX	MTBE	METHYL TERT BUTYL ETHER	U		110	L)	30 NC
Α	MPX	P/M-XYLENE	U		110	ι			30 NC
Α	OX	O-XYLENE	U		110	ι			30 NC
С		CIS-1,2-DICHLOROETHENE	U		54	ι			30 NC
С		1,2,3-TRICHLOROPROPANE	U		540	L			30 NC
Α	STY	STYRENE	U		110	ι			30 NC
F	DCFM	DICHLORODIFLUOROMETHANE	U		540	ι			30 NC
0	ACE	ACETONE	U		000	ι			30 NC
0	MEK	2-BUTANONE	U		540	ι			30 NC
0	MIBK	4-METHYL-2-PENTANONE	U		540	ι			30 NC
0	THF	TETRAHYDROFURAN	U		100	ι			30 NC
ADD	12DBE	1,2-DIBROMOETHANE	U		220	L			30 NC
С		1,1,1,2-TETRACHLOROETHANE	U		54	ι			30 NC
Α	BUTB	N-BUTYLBENZENE	U		54	ι			30 NC
Α	TBB	TERT-BUTYLBENZENE	U		270	L			30 NC
С	2CT	O-CHLOROTOLUENE	U		270	ι			30 NC
С	HCB	HEXACHLOROBUTADIENE	U		270	ι			30 NC
Α	IPB	ISOPROPYLBENZENE	U		54	L			30 NC
		P-ISOPROPYLTOLUENE	U		54	ι			30 NC
2	N0	NAPHTHALENE	U		270	ι			30 NC
Α	PROPB	N-PROPYLBENZENE	U		54	U			30 NC
С		1,2,4-TRICHLOROBENZENE	U		270	L			30 NC
Α		1,3,5-TRIMETHYLBENZENE	U		270	L			30 NC
Α		1,2,4-TRIMETHYLBENZENE	U		270	ι			30 NC
0	DIE	ETHYL ETHER	U	J 2	270		J 270)	30 NC

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 105
 102

 TOLUENE-D8
 88
 90

 4-BROMOFLUOROBENZENE
 85
 88

 DIBROMOFLUOROMETHANE
 88
 84

Project Name: FORMER XOM JALK FEE PROPERTY

Project Nu	mber: C	ARDNO	ERI
------------	---------	-------	-----

Client ID	S-80-B11
Lab ID	L1215112-01
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG557459
Date Collected	8/21/2012
Date Received	8/23/2012
Date Prepped	8/28/2012
Date Analyzed	8/28/2012
Sample Size(wet)	15.7 g
% Solid	93.7
File ID	0828A17.D
Units	ug/kg
Final Volume	0.1
Dilution	1
Reporting Limit	54

	Abbrev	Analytes	Result	SSRL
С	DCM	METHYLENE CHLORIDE	290 J	540
С	11DCA	1,1-DICHLOROETHANE	U	82
С	CF	CHLOROFORM	U	82
C	CT	CARBON TETRACHLORIDE	U	54
С	12DCP	1,2-DICHLOROPROPANE	U	190
В	DBCM	DIBROMOCHLOROMETHANE	U	54
С	112TCA	1,1,2-TRICHLOROETHANE	U	82
C	PCE	TETRACHLOROETHENE	370	54
C F	CB	CHLOROBENZENE	U	54
	TCTFM	TRICHLOROFLUOROMETHANE	U	270
ADD	12DCA	1,2-DICHLOROETHANE	U	54
C	111TCA	1,1,1-TRICHLOROETHANE	U	54
В	BDCM	BROMODICHLOROMETHANE	U	54
С	T13DCP	TRANS-1,3-DICHLOROPROPENE	U	54
C B	C13DCP BF		U	54
		BROMOFORM	U	220
C		1,1,2,2-TETRACHLOROETHANE	U	54
A	В	BENZENE	U	54
A	T	TOLUENE	U	82
A	EB	ETHYLBENZENE	U	54
В	BM	BROMOMETHANE	U	110
С	VC	VINYL CHLORIDE	U	110
C	CE	CHLOROETHANE	U	110
С	11DCE	1,1-DICHLOROETHENE	U	54
С	T12DCE	TRANS-1,2-DICHLOROETHENE	U	82
C C	TCE	TRICHLOROETHENE	U	54
	12DCB	1,2-DICHLOROBENZENE	U	270
С	13DCB	1,3-DICHLOROBENZENE	U	270
C	14DCB	1,4-DICHLOROBENZENE	U	270
OX	MTBE	METHYL TERT BUTYL ETHER	U	110
A	MPX	P/M-XYLENE	U	110
A	OX	O-XYLENE	U	110
С		CIS-1,2-DICHLOROETHENE	U	54
C	123TCP	1,2,3-TRICHLOROPROPANE	U	540
A	STY	STYRENE	U	110
F	DCFM	DICHLORODIFLUOROMETHANE	U	540
0	ACE	ACETONE	U	2000
0	MEK	2-BUTANONE	U	540
0	MIBK	4-METHYL-2-PENTANONE	U	540
0	THF	TETRAHYDROFURAN	U	1100
ADD	12DBE	1,2-DIBROMOETHANE	U	220
С		1,1,1,2-TETRACHLOROETHANE	U	54
Α	BUTB	N-BUTYLBENZENE	U	54
Α	TBB	TERT-BUTYLBENZENE	U	270
С	2CT	O-CHLOROTOLUENE	U	270
C	HCB	HEXACHLOROBUTADIENE	U	270
Α	IPB	ISOPROPYLBENZENE	U	54
		P-ISOPROPYLTOLUENE	U	54
2	N0	NAPHTHALENE	U	270
Α	PROPB	N-PROPYLBENZENE	U	54
С	124TCB	1,2,4-TRICHLOROBENZENE	U	270
Α	135TMB	1,3,5-TRIMETHYLBENZENE	U	270
Α	124TMB	1,2,4-TRIMETHYLBENZENE	U	270
0	DIE	ETHYL ETHER	U	270

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 105

 TOLUENE-D8
 88

 4-BROMOFLUOROBENZENE
 85

 DIBROMOFLUOROMETHANE
 88

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

List of Potential Qualifiers

A: Spectra identified as "Aidol Condensation Product".

B: The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For ND-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. AND the analyte was detected above one-half the reporting limit (or above the reporting limit.)

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D: Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D: Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D: Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

C: The analysis of pl was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

D: The RPD between the results for the vice columns exceeds the method-

Project Name: FORMER XOM JALK FEE PROPERTY Project Number: CARDNO ERI

Client ID	Laboratory Method BI
Lab ID	WG566213-3
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG566213
Date Collected	NA
Date Received	10/10/2012
Date Prepped	10/10/2012
Date Analyzed	10/10/2012
Sample Size(wet)	15 g
% Solid	100
File ID	1010A04.D
Units	ug/kg
Final Volume	0.1
Dilution	1
Reporting Limit	50

	s Abbrev	Analytes	Result	SSRL
С	DCM	METHYLENE CHLORIDE	U	500
С	11DCA	1,1-DICHLOROETHANE	U	75
С	CF	CHLOROFORM	U	75
С	CT	CARBON TETRACHLORIDE	U	50
С	12DCP	1,2-DICHLOROPROPANE	U	180
В	DBCM	DIBROMOCHLOROMETHANE	U	50
С	112TCA	1,1,2-TRICHLOROETHANE	U	75
С	PCE	TETRACHLOROETHENE	U	50
С	CB	CHLOROBENZENE	U	50
F	TCTFM	TRICHLOROFLUOROMETHANE	U	250
ADD		1,2-DICHLOROETHANE	U	50
С	111TCA		U	50
В	BDCM	BROMODICHLOROMETHANE	U	50
С	T13DCP		U	50
С		CIS-1,3-DICHLOROPROPENE	U	50
В	BF	BROMOFORM	U	200
C		1,1,2,2-TETRACHLOROETHANE	U	50
Α	В	BENZENE	U	50
A	T	TOLUENE	U	75
A	EB	ETHYLBENZENE	U	50
В	BM	BROMOMETHANE	U	100
С	VC	VINYL CHLORIDE	U	100
C	CE	CHLOROETHANE	U	100
C	11DCE	1,1-DICHLOROETHENE	U	50
C	TCF	TRANS-1,2-DICHLOROETHENE	U	75
Č	12DCB	TRICHLOROETHENE	U	50 250
C	13DCB	1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	U	250
c	14DCB	1,4-DICHLOROBENZENE	U	250
OX	MTBE	METHYL TERT BUTYL ETHER	Ü	100
A	MPX	P/M-XYLENE	Ü	100
A	OX	O-XYLENE	Ü	100
Ĉ		CIS-1.2-DICHLOROETHENE	Ü	50
Č	123TCP	1.2.3-TRICHLOROPROPANE	Ü	500
Ä	STY	STYRENE	Ŭ	100
F	DCFM	DICHLORODIFLUOROMETHANE	IJ	500
0	ACE	ACETONE	Ŭ	1800
ŏ	MEK	2-BUTANONE	Ŭ	500
Õ	MIBK	4-METHYL-2-PENTANONE	ũ	500
Ö	THF	TETRAHYDROFURAN	Ü	1000
ADD		1.2-DIBROMOETHANE	Ü	200
C		1,1,1,2-TETRACHLOROETHANE	Ŭ	50
Ā	BUTB	N-BUTYLBENZENE	Ū	50
Α	TBB	TERT-BUTYLBENZENE	ũ	250
C	2CT	O-CHLOROTOLUENE	Ū	250
č	HCB	HEXACHLOROBUTADIENE	ũ	250
Α	IPB	ISOPROPYLBENZENE	U	50
		P-ISOPROPYLTOLUENE	Ü	50
2	N0	NAPHTHALENE	Ü	250
Α	PROPB	N-PROPYLBENZENE	U	50
С	124TCB	1,2,4-TRICHLOROBENZENE	U	250
A	135TMB	1,3,5-TRIMETHYLBENZENE	Ū	250
Α	124TMB	1,2,4-TRIMETHYLBENZENE	U	250
0	DIE	ETHYL ETHER	U	250

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 99

 TOLUENE-D8
 98

 4-BROMOFLUOROBENZENE
 99

 DIBROMOFLUOROMETHANE
 98

Project Name: FORMER XOM JALK FEE PROPERTY

Project Numbe	r: CARDNO ERI
---------------	---------------

Client ID	Laboratory Control S
Lab ID	
	WG566213-1
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG566213
Date Collected	NA
Date Received	10/10/2012
Date Prepped	10/10/2012
Date Analyzed	10/10/2012
Sample Size(wet)	15 g
% Solid	100
File ID	1010A03.D
Units	%
Final Volume	0.1
Dilution	1
Reporting Limit	50

COLIN METHYLENE CHLORIDE	Class	Abbrev	Analytes	Result	SSRL	% REC	Spike Conc.	Lower Limit	Upper Limit
C C CT CT CARON TETRACHORIDE 130 50 113 1000 70 130 C C CARON TETRACHORIDE 130 50 113 1000 70 130 C C C C C C C C C C C C C C C C C C C									
C T			1,1-DICHLOROETHANE	1110		111	1000	70	130
C 12DCP 1.2-DICH_OROPROPANE									
B B GM	C								
C 112TCA 1.12-TRIOHLOROFITHANE 100 50 110 1000 70 130 130 C C C PCE TRIANCHOROFITHANE 1100 50 1110 1000 70 130 130 C C C C C TOTAL TRICHLOROFITHANE 1100 28 110 1000 70 130 130 130 130 130 130 130 130 130 13									
C C BC C C C C C C C C C C C C C C C C									
C B CHLOROBENZENE 1100 50 1100 70 130 130 AD 120CA 1.2-DICHLOROMETHANE 1080 250 108 1000 70 130 130 ADD 120CA 1.2-DICHLOROMETHANE 1140 50 1141 1000 70 130 130 130 141 141 150CA 1.2-DICHLOROFTHANE 1140 50 1141 1000 70 130 130 130 141 141 150CA 112 150CA 113 141 141 141 141 141 141 141 141 141									
TOTFIM TRICHLOROFLUDRIMEMANE 1080 250 108 1000 70 139	Ċ								
ADD 12DCA 1-2-DICHLOROETHANE 1140 50 114 1000 70 130 130 130 130 140 50 114 1000 70 130 130 130 140 140 50 114 1000 70 130 1	F								
C 111TCA 1,1,1-TRICHLOROETHANE 1140 50 114 1000 70 130 C T13DCP TRANS-1,3-DICHLOROPROPENE 1070 50 107 1000 70 130 C T13DCP TRANS-1,3-DICHLOROPROPENE 1102 50 117 1000 70 130 B BTOCK GIS-3,3-DICHLOROPROPENE 1102 50 112 1000 70 130 B BTOCK GIS-3,2-DICHLOROPROPENE 1102 50 112 1000 70 130 B BTOCK 112 1100 70 130									
B BIOM BROMODICHLOROMETHANE C T130CP TRANS-1-3-DICHLOROPROPENE D 1070 50 107 1000 70 130 C C130CP CIS1-3-DICHLOROPROPENE D 110CP TRANS-1-3-DICHLOROPROPENE D 110CP TRANS-1-3-DICHLOROPENE D 110CP TRANS-1-3-DICHLOROPROPENE D 1080 50 108 1000 70 130 D 1130 1130 D 1130 1130 1130 1130 1130 D 1130 1130 1130 1130 1130 D 1130 1130 1130 1130 1130 1130 D 1130 1130 1130 1130 1130 1130 1130 D 1130 1130 1130 1130 1130 1130 1130 113									
C 113DCP GIS1_3-DICHLOROPROPENE 1120 50 112 1000 70 130 130 18 18 15 16 1000 70 130 130 18 18 18 1000 70 130 1	В		BROMODICHLOROMETHANE			112	1000		130
C 11DCP 1,1-DICHLOROPROPENE 1110 250 111 1000 70 130 ROMOPORM 1000 200 108 1000 70 130 ROMOPORM 1000 200 100 1000 70 130 ROMOPORM 1000 200 100 ROMOPORM 1000 70 130 ROMOPORM 1000 200 100 ROMOPORM 1000 70 130 ROMOPORM 1000 200 ROMOPORM 10			TRANS-1,3-DICHLOROPROPENE	1070	50	107	1000		130
B BF ROMOFORM 1080 200 108 1000 70 130 C 1122FX 11,22-TETRACHLOROETHANE 1080 50 108 1000 70 130 A B BENZENE 1120 50 112 1000 70 130 A B BENZENE 1120 50 112 1000 70 130 A E B CTHYLBENZENE 1090 50 109 1000 70 130 A E B CTHYLBENZENE 1090 50 109 1000 70 130 B BM BROMOMETHANE 1240 100 124 1000 57 147 B BROWNETHANE 1240 100 124 1000 57 147 B BROWNETHANE 1240 100 124 1000 57 147 C TIDCE 11-DCE CHLOROETHANE 1100 111 1000 57 147 C TIDCE TRICH-LOROETHENE 1070 50 107 1000 65 135 C TIDCE 11-DCHLOROETHENE 1130 50 113 1000 70 130 C TOC TRICH-LOROETHENE 1130 50 113 1000 70 130 C TOC TRICH-LOROETHENE 1130 50 113 1000 70 130 C TOC TRICH-LOROETHENE 1130 50 113 1000 70 130 C TOC TRICH-LOROETHENE 1130 50 113 1000 70 130 C TOC TRICH-LOROETHENE 1070 250 107 1000 70 130 C TOC TRICH-LOROETHENE 1080 250 108 1000 70 130 C TOC TRICH-LOROETHENE 1090 100 110 1000 70 130 C TOC TRICH-LOROETHENE 1080 250 108 1000 70 130 C TOC TRICH-LOROETHENE 1080 250 108 1000 70 130 C TOC TRICH-LOROETHENE 1080 250 108 1000 70 130 C TOC TRICH-LOROENZENE 1080 250 108 1000 70 130 C TOC TRICH-LOROENZENE 1080 250 108 1000 70 130 C TOC TRICH-LOROETHENE 1100 100 110 1000 66 130 A MAY B METHYL TERT BUTYL ETHER 1100 100 110 1000 66 130 A OV MTBE METHYL TERT BUTYL ETHER 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 100 110 1000 70 130 C TOC TOC TRICH-LOROETHENE 1100 50 111 1000 70 130 C TOC TOC TRICH-LOROETHENE 1110 500 111 1000 70 130 C TOC TOC TRICH-LOROETHENE 1110 500 111 1000 70 130 C TOC TOC TRICH-LOROETHENE 1110 500 111 1000 70 130 C TOC TOC TRICH-LOROETHENE 1110 500 111 1000 70 130 C TOC TO	С								
C 1122PCA 1,1,2,2-TETRACHLOROETHANE 1080 50 108 1000 70 130 A T TOLUENE 1060 75 106 1000 70 130 A T TOLUENE 1060 75 106 1000 70 130 C CM CHLOROMETHANE 1090 50 109 1000 70 130 C CM CHLOROMETHANE 130 250 83 1000 52 130 B MM BROMOMETHANE 1240 100 124 1000 57 147 C VC VINYL CHLORIDE 139 100 144 1000 67 130 C CM CHLOROMETHANE 1110 01 111 1000 67 130 C CM CHLOROMETHANE 1110 05 111 1000 67 130 C TOLUENE 1110 05 111 1000 111 1000 67 130 C TOLUENE 1110 05 111 1000 111 1000 67 130 C TOLUENE 1110 05 111 1000 111 1000 67 130 C TOLUENE 1110 05 111 1000 67 130 C TOLUENE 1110 05 111 1000 67 130 C TOLUENE 1110 05 111 1000 70 130 C TOLUENE 1110 05 111 1000 70 130 C TOLUENE 1110 05 113 1000 70 130 C TOLUENE 1110 100 110 05 111 1000 70 130 C TOLUENE 1110 100 110 05 111 1000 70 130 C TOLUENE 1110 100 110 05 111 1000 70 130 C TOLUENE 1110 100 110 05 111 1000 70 130 C TOLUENE 1110 100 110 100 100 70 130 C TOLUENE 1110 100 110 100 100 70 130 C TOLUENE 1110 100 110 100 100 70 130 C TOLUENE 1110 100 110 100 100 70 130 C TOLUENE 1110 100 110 100 100 70 130 C TOLUENE 1110 100 110 100 100 100 100 100 100 1									
A B BENZENE 1120 50 112 1000 70 130 A EB CTHUBENZENE 1060 75 106 1000 70 130 A EB CTHUBENZENE 1090 50 109 1000 70 130 C C CM CHLOROMETHANE 1240 100 124 1000 57 147 C VC VINYL CHLORIDE 1240 100 124 1000 67 130 C C CE CHLOROMETHANE 1110 100 111 1000 67 130 C C CE CHLOROMETHANE 1110 100 111 1000 67 130 C C C CH CHLOROMETHANE 1110 100 111 1000 65 151 C T 120CE TRANS1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C TRANS1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C TRANS1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C TRANS1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C TRANS1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C TRANS1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C TRANS1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C T 1,2-DICHLOROMETHENE 1110 75 111 1000 70 130 C T 120C T 1,2-DICHLOROMETHENE 1100 70 120 110 100 70 130 C T 120C T 1,2-DICHLOROMETHENE 1000 70 130 C T 120C T 1,2-DICHLOROMETHENE 1000 70 130 C T 120C T 1,2-DICHLOROMETHENE 1000 100 110 100 100 70 130 C T 120C T 1,2-DICHLOROMETHENE 1100 100 110 100 100 70 130 C T 120C T 1,2-DICHLOROMETHENE 1100 100 110 100 100 100 100 100 100 1									
A T TOLUENE 1060 75 106 1000 70 130 C C CM CHACKOMETHANE 130 250 83 1000 52 130 C CM CHACKOMETHANE 130 250 83 1000 52 130 C C CM CHACKOMETHANE 1240 1001 124 1000 57 147 C V C VINTY CHLORIDE 139 100 94 1000 67 130 C C C C C C C C C C C C C C C C C C C									
A EB ETH/LIGENZENE									
C CM CHICROMETHANE 830 250 83 1000 52 130 C C C VC VINIT, CHLORIDE 939 100 94 1000 67 130 C CE CE CHLOROETHANE 1110 100 111 1000 65 135 C TIDCE 1.1-DICHLOROETHENE 1170 50 107 1000 65 135 C TEDICHLOROETHENE 1130 50 113 1000 70 130 C 12DCB 1.2-DICHLOROEBNZENE 1080 250 108 1000 70 130 C 13DCB 1.3-DICHLOROEBNZENE 1080 250 108 1000 70 130 C 13DCB 1.3-DICHLOROEBNZENE 1080 250 108 1000 70 130 X MEX 13DA X-PINATYLENE 211 1000 70 130 X 13DA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
B B M C C VC VC VINTUCHORIDE 1240 100 124 1000 57 147 C C C C VINTUCHORIDE 939 100 94 1000 67 1300 110 111 1000 50 151 C T CE C VINTUCHORDETHANE 1110 100 111 1000 70 1000 65 153 C T12DCE TRANS-12-DICHLOROETHENE 1170 75 111 1000 70 130 1000 70 130 C T2CE TRICHLOROETHENE 1170 75 111 1000 70 130 1000 70 130 C 12DCB 1.2-DICHLOROSENZENE 1070 250 107 1000 70 130 1000 70 130 C 14DCB 1.2-DICHLOROSENZENE 1080 250 108 1000 70 130 C 14DCB 1.2-DICHLOROSENZENE 1080 250 108 1000 70 130 A METHYL TERT BUTYL ETHER 1100 100 110 100 100 100 100 100 100 70 130 A OX O -XYLENE 2190 100 111 2000 70 130 130 C C12DCE CIS1, 2-DICHLOROETHENE 1120 50 112 1000 110 2000 70 130 C 14DC LAROET STREE									
C CE CHLOROETHANE 1110 100 111 11000 50 151 135									
C T1DCE 11-DICHLOROETHENE 1070 50 107 1000 65 135 C TCE TRANS-12-DICHLOROETHENE 1110 75 111 100 70 130 C TCE TRICHLOROETHENE 1130 50 113 1000 70 130 C 13DCB 1.3-DICHLOROSENZENE 1070 250 108 1000 70 130 C 13DCB 1.3-DICHLOROSENZENE 1080 250 108 1000 70 130 OX MPM METHAL TERT BUTYL ETHER 1100 100 110 100 66 130 A MPX PIM-XYLENE 2190 100 111 200 70 130 A OX OXTEENE 2120 100 111 200 70 130 B DBM DIBROMOMETHANE 1120 50 112 100 70 130 C 123TCP <t< td=""><td></td><td>VC</td><td>VINYL CHLORIDE</td><td>939</td><td>100</td><td>94</td><td>1000</td><td>67</td><td>130</td></t<>		VC	VINYL CHLORIDE	939	100	94	1000	67	130
C T12DCE TRANS-1,2-DICHLOROETHENE 1110 75 111 1000 70 130 C TCE RICHLOROEMEZENE 1130 50 107 1000 70 130 C 12DCB 1,2-DICHLOROEMEZENE 1080 250 108 1000 70 130 C 14DCB 1,4-DICHLOROEMEZNE 1080 250 108 1000 70 130 C 14DCB 1,4-DICHLOROEMEZENE 1100 100 110 100 66 130 A MPX PIM-XYLENE 2190 100 110 2000 70 130 C C12DCE CIS-12-DICHLOROEPHENE 2190 100 111 2000 70 130 C C12DCE CIS-12-DICHLOROEPHENE 1140 500 114 1000 70 130 C 13D DISCHLOROERDANE 1140 500 114 1000 70 130 C									
C TCE 12 TICH-LOROGENTENE 1130 50 113 1000 70 130 C 12DGB 1,3-DICH-LOROGENZENE 1070 250 108 1000 70 130 C 13DCB 1,3-DICH-LOROGENZENE 1080 250 108 1000 70 130 OX MPTS MITHAL TERT BUTYL ETHER 1100 100 110 1000 66 130 A MPX PIM-XYLENE 2190 100 111 2000 70 130 A OX O-YLENE 2210 100 111 2000 70 130 C C12DCE CIS-12-DICH-LOROGETHENE 1120 500 114 1000 70 130 A DBM DBROMOMETHANE 1140 500 114 1000 70 130 C 1230 1,4-DICH-LOROGUTANE 1140 500 111 1000 70 130 C 1230	С								
C 12DCB 12-DICHLOROBENZENE 1070 250 107 1000 70 130 C 13DCB 1.3-DICHLOROBENZENE 1080 250 108 1000 70 130 C 14DCB 1.3-DICHLOROBENZENE 1080 250 108 1000 70 130 X TER HITH'L TERT BUTY ETHER 1100 100 110 1000 66 130 A OX PMA-XYLENE 2190 100 110 2000 70 130 C C12DCE CIS-12-DICHLOROBETHENE 2190 100 111 2000 70 130 C C12DCE CIS-12-DICHLOROBETANE 1140 500 114 1000 70 130 C 13DCH 14-DICHLOROBUTANE 1140 500 111 1000 70 130 C 13DCH 14-DICHLOROBUTANE 1140 500 111 1000 70 130 C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
C 13DCB 1.3-DICHLOROBENZENE 1080 250 108 1000 70 130 CX MTBE METHYL TERT BUTYL ETHER 1100 100 110 1000 66 130 A MPX PAM-XYLENE 2190 100 111 2000 70 130 A OX CXYLENE 2210 100 111 2000 70 130 C C12DCE CIS-12-DICHLOROBUTHANE 1210 100 111 1000 70 130 C 12DT 1-4-DICHLOROBUTANE 1040 500 114 1000 70 130 C 123TCP 1-2-3-TRICHLOROPROPANE 1110 500 111 1000 70 130 C 125TY TYSTRENE 2200 100 1110 2000 70 130 C 130 TYSTRENE 2200 100 111 1000 70 130 C 130									
C 4DCB 4-DICHLOROBENZENE 1080 250 108 1000 70 130 X MFB METHYL TERT BUTYL ETHER 1100 1100 1100 1000 70 130 A MPX PAM-XYLENE 2190 100 110 2000 70 130 C C12DCE CIS-12-DICHLOROETHENE 1120 50 112 1000 70 130 B DBM DIBROMOMETHANE 1140 500 114 1000 70 130 C 14DC 1,4-DICHLOROBUTANE 1110 500 111 1000 70 130 C 123TCP 1,2-3-TRICHLOROPROPANE 1110 500 111 1000 68 130 F DCFM DICHLORODIFLURORMETHANE 514 500 51 1000 30 146 S TYFRENE 2200 100 110 120 500 126 1000 70 130									
X									
A MPX PM-XYLENE 2190 100 110 2000 70 130 C C. C12DCE CIS-12-DICHLOROETHENE 1120 50 112 1000 70 130 C C. C12DCE CIS-12-DICHLOROBUTANE 1140 500 114 1000 70 130 C 14DC 1,4-DICHLOROBUTANE 1140 500 104 1000 70 130 C 123TCP 1,2-3-TRICHLOROPROPANE 1110 500 111 1000 68 130 A STY STYRENE 2200 100 110 200 70 130 F DCFM DICHLORODIFLUOROMETHANE 514 500 51 1000 30 146 S CO CARBON DISULFIDE 990 500 99 1000 59 130 O MEK 2-BUTANONE 1250 500 125 1000 70 130 O MISA									
A OX									
C C C12DCE CIS-12-DICHLOROBITHENE 1120 50 112 1000 70 130 B DBB DIBBROMOMETHANE 1140 500 114 1000 70 130 C 14PC 1.4-DICHLOROBUTANE 1040 500 104 1000 70 130 A STY STYRENE 2200 100 110 2000 70 130 F DCFM DICHLOROBIFLUOROMETHANE 514 500 51 1000 54 140 S CD CARBON DISULFIDE 990 500 99 1000 59 130 O MEK 2-BUTANONE 1250 500 125 1000 70 130 O MISK 2-HEXANONE 1120 500 102 100 70 130 O MISK 2-HEXANONE 1020 500 102 1000 70 130 ETHYL METHACRYLATE									
C 14DC 1.4-DICHLOROBUTANE 1040 500 104 1000 70 130 C 123TCP 1.2-3-RTICHCHOROPROPANE 1110 500 111 1000 70 130 A STY STYRENE 2200 100 110 2000 70 130 F DCFM DICHLORODIFLUOROMETHANE 514 500 51 1000 30 148 O ACE ACETONE DISULFIDE 390 500 39 1000 54 140 C CARBON DISULFIDE 390 500 39 1000 59 130 O MEK 2-BUTANONE 1226 500 122 1000 70 130 O MBK 2-HEXANONE 1120 500 102 1000 70 130 ETHYL METHACRYLATE 1060 500 102 1000 70 130 B BCM BROMOCHLOROMETHANE 1110 200		C12DCE		1120	50	112	1000	70	130
C 123TCP 1,2.3-TRICHLOROPROPANE 1110 500 1111 1000 68 130 F DCFM DICHLORODIFLUOROMETHANE 514 500 51 1000 30 146 O ACE ACETONE 1260 1800 126 1000 53 140 S CD CARBON DISULFIDE 990 500 99 1000 59 130 O MEK 2-BUTANONE 1250 500 125 1000 70 130 O MISK 4-METHYL 2-PENTANONE 1120 500 112 1000 70 130 O MIBK 4-METHYL 2-PENTANONE 1120 500 112 1000 70 130 O MIBK 4-METHYL 2-PENTANONE 1120 500 102 1000 70 130 B B B B B C 2-HEXANONE 1110 1000 70 130 B									
A STY STYRENE 2200 100 110 2000 70 130	С								
F DCFM DICHLORODIFLUOROMETHANE 514 500 51 1000 30 146 O ACE ACETONE 1260 1800 126 1000 54 140 S CD CARBON DISULFIDE 990 500 99 1000 59 130 O MEK 2-BUTANONE 1250 500 125 1000 70 130 O MIBK 4-METHYL-2-PENTANONE 1120 500 112 1000 70 130 O MIBK 4-METHYL-2-PENTANONE 1120 500 102 1000 70 130 MBK 2-HEXANONE 1120 500 106 1000 70 130 AGYLONITRILE 1110 200 111 1000 70 130 B BCM BROMOCHLOROMETHANE 1110 250 111 1000 70 130 C 22DCP 22-DICHLOROPROPANE 1110 250									
O ACE ACETONE 1260 1800 126 1000 54 140 S CD CARBON DISULFIDE 990 500 99 1000 59 130 O MEK 2-BUTANONE 1250 500 125 1000 70 130 O MIBK 4-METHYL-2-PENTANONE 1120 500 112 1000 70 130 O MIBK 2-HEXANONE 1020 500 102 1000 70 130 ETHYL METHACRYLATE 1060 550 102 1000 70 130 ACRYLONITRILE 1110 200 111 1000 70 130 O THF TETRAHYDROFURAN 1140 200 111 1000 70 130 ADD 12DEB 1,2-DIBROMOETHANE 1110 200 111 1000 70 130 ADD 12DEB 1,2-DIBROMOETHANE 1110 200 111									
S CD CARBON DISULFIDE 990 500 99 1000 59 130 O MEK 2-BUTANONE 1250 500 125 1000 70 130 O VIA VINIVI. ACETATE 1140 500 114 1000 70 130 O MIBK 4-HETHVLPENTANONE 1120 500 102 1000 70 130 O MIBK 2-HEXANONE 1020 500 102 1000 70 130 ETHYL METHACRYLATE 1060 500 106 1000 70 130 ACRYLONITRILE 1110 200 111 1000 70 130 B BCM BROMOCHLOROMETHANE 1110 250 111 1000 70 130 C 22DCP 2.2-DICHLOROPROPANE 1110 250 111 1000 70 130 C 13DCP 1.3-DICHLOROPROPANE 1190 250 109 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
O MEK 2-BUTANONE 1250 500 125 1000 70 130 O VA VINYL ACETATE 1140 500 114 1000 70 130 O MIBK 4-METHYL-2-PENTANONE 1120 500 112 1000 70 130 B C 2-HEXANONE 1020 500 102 1000 70 130 B C 2-HEXANONE 1060 500 106 1000 70 130 ACRYLONITRILE 1110 200 111 1000 70 130 O THF TETRAHYDROFURAN 1140 1000 114 1000 66 130 O THF TETRAHYDROFURAN 1110 200 111 1000 70 130 ADD 12DBE 1,2-DIBROMETHANE 1110 200 111 1000 70 130 C 1112ECA 1,1,1,2-TETRACHLOROPROPANE 1110									
O VA VINTL ACETATE 1140 500 114 1000 70 130 O MBK 4-METHYL-2-PENTANONE 1120 500 112 1000 70 130 O MBK 2-HEXANONE 1020 500 102 1000 70 130 ETHYL METHACRYLATE 1060 500 106 1000 70 130 ACRYLONITRILE 1110 200 111 1000 70 130 B BCM BROMOCHLOROMETHANE 1140 250 114 1000 70 130 C 22DCP 2.2-DICHLOROPROPANE 1110 250 111 1000 70 130 ADD 12DBE 1.2-DIBROMOETHANE 1110 250 111 1000 70 130 C 13DCP 1.3-DICHLOROPROPANE 1190 250 109 1000 69 130 C 13DCP 1.1-LIZETRACHLOROETHANE 1110 50 111 1000 70 130									
O MIBK 4-METHYL-2-PENTANONE 1120 500 112 1000 70 130 O MBK 2-HEXANONE 1020 500 102 1000 70 130 FITHY METHACRYLATE 1060 500 106 1000 70 130 B BCM BROMOCHLOROMETHANE 1110 200 111 1000 70 130 O THF TETRAHYDROFURAN 1140 1000 114 1000 66 130 ADD 12DBE 2,2-DICHLOROPROPANE 1110 250 111 1000 70 130 ADD 12DBE 1,3-DICHLOROPROPANE 1110 200 111 1000 70 130 C 13DCP 1,3-DICHLOROPROPANE 1110 250 109 1000 69 130 C 1112CA 1,1,1,2-TETRACHLOROETHANE 1110 50 111 1000 70 130 B BB									
O MBK ETHYL METHACRYLATE ETHYL METHACRYLATE ACRYLONITRILE 1020 500 102 1000 70 130 B BCM 							1000		
B BCM BROMOCH-LOROMETHANE 1110 200 1111 1000 70 130 130 130 130 141		MBK					1000	70	
B BCM BROMOCHLOROMETHANE 1140 250 114 1000 70 130 C THF TETRAHYDROFURAN 1140 1200 111 1000 66 130 C 22DCP 2,2-DICHLOROPROPANE 1110 250 111 1000 70 130 ADD 12DBE 1,2-DIBROMOGETHANE 1110 250 109 1000 69 130 C 13DCP 1,3-DICHLOROPROPANE 1110 50 111 1000 70 130 C 1112PCA 1,1,1,2-TETRACHLOROETHANE 1110 50 111 1000 70 130 A B BB BROMOGENZENE 11070 250 107 1000 70 130 A BUTB N-BUTYLBENZENE 1090 50 109 1000 70 130 A TBR TETR-BUTYLBENZENE 1080 250 108 1000 70 130 C <			ETHYL METHACRYLATE	1060	500	106	1000	70	130
O THF TETRAHYDROFURAN 1140 1000 114 1000 66 130 C 22DCP 2,2-DICHLOROPROPANE 1110 220 111 1000 70 130 ADD 12DBE 1,2-DISROMOETHANE 1110 220 111 1000 70 130 C 13DCP 1,3-DICHLOROPROPANE 1109 250 109 1000 69 130 C 1112PCA 1,1,1,2-TETRACHLOROETHANE 1111 50 111 1000 70 130 B BB BROMOBENZENE 1070 250 107 1000 70 130 A SECBUT SEC-BUTYLERUZENE 1080 50 108 1000 70 130 A TBB TERT-BUTYLERUZENE 1080 50 108 1000 70 130 C 2CT O-CHLOROTOLUENE 972 250 197 1000 70 130 B									
C 22DCP 2,2-DICHLOROPROPANE 1110 250 1111 1000 70 130 ADD 12DBER 1,2-DIBROMOETHANE 1110 200 1111 1000 70 130 C 13DCP 1,3-DICHLOROPROPANE 1110 250 109 1000 69 130 C 1112PCA 1,1,1,2-TETRACHOROETHANE 1110 50 111 1000 70 130 A BB BROMOBENZENE 1070 250 107 1000 70 130 A BUTB N-BUTYLBENZENE 1090 50 109 1000 70 130 A SECGBUT SEC-BUTYLBENZENE 1080 250 108 1000 70 130 A TBB TERT-BUTYLBENZENE 1080 250 108 1000 70 130 C 2CT O-CHLOROTOLUENE 972 225 97 1000 70 130 C HEXACHLOROBUTADIENE									
ADD 12DBE 1,2-DIBROMOETHANE 1110 200 1111 1000 70 130 130 12DBE 1,2-DIBROMOETHANE 1090 250 109 1000 69 130 130 1112 1000 70 130 1112 1000 70 130 1112 1000 70 130 1112 1000 70 130 1									
C 13DCP 1,3-DICHLOROPROPANE 1090 250 109 1000 69 130 C 1112PCA 1,11,2-ETRACHLOROETHANE 1110 50 1111 1000 70 130 B BB BROMOBENZENE 1070 250 107 1000 70 130 A BUTB N-BUTYLERVZENE 1080 50 108 1000 70 130 A TBB TERT-BUTYLERVZENE 1080 50 108 1000 70 130 C 2CT C-CHLOROTOLUENE 972 250 10 1000 70 130 B 12DB3CP 1,2-DIBROMO-3-CHLOROPROPANE 1040 250 108 1000 70 130 B 12DB3CP 1,2-DIBROMO-3-CHLOROPROPANE 1040 250 104 1000 68 130 C HCB HEXACHLOROBUTADIENE 1070 250 107 1000 67 130 A<									
C 1112PCA 1,11,2-ETRACHLOROETHANE 1110 50 1111 1000 70 130 B BB BBROMOBENZENE 1070 250 107 1000 70 130 A BUTB N-BUTYLBENZENE 1080 50 109 1000 70 130 A TSESCBUTYLBENZENE 1080 50 108 1000 70 130 A TBB TERT-BUTYLBENZENE 1080 250 108 1000 70 130 C 2CT O-CHLOROTOLUENE 972 250 97 1000 70 130 B 12DBSCP 1,2-DIBROMO-3-CHLOROPROPANE 1040 250 104 1000 68 130 C HCM HEXACHLOROBUTADIENE 1070 250 107 1000 67 130 A IPB ISOPROPYLBENZENE 1100 50 110 1000 70 130 2 NO NAPH									
B BROMOBENZENE 1070 250 107 1000 70 130 A BUTB N-BUTYLENZENE 1090 50 108 1000 70 130 A SECRUT SEC-BUTYLERNZENE 1080 50 108 1000 70 130 C 2CT O-CHLOROTOLUENE 1980 250 108 1000 70 130 C 2CT P-CHLOROTOLUENE 972 250 97 1000 70 130 B 12DB3CP 1,2-DIBROMO-3-CHLOROPROPANE 1040 250 104 1000 68 130 C HCB HEXACHLOROBUTADIENE 1070 250 107 1000 67 130 A IPB ISOPROPYLENZENE 1100 50 110 1000 70 130 A PROPB NAPHTHALENE 1060 250 106 1000 70 130 A PROPB N-PROPYLEBUZENE </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
A BUTE N-BUTYLBENZENE 1090 50 109 1000 70 130									
A SECBUT SEC-BUTYLERNZENE 1080 50 108 1000 70 130 A TBB TERT-BUTYLERNZENE 1080 250 108 1000 70 130 C 2CT C-CHLOROTOLUENE 972 250 97 1000 70 130 B 12DB3CP 1.2-DIBROMIC-3-CHLOROPROPANE 1080 250 104 1000 68 130 C HCB HEXACHLOROBUTADIENE 11070 250 107 1000 67 130 A IPB ISOPROPYLIBENZENE 1100 50 110 1000 70 130 2 NO NAPHTHALENE 1060 250 106 1000 70 130 A PROPB N-PROPYLBENZENE 1070 250 107 1000 70 130 A 132TB 1,2-3-TRICHLOROBENZENE 1070 250 107 1000 70 130 C 124TCB									
C 2CT O-CHLOROTOLUENE 972 250 97 1000 70 130 C 4CT P-CHLOROTOLUENE 1080 250 108 1000 70 130 B 12DB3CP 1.2-DIBROMO-3-CHLOROPROPANE 1040 250 104 1000 68 130 C HCB HEXACHLOROBUTADIENE 1070 250 107 1000 67 130 A IPB ISOPROPYLBENZENE 1100 50 110 1000 70 130 PROPB NAPHTHALENE 1060 250 106 1000 70 130 A PROPB N-PROPYLBENZENE 1070 250 107 1000 70 130 C 123TCB 1,2-3-TRICHLOROBENZENE 1070 250 107 1000 70 130 C 124TCB 1,2-3-TRICHLOROBENZENE 1080 250 108 1000 70 130 A 135TMB								70	
C 4CT P-CHLOROTOLUENE 188 250 108 1000 70 130 B 12DSZP 1.2-DIBROMO-3-CHLOROPROPANE 1040 250 104 1000 68 130 C HCB HEXACHLOROBUTADIENE 1070 250 107 1000 67 130 A IPB ISOPROPYLBENZENE 1100 50 110 1000 70 130 2 NO NAPHTHALENE 1080 250 106 1000 70 130 A PROPB N-PROPYLENZENE 1070 50 107 1000 70 130 C 123TCB 1,2,3-TRICHLOROBENZENE 1070 250 107 1000 70 130 C 124TCB 1,2,4-TRICHLOROBENZENE 1080 250 108 1000 70 130 A 135TMB 1,3,5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-1,4	Α	TBB	TERT-BUTYLBENZENE	1080	250	108	1000	70	130
B 12DB3CP 1.2-DIBROMO-3-CHLOROPROPANE 1040 250 104 1000 68 130									
C HCB HEXACHLOROBUTADIENE 1070 250 107 1000 67 130 A IPB ISOPROPYLENZENE 1100 50 110 1000 70 130 2 NO NAPHTHALENE 1060 250 106 1000 70 130 A PROPB N-PROPYLENZENE 1070 50 107 1000 70 130 C 123TCB 1,2.3-TRICHLOROBENZENE 1070 250 107 1000 70 130 C 124TCB 1,2.4-TRIMETHYLBENZENE 1080 250 106 1000 70 130 A 135TMB 1,3.5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 A 124TMB 1,2.4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-1.4-DICHLORO-2-BUTENE 1080 250 106 1000 70 130 TRANS-1.4-DICHLORO-2-BUTENE <									
A IPB ISOPROPYLBENZENE 1100 50 110 1000 70 130 P-ISOPROPYLTOLUENE 1080 50 108 1000 70 130 130 120 120 P-ISOPROPYLTOLUENE 1080 50 108 1000 70 130 130 120 120 P-ISOPROPYLTOLUENE 1080 250 106 1000 70 130 120 120 120 120 120 120 120 120 120 12									
PISOPROPYLTOLUENE 1080 50 108 1000 70 130 A PROPH N-PROPYLENZENE 1070 50 107 1000 70 130 C 123TCB 1,2-3-TRICHLOROBENZENE 1070 250 107 1000 70 130 C 124TCB 1,2-4-TRIMETHYLBENZENE 1080 250 108 1000 70 130 A 135TMB 1,3,5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 A 124TMB 1,2-4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-14-DICHLORO-2-BUTENE 1080 250 108 1000 70 130 TRANS-14-DICHLORO-2-BUTENE 1080 250 108 1000 70 30 TRANS-14-DICHLORO-2-BUTENE 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080 250 108 1080									
2 NO NAPHTHALENE 1060 250 106 1000 70 130 A PROPE N-PROPYLENZENE 1070 50 107 1000 70 130 C 123TCB 1,2,3-TRICHLOROBENZENE 1070 250 107 1000 70 130 C 124TCB 1,2,4-TRICHLOROBENZENE 1080 250 108 1000 70 130 A 13STMB 1,3,5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 A 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-1,4-DICHLORO-2-BUTENE 1080 250 108 1000 70 130	А	IPB							
A PROPB N-PROPYLEENZENE 1070 50 107 1000 70 130 C 123TCB 1,2,3-TRICHLOROBENZENE 1070 250 108 1000 70 130 C 124TCB 1,2,4-TRICHLOROBENZENE 1080 250 108 1000 70 130 C 124TCB 1,3,5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 C 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 C 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 C 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 C 124TMB 1,2,4-TRIMETHYLBENZENE 1080 250 108 1000 70 130 C 1	2	NΩ							
C 123TCB 1,2,3-TRICHLOROBENZENE 1070 250 107 1000 70 130 C 124TCB 1,2,4-TRICHLOROBENZENE 1080 250 108 1000 70 130 A 13STMB 1,3,5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 A 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-1-4.DICHLORO-2-BUTENE 1080 250 108 1000 70 130									
C 124TCB 1,2,4-TRICHLOROBENZENE 1080 250 108 1000 70 130 A 135TMB 1,3,5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 A 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-1,4-DICHLORO-2-BUTENE 1080 250 108 1000 70 130									
A 135TMB 1,3,5-TRIMETHYLBENZENE 1060 250 106 1000 70 130 A 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-1,4-DICHLORO-2-BUTENE 1080 250 108 1000 70 130									
A 124TMB 1,2,4-TRIMETHYLBENZENE 1060 250 106 1000 70 130 TRANS-1,4-DICHLORO-2-BUTENE 1080 250 108 1000 70 130									
TRANS-1,4-DICHLORO-2-BUTENE 1080 250 108 1000 70 130									
O DIE ETHYL ETHER 1100 250 110 1000 67 130			TRANS-1,4-DICHLORO-2-BUTENE	1080	250		1000	70	
	0	DIE	ETHYL ETHER	1100	250	110	1000	67	130

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 102

 TOLUENE-D8
 98

 4-BROMOFLUOROBENZENE
 99

 DIBROMOFLUOROMETHANE
 102

Project Name: FORMER XOM JALK FEE PROPERTY Project Number: CARDNO ERI

Client ID	LCS Duplicate
Lab ID	WG566213-2
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG566213
Date Collected	NA
Date Received	10/10/2012
Date Prepped	10/10/2012
Date Analyzed	10/10/2012
Sample Size(wet)	15 g
% Solid	100
File ID	1010A02.D
Units	%
Final Volume	0.1
Dilution	1
Reporting Limit	50

		Reporting Limit	30							
Class	Abbrev	Analytes	Result	SSRL	% REC	Spike Conc.			RPD RPD Limit	
С	DCM	METHYLENE CHLORIDE	852	500		1000	70	130	19	30
C C	11DCA CF	1,1-DICHLOROETHANE CHLOROFORM	906 927	75 75		1000 1000	70 70	130 130	20 20	30 30
Ċ	CT	CARBON TETRACHLORIDE	904	75 50		1000	70	130	23	30
č	12DCP	1,2-DICHLOROPROPANE	926	180		1000	70	130	17	30
В	DBCM	DIBROMOCHLOROMETHANE	900	50		1000	70	130	19	30
С	112TCA	1,1,2-TRICHLOROETHANE	926	75		1000	70	130	16	30
С	PCE	TETRACHLOROETHENE	891	50	89	1000	70	130	21	30
С	CB	CHLOROBENZENE	906	50		1000	70	130	19	30
F	TCTFM	TRICHLOROFLUOROMETHANE	863	250		1000	70	139	23	30
ADD	12DCA	1,2-DICHLOROETHANE	955	50		1000	70	130	17	30
C B	111TCA BDCM	1,1,1-TRICHLOROETHANE	921 939	50 50		1000 1000	70 70	130 130	21 17	30 30
С	T13DCP	BROMODICHLOROMETHANE TRANS-1,3-DICHLOROPROPENE	939	50		1000	70	130	17	30
Ċ	C13DCP	CIS-1,3-DICHLOROPROPENE	935	50		1000	70	130	17	30
Č	11DCP	1,1-DICHLOROPROPENE	901	250		1000	70	130	21	30
В	BF	BROMOFORM	920	200		1000	70	130	16	30
С	1122PCA	1,1,2,2-TETRACHLOROETHANE	924	50	92	1000	70	130	16	30
Α	В	BENZENE	911	50	91	1000	70	130	21	30
Α	T	TOLUENE	861	75		1000	70	130	21	30
Α	EB	ETHYLBENZENE	899	50		1000	70	130	19	30
С	CM	CHLOROMETHANE	682	250		1000	52	130	20	30
В	BM	BROMOMETHANE	1070	100		1000	57	147	15	30
С	VC CF	VINYL CHLORIDE	764 889	100	76	1000	67 50	130	21	30
C C	11DCE	CHLOROETHANE 1.1-DICHLOROETHENE	889 850	100 50		1000 1000	65	151 135	22 23	30 30
Č	T12DCE	TRANS-1,2-DICHLOROETHENE	899	75		1000	70	130	23	30
č	TCF	TRICHLOROETHENE	922	50		1000	70	130	20	30
č	12DCB	1,2-DICHLOROBENZENE	907	250		1000	70	130	16	30
C	13DCB	1,3-DICHLOROBENZENE	907	250		1000	70	130	17	30
С	14DCB	1,4-DICHLOROBENZENE	907	250	91	1000	70	130	17	30
OX	MTBE	METHYL TERT BUTYL ETHER	918	100	92	1000	66	130	18	30
Α	MPX	P/M-XYLENE	1800	100		2000	70	130	20	30
A	OX	O-XYLENE	1820	100		2000	70	130	20	30
C B	C12DCE DBM	CIS-1,2-DICHLOROETHENE DIBROMOMETHANE	917 964	50 500		1000 1000	70 70	130 130	20 17	30 30
С	14DC	1.4-DICHLOROBUTANE	964 881	500		1000	70	130	17	30
Č	123TCP	1,2,3-TRICHLOROPROPANE	950	500		1000	68	130	16	30
A	STY	STYRENE	1830	100		2000	70	130	18	30
F	DCFM	DICHLORODIFLUOROMETHANE	416	500		1000	30	146	19	30
0	ACE	ACETONE	1070	1800	107	1000	54	140	16	30
S	CD	CARBON DISULFIDE	801	500	80	1000	59	130	21	30
0	MEK	2-BUTANONE	1030	500		1000	70	130	19	30
0	VA	VINYL ACETATE	949	500		1000	70	130	18	30
0	MIBK	4-METHYL-2-PENTANONE	947	500		1000	70	130	16	30
0	MBK	2-HEXANONE	888	500		1000	70	130	14	30
		ETHYL METHACRYLATE	899 944	500		1000	70	130 130	16 17	30
В	BCM	ACRYLONITRILE BROMOCHLOROMETHANE	944 959	200 250		1000 1000	70 70	130	17	30 30
Ö	THE	TETRAHYDROFURAN	959	1000		1000	66	130	17	30
Č	22DCP	2,2-DICHLOROPROPANE	905	250		1000	70	130	21	30
ADD	12DBE	1,2-DIBROMOETHANE	942	200		1000	70	130	17	30
С	13DCP	1,3-DICHLOROPROPANE	918	250	92	1000	69	130	17	30
С	1112PCA	1,1,1,2-TETRACHLOROETHANE	917	50		1000	70	130	19	30
В	BB	BROMOBENZENE	903	250		1000	70	130	17	30
A	BUTB	N-BUTYLBENZENE	896	50		1000	70	130	19	30
A	SECBUT	SEC-BUTYLBENZENE	886	50		1000	70	130	19	30
A	TBB	TERT-BUTYLBENZENE	888	250		1000	70	130	19	30
C	2CT 4CT	O-CHLOROTOLUENE P-CHLOROTOLUENE	777 903	250 250	78 90	1000 1000	70 70	130 130	22 18	30 30
В	12DB3CP	1,2-DIBROMO-3-CHLOROPROPANE	1010	250 250		1000	68	130	18	30
C	HCR	HEXACHLOROBUTADIENE	867	250		1000	67	130	21	30
A	IPB	ISOPROPYLBENZENE	903	50		1000	70	130	20	30
		P-ISOPROPYLTOLUENE	884	50		1000	70	130	20	30
2	N0	NAPHTHALENE	900	250		1000	70	130	16	30
A	PROPB	N-PROPYLBENZENE	887	50	89	1000	70	130	18	30
С	123TCB	1,2,3-TRICHLOROBENZENE	907	250		1000	70	130	16	30
С	124TCB	1,2,4-TRICHLOROBENZENE	909	250	91	1000	70	130	17	30
Α	135TMB	1,3,5-TRIMETHYLBENZENE	884	250		1000	70	130	19	30
Α	124TMB	1,2,4-TRIMETHYLBENZENE	888	250		1000	70	130	17	30
_	DIE	TRANS-1,4-DICHLORO-2-BUTENE	920	250	92	1000	70	130	16	
0	DIE	ETHYL ETHER	930	250	93	1000	67	130	17	30

Surrogates (% Recovery) 1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE DIBROMOFLUOROMETHANE 102 98 99 102

Project Name:	FORMER	XOM JALK	FEE	PROPERTY	1
Declare None ba	- OADDN	O EDI			

Project	Number: CARDNO ERI	

Client ID	S-25-B19	Duplicate Sample
Lab ID	L1217858-01	WG566213-7
Matrix	SOIL	SOIL
Matrix Description		
Reference Method	8260C	8260C
Batch ID	WG566213	WG566213
Date Collected	9/28/2012	NA
Date Received	10/2/2012	10/11/2012
Date Prepped	10/10/2012	10/11/2012
Date Analyzed	10/10/2012	10/11/2012
Sample Size(wet)	15 g	15.9 g
% Solid	81	100
File ID	1010A05.D	1011A16.D
Units	ug/kg	ug/kg
Final Volume	0.1	0.1
Dilution	1	1
Reporting Limit	62	70

	Abbrev	Analytes	Result	SSI	RL	Result	SSRL	RPD	RPD Limit	
С	DCM	METHYLENE CHLORIDE	U		620	520 J			30	
С	11DCA	1,1-DICHLOROETHANE	U		92	L	100		30	NC
С	CF	CHLOROFORM	U		92	L	100		30	NC
С	CT	CARBON TETRACHLORIDE	U		62	L	70		30	NC
С	12DCP	1,2-DICHLOROPROPANE	U	2	220	L	240		30	NC
В	DBCM	DIBROMOCHLOROMETHANE	U		62	L	70		30	NC
С	112TCA	1,1,2-TRICHLOROETHANE	U		92	L	100		30	NC
С	PCE	TETRACHLOROETHENE	610		62	630	70	3	30	
Ċ	CB	CHLOROBENZENE	U		62	L	70		30	NC
F	TCTFM	TRICHLOROFLUOROMETHANE	U	- 3	310	L	350		30	NC
ADD	12DCA	1,2-DICHLOROETHANE	Ū		62	Ĺ	70		30	NC
С	111TCA	1,1,1-TRICHLOROETHANE	Ū		62	Ĺ	70		30	NC
B	BDCM	BROMODICHLOROMETHANE	ũ		62	ũ				NC
С	T13DCP	TRANS-1.3-DICHLOROPROPENE	Ū		62	Ĺ	70		30	NC
č		CIS-1,3-DICHLOROPROPENE	ū		62	ũ				NC
B	BF	BROMOFORM	ũ		250	ũ				NC
c	1122PCA	1.1.2.2-TETRACHLOROETHANE	ū		62	ũ				NC
Ä	B	BENZENE	Ü		62	ĭ				NC
A	Ť	TOLUENE	Ü		92	ĭ				NC
A	EB	ETHYLBENZENE	Ŭ		62	ĭ				NC
В	BM	BROMOMETHANE	Ü		120	ĭ				NC
Č	VC	VINYL CHLORIDE	Ü		120	i				NC
Č	CF	CHLOROETHANE	U		120	i				NC
č	11DCF	1,1-DICHLOROETHENE	Ü		62	i				NC
Č		TRANS-1,2-DICHLOROETHENE	Ü		92	Ĺ				NC
C	TCE	TRICHLOROETHENE	U		62	Ĺ				NC
Č	12DCB	1,2-DICHLOROBENZENE	U		310	i.				NC
c	13DCB	1.3-DICHLOROBENZENE	U		310	Ĺ				NC
c	14DCB		U		310	Ĺ				NC
OX	MTBF	1,4-DICHLOROBENZENE	U							
	MPX	METHYL TERT BUTYL ETHER	U		120	Ļ				NC NC
A	OX	P/M-XYLENE			120	Ļ				
A		O-XYLENE	U		120	Ļ				NC
С		CIS-1,2-DICHLOROETHENE	U		62	Ļ				NC
C	123TCP	1,2,3-TRICHLOROPROPANE	U		620	Ļ				NC
A	STY	STYRENE	U		120	Ļ				NC
F	DCFM	DICHLORODIFLUOROMETHANE	U		620	Ļ				NC
0	ACE	ACETONE	U		200	Ļ				NC
0	MEK	2-BUTANONE	U		620	L				NC
0	MIBK	4-METHYL-2-PENTANONE	U		620					NC
0	THF	TETRAHYDROFURAN	U		200	Ļ				NC
ADD	12DBE	1,2-DIBROMOETHANE	U		250	Ļ				NC
C		1,1,1,2-TETRACHLOROETHANE	U		62	Ļ				NC
A	BUTB	N-BUTYLBENZENE	U		62	Ļ				NC
Α	TBB	TERT-BUTYLBENZENE	U		310	L				NC
C	2CT	O-CHLOROTOLUENE	U		310	Ļ				NC
C	HCB	HEXACHLOROBUTADIENE	U		310	Ļ				NC
Α	IPB	ISOPROPYLBENZENE	U		62	Ļ				NC
		P-ISOPROPYLTOLUENE	U		62	Ļ				NC
2	N0	NAPHTHALENE	U		310	Ļ				NC
A	PROPB	N-PROPYLBENZENE	U		62	Ļ				NC
С		1,2,4-TRICHLOROBENZENE	U		310	L				NC
A		1,3,5-TRIMETHYLBENZENE	U		310	Ļ				NC
Α		1,2,4-TRIMETHYLBENZENE	U		310	L				NC
0	DIE	ETHYL ETHER	U	- 3	310	Ĺ	350		30	NC

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 101
 103

 TOLUENE-D8
 96
 97

 4-BROMOFLUOROBENZENE
 98
 100

 DIBROMOFLUOROMETHANE
 95
 103

Project Name: FORMER XOM JALK FEE PROPERTY Project Number: CARDNO ERI

Client ID	S-25-B19
Lab ID	L1217858-01
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG566213
Date Collected	9/28/2012
Date Received	10/2/2012
Date Prepped	10/10/2012
Date Analyzed	10/10/2012
Sample Size(wet)	15 g
% Solid	81
File ID	1010A05.D
Units	ug/kg
Final Volume	0.1
Dilution	1
Reporting Limit	62

	Abbrev	Analytes	Result	SSRL
С	DCM	METHYLENE CHLORIDE	U	620
С	11DCA	1,1-DICHLOROETHANE	U	92
С	CF	CHLOROFORM	U	92
С	CT	CARBON TETRACHLORIDE	U	62
С	12DCP	1,2-DICHLOROPROPANE	U	220
В	DBCM	DIBROMOCHLOROMETHANE	U	62
С	112TCA	1,1,2-TRICHLOROETHANE	U	92
С	PCE	TETRACHLOROETHENE	610	62
С	CB	CHLOROBENZENE	U	62
F	TCTFM	TRICHLOROFLUOROMETHANE	U	310
ADD	12DCA	1,2-DICHLOROETHANE	U	62
С	111TCA	1,1,1-TRICHLOROETHANE	U	62
В	BDCM	BROMODICHLOROMETHANE	U	62
С	T13DCP	TRANS-1,3-DICHLOROPROPENE	U	62
С	C13DCP		U	62
В	BF	BROMOFORM	U	250
С		1,1,2,2-TETRACHLOROETHANE	U	62
Α	В	BENZENE	U	62
Α	T	TOLUENE	U	92
Α	EB	ETHYLBENZENE	U	62
В	BM	BROMOMETHANE	U	120
С	VC	VINYL CHLORIDE	U	120
С	CE	CHLOROETHANE	U	120
С	11DCE	1,1-DICHLOROETHENE	U	62
С	T12DCE		U	92
С	TCE	TRICHLOROETHENE	U	62
С	12DCB	1,2-DICHLOROBENZENE	U	310
С	13DCB	1,3-DICHLOROBENZENE	U	310
С	14DCB	1,4-DICHLOROBENZENE	U	310
OX	MTBE	METHYL TERT BUTYL ETHER	U	120
Α	MPX	P/M-XYLENE	U	120
Α	OX	O-XYLENE	U	120
С		CIS-1,2-DICHLOROETHENE	U	62
C	123TCP	1,2,3-TRICHLOROPROPANE	U	620
Α	STY	STYRENE	U	120
F	DCFM	DICHLORODIFLUOROMETHANE	U	620
0	ACE	ACETONE	U	
0	MEK	2-BUTANONE	U	620
0	MIBK	4-METHYL-2-PENTANONE	U	620
0	THF	TETRAHYDROFURAN	U	1200
ADD	12DBE	1,2-DIBROMOETHANE	U	250
С		1,1,1,2-TETRACHLOROETHANE	U	62
Α	BUTB	N-BUTYLBENZENE	U	62
Α	TBB	TERT-BUTYLBENZENE	U	310
С	2CT	O-CHLOROTOLUENE	U	310
С	HCB	HEXACHLOROBUTADIENE	U	310
Α	IPB	ISOPROPYLBENZENE	U	62
		P-ISOPROPYLTOLUENE	U	62
2	N0	NAPHTHALENE	U	310
A	PROPB	N-PROPYLBENZENE	U	62
С	124TCB	1,2,4-TRICHLOROBENZENE	U	310
A	135TMB	1,3,5-TRIMETHYLBENZENE	U	310
A	124TMB	1,2,4-TRIMETHYLBENZENE	U	310
0	DIE	ETHYL ETHER	U	310

Surrogates (% Recovery)	
1,2-DICHLOROETHANE-D4	101
TOLUENE-D8	96
4-BROMOFLUOROBENZENE	98
DIDDOMOFILIODOMETUANE	0.5

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

List of Potential Qualifiers

A: Spectra identified as "Aidol Condensation Product".

B: The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For ND-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. AND the analyte was detected above one-half the reporting limit (or above the reporting limit.)

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D: Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D: Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D: Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

C: The analysis of pl was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

D: The RPD between the results for the vice columns exceeds the method-

Attachment B – Raw Data for Soil Samples Analyzed in 2016

Client ID	Method Blank
Lab ID	TS102516B02
Matrix	Soil
Reference Method	SHC
Batch ID	TS102516B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/25/2016
Date Analyzed	10/27/2016
Sample Size (wet)	25
% Solid	100.00
File ID	F910251672.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	0.0800

Class	Abbrev	Analytes	Result		SSRL
SHC	C9	n-Nonane (C9)		U	0.0800
SHC	C10	n-Decane (C10)		U	0.0800
SHC	C11	n-Undecane (C11)		U	0.0800
SHC	C12	n-Dodecane (C12)		U	0.0800
SHC	C13	n-Tridecane (C13)		U	0.0800
SHC	1380	2,6,10 Trimethyldodecane (1380)		U	0.0800
SHC	C14	n-Tetradecane (C14)		U	0.0800
SHC	1470	2,6,10 Trimethyltridecane (1470)		U	0.0800
SHC	C15	n-Pentadecane (C15)		U	0.0800
SHC	C16	n-Hexadecane (C16)		U	0.0800
SHC	1650	Norpristane (1650)		U	0.0800
SHC	C17	n-Heptadecane (C17)		U	0.0800
SHC	Pr	Pristane		U	0.0800
SHC	C18	n-Octadecane (C18)	0.0263	CJ	0.0800
SHC	Ph	Phytane		U	0.0800
SHC	C19	n-Nonadecane (C19)		U	0.0800
SHC	C20	n-Eicosane (C20)		U	0.0800
SHC	C21	n-Heneicosane (C21)		U	0.0800
SHC	C22	n-Docosane (C22)		U	0.0800
SHC	C23	n-Tricosane (C23)	0.00480	J	0.0800
SHC	C24	n-Tetracosane (C24)		U	0.0800
SHC	C25	n-Pentacosane (C25)	0.0423	CJ	0.0800
SHC	C26	n-Hexacosane (C26)		U	0.0800
SHC	C27	n-Heptacosane (C27)		U	0.0800
SHC	C28	n-Octacosane (C28)	0.00664	J	0.0800
SHC	C29	n-Nonacosane (C29)		U	0.0800
SHC	C30	n-Triacontane (C30)		U	0.0800
SHC	C31	n-Hentriacontane (C31)		U	0.0800
SHC	C32	n-Dotriacontane (C32)		U	0.0800
SHC	C33	n-Tritriacontane (C33)		U	0.0800
SHC	C34	n-Tetratriacontane (C34)		U	0.0800
SHC	C35	n-Pentatriacontane (C35)		U	0.0800
SHC	C36	n-Hexatriacontane (C36)		U	0.0800
SHC	C37	n-Heptatriacontane (C37)		U	0.0800
SHC	C38	n-Octatriacontane (C38)		U	0.0800
SHC	C39	n-Nonatriacontane (C39)		Ü	0.0800
SHC	C40	n-Tetracontane (C40)		U	0.0800
SHC	TSH	Total Saturated Hydrocarbons	0.0801		0.0800
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)		U	2.64

Surrogates (% Recovery)
ortho-Terphenyl 9
d50-Tetracosane 9

Client ID	Laboratory Control Sample
Lab ID	TS102516LCS01
Matrix	Soil
Reference Method	SHC
Batch ID	TS102516B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/25/2016
Date Analyzed	10/27/2016
Sample Size (wet)	25
% Solid	100.00
File ID	F910251674.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	0.0800

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
SHC	C9	n-Nonane (C9)	0.508	S	0.0800	63	0.800	50	130
SHC	C10	n-Decane (C10)	0.558	S	0.0800	70	0.800	50	130
SHC	C12	n-Dodecane (C12)	0.605	S	0.0800	76	0.800	50	130
SHC	C14	n-Tetradecane (C14)	0.669	S	0.0800	84	0.800	50	130
SHC	C16	n-Hexadecane (C16)	0.769	S	0.0800	96	0.800	50	130
SHC	C18	n-Octadecane (C18)	0.791	S	0.0800	99	0.800	50	130
SHC	C19	n-Nonadecane (C19)	0.721	S	0.0800	90	0.800	50	130
SHC	C20	n-Eicosane (C20)	0.808	S	0.0800	101	0.800	50	130
SHC	C22	n-Docosane (C22)	0.795	S	0.0800	99	0.800	50	130
SHC	C24	n-Tetracosane (C24)	0.799	S	0.0800	100	0.800	50	130
SHC	C26	n-Hexacosane (C26)	0.796	S	0.0800	99	0.800	50	130
SHC	C28	n-Octacosane (C28)	0.800	S	0.0800	100	0.800	50	130
SHC	C30	n-Triacontane (C30)	0.803	S	0.0800	100	0.800	50	130
SHC	C36	n-Hexatriacontane (C36)	0.787	S	0.0800	98	0.800	50	130

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

102 97

Page B3 February 2017

Client ID	Laboratory Control Sample Dup
Lab ID	TS102516LCSD01
Matrix	Soil
Reference Method	SHC
Batch ID	TS102516B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/25/2016
Date Analyzed	10/27/2016
Sample Size (wet)	25
% Solid	100.00
File ID	F910251676.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	0.0800

Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
SHC	C9	n-Nonane (C9)	0.498	0.0800	62	0.800	50	130	2	30
SHC	C10	n-Decane (C10)	0.551	0.0800	69	0.800	50	130	1	30
SHC	C12	n-Dodecane (C12)	0.610	0.0800	76	0.800	50	130	1	30
SHC	C14	n-Tetradecane (C14)	0.600	0.0800	75	0.800	50	130	11	30
SHC	C16	n-Hexadecane (C16)	0.732	0.0800	91	0.800	50	130	5	30
SHC	C18	n-Octadecane (C18)	0.729	0.0800	91	0.800	50	130	8	30
SHC	C19	n-Nonadecane (C19)	0.661	0.0800	83	0.800	50	130	9	30
SHC	C20	n-Eicosane (C20)	0.739	0.0800	92	0.800	50	130	9	30
SHC	C22	n-Docosane (C22)	0.736	0.0800	92	0.800	50	130	8	30
SHC	C24	n-Tetracosane (C24)	0.734	0.0800	92	0.800	50	130	9	30
SHC	C26	n-Hexacosane (C26)	0.731	0.0800	91	0.800	50	130	8	30
SHC	C28	n-Octacosane (C28)	0.732	0.0800	92	0.800	50	130	9	30
SHC	C30	n-Triacontane (C30)	0.740	0.0800	92	0.800	50	130	8	30
SHC	C36	n-Hexatriacontane (C36)	0.706	0.0800	88	0.800	50	130	11	30

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Page B4 February 2017

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 950 0097 000

Client ID	S-3-B35	S-3-B35
Lab ID	1610008-22	1610008-22D
Matrix	Soil	Soil
Reference Method	SHC	SHC
Batch ID	TS102516B02	TS102516B02
Date Collected	10/20/2016	10/20/2016
Date Received	10/22/2016	10/22/2016
Date Prepped	10/25/2016	10/25/2016
Date Analyzed	10/28/2016	10/28/2016
Sample Size (wet)	15.3	15.39
% Solid	92.76	92.76
File ID	F9102516100.D	F9102516102.D
Units	mg/Kg	mg/Kg
Final Volume	20	20
Dilution	1	1
Reporting Limit	1.41	1.40

SHC C10												
SHC C10				Result		SSRL	Result		SSRL	RPD	RPD Limi	
SHC C11	SHC	C9	n-Nonane (C9)		U	1.41		U	1.40		30	N/A
SHC C12		C10	n-Decane (C10)		U	1.41		U	1.40		30	N/A
SHC C13			n-Undecane (C11)		U	1.41		U	1.40		30	N/A
SHC 1380 2,6,10 Trimethyldodecane (1380) U			n-Dodecane (C12)		U			U	1.40		30	N/A
SHC C14		C13	n-Tridecane (C13)		U	1.41		U	1.40		30	N/A
SHC 1470 2,6,10 Trimethyltridiceane (1470) U 1,41 U 1,40 30 NA	SHC	1380	2,6,10 Trimethyldodecane (1380)		U	1.41		U	1.40		30	N/A
SHC C15 n-Pentadecane (C15) U 1.41 U 1.40 30 NA	SHC	C14	n-Tetradecane (C14)		U	1.41		U	1.40		30	N/A
SHC C16 n-Hexadecane (C16) U 1.41 U 1.40 30 NA	SHC	1470	2,6,10 Trimethyltridecane (1470)		U	1.41		U	1.40		30	N/A
SHC C17 Norpistane (1650) U	SHC	C15	n-Pentadecane (C15)		U	1.41		U	1.40		30	N/A
SHC C17	SHC	C16	n-Hexadecane (C16)		U	1.41		U	1.40		30	N/A
SHC Pristane U	SHC	1650	Norpristane (1650)		U	1.41		U	1.40		30	N/A
SHC C18 N-Octadecane (C18)	SHC	C17	n-Heptadecane (C17)		U	1.41		U	1.40		30	N/A
SHC Ph	SHC	Pr	Pristane		U	1.41		U	1.40		30	N/A
SHC C19 n-\text{Nonadecane} (C19) U 1.41 U 1.40 30 N/A	SHC	C18	n-Octadecane (C18)		U	1.41		U	1.40		30	N/A
SHC C20 n-Eicosane (C20) U 1.41 U 1.40 30 NA	SHC	Ph	Phytane		U	1.41		U	1.40		30	N/A
SHC C21 n-Heneicosane (C21) 0.0888 J 1.41 0.0574 J 1.40 43 30 n	SHC	C19	n-Nonadecane (C19)		U	1.41		U	1.40		30	N/A
SHC C22 n-Docosane (C22) 0.0831 J 1.41 0.0616 J 1.40 30 30 SHC C23 n-Tricosane (C23) 0.135 J 1.41 0.108 J 1.40 23 30 SHC C24 n-Tetracosane (C24) 0.135 J 1.41 0.108 J 1.40 30 N/A SHC C25 n-Pentacosane (C25) 0.395 JB 1.41 0.366 JB 1.40 8 30 N/A SHC C25 n-Pentacosane (C25) 0.395 JB 1.41 0.366 JB 1.40 8 30 N/A SHC C27 n-Heptacosane (C26) U 1.41 U 1.40 30 N/A SHC C27 n-Heptacosane (C27) U 1.41 U 1.40 30 N/A SHC C27 n-Heptacosane (C28) U 1.41 U 1.40 30 N/A SHC C29 n-Nonacosane (C29) U 1.41 U 1.40 30 N/A SHC C30 n-Triacontane (C30) U 1.41 U 1.40 30 N/A SHC C31 n-Hentriacontane (C31) 1.26 J 1.41 U 1.40 30 N/A SHC C33 n-Tritriacontane (C33) U 1.41 U 1.40 30 N/A SHC C33 n-Tritriacontane (C33) U 1.41 U 1.40 30 N/A SHC C35 n-Pentatriacontane (C35) U 1.41 U 1.40 30 N/A SHC C35 n-Pentatriacontane (C35) U 1.41 U 1.40 30 N/A SHC C36 n-Heptatriacontane (C35) U 1.41 U 1.40 30 N/A SHC C36 n-Heptatriacontane (C36) U 1.41 U 1.40 30 N/A SHC C36 n-Heptatriacontane (C36) U 1.41 U 1.40 30 N/A SHC C36 n-Heptatriacontane (C37) U 1.41 U 1.40 30 N/A SHC C37 n-Nonatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C38 n-Octatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C37 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C38 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C37 T Nonatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C38 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C37 T T T T T T T T T	SHC	C20	n-Eicosane (C20)		Ü	1.41		Ü	1.40		30	N/A
SHC C23 n-Tricosane (C23) C24 U 1.41 U 1.40 23 30 NA	SHC	C21	n-Heneicosane (C21)	0.0888	J	1.41	0.0574	J	1.40	43	30	п
SHC C24 n-Tetracosane (C24) U 1.41 U 1.40 30 NA SHC C25 n-Pentacosane (C25) 0.395 JB 1.41 U 1.40 30 NA SHC C26 n-Hexacosane (C26) U 1.41 U 1.40 30 NA SHC C27 n-Heptacosane (C27) U 1.41 U 1.40 30 NA SHC C28 n-Octacosane (C28) U 1.41 U 1.40 30 NA SHC C29 n-Nonacosane (C29) U 1.41 U 1.40 30 NA SHC C30 n-Tentacontane (C30) U 1.41 U 1.40 30 NA SHC C31 n-Individentane (C33) U 1.41 U 1.40 30 NA SHC C32 n-Titriacontane (C33) U 1.41 U 1.40 30 NA SHC	SHC	C22	n-Docosane (C22)	0.0831	J	1.41	0.0616	J	1.40	30	30	
SHC C24 n-Tetracosane (C24) U 1.41 U 1.40 30 NA SHC C25 n-Pentacosane (C25) 0.395 JB 1.41 U 1.40 30 NA SHC C26 n-Hexacosane (C26) U 1.41 U 1.40 30 NA SHC C27 n-Heptacosane (C27) U 1.41 U 1.40 30 NA SHC C28 n-Octacosane (C28) U 1.41 U 1.40 30 NA SHC C29 n-Nonacosane (C29) U 1.41 U 1.40 30 NA SHC C30 n-Tentacontane (C30) U 1.41 U 1.40 30 NA SHC C31 n-Individentane (C33) U 1.41 U 1.40 30 NA SHC C32 n-Titriacontane (C33) U 1.41 U 1.40 30 NA SHC	SHC	C23	n-Tricosane (C23)	0.135	J	1.41	0.108	J	1.40	23	30	
SHC C25 n-Pentacosane (C25) 0.395 JB 1.41 0.366 JB 1.40 8 30	SHC	C24	n-Tetracosane (C24)			1.41			1.40		30	N/A
SHC C27	SHC	C25		0.395	JB	1.41	0.366	JB	1.40	8	30	
SHC C28 n-Ociacosane (Č28) Ü 1.41 U 1.40 30 N/A SHC C29 n-Nonacosane (C29) U 1.41 U 1.40 30 N/A SHC C30 n-Triacontane (C30) U 1.41 U 1.40 9 30 n/A SHC C31 n-Intertificacontane (C31) 1.26 J 1.41 U 1.40 93 0 N/A SHC C33 n-Tottriacontane (C33) U 1.41 U 1.40 30 N/A SHC C35 n-Tettraticanotane (C34) U 1.41 U 1.40 30 N/A SHC C35 n-Pentatriacontane (C36) 0.748 J 1.41 U 1.40 30 N/A SHC C36 n-Pentatriacontane (C36) U 1.41 U 1.40 30 N/A SHC C36 n-Pentatriacontane (C37) U 1.41 U 1.40<	SHC	C26	n-Hexacosane (C26)		U	1.41		U	1.40		30	N/A
SHC C28 n-Orizoasane (C28) U 1.41 U 1.40 30 N/A SHC C29 U 1.41 U 1.40 30 N/A SHC C30 n-Triacontane (C30) U 1.41 U 1.40 98 30 n/A SHC C31 n-Intertificontane (C31) 1.26 J 1.41 U 1.40 98 30 n/A SHC C32 n-Dotriacontane (C32) U 1.41 U 1.40 30 N/A SHC C33 n-Titrifiacontane (C33) U 1.41 U 1.40 30 N/A SHC C35 n-Pentatriacontane (C34) U 1.41 U 1.40 30 N/A SHC C36 n-Pentatriacontane (C36) U 1.41 U 1.40 30 N/A SHC C37 n-Hepatriacontane (C36) U 1.41 U 1.40 30 N/A <t< td=""><td>SHC</td><td>C27</td><td></td><td></td><td>Ü</td><td>1.41</td><td></td><td>Ü</td><td>1.40</td><td></td><td>30</td><td>N/A</td></t<>	SHC	C27			Ü	1.41		Ü	1.40		30	N/A
SHC C30 n-Triacontane (C30)	SHC	C28			Ü	1.41		Ü	1.40		30	N/A
SHC C31 n-Hentriacontane (C31) 1.26 J 1.41 0.434 J 1.40 98 30 n	SHC	C29	n-Nonacosane (C29)		U	1.41		U	1.40		30	N/A
SHC C32 n-Dotriacontane (C32)	SHC	C30	n-Triacontane (C30)		U	1.41		U	1.40		30	N/A
SHC C33 n-Tritriacontane (C33) U 1.41 U 1.40 30 N/A SHC C34 n-Tetratriacontane (C34) U 1.41 U 1.40 30 N/A SHC C35 n-Pentatriacontane (C35) 0.748 J 1.41 0.254 J 1.40 99 30 m SHC C36 n-Heatariacontane (C36) U 1.41 U 1.40 U 1.40 30 N/A SHC C37 n-Heptatriacontane (C37) U 1.41 U 1.40 30 N/A SHC C38 n-Octatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C39 n-Nonatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C39 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 U 1.40 30 N/A SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 m	SHC	C31	n-Hentriacontane (C31)	1.26	J	1.41	0.434	J	1.40	98	30	п
SHC C34 n-Tetratriacontane (C34) U 1.41 U 1.40 30 NA SHC C35 n-Pentatriacontane (C35) 0.748 J 1.41 U 1.40 99 30 ra SHC C36 n-Hexatriacontane (C36) U 1.41 U 1.40 30 N/A SHC C37 n-Potatriacontane (C37) U 1.41 U 1.40 30 N/A SHC C39 n-Potatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C39 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 30 N/A SHC T5H Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 ra	SHC	C32	n-Dotriacontane (C32)		U	1.41		U	1.40		30	N/A
SHC C35 n-Pentatriacontane (C35) 0.748 J 1.41 0.254 J 1.40 99 30 m 30 m NA SHC C36 n-Hexatriacontane (C36) U 1.41 U 1.40 U 1.40 30 NA NA SHC C37 n-Heptatriacontane (C37) U 1.41 U 1.40 U 1.40 30 NA NA SHC C38 n-Octatriacontane (C38) U 1.41 U 1.40 U 1.40 30 NA NA SHC C39 n-Nonatriacontane (C49) U 1.41 U 1.40 U 1.40 30 NA NA SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 U 1	SHC	C33	n-Tritriacontane (C33)		U	1.41		U	1.40		30	N/A
SHC C36 n-Hexatriacontane (C36) U 1.41 U 1.40 30 N/A SHC C37 n-Heptatriacontane (C37) U 1.41 U 1.40 30 N/A SHC C38 U 1.41 U 1.40 30 N/A SHC C39 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 30 N/A SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 µ	SHC	C34	n-Tetratriacontane (C34)		Ü	1.41		Ü	1.40		30	N/A
SHC C37 n-Heptatriacontane (C37) U 1.41 U 1.40 30 N/A SHC C38 n-Octatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C39 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 30 N/A SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 ¤	SHC	C35	n-Pentatriacontane (C35)	0.748	J	1.41	0.254	J	1.40	99	30	п
SHC C37 n-Heptatriacontane (C37) U 1.41 U 1.40 30 N/A SHC C38 n-Octatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C39 n-Nonatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 30 N/A SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 n	SHC	C36	n-Hexatriacontane (C36)		U	1.41		U	1.40		30	N/A
SHC C38 n-Octatriacontane (C38) U 1.41 U 1.40 30 N/A SHC C39 n-Nonatriacontane (C39) U 1.41 U 1.40 30 N/A SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 30 N/A SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 ¤	SHC	C37			Ü	1.41		Ü	1.40		30	N/A
SHC C39 n-Nonatriacontane (C39) Ü 1.41 Ü 1.40 30 N/A SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 30 N/A SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 ¤												
SHC C40 n-Tetracontane (C40) U 1.41 U 1.40 30 N/A SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 ¤												N/A
SHC TSH Total Saturated Hydrocarbons 2.71 1.41 1.28 J 1.40 72 30 P												
				2.71	-		1.28			72		
								-				
			7								,,,	

 Surrogates (% Recovery)
 105
 95

 d50-Tetracosane
 98
 91

Client ID	Alaska North Slope Crude
Lab ID	TO102315ANC01
Matrix	Oil
Reference Method	SHC
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	10/21/2015
Sample Size (wet)	0.10382
% Solid	100.00
File ID	F9102015036.D
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	96.3

Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
SHC	C9	n-Nonane (C9)	7190	96.3	114	6286.00	65	135
SHC	C10	n-Decane (C10)	5900	96.3	117	5047.00	65	135
SHC	C11	n-Undecane (C11)	5420	96.3	115	4703.00	65	135
SHC	C12	n-Dodecane (C12)	4860	96.3	117	4155.00	65	135
SHC	C13	n-Tridecane (C13)	4420	96.3	109	4058.00	65	135
SHC	1380	2,6,10 Trimethyldodecane (1380)	1020	96.3	121	845.00	65	135
SHC	C14	n-Tetradecane (C14)	4020	96.3	109	3670.00	65	135
SHC	1470	2,6,10 Trimethyltridecane (1470)	1560	96.3	114	1367.00	65	135
SHC	C15	n-Pentadecane (C15)	3990	96.3	109	3660.00	65	135
SHC	C16	n-Hexadecane (C16)	3450	96.3	104	3330.00	65	135
SHC	1650	Norpristane (1650)	1130	96.3	103	1093.00	65	135
SHC	C17	n-Heptadecane (C17)	3060	96.3	101	3012.00	65	135
SHC	Pr	Pristane	2350	96.3	110	2145.00	65	135
SHC	C18	n-Octadecane (C18)	2680	96.3	99	2700.00	65	135
SHC	Ph	Phytane	1540	96.3	126	1215.00	65	135
SHC	C19	n-Nonadecane (C19)	2650	96.3	115	2305.00	65	135
SHC	C20	n-Eicosane (C20)	2620	96.3	112	2337.00	65	135
SHC	C21	n-Heneicosane (C21)	2300	96.3	113	2044.00	65	135
SHC	C22	n-Docosane (C22)	2190	96.3	111	1972.00	65	135
SHC	C23	n-Tricosane (C23)	1960	96.3	112	1745.00	65	135
SHC	C24	n-Tetracosane (C24)	1870	96.3	114	1641.00	65	135
SHC	C25	n-Pentacosane (C25)	1750	96.3	112	1562.00	65	135
SHC	C26	n-Hexacosane (C26)	1550	96.3	112	1378.00	65	135
SHC	C27	n-Heptacosane (C27)	1250	96.3	115	1083.00	65	135
SHC	C28	n-Octacosane (C28)	887	96.3	114	776.00	65	135
SHC	C29	n-Nonacosane (C29)	877	96.3	120	734.00	65	135
SHC	C30	n-Triacontane (C30)	700	96.3	112	627.00	65	135
SHC	C31	n-Hentriacontane (C31)	574	96.3	112	514.00	65	135
SHC	C32	n-Dotriacontane (C32)	597	96.3	130	458.00	65	135
SHC	C33	n-Tritriacontane (C33)	385	96.3	99	388.00	65	135
SHC	C34	n-Tetratriacontane (C34)	321	96.3	93	347.00	65	135
SHC	C35	n-Pentatriacontane (C35)	282	96.3	101	278.00	65	135
SHC	C36	n-Hexatriacontane (C36)	176	96.3	95	186.00	65	135
SHC	C37	n-Heptatriacontane (C37)	178	96.3	117	152.00	65	135
SHC	C38	n-Octatriacontane (C38)	155	96.3	118	131.00	65	135
SHC	C39	n-Nonatriacontane (C39)	102	96.3	115	89.00	65	135
SHC	C40	n-Tetracontane (C40)	94.7		103	92.00	65	135
SHC	TSH	Total Saturated Hydrocarbons	76000	96.3	112	68122.00	65	135
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	623000	3180	112	554993.00	65	135

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Project Name: Cardno ERI - Former XOM Jalk Fee Proper	ty
Project Number: 950 0097 000	

Client ID	S-16-B26	S-14-B27
Lab ID	1610008-02	1610008-04
Matrix	Soil	Soil
Reference Method	SHC	SHC
Batch ID	TS102516B02	TS102516B02
Date Collected	10/18/2016	10/18/2016
Date Received	10/20/2016	10/20/2016
Date Prepped	10/25/2016	10/25/2016
Date Analyzed	10/28/2016	10/28/2016
Sample Size (wet)	30.32	30.24
% Solid	84.78	96.48
File ID	F910251678.D	F910251680.D
Units	mg/Kg	mg/Kg
Final Volume	2	4
Dilution	1	1
Reporting Limit	0.0778	0.137

Class	Abbrev	Analytes	Result		SSRL	Result		SSRL
SHC	C9	n-Nonane (C9)		U	0.0778		U	0.137
SHC	C10	n-Decane (C10)		U	0.0778			0.137
SHC	C11	n-Undecane (C11)		U	0.0778		U	0.137
SHC	C12	n-Dodecane (C12)		U	0.0778		U	0.137
SHC	C13	n-Tridecane (C13)		U	0.0778	0.0173	J	0.137
SHC	1380	2,6,10 Trimethyldodecane (1380)		U	0.0778	0.0233	J	0.137
SHC	C14	n-Tetradecane (C14)		U	0.0778	0.0601	J	0.137
SHC	1470	2,6,10 Trimethyltridecane (1470)		U	0.0778			0.137
SHC	C15	n-Pentadecane (C15)		U	0.0778	0.0762	J	0.137
SHC	C16	n-Hexadecane (C16)		U	0.0778	0.126	J	0.137
SHC	1650	Norpristane (1650)		U	0.0778	0.119	J	0.137
SHC	C17	n-Heptadecane (C17)		U	0.0778	0.199		0.137
SHC	Pr	Pristane		U	0.0778	0.468		0.137
SHC	C18	n-Octadecane (C18)	0.0239	JB	0.0778	0.294		0.137
SHC	Ph	Phytane		U	0.0778	0.499		0.137
SHC	C19	n-Nonadecane (C19)		U	0.0778	0.451		0.137
SHC	C20	n-Eicosane (C20)		U	0.0778	0.475		0.137
SHC	C21	n-Heneicosane (C21)	0.00327	J	0.0778	1.34		0.137
SHC	C22	n-Docosane (C22)	0.00327	J	0.0778	0.450		0.137
SHC	C23	n-Tricosane (C23)	0.00685	JB	0.0778	0.302		0.137
SHC	C24	n-Tetracosane (C24)		U	0.0778	0.281		0.137
SHC	C25	n-Pentacosane (C25)	0.0433	JB	0.0778	0.456		0.137
SHC	C26	n-Hexacosane (C26)	0.00195	J	0.0778		U	0.137
SHC	C27	n-Heptacosane (C27)	0.00412	J	0.0778		U	0.137
SHC	C28	n-Octacosane (C28)		U	0.0778		U	0.137
SHC	C29	n-Nonacosane (C29)	0.00381	J	0.0778		U	0.137
SHC	C30	n-Triacontane (C30)		U	0.0778		U	0.137
SHC	C31	n-Hentriacontane (C31)	0.00412	J	0.0778	0.276		0.137
SHC	C32	n-Dotriacontane (C32)		U	0.0778		U	0.137
SHC	C33	n-Tritriacontane (C33)	0.00389	J	0.0778		U	0.137
SHC	C34	n-Tetratriacontane (C34)		U	0.0778		U	0.137
SHC	C35	n-Pentatriacontane (C35)		U	0.0778	0.284		0.137
SHC	C36	n-Hexatriacontane (C36)		U	0.0778		U	0.137
SHC	C37	n-Heptatriacontane (C37)		U	0.0778		U	0.137
SHC	C38	n-Octatriacontane (C38)		U	0.0778		U	0.137
SHC	C39	n-Nonatriacontane (C39)		U	0.0778		U	0.137
SHC	C40	n-Tetracontane (C40)		U	0.0778		U	0.137
SHC	TSH	Total Saturated Hydrocarbons	0.0984	В	0.0778	6.28		0.137
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)		U	2.57	850		4.52

 Surrogates (% Recovery)
 91
 95

 d50-Tetracosane
 57
 87

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000												
		Client ID Lab ID	S-16-B30 1610008-06			S-6-B28 1610008-07			S-9-B32 1610008-12			S-8-B24 1610008-15		
		Matrix	Soil			Soil			Soil			Soil		
		Reference Method	SHC			SHC			SHC			SHC		
		Batch ID	TS102516B02			TS102516B02			TS102516B02			TS102516B02		
		Date Collected	10/18/2016			10/19/2016			10/19/2016			10/20/2016		
		Date Received	10/20/2016			10/21/2016			10/21/2016			10/22/2016		
		Date Prepped	10/25/2016			10/25/2016			10/25/2016			10/25/2016		
		Date Analyzed	10/28/2016			10/28/2016			10/28/2016			10/28/2016		
		Sample Size (wet)	30.86			20.1			30.67			25.18		
		% Solid	83.26			84.58			87.62			88.49		
		File ID Units	F910251682.D			F910251684.D			F910251692.D			F910251694.D		
		Final Volume	mg/Kg 2			mg/Kg 16			mg/Kg 8			mg/Kg 2		
		Dilution	1			10			0			1		
		Reporting Limit	0.0778			0.941			0.298			0.0898		
		Reporting Limit	0.0776			0.541			0.230			0.0050		
Class	Abbrev	Analytes	Result		SSRL	Result	S	SRL	Result		SSRL	Result		SSRL
SHC	C9	n-Nonane (C9)		U	0.0778		U 0.	941	0.0113	J	0.298	0.00153	J	0.0898
SHC	C10	n-Decane (C10)		U	0.0778		U 0.	941	0.00834	J	0.298	0.00772	J	0.0898
SHC	C11	n-Undecane (C11)		U	0.0778			941	0.00893		0.298	0.0105	J	0.0898
SHC	C12	n-Dodecane (C12)		U	0.0778			941	0.0101			0.0153		0.0898
SHC	C13	n-Tridecane (C13)		U	0.0778			941	0.0417	J		0.0212	J	0.0898
SHC	1380	2,6,10 Trimethyldodecane (1380)		U	0.0778	0.0527		941	0.351		0.298	0.00727	J	0.0898
SHC	C14	n-Tetradecane (C14)		U	0.0778			941	0.118	J	0.298	0.0206	J	0.0898
SHC	1470	2,6,10 Trimethyltridecane (1470)		U	0.0778	0.0941		941	0.672		0.298	0.0134	J	0.0898
SHC	C15 C16	n-Pentadecane (C15)		U	0.0778		U 0.		0.138 0.158		0.298	0.0320 0.0216	J	0.0898
SHC	1650	n-Hexadecane (C16)		U	0.0778	0.194	U 0.	941	1.07	J	0.298	0.0216	J	0.0898
SHC	C17	Norpristane (1650) n-Heptadecane (C17)		IJ	0.0778	0.194			0.158			0.0222	J	0.0898
SHC	Pr	Pristane		U	0.0778	0.0452			2.49	J	0.298	0.0237	J	0.0898
SHC	C18	n-Octadecane (C18)	0.0220		0.0778	0.755			0.332		0.298	0.0749		
SHC	Ph	Phytane	0.0220	U	0.0778	0.926		941	2.68		0.298	0.0774	J	0.0898
SHC	C19	n-Nonadecane (C19)		Ü	0.0778			941	0.380		0.298	0.0319	J	0.0898
SHC	C20	n-Eicosane (C20)		Ü	0.0778	0.0932		941	0.444		0.298	0.0221	J	0.0898
SHC	C21	n-Heneicosane (C21)		Ū	0.0778	0.286			1.97		0.298	0.373		0.0898
SHC	C22	n-Docosane (C22)	0.00163	Ĵ	0.0778	0.180		941	0.280	J	0.298	0.0261	J	0.0898
SHC	C23	n-Tricosane (C23)	0.00825	JB	0.0778	0.270	J O	941	0.290	J	0.298	0.0251	JB	0.0898
SHC	C24	n-Tetracosane (C24)		U	0.0778		U 0.	941	0.420		0.298	0.0142	J	0.0898
SHC	C25	n-Pentacosane (C25)	0.0412	JB	0.0778	1.00	0.	941	0.811		0.298	0.0522	JB	0.0898
SHC	C26	n-Hexacosane (C26)		U	0.0778			941	0.254	J	0.298	0.0475	J	0.0898
SHC	C27	n-Heptacosane (C27)	0.00451	J	0.0778			941	0.263	J	0.298	0.0396	J	0.0898
SHC	C28	n-Octacosane (C28)		U	0.0778			941		U	0.298		U	0.0898
SHC	C29	n-Nonacosane (C29)	0.00467	J	0.0778			941		U	0.298		U	0.0898
SHC	C30	n-Triacontane (C30)		Ų	0.0778			941	0.436		0.298		U	0.0898
SHC	C31	n-Hentriacontane (C31)	0.00475	J	0.0778			941	0.424		0.298	0.127		0.0898
SHC	C32	n-Dotriacontane (C32)		U	0.0778			941 941		U			U	0.0898
SHC	C33 C34	n-Tritriacontane (C33) n-Tetratriacontane (C34)		U	0.0778			941		U			U	0.0898
SHC	C34 C35	n-Pentatriacontane (C35)		U	0.0778			941	0.446	U	0.298		U	0.0898
SHC	C36	n-Hexatriacontane (C36)		Ü	0.0778			941	0.440	U	0.298		U	0.0898
SHC	C37	n-Heptatriacontane (C37)		Ü	0.0778	0.626		941		U			U	0.0898
SHC	C38	n-Octatriacontane (C38)		Ü	0.0778	1.13		941		Ü			Ü	0.0898
SHC	C39	n-Nonatriacontane (C39)		Ü	0.0778	0.741		941		Ŭ			ŭ	0.0898
SHC	C40	n-Tetracontane (C40)		Ū	0.0778	1.23		941		Ū	0.298		Ū	0.0898
SHC	TSH	Total Saturated Hydrocarbons	0.0869	В	0.0778	8.90		941	14.7		0.298	1.16		0.0898
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)		Ū	2.57	1510	3	1.1	1330		9.82	191		2.96
			•						•					
		C												
		Surrogates (% Recovery) ortho-Terphenyl	93			97			103			99		
		d50-Tetracosane	93			97 88			103			99		
		doo- i diracosalic	91			00			119			90		

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000												
		Client ID Lab ID Matrix Reference Method Batch ID	S-5-B34 1610008-20 Soil SHC TS102516B02			S-9-B34 1610008-21 Soil SHC TS102516B02			S-3-B35 1610008-22 Soil SHC TS102516B02			S-5-B36 1610008-23 Soil SHC TS102516B02		
		Date Collected Date Received Date Prepped	10/20/2016 10/22/2016 10/25/2016			10/20/2016 10/22/2016 10/25/2016			10/20/2016 10/22/2016 10/25/2016			10/21/2016 10/22/2016 10/25/2016		
		Date Analyzed Sample Size (wet) % Solid	10/28/2016 20.14 92.01			10/31/2016 20.77 91.08			10/28/2016 15.3 92.76			10/28/2016 30.32 89.64		
		File ID Units Final Volume	F910251696.D mg/Kg 3.33			F910301618.D mg/Kg 10			F9102516100.D mg/Kg 20			F9102516104.D mg/Kg 2		
		Dilution Reporting Limit	1 0.180			0.529			1 1.41			1 0.0736		
Class	Abbrev C9	Analytes n-Nonane (C9)	Result	U	SSRL 0.180	Result	U	SSRL 0.529	Result	U	SSRL 1.41	Result	U	0.0736
SHC	C10	n-Decane (C10)		U	0.180		U	0.529		U	1.41		U	0.0736
SHC	C11	n-Undecane (C11)		U	0.180		U	0.529		U	1.41		U	0.0736
SHC	C12 C13	n-Dodecane (C12) n-Tridecane (C13)		U	0.180		U	0.529		U	1.41		IJ	0.0736 0.0736
SHC	1380	2,6,10 Trimethyldodecane (1380)	0.0780		0.180	0.0296	J	0.529		Ŭ	1.41		Ŭ	0.0736
SHC	C14	n-Tetradecane (C14)	0.0160		0.180		U	0.529		U	1.41		U	0.0736
SHC	1470 C15	2,6,10 Trimethyltridecane (1470) n-Pentadecane (C15)	0.116 0.0199	J	0.180	0.0666	IJ	0.529		U	1.41 1.41		U	0.0736 0.0736
SHC	C16	n-Hexadecane (C16)	0.0133	Ŭ	0.180		Ü	0.529		ŭ	1.41		Ü	0.0736
SHC	1650	Norpristane (1650)	0.104		0.180	0.110	J	0.529		U	1.41		U	0.0736
SHC	C17	n-Heptadecane (C17)	0.0286	J	0.180	0.0439	J	0.529		U	1.41	0.00537	J	0.0736
SHC	Pr C18	Pristane n-Octadecane (C18)	0.292 0.0780	IR	0.180	0.347 0.147	J JB	0.529		U	1.41 1.41	0.0116 0.0207	J JB	0.0736 0.0736
SHC	Ph	Phytane	0.274	JU	0.180	0.325	J	0.529		Ü	1.41	0.0108		0.0736
SHC	C19	n-Nonadecane (C19)	0.0539	J	0.180	0.125	J	0.529		U	1.41		U	0.0736
SHC	C20	n-Eicosane (C20)		U	0.180	0.0692	J	0.529		U	1.41		U	0.0736
SHC	C21 C22	n-Heneicosane (C21) n-Docosane (C22)	0.101 0.0455		0.180	0.431 0.140	J	0.529	0.0888 0.0831	J	1.41 1.41		U	0.0736 0.0736
SHC	C23	n-Tricosane (C23)	0.0654		0.180	0.172	Ĵ	0.529	0.135	J	1.41		Ü	0.0736
SHC	C24	n-Tetracosane (C24)		U	0.180	0.151	J	0.529		U	1.41		U	0.0736
SHC	C25	n-Pentacosane (C25)	0.119			0.339			0.395		1.41		U	0.0736
SHC	C26 C27	n-Hexacosane (C26) n-Heptacosane (C27)	0.0882	J	0.180		U	0.529		U	1.41		U	0.0736 0.0736
SHC	C28	n-Octacosane (C28)	0.0882	Ü	0.180		Ü	0.529		Ü	1.41		Ü	0.0736
SHC	C29	n-Nonacosane (C29)		U	0.180		U	0.529		U	1.41		U	0.0736
SHC	C30	n-Triacontane (C30)	0.000	U	0.180		U	0.529	4.00	Ų	1.41		U	0.0736
SHC	C31 C32	n-Hentriacontane (C31) n-Dotriacontane (C32)	0.228	U	0.180		U	0.529	1.26	IJ	1.41 1.41		U	0.0736 0.0736
SHC	C33	n-Tritriacontane (C33)		Ü	0.180		Ü	0.529		Ü	1.41		Ü	0.0736
SHC	C34	n-Tetratriacontane (C34)		U	0.180	0.763		0.529		U	1.41		U	0.0736
SHC	C35	n-Pentatriacontane (C35)		U	0.180	0.491	J	0.529	0.748	J	1.41		U	0.0736
SHC	C36 C37	n-Hexatriacontane (C36) n-Heptatriacontane (C37)	0.113	J	0.180	0.213 0.605	J	0.529		U	1.41	0.0188	U	0.0736 0.0736
SHC	C38	n-Octatriacontane (C38)	0.245	0	0.180	1.28		0.529		Ü	1.41	0.0387	J	0.0736
SHC	C39	n-Nonatriacontane (C39)		U	0.180	0.627		0.529		U	1.41	0.0333	J	0.0736
SHC	C40 TSH	n-Tetracontane (C40) Total Saturated Hydrocarbons	2.07	U	0.180	0.801 7.28		0.529	2.71	U	1.41 1.41	0.0448 0.184	J B	0.0736 0.0736
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	433		5.93	7.28 829		17.4	1760		46.5	0.184	В	2.43
		Surrogates (% Recovery)	00			0.4			405			404		
		ortho-Terphenyl d50-Tetracosane	96 88			94 85			105 98			101 96		
		000 101100000110	00			65			50			50		

Project Name: Cardno ERI - Former XOM Jalk Fee Property

Project Number:	850.0087.000
-----------------	--------------

011	
Client ID	Method Blank
Lab ID	TS102516B02
Matrix	Soil
Reference Method	SHC
Batch ID	TS102516B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/25/2016
Date Analyzed	10/27/2016
Sample Size (wet)	25
% Solid	100.00
File ID	F910251672.D
Units	mg/Kg
Final Volume	2
Dilution	1
Reporting Limit	1.68

Class	Abbrev	Analytes	Result		SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)		U	2.64
		C10-C28 DRO	0.314	J	1.68

Surrogates (% Recovery)	
ortho-Terphenyl	97
d50-Tetracosane	94

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Design Albert No. 000 0007 000

Client ID	
Lab ID	16
Matrix	
Reference Method	
Potch ID	T910

S-3-B35
1610008-22
Soli
Soli
ST002516802
10/20/2016
10/22/2016
10/28/2016
10/28/2016
10/28/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/38/2016
10/ S-3-B35 1610008-22D Soil ST-202516802 10/20/2016 10/25/2016 10/25/2016 10/28/2016 15.39 92.76 F9102516102_D 92.0 10/28/2016 10/28/20 10/28/20 10/28/20 10/28/20 10/28/20 10/28/20 10/28/20 Reference Method Batch ID Date Collected Date Received Date Perpped Date Analyzed Sample Size (wet) % Solid File ID Units Final Volume Dilution Reporting Limit

Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD Limit	
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	1760	46.5	977	46.2	57	30	¤
		C10-C28 DRO	161	29.6	92.2	29.4	54	30	¤

Surrogates (% Recovery)		
ortho-Terphenyl	105	95
d50-Tetracosane	98	91

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000								
		Client ID	S-16-B26			S-14-B27		S-16-B30		
		Lab ID	1610008-02			1610008-04		1610008-06		
		Matrix	Soil			Soil		Soil		
		Reference Method	SHC			SHC		SHC		
		Batch ID	TS102516B02			TS102516B02		TS102516B02		
		Date Collected	10/18/2016			10/18/2016		10/18/2016		
		Date Received	10/20/2016			10/20/2016		10/20/2016		
		Date Prepped	10/25/2016			10/25/2016		10/25/2016		
		Date Analyzed	10/28/2016			10/28/2016		10/28/2016		
		Sample Size (wet)	30.32			30.24		30.86		
		% Solid	84.78			96.48		83.26		
		File ID	F910251678.D			F910251680.D		F910251682.D		
		Units	mg/Kg			mg/Kg		mg/Kg		
		Final Volume	2			4		2		
		Dilution	1			1		1		
		Reporting Limit	1.63			2.88		1.64		
Class	Abbrev	Analytes	Result		SSRL	Result	SSRL	Result		SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)		U	2.57	850	4.52		U	2.57
		C10-C28 DRO	1.55	JB	1.63	512	2.88	2.17	В	1.64
		Surrogates (% Recovery)								
		ortho-Terphenyl	91			95		93		
		d50-Tetracosane	57			87		91		

Project Name: Cardno ERI - Former XOM Jalk Fee Property

		Project Number: 850.0087.000								
		Client ID	S-6-B28		S-9-B32		S-8-B24		S-5-B34	
		Lab ID	1610008-07		1610008-12		1610008-15		1610008-20	
		Matrix	Soil		Soil		Soil		Soil	
		Reference Method	SHC		SHC		SHC		SHC	
		Batch ID	TS102516B02		TS102516B02		TS102516B02		TS102516B02	
		Date Collected	10/19/2016		10/19/2016		10/20/2016		10/20/2016	
		Date Received	10/21/2016		10/21/2016		10/22/2016		10/22/2016	
		Date Prepped	10/25/2016		10/25/2016		10/25/2016		10/25/2016	
		Date Analyzed	10/28/2016		10/28/2016		10/28/2016		10/28/2016	
		Sample Size (wet)	20.1		30.67		25.18		20.14	
		% Solid	84.58		87.62		88.49		92.01	
		File ID	F910251684.D		F910251692.D		F910251694.D		F910251696.D	
		Units	mg/Kg		mg/Kg		mg/Kg		mg/Kg	
		Final Volume	16		8		2		3.33	
		Dilution	1		1		1		1	
		Reporting Limit	19.8		6.25		1.88		3.77	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	1510	31.1	1330	9.82	191	2.96	433	5.93

C10-C28 DRO	473	19.8 972	6.25 38	.8 1.88	142
Surrogates (% Recovery)					
ortho-Terphenyl	97	103	9	99	96
d50-Tetracosane	88	119	9	90	88

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000						
		Client ID	S-9-B34		S-3-B35		S-5-B36	
		Lab ID	1610008-21		1610008-22		1610008-23	
	Matrix		Soil	Soil		Soil		
		Reference Method	SHC		SHC	SHC		
		Batch ID	TS102516B02		TS102516B02		TS102516B02	
		Date Collected	10/20/2016		10/20/2016		10/21/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/25/2016		10/25/2016		10/25/2016	
		Date Analyzed	10/31/2016		10/28/2016		10/28/2016	
		Sample Size (wet)	20.77		15.3		30.32	
		% Solid	91.08		92.76		89.64	
Ü		File ID	F910301618.D		F9102516100.D		F9102516104.D	
		Units	mg/Kg		mg/Kg		mg/Kg	
		Final Volume	10		20		2	
		Dilution	1		1		1	
		Reporting Limit	11.1		29.6		1.54	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	939	17.4	1760	46.5	117	2.43
		C10-C28 DRO	353	11.1	161	29.6	57.5	1.54
		Surrogates (% Recovery)						
		ortho-Terphenyl	94		105		101	
		d50-Tetracosane	85		98		96	

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- U: The analyte was analyzed for but not detected at the sample specific level reported.

 B: Found in associated blank as well as sample.

 J: Estimated value, below quantitation limit.

 E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable

 D: Secondary Dilution Performed

 D1: Tertiary Dilution Performed

 D1: Value outside of QC Limits.

 §: Surrogate value outside of acceptable range.

 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

 G: Matrix Interference.

 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.

 I: Due to interference, the lower value is reported.

 N: Spike recovery outside control limits.

 E: Estimated due to Interference, (Metals)

 II: Diplicate outside control limits.

 P: Spike compound. (Metals)

 J: Below CRDL, Project DL, or RL but greater than or equal to MDL.

 C: Sample concentration is 2-4 times the spike level, recovery limits do not apply. (Metals)

 S: Spike Compound. (Organics)

 S: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)

 T: Tentatively identified corexit compound.

 Z: Result not surrogate corrected.

 DI: Surrogate result diluted out of sample.

 W: Matrix Interference may be present based on chemical reasonableness evaluation.

Client ID	Method Blank
Lab ID	TS102516B02
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS102516B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/25/2016
Date Analyzed	11/01/2016
Sample Size (wet)	25
% Solid	100.00
File ID	F210311625.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	0.800

		Toporting Limit	0.000		
Class	Abbrev	Analytes	Result		SSRL
2	D0	cis/trans-Decalin		U	0.800
2	D1	C1-Decalins		U	0.800
2	D2	C2-Decalins		U	0.800
2	D3	C3-Decalins		U	0.800
2	D4	C4-Decalins		U	0.800
2	BT0	Benzothiophene		U	0.800
2	BT1	C1-Benzo(b)thiophenes		U	0.800
2	BT2	C2-Benzo(b)thiophenes		U	0.800
2	BT3	C3-Benzo(b)thiophenes		U	0.800
2	BT4	C4-Benzo(b)thiophenes		U	0.800
2	N0	Naphthalene	0.0906	J	0.800
2	N1	C1-Naphthalenes	0.120	J	0.800
2	N2	C2-Naphthalenes		U	0.800
2	N3	C3-Naphthalenes		U	0.800
2	N4	C4-Naphthalenes		U	0.800
2	В	Biphenyl	0.0578	J	0.800
3	DF	Dibenzofuran		U	0.800
3	AY	Acenaphthylene	0.235	J	0.800
3	AE	Acenaphthene	0.0630	J	0.800
3	F0	Fluorene		U	0.800
3	F1	C1-Fluorenes		U	0.800
3	F2	C2-Fluorenes		U	0.800
3	F3	C3-Fluorenes		U	0.800
3	A0	Anthracene	0.0261	J	0.800
3	P0	Phenanthrene	0.176	J	0.800
3	PA1 PA2	C1-Phenanthrenes/Anthracenes		U	0.800
3	PA2 PA3	C2-Phenanthrenes/Anthracenes		U	0.800
3	PA3 PA4	C3-Phenanthrenes/Anthracenes C4-Phenanthrenes/Anthracenes		U	0.800
3	RET	Retene		U	0.800
3	DBT0	Dibenzothiophene		U	0.800
3	DBT0 DBT1	C1-Dibenzothiophenes		Ü	0.800
3	DBT2	C2-Dibenzothiophenes		U	0.800
3	DBT3	C3-Dibenzothiophenes		U	0.800
3	DBT3 DBT4	C4-Dibenzothiophenes		U	0.800
4	BF	Benzo(b)fluorene		Ü	0.800
4	FL0	Fluoranthene	0.0713	J	0.800
4	PY0	Pyrene	0.0560	Ĵ	0.800
4	FP1	C1-Fluoranthenes/Pyrenes	0.0000	Ŭ	0.800
4	FP2	C2-Fluoranthenes/Pyrenes		Ū	0.800
4	FP3	C3-Fluoranthenes/Pyrenes		Ū	0.800
4	FP4	C4-Fluoranthenes/Pyrenes		Ũ	0.800
4	NBT0	Naphthobenzothiophenes		Ũ	0.800
4	NBT1	C1-Naphthobenzothiophenes		U	0.800
4	NBT2	C2-Naphthobenzothiophenes		U	0.800
4	NBT3	C3-Naphthobenzothiophenes		U	0.800
4	NBT4	C4-Naphthobenzothiophenes		Ü	0.800
4	BA0	Benz[a]anthracene		U	0.800
4	C0	Chrysene/Triphenylene	0.0361	J	0.800
4	BC1	C1-Chrysenes		U	0.800
4	BC2	C2-Chrysenes		U	0.800
4	BC3	C3-Chrysenes		U	0.800
4	BC4	C4-Chrysenes		U	0.800

Client ID	Method Blank
Lab ID	TS102516B02
Matrix	Soil
Reference Method	Modified 8270D
Batch ID	TS102516B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/25/2016
Date Analyzed	11/01/2016
Sample Size (wet)	25
% Solid	100.00
File ID	F210311625.D
Units	μg/Kg
Final Volume	2
Dilution	1
Reporting Limit	0.800

Class	Abbrev	Analytes	Result	SSRL
5	BBF	Benzo[b]fluoranthene	U	0.800
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	U	
5	BAF	Benzo[a]fluoranthene	U	
5	BEP	Benzo[e]pyrene	U	
5 5	BAP PER	Benzo[a]pyrene Perylene	U	
6	IND	Indeno[1,2,3-cd]pyrene	U	
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	Ü	
6	GHI	Benzo[g,h,i]perylene	Ŭ	
3	CAR	Carbazole	Ü	0.800
3	4MDT	4-Methyldibenzothiophene	U	
3	2MDT	2/3-Methyldibenzothiophene	U	
3	1MDT	1-Methyldibenzothiophene	U	
3	3MP	3-Methylphenanthrene	U	
3	2MP	2-Methylphenanthrene	U	
3	2MA 9MP	2-Methylanthracene	U	
3	1MP	9/4-Methylphenanthrene 1-Methylphenanthrene	U	
t23	T4	C23 Tricyclic Terpane	U	
t24	T5	C24 Tricyclic Terpane	Ü	
t25	T6	C25 Tricyclic Terpane	Ü	
te24	T6a	C24 Tetracyclic Terpane	Ū	
t26S	T6b	C26 Tricyclic Terpane-22S	Ü	
t26R	T6c	C26 Tricyclic Terpane-22R	U	0.800
t28S	T7	C28 Tricyclic Terpane-22S	U	0.800
t28R	T8	C28 Tricyclic Terpane-22R	U	
t29S	T9	C29 Tricyclic Terpane-22S	U	
t29R	T10	C29 Tricyclic Terpane-22R	U	
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	U	
t30S	T11a	C30 Tricyclic Terpane-22S	U	
t30R	T11b	C30 Tricyclic Terpane-22R	U	
Tm BNH	T12 T14a	17a(H)-22,29,30-Trisnorhopane-TM 17a/b,21b/a 28,30-Bisnorhopane	U	
25N	T14b	17a(H),21b(H)-25-Norhopane	U	
H29	T15	30-Norhopane	Ü	
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	Ŭ	
X	X	17a(H)-Diahopane	Ū	
M29	T17	30-Normoretane	Ü	
OL	T18	18a(H)&18b(H)-Oleananes	U	0.800
H30	T19	Hopane	U	0.800
M30	T20	Moretane	U	
H31S	T21	30-Homohopane-22S	U	
H31R	T22	30-Homohopane-22R	U	
T22A	T22A	T22a-Gammacerane/C32-diahopane	U	
H32S	T26	30,31-Bishomohopane-22S	U	
H32R H33S	T27 T30	30,31-Bishomohopane-22R	U	
H33R	T31	30,31-Trishomohopane-22S 30,31-Trishomohopane-22R	U	
H34S	T32	Tetrakishomohopane-22S	U	
H34R	T33	Tetrakishomohopane-22R	ŭ	
H35S	T34	Pentakishomohopane-22S	ũ	
H35R	T35	Pentakishomohopane-22R	Ü	
d27S	S4	13b(H),17a(H)-20S-Diacholestane	U	0.800
d27R	S5	13b(H),17a(H)-20R-Diacholestane	U	
d28S	S8	13b,17a-20S-Methyldiacholestane	U	
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	U	
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	U	
d29R	S18	Unknown Sterane (S18)	U	
d29S aa28S	S19 S20	13a,17b-20S-Ethyldiacholestane	U	
aa28S aa28R	S24	14a,17a-20S-Methylcholestane 14a,17a-20R-Methylcholestane	U	
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	U	
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	Ü	
bb27R	S14	14b(H),17b(H)-20R-Cholestane	Ü	
bb27S	S15	14b(H),17b(H)-20S-Cholestane	ŭ	
bb28R	S22	14b,17b-20R-Methylcholestane	Ü	
bb28S	S23	14b,17b-20S-Methylcholestane	Ü	
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	U	0.800
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	U	
RC26/SC27TA	RC26/SC27TA	C26,20R- +C27,20S- triaromatic steroid	U	
SC28TA	SC28TA	C28,20S-triaromatic steroid	U	
RC27TA	RC27TA	C27,20R-triaromatic steroid	U	
RC28TA	RC28TA	C28,20R-triaromatic steroid	U	0.800

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

Page B17 February 2017

Project Number: 85
Client ID
Lab ID
Matrix
Reference Method
Batch ID
Date Collected
Date Received
Date Prepped
Date Analyzed
Sample Size (wet)
% Solid
File ID
Units
Final Volume
Dilution
Reporting Limit Laboratory Control Sample TS102516LCS01 TS102516LCS01 Modified 8270D TS102516B02 N/A N/A 10/25/2016 11/01/2016 25 100.00 F210311626.D µg/Kg 2 1 0.800

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
2	N0	Naphthalene	31.8	S	0.800	80	40.0	50	130
3	AY	Acenaphthylene	29.9	S	0.800	75	40.0	50	130
3	AE	Acenaphthene	33.0	S	0.800	83	40.0	50	130
3	F0	Fluorene	34.6	S	0.800	86	40.0	50	130
3	A0	Anthracene	37.6	S	0.800	94	40.0	50	130
3	P0	Phenanthrene	37.0	S	0.800	92	40.0	50	130
4	FL0	Fluoranthene	38.0	S	0.800	95	40.0	50	130
4	PY0	Pyrene	35.5	S	0.800	89	40.0	50	130
4	BA0	Benz[a]anthracene	37.1	S	0.800	93	40.0	50	130
4	C0	Chrysene/Triphenylene	38.0	S	0.800	95	40.0	50	130
5	BBF	Benzo[b]fluoranthene	39.8	S	0.800	100	40.0	50	130
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	39.5	S	0.800	99	40.0	50	130
5	BAP	Benzo[a]pyrene	35.2	S	0.800	88	40.0	50	130
6	IND	Indeno[1,2,3-cd]pyrene	34.6	S	0.800	87	40.0	50	130
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	36.3	S	0.800	91	40.0	50	130
6	GHI	Benzo[g,h,i]perylene	34.7	S	0.800	87	40.0	50	130

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

Project Number: 85
Client ID
Lab ID
Matrix
Reference Method
Batch ID
Date Collected
Date Received
Date Prepped
Date Analyzed
Sample Size (wet)
% Solid
File ID
Units
Final Volume
Dilution
Reporting Limit Laboratory Control Sample Dup TS102516LCSD01 S102516LCSD01 S011 Modified 8270D TS102516B02 N/A 10/25/2016 11/02/2016 25 100.00 F210311627.D µg/Kg 2

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
2	N0	Naphthalene	34.9	S	0.800	87	40.0	50	130	9	30
3	AY	Acenaphthylene	32.3	S	0.800	81	40.0	50	130	8	30
3	AE	Acenaphthene	34.9	S	0.800	87	40.0	50	130	5	30
3	F0	Fluorene	36.2	S	0.800	90	40.0	50	130	5	30
3	A0	Anthracene	38.5	S	0.800	96	40.0	50	130	2	30
3	P0	Phenanthrene	37.6	S	0.800	94	40.0	50	130	2	30
4	FL0	Fluoranthene	38.4	S	0.800	96	40.0	50	130	1	30
4	PY0	Pyrene	35.4	S	0.800	89	40.0	50	130	0	30
4	BA0	Benz[a]anthracene	36.7	S	0.800	92	40.0	50	130	1	30
4	C0	Chrysene/Triphenylene	36.9	S	0.800	92	40.0	50	130	3	30
5	BBF	Benzo[b]fluoranthene	38.5	S	0.800	96	40.0	50	130	3	30
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	38.2	S	0.800	96	40.0	50	130	3	30
5	BAP	Benzo[a]pyrene	32.3	S	0.800	81	40.0	50	130	9	30
6	IND	Indeno[1,2,3-cd]pyrene	34.0	S	0.800	85	40.0	50	130	2	30
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	35.1	S	0.800	88	40.0	50	130	3	30
6	GHI	Benzo[g,h,i]perylene	33.6	S	0.800	84	40.0	50	130	3	30

0.800

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

| Project Number: 850.0087.000 | S-3-B35 | S-3-B35 | Lab ID | 1610008-22 | 1610008-22D | Matrix | Soil | So

		Troporting Limit				1 1.0					
Class	Abbrev	Analytes	Result		SSRL	Result			RPD	RPD Lim	
2	D0	cis/trans-Decalin		U	14.1		U	14.0		30	N/A
2	D1	C1-Decalins		U	14.1		U	14.0		30	N/A
2	D2	C2-Decalins		U	14.1		U	14.0		30	N/A
2	D3	C3-Decalins		U	14.1		U	14.0		30	N/A
2	D4	C4-Decalins		U	14.1		U	14.0		30	N/A
2	BT0	Benzothiophene		U	14.1		U	14.0		30	N/A
2	BT1	C1-Benzo(b)thiophenes		U	14.1		U	14.0		30	N/A
2	BT2	C2-Benzo(b)thiophenes		U	14.1		U	14.0		30	N/A
2	BT3	C3-Benzo(b)thiophenes		U	14.1		U	14.0		30	N/A
2	BT4	C4-Benzo(b)thiophenes		U	14.1		U	14.0		30	N/A
2	N0	Naphthalene	2.50	J	14.1	2.18	J	14.0	14	30	
2	N1	C1-Naphthalenes	4.06	J	14.1	5.03	J	14.0	21	30	
2	N2	C2-Naphthalenes	11.3	J	14.1	10.8	J	14.0	4	30	
2	N3	C3-Naphthalenes	23.1		14.1	15.3		14.0	41	30	п
2	N4	C4-Naphthalenes		U	14.1		U	14.0		30	N/A
2	В	Biphenyl	1.25	J	14.1	1.74	J	14.0	33	30	n
3	DF	Dibenzofuran	0.585	J	14.1	0.888	J	14.0	41	30	п
3	AY	Acenaphthylene	2.65	J	14.1	2.25	JB	14.0	16	30	
3	AE	Acenaphthene	1.10	J	14.1	0.661	J	14.0	50	30	п
3	F0	Fluorene	2.93	J	14.1	2.12	J	14.0	32	30	п
3	F1	C1-Fluorenes		U	14.1		U	14.0		30	N/A
3	F2	C2-Fluorenes		U	14.1		U	14.0		30	N/A
3	F3	C3-Fluorenes		U	14.1		U	14.0		30	N/A
3	A0 P0	Anthracene	3.68	J	14.1	4.37	J	14.0	17	30	
	P0 PA1	Phenanthrene C1-Phenanthrenes/Anthracenes	8.18 10.6	J	14.1 14.1	9.41	J J	14.0 14.0	14 7	30 30	
3	PA1 PA2	C2-Phenanthrenes/Anthracenes	10.6	J	14.1	11.4 16.4	J	14.0	10	30	
3	PA2 PA3	C2-Pnenanthrenes/Anthracenes C3-Phenanthrenes/Anthracenes	18.1 39.9		14.1	26.2		14.0	41	30	п
3	PA3 PA4	C4-Phenanthrenes/Anthracenes	68.4		14.1	30.2		14.0	78	30	
3	RET	Retene	00.4	U	14.1	30.2	U	14.0	10	30	N/A
3	DBT0	Dibenzothiophene	1.29	J	14.1	1.93	J	14.0	40	30	IN/A
3	DBT0 DBT1	C1-Dibenzothiophenes	4.06	J	14.1	4.76	J	14.0	16	30	-
3	DBT2	C2-Dibenzothiophenes	14.4	٥	14.1	14.2		14.0	1	30	
3	DBT3	C3-Dibenzothiophenes	31.1		14.1	20.3		14.0	42	30	п
3	DBT4	C4-Dibenzothiophenes	48.5		14.1	27.4		14.0	56	30	p p
4	BF BF	Benzo(b)fluorene	2.80	J	14.1	3.43	J	14.0	20	30	
4	FL0	Fluoranthene	24.9	•	14.1	33.0	•	14.0	28	30	
4	PY0	Pyrene	28.0		14.1	36.1		14.0	25	30	
4	FP1	C1-Fluoranthenes/Pyrenes	47.3		14.1	24.8		14.0	62	30	n
4	FP2	C2-Fluoranthenes/Pyrenes	123		14.1	52.1		14.0	81	30	p
4	FP3	C3-Fluoranthenes/Pyrenes	264		14.1	91.2		14.0	97	30	n
4	FP4	C4-Fluoranthenes/Pyrenes	348		14.1	127		14.0	93	30	p
4	NBT0	Naphthobenzothiophenes	11.7	J	14.1	8.71	J	14.0	29	30	
4	NBT1	C1-Naphthobenzothiophenes	82.4		14.1	28.7		14.0	97	30	¤
4	NBT2	C2-Naphthobenzothiophenes	244		14.1	74.3		14.0	106	30	¤
4	NBT3	C3-Naphthobenzothiophenes	388		14.1	131		14.0	99	30	¤
4	NBT4	C4-Naphthobenzothiophenes	422		14.1	167		14.0	86	30	¤
4	BA0	Benz[a]anthracene	16.6		14.1	23.6		14.0	35	30	×
4	C0	Chrysene/Triphenylene	53.1		14.1	40.8		14.0	26	30	
4	BC1	C1-Chrysenes	128		14.1	46.4		14.0	94	30	¤
4	BC2	C2-Chrysenes	404		14.1	147		14.0	93	30	¤
4	BC3	C3-Chrysenes	774		14.1	325		14.0	82	30	¤
4	BC4	C4-Chrysenes	627		14.1	316		14.0	66	30	¤

Project Number: 850.0087.000
Client ID Lab ID

Project Name: Cardno ERI - Former XOM Jalk Fee Property

		•									
		Client ID	S-3-B35			S-3-B35					
		Lab ID	1610008-22			1610008-22D					
		Matrix	Soil			Soil					
		Reference Method	Modified 8270D			Modified 8270D					
		Batch ID	TS102516B02			TS102516B02					
		Date Collected	10/20/2016			10/20/2016					
		Date Received	10/22/2016			10/22/2016					
		Date Prepped	10/25/2016 11/02/2016			10/25/2016					
		Date Analyzed Sample Size (wet)	11/02/2016			11/03/2016 15.39					
		% Solid	92.76			92.76					
		File ID	F210311637.D			F210311642.D					
		Units	μg/Kg			μg/Kg					
		Final Volume	20			20					
		Dilution	1			1					
		Reporting Limit	14.1			14.0					
Class	Abbrev	Analytes	Result		SSRL	Result		SSRL		RPD Lim	nit
5	BBF	Benzo[b]fluoranthene	39.2		14.1	39.1		14.0	0	30	п
5 5	BJKF BAF	Benzo[j]fluoranthene/Benzo[k]fluoranthene Benzo[a]fluoranthene	23.8 9.74	J	14.1 14.1	33.7 9.61	J	14.0 14.0	34 1	30 30	Ω
5	BEP	Benzo[e]pvrene	84.2	J	14.1	59.8	J	14.0	34	30	п
5	BAP	Benzo[a]pyrene	33.7		14.1	44.6		14.0	28	30	_
5	PER	Perylene	166		14.1	77.1		14.0	73	30	n
6	IND	Indeno[1,2,3-cd]pyrene	33.4		14.1	36.7		14.0	9	30	
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	16.2		14.1	15.0		14.0	8	30	
6	GHI	Benzo[g,h,i]perylene	62.7		14.1	58.8		14.0	6	30	
3	CAR	Carbazole	1.53	J	14.1	1.93	J	14.0	23	30	
3	4MDT	4-Methyldibenzothiophene	1.24	J	14.1	1.63	J	14.0	27	30	
3	2MDT	2/3-Methyldibenzothiophene		U	14.1		U	14.0	0=	30	N/A
3	1MDT 3MP	1-Methyldibenzothiophene 3-Methylphenanthrene	1.41 2.28	J J	14.1 14.1	2.06 1.33	J	14.0 14.0	37 52	30 30	n n
3	2MP	2-Methylphenanthrene	2.28 1.87	J	14.1	1.33 2.29	J	14.0	20	30	Ħ
3	2MA	2-Methylanthracene	1.87	J	14.1	1.53	J	14.0	22	30	
3	9MP	9/4-Methylphenanthrene	2.16	J	14.1	2.99	J	14.0	32	30	n
3	1MP	1-Methylphenanthrene	1.70	Ĵ	14.1	2.23	Ĵ	14.0	27	30	
t23	T4	C23 Tricyclic Terpane	36.5		14.1	27.2		14.0	29	30	
t24	T5	C24 Tricyclic Terpane	28.2		14.1	10.9	J	14.0	89	30	¤
t25	T6	C25 Tricyclic Terpane	46.9		14.1	16.0		14.0	98	30	¤
te24	T6a	C24 Tetracyclic Terpane	19.3		14.1		U	14.0		30	Х
t26S	T6b	C26 Tricyclic Terpane-22S	31.7		14.1	13.4	J	14.0	81	30	n
t26R	T6c	C26 Tricyclic Terpane-22R	33.4		14.1	9.92	J	14.0	108	30	¤
t28S t28R	T7 T8	C28 Tricyclic Terpane-22S	58.1 65.1		14.1 14.1	17.1 23.2		14.0 14.0	109 95	30 30	n
128K 129S	18 T9	C28 Tricyclic Terpane-22R C29 Tricyclic Terpane-22S	62.9		14.1	23.2		14.0	95 76	30	р В
1295 129R	T10	C29 Tricyclic Terpane-228	76.7		14.1	24.8		14.0	102	30	n n
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	94.4		14.1	29.0		14.0	106	30	¤
t30S	T11a	C30 Tricyclic Terpane-22S	137		14.1	25.1		14.0	138	30	¤
t30R	T11b	C30 Tricyclic Terpane-22R	96.7		14.1	32.0		14.0	101	30	n
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	166		14.1	51.6		14.0	105	30	¤
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	661	G	14.1	163	G	14.0	121	30	¤
25N	T14b	17a(H),21b(H)-25-Norhopane	73.6		14.1	13.4	J	14.0	138	30	n
H29	T15	30-Norhopane	818	_	14.1	177	_	14.0	129	30	¤
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	336	G	14.1	112	G	14.0	100	30	п
X	X	17a(H)-Diahopane	29.0	_	14.1	4.05	J	14.0	151	30	n
M29 OL	T17 T18	30-Normoretane 18a(H)&18b(H)-Oleananes	294 709	G G	14.1 14.1	72.0 317	G	14.0 14.0	121 76	30 30	n
H30	T19	Hopane	1380	G	14.1	382	G	14.0	113	30	, a
M30	T20	Moretane	308		14.1	93.5		14.0	107	30	, a
H31S	T21	30-Homohopane-22S	469		14.1	128		14.0	114	30	¤
H31R	T22	30-Homohopane-22R	433		14.1	118		14.0	114	30	¤
T22A	T22A	T22a-Gammacerane/C32-diahopane	281		14.1	77.8		14.0	113	30	¤
H32S	T26	30,31-Bishomohopane-22S	328		14.1	90.3		14.0	114	30	¤
H32R	T27	30,31-Bishomohopane-22R	280		14.1	74.8		14.0	116	30	n
H33S	T30	30,31-Trishomohopane-22S	371		14.1	111		14.0	108	30	п
H33R	T31	30,31-Trishomohopane-22R	282		14.1	72.3		14.0	118	30	n
H34S H34R	T32 T33	Tetrakishomohopane-22S Tetrakishomohopane-22R	279 251		14.1	80.5 65.7		14.0 14.0	110 117	30 30	n
H35S	T34	Pentakishomohopane-22S	325		14.1	73.8		14.0	126	30	
H35R	T35	Pentakishomohopane-22R	298		14.1	73.6 85.6		14.0	111	30	n n
d27S	S4	13b(H),17a(H)-20S-Diacholestane	96.2		14.1	34.6		14.0	94	30	, a
d27R	S5	13b(H),17a(H)-20R-Diacholestane	34.7		14.1	14.1		14.0	84	30	¤
d28S	S8	13b,17a-20S-Methyldiacholestane	358		14.1	94.8		14.0	116	30	¤
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	955		14.1	277		14.0	110	30	¤
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	1280		14.1	466		14.0	93	30	¤
d29R	S18	Unknown Sterane (S18)	132		14.1	58.1		14.0	78	30	n
d29S	S19	13a,17b-20S-Ethyldiacholestane	107		14.1	42.0		14.0	87	30	¤
aa28S	S20	14a,17a-20S-Methylcholestane	1840		14.1	641		14.0	97	30	¤
aa28R	S24	14a,17a-20R-Methylcholestane	2330		14.1	579		14.0	120	30	n
aa29S aa29R	S25 S28	14a(H),17a(H)-20S-Ethylcholestane 14a(H),17a(H)-20R-Ethylcholestane	1910 2840		14.1 14.1	787 973		14.0 14.0	83 98	30 30	n n
aa29R bb27R	S28 S14	14a(H),17a(H)-20R-Ethylcholestane 14b(H),17b(H)-20R-Cholestane	2840 243		14.1	973 80.1		14.0 14.0	98 101	30 30	n n
bb27S	S14 S15	14b(H),17b(H)-20S-Cholestane	243 284		14.1	81.2		14.0	111	30	n
bb28R	S22	14b,17b-20R-Methylcholestane	1170		14.1	336		14.0	111	30	n
bb28S	S23	14b,17b-20S-Methylcholestane	1490		14.1	482		14.0	102	30	¤
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	1540		14.1	624		14.0	85	30	п
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	787		14.1	297		14.0	90	30	¤
RC26/SC27TA	RC26/SC27TA	C26,20R- +C27,20S- triaromatic steroid	12800		14.1	4460		14.0	96	30	¤
SC28TA	SC28TA	C28,20S-triaromatic steroid	6980		14.1	3270		14.0	72	30	n
RC27TA	RC27TA	C27,20R-triaromatic steroid	9730		14.1	3380		14.0	97	30	п
RC28TA	RC28TA	C28,20R-triaromatic steroid	6910		14.1	3210		14.0	73	30	п

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane 84 106 99 82 95 89

Client ID	Alaska North Slope Crude
Lab ID	SS110816ANC01
Matrix	Oil
Reference Method	Modified 8270D
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	10/21/2016
Sample Size (wet)	0.0502
% Solid	100.00
File ID	F210191615.D
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	1.99

Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
2	D0	cis/trans-Decalin	460	1.99	96	479.20	65	135
2	D1	C1-Decalins	722	1.99	99	728.90	65	135
2	D2	C2-Decalins	610	1.99	96	635.50	65	135
2	D3	C3-Decalins	296	1.99	90	329.80	65	135
2	D4	C4-Decalins	271	1.99	83	326.50	65	135
2	BT0	Benzothiophene	5.37	1.99	99	5.40	65	135
2	BT1	C1-Benzo(b)thiophenes	27.4	1.99	95	28.90	65	135
2	BT2	C2-Benzo(b)thiophenes	51.6	1.99	104	49.60	65	135
2	BT3	C3-Benzo(b)thiophenes	103	1.99	104	99.00	65	135
2	BT4	C4-Benzo(b)thiophenes	90.1	1.99	103	87.10	65	135
2	N0	Naphthalene	546	1.99	98	555.80	65	135
2	N1	C1-Naphthalenes	1170	1.99	100	1167.30	65	135
2	N2 N3	C2-Naphthalenes	1430 1040	1.99	102 100	1409.70	65 65	135
2	N3 N4	C3-Naphthalenes	1040 567	1.99		1035.90	65	135
2	N4 B	C4-Naphthalenes	146	1.99	101 101	561.10 145.70	65	135 135
3	DF	Biphenyl Dibenzofuran	49.7	1.99	97	51.20	65	135
3	AY	Acenaphthylene	6.56	1.99	101	6.50	65	135
3	AE	Acenaphthene	18.3	1.99	98	18.70	65	135
3	F0	Fluorene	68.4	1.99	92	74.60	65	135
3	F1	C1-Fluorenes	160	1.99	94	170.20	65	135
3	F2	C2-Fluorenes	235	1.99	92	255.40	65	135
3	F3	C3-Fluorenes	231	1.99	97	238.50	65	135
3	A0	Anthracene		U 1.99				
3	P0	Phenanthrene	193	1.99	91	212.20	65	135
3	PA1	C1-Phenanthrenes/Anthracenes	406	1.99	94	432.70	65	135
3	PA2	C2-Phenanthrenes/Anthracenes	453	1.99	97	465.90	65	135
3	PA3	C3-Phenanthrenes/Anthracenes	315	1.99	99	317.40	65	135
3	PA4	C4-Phenanthrenes/Anthracenes	121	1.99	94	129.00	65	135
3	RET	Retene		U 1.99				
3	DBT0	Dibenzothiophene	132	1.99	95	138.90	65	135
3	DBT1	C1-Dibenzothiophenes	282	1.99	101	278.60	65	135
3	DBT2	C2-Dibenzothiophenes	381	1.99	101	377.50	65	135
3	DBT3	C3-Dibenzothiophenes	356	1.99	104	341.40	65	135
3	DBT4	C4-Dibenzothiophenes	175	1.99	96	183.40	65	135
4	BF	Benzo(b)fluorene	5.62	1.99				
4	FL0 PY0	Fluoranthene	4.07	1.99	102	4.00	65	135
4	FP1	Pyrene C1-Fluoranthenes/Pyrenes	9.30 53.4	1.99 1.99	72 85	13.00 63.10	65 65	135 135
4	FP2	C2-Fluoranthenes/Pyrenes	88.7	1.99	87	102.20	65	135
4	FP3	C3-Fluoranthenes/Pyrenes	105	1.99	88	119.60	65	135
4	FP4	C4-Fluoranthenes/Pyrenes	85.4	1.99	82	104.00	65	135
4	NBT0	Naphthobenzothiophenes	39.8	1.99	91	43.80	65	135
4	NBT1	C1-Naphthobenzothiophenes	105	1.99	90	117.20	65	135
4	NBT2	C2-Naphthobenzothiophenes	138	1.99	85	163.30	65	135
4	NBT3	C3-Naphthobenzothiophenes	107	1.99	83	128.70	65	135
4	NBT4	C4-Naphthobenzothiophenes	73.3	1.99	82	89.00	65	135
4	BA0	Benz[a]anthracene	2.44	1.99	116	2.10	65	135
4	CO	Chrysene/Triphenylene	32.4	1.99	92	35.20	65	135
4	BC1	C1-Chrysenes	57.8	1.99	92	62.80	65	135
4	BC2	C2-Chrysenes	71.8	1.99	84	86.00	65	135
4	BC3	C3-Chrysenes	84.4	1.99	87	97.60	65	135
4	BC4	C4-Chrysenes	47.8	1.99	80	59.40	65	135

Page B22 February 2017

Client ID	Alaska North Slope Crude
Lab ID	SS110816ANC01
Matrix	Oil
Reference Method	Modified 8270D
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	10/21/2016
Sample Size (wet)	0.0502
% Solid	100.00
File ID	F210191615.D
Units	mg/Kg
Final Volume	10
Dilution	1
Poporting Limit	1.00

Second S			Reporting Limit	1.99					
Second S									
Section Bernard Be							5.20	65	135
Second Bernard Berna				1.02					
Second Description				40.0			0.00		405
FER									135 135
No									135
Section Description Desc							2.00	03	100
Geol									
3 AMOT AMENINGENERAL STATE OF THE PROPERTY OF							3.10	65	135
3 MOT 1 - Methylchemothrophene 4,21 i 1,99 i 104 i 97,50 i 65 i 13 i 13 i 107 i 1-Methylchemothrophene 4,21 i 199 i 104 i 87,50 i 65 i 13 i 107 i 1-Methylchemothrophene 4,21 i 199 i 104 i 42 i 105 i 103 i									135
MOT	3		4-Methyldibenzothiophene	136	1.9	103	131.80		135
3 AMP 2 - Methylphemathrene 9.5 5 1.99 35 8.84 0 65 13 3 2 MP 2 - Methylphemathrene 9.5 5 1.99 33 7.70 65 13 3 3 2 MA 2 - Methylphemathrene 9.5 5 1.99 33 7.70 65 13 3 3 2 MA 3 - Methylphemathrene 9.5 5 1.30 65 13 3 3 3 2 MA 3 - Methylphemathrene 9.5 5 1.30 65 13 3 3 2 MA 3 - Methylphemathrene 9.5 5 1.30 65 13 3 3 3 2 MA 3 - Methylphemathrene 9.5 5 1.30 65 13 3 3 2 MA 3 - Methylphemathrene 9.5 5 1.30 65 13 3 3 3 2 MA 3 - Methylphemathrene 9.5 6 1.30 65 13 1									135
3									135
3 9MA 2-Methylahrancene									135
3 MP 94-Methylphenanthrene									135
1									135
124 T5 C22 Tricyclic Tepane									135
124 T5									135
125 T6 C25 Tricyclic Tepane 37.8 1.99 90 42.00 65 126									135
16.24 T6a									135
1285									135
1288 T6C C26 Tricycic Terpane-22R 12.8 1.99 83 15.40 65 13.28 17 C28 Tricycic Terpane-22B 14.4 1.99 86 16.80 65 13.28 17 C28 Tricycic Terpane-22B 16.2 1.99 90 18.10 65 13.28 17 C29 Tricycic Terpane-22B 16.9 1.99 81 20.80 65 13.28 17 C29 Tricycic Terpane-22B 16.9 1.99 81 20.80 65 13.28 17 C29 Tricycic Terpane-22B 16.9 1.99 81 20.80 65 13.28 17 C29 Tricycic Terpane-22B 16.9 1.99 81 22.60 65 13.28 17 C29 Tricycic Terpane-22B 17 C29 Tricycic Terpane-22									135
1288 T8	t26R	T6c		12.8	1.9	83	15.40	65	135
1298			C28 Tricyclic Terpane-22S				16.80		135
129R									135
TS T11 18a-22_93-0-Tisnomenchopane-TS 14.4 1.99 81 31.30 65 13.00 130S T11a C30 Tircyclic Terpane-22S 14.4 1.99 84 16.40 65 13.00 17m T12 174(H)-22_93-07-Tisnorhopane-TM 30.1 1.99 80 37.00 65 13.00 BNH T14a 174(H)-22_19-19-25-Norhopane 6.66 1.99 9.70 65 13.00 25N T14b 174(H)-21_CH)-12_PS-Norhopane 6.66 1.99 9.70 65 13.00 129 T15 30-Norhopane 83.5 1.99 84 25.20 65 13.00 129 T16 184(H)-30-Normopane-22Ts 21.2 1.99 84 25.20 65 13.00 M29 T17 30-Normoretane 114.1 1.99 100 11.00 65 13.00 N29 T17 30-Normoretane 114.0 1.99 83 75.10 65 13.00									135
130S									135
130R									135
Tm T12 17a(H)-22.93.0-Tinsondopane-TM 30.1 1.99 80 37.80 65 13 BNH T14a 17a(H)-12b(H)-25-Nothopane 6.66 6.19 95 7.00 65 13 25N T14b 17a(H)-12b(H)-25-Nothopane 7.72 1.99 89 8.70 65 13 C29Ts T16 30-Nothopane 212 1.99 84 25.20 65 13 C29Ts T16 18a(H)-30-Nothopane 11.6 11.99 100 11.60 65 13 M29 T17 30-Notmordane 11.6 1.99 100 11.60 65 13 M29 T17 30-Notmordane 11.4 1.99 83 17.50 65 13 M30 T20 Moretane 14.4 1.99 83 71.50 65 13 H318 T21 30-Homotopane-22S 62.1 1.99 83 75.10 65 13 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>135</td></t<>									135
No.									135
14									135
H29									135
X X 17a(II)-Diahopane 14.1 1.99 100 14.20 65 13 DL T18 18a(II)&18b(II)-Oleananes 4.10 1.99 100 11.60 65 13 H30 T19 Hopane 4.10 1.99 83 173.60 65 13 M30 T20 Moretane 16.1 1.99 92 17.50 65 13 H31S T21 30-Homohopane-22S 62.1 1.99 83 75.10 65 13 H31R T22 30-Homohopane-22R 65 1.10 1.99 82 64.10 65 13 H22A T22A T22A T22A T22A T22A T22A 1.99 85 5.50 65 13 H32R T27 30.31-Bishomohopane-22B 45.5 1.99 87 39.60 65 13 H33R T31 30.31-Tishomohopane-22R 25.1 1.99 87 29.0									135
M29	C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	21.2	1.9	84	25.20	65	135
OL T18 18a(H)A18b(H)-Oleananes 4.10 1.99 32 1.73.60 65 1.13 M30 T20 Moretane 16.1 1.99 82 17.50 65 1.13 M31S T21 30-Homohopane-22S 62.1 1.99 83 75.10 65 1.13 M31R T22 30-Homohopane-22R 52.6 1.99 82 64.10 65 1.13 M32R T22A T22A Gammacerane/C3-diahopane 11.0 1.99 87 35.60 65 1.31 M32R T26 30.31-Bishomohopane-22R 45.5 1.99 87 33.60 65 1.31 M33R T31 30.31-Trishomohopane-22R 34.6 1.99 87 39.60 65 1.31 H34R T33 Tetrakishomohopane-22R 26.5 1.99 87 29.80 65 1.31 H34R T33 Tetrakishomohopane-22R 26.1 1.99 97 22.80 65 <t< td=""><td>X</td><td>X</td><td>17a(H)-Diahopane</td><td>14.1</td><td>1.9</td><td>100</td><td>14.20</td><td>65</td><td>135</td></t<>	X	X	17a(H)-Diahopane	14.1	1.9	100	14.20	65	135
H30							11.60	65	135
M30 T20 Moretane M30 T20 Moretane M30 T21 M30 M30 T510 65 13 M31 M31 M31 M31 M31 M31 M32 M30 M30 M31 M									
H31S T21 30-Homohopane-22S 526 1.99 83 75.10 65 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.10 1.19 1.10									135
H31R T22 30-Homohopane-22R 52.6 1.99 82 64.10 65 12 122A 122B									135
T22A T22A T22A-Gammacerane(C32-diahopane 11.0 1.99 85 53.60 65 11.91 H32R T27 30.31-Bishomohopane-22R 34.6 1.99 87 33.60 65 11.91 H33R T30 30.31-Trishomohopane-22R 34.5 1.99 87 30.60 65 11.91 H33R T31 30.31-Trishomohopane-22R 26.5 1.99 87 29.80 65 11.91 H34R T32 Tetrakishomohopane-22R 26.1 1.99 87 29.80 65 11.91 H35R T33 Tetrakishomohopane-22R 26.1 1.99 94 21.20 65 11.91 H35R T34 Pentakishomohopane-22R 27.5 1.99 91 30.20 65 11.91 H35R T34 Pentakishomohopane-22R 27.5 1.99 91 30.20 65 13.72 427S S4 13b(H),17a(H)-20S-Diacholestane 27.5 1.99 91 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>135</td></t<>									135
H32S T26 30,31-Bishomohopane-22S 45,5 1,99 85 53,60 65 13,432R T27 30,31-Bishomohopane-22R 34,6 1,99 87 39,60 65 13,432R T31 30,31-Tirishomohopane-22S 34,5 1,99 83 41,80 65 13,432R T31 30,31-Tirishomohopane-22S 26,5 1,99 83 27,20 65 13,432R T31 30,31-Tirishomohopane-22S 26,5 1,99 87 29,80 65 13,432R T32 Tetrakishomohopane-22S 26,1 1,99 87 29,80 65 13,432R T33 Tetrakishomohopane-22R 19,9 94 21,20 65 13,432R T33 Tetrakishomohopane-22R 19,9 94 21,20 65 13,432R T33 Tetrakishomohopane-22R 19,9 94 21,20 65 13,432R T33 Tetrakishomohopane-22R 27,5 1,99 91 30,20 65 13,432R T35 Pentakishomohopane-22R 24,4 1,99 104 23,50 65 13,432R T35 Pentakishomohopane-22R 24,4 1,99 107 50,00 65 13,432R T35 Pentakishomohopane-22R 24,4 1,99 107 50,00 65 13,432R T35 T36,141,141,141,141,141,141,141,141,141,14							64.10	65	133
H32R							53.60	65	135
H33S T30 30.31-Trishomohopane-22S 34.5 1.99 83 41.80 65 1.71 H33R T31 30.31-Trishomohopane-22R 26.5 1.99 98 27.20 65 1.73 H34S T32 Tetrakishomohopane-22R 26.1 1.99 87 29.80 65 1.73 H34R T33 Tetrakishomohopane-22R 27.5 1.99 94 21.20 65 1.73 H35S T34 Pentakishomohopane-22B 27.5 1.99 91 30.20 65 1.73 H35R T35 Pentakishomohopane-22B 24.4 1.99 104 23.50 65 1.00 427S S4 130(H),17a(H)-20C-biacholestane 24.4 1.99 107 50.00 65 1.3 427R S5 13b(H),17a(H)-20C-Diacholestane 26.2 1.99 99 26.30 65 1.0 428S S8 13b(H),17a(H)-20C-Diacholestane 26.2 1.99 97 25.70 65 1.3 422S S12 14a(H),17a(H)-20C-Cholestane/13b									135
H33R T31 30,31-Trishomohopane-22R 26,5 1,99 88 27,20 65 11 H34R T32 Tetrakishomohopane-22R 26,1 1,99 87 29,80 65 13 H34R T33 Tetrakishomohopane-22R 19,9 19,9 19,9 94 21,20 65 11 H35R T34 Pentakishomohopane-22R 27,5 1,99 101 30,20 65 13 H35R T35 Pentakishomohopane-22R 27,5 1,99 101 23,50 65 13 H35R T35 Pentakishomohopane-22R 24,4 1,99 104 23,50 65 13 d27R S4 13b(H),178(H)-20S-Diacholestane 26,2 1,99 91 05,00 65 13 d28B 13b,17a-20S-Methyldiacholestane 35,1 1,99 97 25,70 65 13 a27R S17 14a(H),17a(H)-20S-Cholestane*13b(H),17a(H)-20S-Ethyldiacholestane (S12) 50 1,99									135
H34R T33 Tetrakishomohopane-22R 19,9 1,99 1,99 24 21,20 65 13 H35R T34 Pentakishomohopane-22R 27.5 1,99 91 30,20 65 13 H35R T35 Pentakishomohopane-22R 24.4 1,99 104 23.50 65 13 d27S S4 13b(H),17a(H)-20S-Diacholestane 53.5 1,99 107 50.00 65 13 d28S S8 13b,17a-20S-Methyldiacholestane 26.2 1.99 97 25.70 65 13 aa27S S12 14a(H),17a(H)-20S-Cholestaner) 13b(H),17a(H)-20S-Ethyldiacholestane (S12) 55.0 1.99 85 65.00 65 13 aa27R S17 14a(H),17a(H)-20S-Cholestaner) 13b(H),17a(H)-20R-Ethyldiacholestane (S17) 70.7 1.99 93 75.80 65 13 d29S S19 13a,17b-20S-Ethyldiacholestane (S17) 1.70 70.7 1.99 93 75.80 65 13									135
H3SS T34 Pentakishomohopane-22R 27.5 1.99 91 30.20 65 11 H3SR T35 Pentakishomohopane-22R 24.4 1.99 104 23.50 65 13 d27S S4 136(H), 17a(H)-20S-Dacholestane 26.2 1.99 19 25.00 65 13 d27R S5 13b(H), 17a(H)-20S-Dacholestane 26.2 1.99 99 26.30 65 13 d28S S8 13b, 17a-20S-Methyldiacholestane 26.2 1.99 97 25.70 65 13 aa27R S12 14a(H), 17a(H)-20S-Cholestane/13b(H), 17a(H)-20S-Ethyldiacholestane (S12) 55.0 1.99 85 65.00 65 13 d29R S18 Unknown Sterane (S18) 22.5 1.99 19 37.80 65 13 d29S S19 13a, 17b-20S-Ethyldiacholestane 32.61 1.99 94 37.30 65 13 d29S S19 13a, 17b-20S-Methylcholestane 36.8	H34S	T32	Tetrakishomohopane-22S	26.1	1.9	87	29.80	65	135
H3SR T35 Pentakishomohopane-22R 24.4 1.99 104 23.50 65 12 d27R S4 13b(H),17a(H)-20R-Diacholestane 53.5 1.99 107 50.00 65 13 d2R S5 13b(H),17a(H)-20R-Diacholestane 26.2 1.99 99 26.30 65 13 d2RS S8 13b,17b-20S-Methyldiacholestane (15b(H),17a(H)-20S-Ethyldiacholestane (S12) 55.0 1.99 97 25.70 65 13 aa27R S17 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S17) 70.7 1.99 33 75.80 65 13 d29R S18 Unknown Sterane (S18) 1.01 2.25 1.99 105 21.30 65 13 d29R S18 Unknown Sterane (S18) 2.62 1.99 67 3.90 65 13 d29R S19 13a,17b-20S-Ethyldiacholestane 3.61 1.99 67 3.90 65 13 aa28B S20 1									135
d27S S4 13b(H),17a(H)-20S-Diacholestane 53,5 1,99 107 50,00 65 13 d27R S5 13b(H),17a(H)-20S-Diacholestane 26,2 1,99 99 26,30 65 13 d28S S8 13b,17a-20S-Methyldiacholestane 24,9 1,99 97 25,70 65 13 aa27R S12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) 55,0 1,99 93 75,80 65 13 d29R S18 Unknown Sterane (S18) 22,5 1,99 105 21,30 65 13 d29S S19 13a 17b-20S-Ethyldiacholestane 22,5 1,99 105 21,30 65 13 a28B S20 14a,17a-20S-Methylcholestane 34,9 1,99 94 37,30 65 13 aa28B S20 14a,17a-20S-Methylcholestane 30,3 1,99 88 34,50 65 13 aa29S S25 14a(H),17a(H)-20S-Ethylcholestane <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>135</td></td<>									135
d27R S5 13b(H),17a(H)-20R-Diacholestane 26,2 1,99 99 26,30 65 13 d28S S8 13b,17a-20S-Methyldiacholestane 24,9 1,99 97 25,70 65 13 aa27S S12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) 55,0 1.99 85 65,00 65 13 aa27R S17 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) 70,7 1.99 33 75,80 65 13 d29R S18 Unknown Sterane (S18) 2.62 1.99 67 3.90 65 13 d29S S19 13a,17b-20S-Ethyldiacholestane 2.62 1.99 67 3.90 65 13 aa28S S20 14a,17a-20S-Ethyldicholestane 30.3 1.99 88 34,50 65 13 aa29S S25 14a(H),17a(H)-20S-Ethylcholestane 55.1 1.99 18 51,00 65 13 aa29R S28 14a(H)									135
d28S S8 13b,17a-20S-Methyldiacholestane 24,9 1,99 97 25,70 65 12 aa27R S12 14a(H),17a(H)-20S-Chelestaner) 13b(H),17a(H)-20R-Ethyldiacholestane (S12) 55,0 1,99 85 65,00 65 13 aa27R S17 14a(H),17a(H)-20R-Cholestaner) 13b(H),17a(H)-20R-Ethyldiacholestane (S17) 70,7 1,99 33 75,80 65 13 d29R S18 Unknown Sterane (S18) 22,5 1,99 105 21,30 65 13 d29S S19 13a,17b-20S-Ethyldiacholestane 34,9 1,99 67 3,90 65 13 aa28S S20 14a,17a-20S-Methylcholestane 30,3 1,99 88 34,50 65 13 aa29R S24 14a,17a-20S-Methylcholestane 35,1 1,99 108 51,00 65 13 aa29R S28 14a(H),17a(H)-20S-Ethylcholestane 35,1 1,99 81 31,00 65 13 bb27R S14 1									135
aa278 S12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) 55.0 1.99 85 65.00 65 13 a27R S17 14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) 70.7 1.99 93 75.80 65 13 d29R S18 Unknown Sterane (S18) 22.5 1.99 105 21.30 65 13 d29S S19 13a,17b-20S-Ethyldiacholestane 2.62 1.99 67 3.90 65 13 aa28S S20 14a,17a-20S-Methylcholestane 30.3 1.99 88 34.50 65 13 aa29S S25 14a(H),17a(H)-20S-Ethylcholestane 55.1 1.99 108 35.00 65 13 aa29R S28 14a(H),17a(H)-20S-Ethylcholestane 35.9 1.99 91 39.50 65 13 bb27R S14 14b(H),17b(H)-20R-Cholestane 34.9 1.99 84 41.50 65 13 bb28S S22 14									
aa27R S17 14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) 70,7 1,99 33 75,80 65 12 d29R S18 Unknown Sterane (S18) 22,5 1,99 105 21,30 65 13 d29S S19 13a,17b-20S-Ethyldiacholestane 2,62 1,99 67 3,90 65 13 aa28R S20 14a,17a-20S-Methylcholestane 30,3 1,99 88 34,50 65 13 aa29R S24 14a,17a-20R-Methylcholestane 35,1 1,99 108 51,00 65 13 aa29R S28 14a(H),17a(H)-20R-Ethylcholestane 35,9 1,99 91 39,50 65 13 bb27R S14 14b(H),17b(H)-20R-Cholestane 34,9 1,99 81 41,50 65 13 bb27S S15 14b(H),17b(H)-20R-Cholestane 34,9 1,99 81 41,50 65 13 bb28R S22 14b(H)-17b(H)-20S-Cholestane 39,									135
d29R \$18 Unknown Sterane (\$18) 22.5 1.99 105 21.30 65 12 d29S \$19 13a 17b -20S-Erhyldiacholestane 2.62 1.99 67 3.90 65 13 aa28S \$20 14a,17a -20S-Methylcholestane 34.9 1.99 94 37.30 65 13 aa29R \$24 14a,(H),7a(H)-2DS-Erhylcholestane 55.1 1.99 108 34.50 65 13 aa29R \$28 14a(H),17a(H)-2DS-Erhylcholestane 35.9 1.99 91 39.50 65 13 bb27R \$14 14b(H),17b(H)-2DS-Cholestane 34.9 1.99 84 41.50 65 13 bb28R \$22 14b(H),17b(H)-2DS-Cholestane 36.8 1.99 87 42.50 65 13 bb28R \$22 14b(H),17b-QH-2DS-Cholestane 39.2 1.99 88 44.80 65 13 bb28R \$23 14b(H),17b(H)-2DS-Methylcholestane 39.2 1.99									135
d29S S19 13a,17b-20S-Ethyldiacholestane 2.62 1.99 67 3.90 65 12 aa28R S20 14a,17a-20S-Methylcholestane 34,9 1.99 84 37,30 65 13 aa28R S24 14a,17a-20S-Ethylcholestane 30,3 1.99 88 34,50 65 13 aa29R S25 14a(H),17a(H)-20S-Ethylcholestane 35,9 1.99 10 51,00 65 13 bb27R S14 14b(H),17b(H)-20S-Cholestane 34,9 1.99 81 41,50 65 11 bb28R S22 14b,17b-20S-Cholestane 39,2 1.99 87 42,50 65 12 bb28R S22 14b,17b-20S-Cholestane 39,2 1.99 88 44,80 65 13 bb29R S26 14b(H),17b(H)-20S-Cholestane 45,9 1.99 83 55,40 65 13 bb29R S26 14b(H)-17b(H)-20S-Ethylcholestane 58,5 1.99 96 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>135</td>									135
aa28S \$20 14a,17a-20S-Methylcholestane 34,9 1,99 94 37,30 65 13 aa28R \$24 14a,17a-20R-Methylcholestane 30.3 1,99 88 34,50 65 13 aa29S \$25 14a(H),17a(H)-20S-Ethylcholestane 55,1 1,99 108 51.00 65 13 aa29R \$28 14a(H),17a(H)-20R-Ethylcholestane 35,9 1,99 91 39,50 65 13 bb27R \$14 14b(H),17b(H)-20S-Cholestane 34,9 1,99 84 41,50 65 13 bb28R \$25 14b(H),17b(H)-20S-Cholestane 36,8 1,99 87 42,50 65 13 bb28R \$22 14b,17b-20S-Methylcholestane 39,2 1,99 88 44,80 65 13 bb29R \$26 14b(H),17b(H)-20S-Methylcholestane 45,9 1,99 83 55,40 65 13 bb29R \$26 14b(H),17b(H)-20S-Ethylcholestane 58,5 1,99 96 60,90 65 13 bb29S \$27 14b(H),17b(H)-20S-Ethylcholestane 28,9 1,99 72 40,30 65 13									135
aa29S \$25 14a(H),17a(H)-20S-Ethylcholestane 55.1 1.99 108 51.00 65 13 aa29R \$28 14a(H),17a(H)-20R-Ethylcholestane 35.9 1.99 91 39.50 65 13 bb27R \$14 14b(H),17b(H)-20R-Cholestane 34.9 1.99 84 41.50 65 13 bb28R \$15 14b(H),17b(H)-20R-Cholestane 36.8 1.99 87 42.50 65 13 bb28R \$22 14b,17b-20R-Methylcholestane 45.9 1.99 88 44.80 65 13 bb28R \$23 14b,17b-20S-Methylcholestane 45.9 1.99 83 55.40 65 13 bb29R \$26 14b(H),17b(H)-20R-Ethylcholestane 58.5 1.99 86 60.90 65 13 bb29R \$27 14b(H),17b(H)-20R-Ethylcholestane 58.5 1.99 96 60.90 65 13 bb29R \$27 14b(H),17b(H)-20R-Ethylcholestane 28.9 <									135
aa29R S28 14a(H),17a(H)-20R-Ethylcholestane 35,9 1,99 91 39,50 65 15 bb27R S14 14b(H),17b(H)-20R-Cholestane 34,9 1,99 84 41,50 65 15 bb27R S15 14b(H),17b(H)-20R-Cholestane 36,8 1,99 87 42,50 65 13 bb28R S22 14b,17b-20R-Methylcholestane 39,2 1,99 83 44,80 65 13 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane 45,9 1,99 83 35,40 65 13 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane 58,5 1,99 96 60,90 65 13 bb29R S27 14b(H),76H)-20R-Ethylcholestane 28,9 1,99 72 40,30 65 13	aa28R	S24	14a,17a-20R-Methylcholestane	30.3	1.9	88	34.50	65	135
bb27R S14 14b(H),17b(H)-20R-Cholestane 34.9 1.99 84 41.50 65 15 bb27S S15 14b(H),17b(H)-20R-Cholestane 36.8 1.99 87 42.50 65 13 bb28R S22 14b,17b-20R-Methylcholestane 39.2 1.99 88 44.80 65 13 bb28R S23 14b,17b-20S-Methylcholestane 45.9 1.99 83 55.40 65 13 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane 58.5 1.99 96 60.90 65 13 bb29S S27 14b(H),17b(H)-20S-Ethylcholestane 28.9 1.99 72 40.30 65 13			14a(H),17a(H)-20S-Ethylcholestane						135
bb27S S15 14b(H),17b(H)-20S-Cholestane 36.8 1.99 87 42.50 65 15 bb28R S22 14b,17b-20R-Methylcholestane 39.2 1.99 88 44.80 65 15 bb28R S23 14b,17b-20S-Methylcholestane 45.9 1.99 83 55.40 65 13 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane 58.5 1.99 96 60.90 65 13 bb29S S27 14b(H),17b(H)-20S-Ethylcholestane 28.9 1.99 72 40.30 65 13									135
bb28R S22 14b,17b-20R-Methylcholestane 39.2 1.99 88 44.80 65 13 bb28S S23 14b,(17b-20S-Methylcholestane) 45.9 1.99 83 55.40 65 13 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane 58.5 1.99 96 60.90 65 13 bb29S S27 14b(H),17b(H)-20S-Ethylcholestane 28.9 1.99 72 40.30 65 13			14b(H),17b(H)-20R-Cholestane						135
bb28S \$23 14b,17b-20S-Methylcholestane 45.9 1.99 83 55.40 65 13 bb29R \$26 14b(H),17b(H)-20S-Ethylcholestane 58.5 1.99 96 60.90 65 13 bb29S \$27 14b(H),17b(H)-20S-Ethylcholestane 28.9 1.99 72 40.30 65 13									135
bb29R \$26 \$14b(H),17b(H)-20R-Ethylcholestane \$5.5 \$1.99 \$6 \$6.90 \$65 \$1.30 bb29S \$27 \$14b(H),17b(H)-20S-Ethylcholestane \$28.9 \$1.99 \$72 \$40.30 \$65 \$1.30									135 135
bb29S S27 14b(H),17b(H)-20S-Ethylcholestane 28.9 1.99 72 40.30 65 13									135 135
									135
	RC26/SC27TA		C26,20R-+C27,20S-triaromatic steroid	366			293.90	65	135
									135
									135
				199				65	135

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

		Project Name: Cardno ERI - Former XOM Jalk Fee Property							
		Project Number: 850.0087.000							
		Client ID Lab ID	S-16-B26 1610008-02	S-14-B27 1610008-04		S-16-B30 1610008-06		S-6-B28 1610008-07	S-9-B32 1610008-12
		Matrix	Soil	Soil		Soil		Soil	Soil
		Reference Method	Modified 8270D	Modified 8270D		Modified 8270D		Modified 8270D	Modified 8270D
		Batch ID	TS102516B02	TS102516B02		TS102516B02		TS102516B02	TS102516B02
		Date Collected Date Received	10/18/2016 10/20/2016	10/18/2016 10/20/2016		10/18/2016 10/20/2016		10/19/2016 10/21/2016	10/19/2016 10/21/2016
		Date Prepoed	10/20/2016	10/20/2016		10/20/2016		10/21/2016	10/25/2016
		Date Analyzed	11/02/2016	11/02/2016		11/02/2016		11/02/2016	11/02/2016
		Sample Size (wet)	30.32	30.24		30.86		20.1	30.67
		% Solid	84.78	96.48		83.26		84.58	87.62
		File ID Units	F210311628.D μα/Kg	F210311629.D µg/Kg		F210311630.D µg/Kg		F210311631.D µg/Kg	F210311632.D µg/Kg
		Final Volume	2	4		2		16	8
		Dilution	1	1		1		1	1
		Reporting Limit	0.778	1.37		0.778		9.41	2.98
Class	Abbrev	Analytes	Result SSRL		SSRL	Result	SSRL	Result SSRL	Result SSRL
2 2	D0 D1	cis/trans-Decalin C1-Decalins	U 0.778 U 0.778		1.37 1.37	U		5.39 J 9.41 15.4 9.41	29.4 2.98 55.6 2.98
2	D2	C2-Decalins	U 0.778		1.37	ŭ		23.0 9.41	114 2.98
2	D3	C3-Decalins	U 0.778		1.37	Ü		U 9.41	152 2.98
2	D4	C4-Decalins	U 0.778		1.37	U		U 9.41	319 2.98
2 2	BT0 BT1	Benzothiophene C1-Benzo(b)thiophenes	U 0.778 U 0.778		U 1.37 U 1.37	U		0.389 J 9.41 4.98 J 9.41	U 2.98 2.91 J 2.98
2	BT2	C1-Benzo(b)thiophenes C2-Benzo(b)thiophenes	U 0.778		U 1.37	U		7.68 J 9.41	2.91 J 2.98 5.74 2.98
2	BT3	C3-Benzo(b)thiophenes	U 0.778		U 1.37	ū		16.5 9.41	21.2 2.98
2	BT4	C4-Benzo(b)thiophenes	U 0.778		U 1.37	U		U 9.41	43.3 2.98
2	N0 N1	Naphthalene C1-Naphthalenes	2.02 0.778 0.193 JB 0.778		1.37 JB 1.37	5.85 0.244 JE	0.778	15.5 9.41 36.0 9.41	0.790 JB 2.98 1.47 J 2.98
2	N2	C1-Naphthalenes C2-Naphthalenes	U 0.778		U 1.37	U.244 JE		65.7 9.41	1.47 J 2.98 3.84 2.98
2	N3	C3-Naphthalenes	U 0.778		U 1.37	ū		65.9 9.41	8.54 2.98
2	N4	C4-Naphthalenes	U 0.778		U 1.37	U	0.770	49.4 9.41	38.6 2.98
2	B DF	Biphenyl	0.642 J 0.778		1.37 U 1.37	1.41	0.778	4.25 J 9.41 26.7 9.41	1.22 J 2.98 0.871 J 2.98
3	AY	Dibenzofuran Acenaphthylene	0.0500 J 0.778 0.250 JB 0.778		U 1.37 B 1.37	0.0554 J 0.212 JE		26.7 9.41 7.81 J 9.41	0.871 J 2.98 3.29 2.98
3	AE	Acenaphthene	U 0.778		U 1.37	U.L.L.		117 9.41	U 2.98
3	F0	Fluorene	0.113 J 0.778		U 1.37	0.313 J		54.9 9.41	1.39 J 2.98
3	F1 F2	C1-Fluorenes	U 0.778		U 1.37	U		27.0 9.41	10.2 2.98 38.7 2.98
3	F2 F3	C2-Fluorenes C3-Fluorenes	U 0.778 U 0.778		U 1.37 U 1.37	U U		55.0 9.41 101 9.41	38.7 2.98 U 2.98
3	A0	Anthracene	U 0.778		J 1.37	0.131 JE		165 9.41	2.31 J 2.98
3	P0	Phenanthrene	0.516 JB 0.778		JB 1.37	1.24 B		758 9.41	5.92 2.98
3	PA1	C1-Phenanthrenes/Anthracenes	U 0.778		U 1.37	0.258 J		288 9.41	U 2.98
3	PA2 PA3	C2-Phenanthrenes/Anthracenes C3-Phenanthrenes/Anthracenes	U 0.778 U 0.778		U 1.37 1.37	U		175 9.41 116 9.41	44.4 2.98 92.4 2.98
3	PA4	C4-Phenanthrenes/Anthracenes	U 0.778		1.37	ŭ		99.1 9.41	140 2.98
3	RET	Retene	U 0.778		U 1.37	U	0.770	U 9.41	U 2.98
3	DBT0	Dibenzothiophene	0.0377 J 0.778		U 1.37	0.0262 J		32.6 9.41	U 2.98
3	DBT1 DBT2	C1-Dibenzothiophenes C2-Dibenzothiophenes	U 0.778 U 0.778		U 1.37 U 1.37	U U		21.8 9.41 40.2 9.41	U 2.98 U 2.98
3	DBT3	C3-Dibenzothiophenes	U 0.778		1.37	ŭ		54.5 9.41	58.2 2.98
3	DBT4	C4-Dibenzothiophenes	U 0.778		1.37	U		U 9.41	67.8 2.98
4	BF	Benzo(b)fluorene	U 0.778		U 1.37	U		36.4 9.41	U 2.98
4	FL0 PY0	Fluoranthene Pyrene	0.0820 JB 0.778 0.0766 JB 0.778		U 1.37 J 1.37	0.0971 JE 0.0994 JE		855 9.41 865 9.41	6.76 2.98 52.4 2.98
4	FP1	C1-Fluoranthenes/Pyrenes	U 0.778		1.37	U.0004 U		336 9.41	66.9 2.98
4	FP2	C2-Fluoranthenes/Pyrenes	U 0.778		1.37	U		271 9.41	55.0 2.98
4	FP3	C3-Fluoranthenes/Pyrenes	U 0.778		1.37	U		178 9.41	88.3 2.98
4	FP4 NBT0	C4-Fluoranthenes/Pyrenes Naphthobenzothiophenes	U 0.778 U 0.778		1.37 U 1.37	U		179 9.41 52.8 9.41	158 2.98 U 2.98
4	NBT1	C1-Naphthobenzothiophenes	U 0.778		1.37	Ü		57.3 9.41	18.6 2.98
4	NBT2	C2-Naphthobenzothiophenes	U 0.778	54.2	G 1.37	ū	0.778	U 9.41	43.0 2.98
4	NBT3	C3-Naphthobenzothiophenes	U 0.778		1.37	U		U 9.41	35.9 2.98
4	NBT4 BA0	C4-Naphthobenzothiophenes Benz[alanthracene	U 0.778 0.0471 J 0.778		U 1.37 U 1.37	0.0534 J	0.770	U 9.41 407 9.41	U 2.98 U 2.98
4	C0	Benzjajantnracene Chrysene/Triphenylene	0.04/1 J 0.7/8 0.152 JB 0.778		1.37	0.0534 J 0.317 JE		407 9.41 535 9.41	18.9 2.98
4	BC1	C1-Chrysenes	U 0.778	17.0	1.37	U	0.778	265 9.41	25.8 2.98
4	BC2	C2-Chrysenes	U 0.778		1.37	U		145 9.41	42.7 2.98
4	BC3 BC4	C3-Chrysenes C4-Chrysenes	U 0.778 U 0.778		1.37 U 1.37	U		304 9.41 309 9.41	56.3 2.98 39.0 2.98
4	BC4	C4*CittySettes	0 0.778	•	0 1.3/	U	0.778	309 9.41	39.0 2.98

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000										
		Client ID	S-16-B26		S-14-B27		S-16-B30		S-6-B28		S-9-B32	
		Lab ID Matrix	1610008-02 Soil		1610008-04 Soil		1610008-06 Soil		1610008-07 Soil		1610008-12 Soil	
		Reference Method Batch ID	Modified 8270D TS102516B02		Modified 8270D TS102516B02		Modified 8270D TS102516B02		Modified 8270D TS102516B02		Modified 8270D TS102516B02	
		Date Collected	10/18/2016		10/18/2016		10/18/2016		10/19/2016		10/19/2016	
		Date Received Date Prepped	10/20/2016 10/25/2016		10/20/2016 10/25/2016		10/20/2016 10/25/2016		10/21/2016 10/25/2016		10/21/2016 10/25/2016	
		Date Analyzed Sample Size (wet)	11/02/2016 30.32		11/02/2016 30.24		11/02/2016 30.86		11/02/2016 20.1		11/02/2016 30.67	
		% Solid	84.78		96.48		83.26		84.58		87.62	
		File ID Units	F210311628.D µg/Kg		F210311629.D µg/Kg		F210311630.D µg/Kg		F210311631.D µg/Kg		F210311632.D µg/Kg	
		Final Volume Dilution	2		4		2		16		8	
		Reporting Limit	0.778		1.37		0.778		9.41		2.98	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
5 5	BBF BJKF	Benzo[b]fluoranthene Benzo[j]fluoranthene/Benzo[k]fluoranthene	0.0432 0.0390		1.99 0.797	1.37 J 1.37		U 0.778 U 0.778	332 411	9.41 9.41		2.98 J 2.98
5 5	BAF BEP	Benzo[a]fluoranthene Benzo[e]pyrene			0.441 4.14	J 1.37 1.37		U 0.778 U 0.778	72.8 284	9.41 9.41	0.689 7.86	J 2.98 2.98
5	BAP	Benzo[a]pyrene	0.0597	0.778		U 1.37		U 0.778	467	9.41		U 2.98
5 6 6	PER IND	Perylene Indeno[1,2,3-cd]pyrene	0.0760		0.496 0.750	J 1.37 J 1.37		U 0.778 U 0.778	200 301	9.41 9.41	1.41	J 2.98 J 2.98
6	DA GHI	Dibenz[ah]anthracene/Dibenz[ac]anthracene Benzo[q,h,i]perylene	0.111 · 0.0876 ·	J 0.778 J 0.778	1.21	U 1.37 J 1.37		U 0.778 U 0.778	85.2 363	9.41 9.41		U 2.98 J 2.98
6	CAR	Carbazole		J 0.778	1.21	U 1.37		U 0.778	78.3	9.41		U 2.98
3 3 3	4MDT 2MDT	4-Methyldibenzothiophene 2/3-Methyldibenzothiophene		J 0.778 J 0.778		U 1.37 U 1.37		U 0.778 U 0.778	7.94	J 9.41		U 2.98 U 2.98
3	1MDT 3MP	1-Methyldibenzothiophene 3-Methylphenanthrene		J 0.778 J 0.778		U 1.37 U 1.37	0.0273	U 0.778 J 0.778	3.55 62.6	J 9.41 9.41		U 2.98 U 2.98
3	2MP	2-Methylphenanthrene		J 0.778		U 1.37	0.0273	J 0.778	77.8	9.41		U 2.98
3	2MA 9MP	2-Methylanthracene 9/4-Methylphenanthrene				U 1.37 U 1.37	0.0402	U 0.778 J 0.778	33.9 60.0	9.41 9.41		U 2.98 U 2.98
3	1MP	1-Methylphenanthrene		J 0.778	235	U 1.37	0.0503	J 0.778	50.9	9.41		U 2.98
t23 t24	T4 T5	C23 Tricyclic Terpane C24 Tricyclic Terpane			235 146	1.37 1.37		U 0.778 U 0.778	69.9 53.9	9.41 9.41	424 274	2.98 2.98
t25 te24	T6 T6a	C25 Tricyclic Terpane C24 Tetracyclic Terpane			133 26.0	1.37 1.37		U 0.778	57.4	9.41 J 9.41	250 43.5	2.98 2.98
t26S	T6b	C26 Tricyclic Terpane-22S		J 0.778	55.1	1.37		U 0.778	33.5	9.41	109	2.98
t26R t28S	T6c T7	C26 Tricyclic Terpane-22R C28 Tricyclic Terpane-22S			50.9 57.2	1.37 1.37		U 0.778 U 0.778	33.0 58.8	9.41 9.41	96.1 91.5	2.98 2.98
t28R t29S	T8 T9	C28 Tricyclic Terpane-22R C29 Tricyclic Terpane-22S			53.7 47.2	1.37 1.37		U 0.778 U 0.778	67.8 96.8	9.41 9.41	96.3 87.2	2.98 2.98
t29R	T10	C29 Tricyclic Terpane-22R	l l	J 0.778	53.0	1.37		U 0.778	60.0	9.41	104	2.98
Ts t30S	T11 T11a	18a-22,29,30-Trisnorneohopane-TS C30 Tricyclic Terpane-22S		J 0.778 J 0.778	63.8 42.9	1.37 1.37		U 0.778 U 0.778	45.5 72.4	9.41 9.41	91.5 71.1	2.98 2.98
t30R	T11b	C30 Tricyclic Terpane-22R		J 0.778	40.4	1.37		U 0.778	85.1	9.41	63.0	2.98
Tm BNH	T12 T14a	17a(H)-22,29,30-Trisnorhopane-TM 17a/b,21b/a 28,30-Bisnorhopane		J 0.778	60.0 64.5	1.37 1.37		U 0.778 U 0.778	64.6 209	9.41 3 9.41	100 149	2.98 2.98
25N H29	T14b T15	17a(H),21b(H)-25-Norhopane 30-Norhopane			18.8 164	1.37 1.37		U 0.778 U 0.778	31.4 144	9.41 9.41	30.4 287	2.98 2.98
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts		J 0.778	65.4	1.37		U 0.778	182	3 9.41	115	2.98
X M29	X T17	17a(H)-Diahopane 30-Normoretane		J 0.778 J 0.778	34.5 30.6	1.37 1.37		U 0.778 U 0.778	23.0 72.9	9.41 3 9.41	48.2 49.1	2.98 2.98
OL H30	T18 T19	18a(H)&18b(H)-Oleananes Hopane			43.8 325	1.37 1.37		U 0.778	375 538	9.41 9.41	88.6 537	2.98 2.98
M30	T20	Moretane	ı	J 0.778	53.7	1.37		U 0.778	138	9.41	88.8	2.98
H31S H31R	T21 T22	30-Homohopane-22S 30-Homohopane-22R		J 0.778	114 109	1.37 1.37		U 0.778 U 0.778	139 144	9.41 9.41	176 162	2.98 2.98
T22A H32S	T22A T26	T22a-Gammacerane/C32-diahopane 30.31-Bishomohopane-22S		J 0.778 J 0.778	22.2 76.9	1.37 1.37		U 0.778 U 0.778	82.2 100	9.41 9.41	33.9 118	2.98 2.98
H32R	T27	30,31-Bishomohopane-22R		J 0.778	56.3	1.37		U 0.778	74.5	9.41	84.3	2.98
H33S H33R	T30 T31	30,31-Trishomohopane-22S 30,31-Trishomohopane-22R		J 0.778 J 0.778	60.5 39.9	1.37 1.37		U 0.778 U 0.778	118 60.6	9.41 9.41	88.6 59.9	2.98 2.98
H34S	T32	Tetrakishomohopane-22S		J 0.778	37.1	1.37	6.06	G 0.778	78.7	9.41	54.6	2.98
H34R H35S	T33 T34	Tetrakishomohopane-22R Pentakishomohopane-22S	l l	J 0.778 J 0.778	24.3 27.0	1.37 1.37		U 0.778 U 0.778	56.7 82.4	9.41 9.41	37.7 40.5	2.98 2.98
H35R d27S	T35 S4	Pentakishomohopane-22R 13b(H),17a(H)-20S-Diacholestane		J 0.778 J 0.778	34.1 189	G 1.37 1.37		U 0.778 U 0.778	81.5 56.4	9.41 9.41	31.1 372	2.98 2.98
d27R	S5	13b(H),17a(H)-20R-Diacholestane	l	J 0.778	113	1.37		U 0.778	24.1	9.41	216	2.98
d28S aa27S	S8 S12	13b,17a-20S-Methyldiacholestane 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)			123 284	1.37 1.37		U 0.778 U 0.778	97.3 233	9.41 9.41	213 596	2.98 2.98
aa27R d29R	S17 S18	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) Unknown Sterane (S18)			311 60.2	1.37 1.37		U 0.778 U 0.778	395 108	9.41 9.41	673 103	2.98 2.98
d29S	S19	13a,17b-20S-Ethyldiacholestane		J 0.778	13.1	1.37		U 0.778		J 9.41	26.2	2.98
aa28S aa28R	S20 S24	14a,17a-20S-Methylcholestane 14a,17a-20R-Methylcholestane			122 157	1.37 1.37		U 0.778 U 0.778	260 304	9.41 9.41	254 396	2.98 2.98
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	ı	J 0.778	125	1.37		U 0.778	308	9.41	240	2.98
aa29R bb27R	S28 S14	14a(H),17a(H)-20R-Ethylcholestane 14b(H),17b(H)-20R-Cholestane		J 0.778	162 133	1.37 1.37		U 0.778 U 0.778	248 148	9.41 9.41	331 294	2.98 2.98
bb27S bb28R	S15 S22	14b(H),17b(H)-20S-Cholestane 14b,17b-20R-Methylcholestane		J 0.778 J 0.778	140 153	1.37 1.37		U 0.778 U 0.778	131 295	9.41 9.41	294 346	2.98 2.98
bb28S	S23	14b,17b-20S-Methylcholestane		J 0.778	202	1.37		U 0.778	332	9.41	384	2.98
bb29R bb29S	S26 S27	14b(H),17b(H)-20R-Ethylcholestane 14b(H),17b(H)-20S-Ethylcholestane		J 0.778	187 153	1.37 1.37		U 0.778 U 0.778	234 212	9.41 9.41	374 230	2.98 2.98
RC26/SC27TA SC28TA	RC26/SC27TA SC28TA	C26,20R- +C27,20S- triaromatic steroid C28,20S-triaromatic steroid	0.528	J 0.778 J 0.778	429 171	1.37 1.37		U 0.778 U 0.778	2700 2050	9.41 9.41	514 214	2.98 2.98
RC27TA	RC27TA	C27,20R-triaromatic steroid		J 0.778	252	1.37		U 0.778	519	9.41	312	2.98
RC28TA	RC28TA	C28,20R-triaromatic steroid		J 0.778	116	1.37		U 0.778	493	9.41	128	2.98
		Surrogates (% Recovery)										
		Naphthalene-d8	76 91		84 100		78 94		81		81	
		Phenanthrene-d10 Benzo[a]pyrene-d12	76		100 89		82		93 91		91 76	
		5B(H)Cholane	N	/A		N/A		N/A	N	/A		N/A

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000								
		Client ID	S-8-B24	S-5-B34		S-9-B34		S-3-B35		S-5-B36
		Lab ID	1610008-15	1610008-20		1610008-21		1610008-22		1610008-23
		Matrix Reference Method	Soil Modified 8270D	Soil Modified 8270D		Soil Modified 8270D		Soil Modified 8270D		Soil Modified 8270D
		Batch ID	TS102516B02	TS102516B02		TS102516B02		TS102516B02		TS102516B02
		Date Collected	10/20/2016	10/20/2016		10/20/2016		10/20/2016		10/21/2016
		Date Received Date Prepped	10/22/2016	10/22/2016		10/22/2016 10/25/2016		10/22/2016 10/25/2016		10/22/2016 10/25/2016
		Date Prepped Date Analyzed	10/25/2016 11/02/2016	10/25/2016 11/02/2016		10/25/2016		10/25/2016		11/02/2016
		Sample Size (wet)	25.18	20.14		20.77		15.3		30.32
		% Solid	88.49	92.01		91.08		92.76		89.64
		File ID Units	F210311634.D μg/Kg	F210311635.D µg/Kg		F210311636.D µg/Kg		F210311637.D µg/Kg		F210311639.D µg/Kg
		Final Volume	рц/кц 2	3.33		10		20		2
		Dilution	1	1		1		1		1
		Reporting Limit	0.898	1.80		5.29		14.1		0.736
Class 2	Abbrev D0	Analytes cis/trans-Decalin	Result SS 9.39 0.8		SSRL 1.80	Result 2.94 J	SSRL 5.29	Result	U 14.1	Result SSRL U 0.736
2	D1	C1-Decalins	16.1 0.8	98 25.3	1.80	11.2	5.29		U 14.1	U 0.736
2	D2	C2-Decalins	19.2 0.8		1.80	19.0	5.29		U 14.1	U 0.736
2	D3 D4	C3-Decalins C4-Decalins	9.72 0.8 7.93 0.8		1.80 1.80	24.0 37.1	5.29 5.29		U 14.1 U 14.1	U 0.736 U 0.736
2	BT0	Benzothiophene	0.129 J 0.8		J 1.80	0.935 J	5.29		U 14.1	U 0.736
2	BT1	C1-Benzo(b)thiophenes	0.893 J 0.8		1.80	4.93 J	5.29		U 14.1	U 0.736
2	BT2 BT3	C2-Benzo(b)thiophenes C3-Benzo(b)thiophenes	1.14 0.8 2.04 0.8		1.80 1.80	4.62 J 14.0	5.29 5.29		U 14.1 U 14.1	U 0.736 U 0.736
2	BT4	C4-Benzo(b)thiophenes	1.89 0.8		1.80	15.3	5.29		U 14.1	U 0.736
2	N0	Naphthalene	1.19 0.8	98 2.00	1.80	1.62 J	5.29	2.50	J 14.1	0.179 JB 0.736
2	N1 N2	C1-Naphthalenes C2-Naphthalenes	1.82 0.8 3.45 0.8		1.80 1.80	2.79 J 8.40	5.29 5.29		J 14.1 J 14.1	0.271 JB 0.736 0.752 0.736
2	N2 N3	C2-Naphthalenes C3-Naphthalenes	3.45 U.8 4.54 U.8		1.80	21.5	5.29	23.1	14.1	1.49 0.736
2	N4	C4-Naphthalenes	4.85 0.8		1.80	32.2	5.29		U 14.1	2.29 0.736
2	В	Biphenyl	0.752 J 0.8		JB 1.80	1.04 J	5.29	1.25	J 14.1	0.109 JB 0.736
3	DF AY	Dibenzofuran Acenaphthylene	0.222 J 0.8 1.56 B 0.8		J 1.80 1.80	1.06 J 2.70 J	5.29 5.29	0.585 2.65	J 14.1 J 14.1	0.0514 J 0.736 0.797 B 0.736
3	AE	Acenaphthene	0.502 JB 0.8		J 1.80	1.07 J			J 14.1	U 0.736
3	F0	Fluorene	0.463 J 0.8		J 1.80	2.20 J	5.29		J 14.1	0.173 J 0.736
3	F1	C1-Fluorenes	0.930 0.8		1.80	9.91	5.29		U 14.1	0.341 J 0.736
3	F2 F3	C2-Fluorenes C3-Fluorenes	2.83 0.8 4.71 0.8		1.80 1.80	74.3 148	5.29 5.29		U 14.1 U 14.1	2.20 0.736 3.60 0.736
3	A0	Anthracene	2.04 0.8	98 2.59	1.80	4.15 J	5.29	3.68	J 14.1	0.816 0.736
3	P0	Phenanthrene	5.06 0.8		1.80	15.0	5.29	8.18	J 14.1	0.550 JB 0.736
3	PA1 PA2	C1-Phenanthrenes/Anthracenes C2-Phenanthrenes/Anthracenes	5.34 0.8 8.02 0.8		1.80 1.80	68.3 193	5.29 5.29	10.6 18.1	J 14.1 14.1	1.72 0.736 3.79 0.736
3	PA3	C3-Phenanthrenes/Anthracenes	8.90 0.8		1.80	261	5.29	39.9	14.1	4.80 0.736
3	PA4	C4-Phenanthrenes/Anthracenes	9.38 0.8	98 33.8	1.80	184	5.29	68.4	14.1	U 0.736
3	RET DBT0	Retene	U 0.8		U 1.80	U	5.29		U 14.1	U 0.736 0.0929 J 0.736
3	DBT0 DBT1	Dibenzothiophene C1-Dibenzothiophenes	0.379 J 0.8 0.934 0.8		J 1.80 1.80	2.85 J 12.5	5.29 5.29		J 14.1 J 14.1	0.0929 J 0.736 0.516 J 0.736
3	DBT2	C2-Dibenzothiophenes	2.97 0.8		1.80	58.8	5.29	14.4	14.1	U 0.736
3	DBT3	C3-Dibenzothiophenes	5.45 0.8		1.80	106	5.29	31.1	14.1	U 0.736
3	DBT4 BF	C4-Dibenzothiophenes Benzo(b)fluorene	6.20 0.8 1.09 0.8		1.80 J 1.80	91.8 10.2	5.29 5.29	48.5 2.80	14.1 J 14.1	U 0.736 U 0.736
4	FL0	Fluoranthene	15.1 0.8		1.80	14.6	5.29	24.9	14.1	0.538 JB 0.736
4	PY0	Pyrene	20.2 0.8		1.80	33.0	5.29	28.0	14.1	0.765 0.736
4	FP1 FP2	C1-Fluoranthenes/Pyrenes	12.3 0.8		1.80	112	5.29	47.3	14.1	U 0.736
4	FP2 FP3	C2-Fluoranthenes/Pyrenes C3-Fluoranthenes/Pyrenes	15.3 0.8 19.7 0.8		1.80 1.80	184 286	5.29 5.29	123 264	14.1 14.1	3.37 0.736 7.24 0.736
4	FP4	C4-Fluoranthenes/Pyrenes	26.3 0.8		1.80	340	5.29	348	14.1	10.2 0.736
4	NBT0	Naphthobenzothiophenes	3.52 0.8		1.80	13.3	5.29	11.7	J 14.1	U 0.736
4	NBT1 NBT2	C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes	7.87 0.8 17.9 0.8		1.80 1.80	72.0 120	5.29 5.29	82.4 244	14.1 14.1	2.77 0.736 U 0.736
4	NBT3	C3-Naphthobenzothiophenes	23.1 0.8		1.80	125	5.29	388	14.1	U 0.736
4	NBT4	C4-Naphthobenzothiophenes	27.2 0.8	98 31.1	1.80	108	5.29	422	14.1	U 0.736
4	BA0	Benz[a]anthracene	15.0 0.8		1.80	9.45	5.29	16.6	14.1	0.222 J 0.736
4	C0 BC1	Chrysene/Triphenylene C1-Chrysenes	24.2 0.8 16.3 0.8		1.80 1.80	79.1 138	5.29 5.29	53.1 128	14.1 14.1	0.478 J 0.736 1.58 0.736
4	BC2	C2-Chrysenes	26.0 0.8		1.80	210	5.29	404	14.1	2.90 0.736
4	BC3	C3-Chrysenes	55.2 0.8	98 73.9	1.80	302	5.29	774	14.1	U 0.736
4	BC4	C4-Chrysenes	46.3 0.8	98 56.8	1.80	234	5.29	627	14.1	U 0.736

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000										
		Client ID	S-8-B24		S-5-B34		S-9-B34		S-3-B35		S-5-B36	
		Lab ID Matrix	1610008-15 Soil		1610008-20 Soil		1610008-21 Soil		1610008-22 Soil		1610008-23 Soil	
		Reference Method Batch ID	Modified 8270D TS102516B02		Modified 8270D TS102516B02		Modified 8270D TS102516B02		Modified 8270D TS102516B02		Modified 8270D TS102516B02	
		Date Collected	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/21/2016	
		Date Received Date Prepped	10/22/2016 10/25/2016		10/22/2016		10/22/2016 10/25/2016		10/22/2016		10/22/2016	
		Date Analyzed	11/02/2016		11/02/2016		11/02/2016		11/02/2016		11/02/2016	
		Sample Size (wet) % Solid	25.18 88.49		20.14 92.01		20.77 91.08		15.3 92.76		30.32 89.64	
		File ID Units	F210311634.D µg/Kg		F210311635.D µg/Kg		F210311636.D µg/Kg		F210311637.D µg/Kg		F210311639.D µg/Kg	
		Final Volume	2		3.33		10		20		2	
		Dilution Reporting Limit	0.898		1.80		5.29		1 14.1		0.736	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
5 5	BBF BJKF	Benzo[b]fluoranthene Benzo[j]fluoranthene/Benzo[k]fluoranthene	30.8 28.5	0.898	9.11 8.00	1.80 1.80	28.5 15.3	5.29 5.29	39.2 23.8	14.1 14.1	0.435 J 0.361 J	0.736 0.736
5 5	BAF BEP	Benzo[a]fluoranthene Benzo[e]pyrene	4.55 33.7	0.898	2.32 15.0	1.80 1.80	3.67 47.5	J 5.29 5.29	9.74 J 84.2	14.1 14.1	0.947	0.736
5	BAP	Benzo[a]pyrene	30.0	0.898	11.7	1.80	17.4	5.29	33.7	14.1	0.383 J	0.736
5 6 6	PER IND	Perylene Indeno[1,2,3-cd]pyrene	19.0 35.7	0.898	18.1 11.0	1.80 1.80	39.9 23.6	5.29 5.29	166 33.4	14.1 14.1	1.06 0.700 J	0.736 0.736
6	DA GHI	Dibenz[ah]anthracene/Dibenz[ac]anthracene Benzo(q,h,i]perylene	12.7 40.7	0.898	2.98 19.0	1.80 1.80	9.65 35.1	5.29 5.29	16.2 62.7	14.1 14.1	1.99	0.736
3	CAR	Carbazole	0.766	J 0.898	1.57	J 1.80	5.88	5.29	1.53 J	14.1	0.147 J	0.736
3	4MDT 2MDT	4-Methyldibenzothiophene 2/3-Methyldibenzothiophene	0.373 29.1	0.898 0.898	3.06	1.80 U 1.80	6.22	5.29 J 5.29	1.24 J U	14.1 14.1	0.108 J U	0.736
3 3 3	1MDT 3MP	1-Methyldibenzothiophene 3-Methylphenanthrene	0.191 1.06	J 0.898 0.898	1.03 4.99	J 1.80 1.80	3.10 ·	J 5.29 5.29	1.41 J 2.28 J	14.1 14.1	0.157 J 0.145 J	0.736 0.736
3	2MP	2-Methylphenanthrene	1.24	0.898	5.41	1.80	15.5	5.29	1.87 J	14.1	0.152 J	0.736
3	2MA 9MP	2-Methylanthracene 9/4-Methylphenanthrene	0.588 、 1.41	J 0.898 0.898	1.68 6.24	J 1.80 1.80	4.67 19.7	J 5.29 5.29	1.91 J 2.16 J	14.1 14.1	0.368 J 0.372 J	0.736 0.736
3	1MP	1-Methylphenanthrene	0.907 8.09	0.898	3.94 28.3	1.80	10.4 142	5.29	1.70 J 36.5	14.1 14.1	7.09	0.736
t24	T4 T5	C23 Tricyclic Terpane C24 Tricyclic Terpane	5.58	0.898	23.2	1.80	149	5.29	28.2	14.1	4.62	0.736 0.736
t25 te24	T6 T6a	C25 Tricyclic Terpane C24 Tetracyclic Terpane	7.09 6.40	0.898	27.7 5.63	1.80	191 18.8	5.29 5.29	46.9 19.3	14.1 14.1	4.02 U	0.736
t26S	T6b	C26 Tricyclic Terpane-22S	3.28	0.898	12.8	1.80	68.0	5.29	31.7	14.1	1.61	0.736
t26R t28S	T6c T7	C26 Tricyclic Terpane-22R C28 Tricyclic Terpane-22S	3.30 6.12	0.898	13.0 20.3	1.80 1.80	69.8 110	5.29 5.29	33.4 58.1	14.1 14.1	2.50 U	0.736
t28R t29S	T8 T9	C28 Tricyclic Terpane-22R C29 Tricyclic Terpane-22S	7.18 8.99	0.898	23.3 27.8	1.80 1.80	107 134	5.29 5.29	65.1 62.9	14.1 14.1	4.07	0.736
t29R	T10	C29 Tricyclic Terpane-22R	10.1	0.898	23.6	1.80	130	5.29	76.7	14.1	2.33	0.736
Ts t30S	T11 T11a	18a-22,29,30-Trisnorneohopane-TS C30 Tricyclic Terpane-22S	8.49 11.0	0.898	19.2 22.4	1.80 1.80	76.3 142	5.29 5.29	94.4 137	14.1 14.1	2.92 3.22	0.736 0.736
t30R	T11b T12	C30 Tricyclic Terpane-22R	12.3 14.4	0.898	27.8 29.4	1.80	146	5.29	96.7	14.1	4.95	0.736
Tm BNH	T14a	17a(H)-22,29,30-Trisnorhopane-TM 17a/b,21b/a 28,30-Bisnorhopane	48.3	0.898	69.2	1.80 G 1.80	104 258	5.29 3 5.29	166 661 G		5.81 13.7 G	0.736 0.736
25N H29	T14b T15	17a(H),21b(H)-25-Norhopane 30-Norhopane	4.93 45.4	0.898	12.9 75.0	1.80 1.80	87.8 354	5.29 5.29	73.6 818	14.1 14.1	9.91	0.736 0.736
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	25.2	3 0.898	58.0	G 1.80	190	3 5.29	336 G	14.1	9.01 G	0.736
X M29	X T17	17a(H)-Diahopane 30-Normoretane	1.21 17.7	0.898	8.14 27.0	1.80 1.80	21.5 103		29.0 294 G		2.06 U	0.736 0.736
OL H30	T18 T19	18a(H)&18b(H)-Oleananes Hopane	59.6 C	0.898	111 215	G 1.80 1.80	394 (874	5.29 5.29	709 G 1380	14.1	16.7 G 26.1	0.736
M30	T20	Moretane	23.5	0.898	46.0	1.80	178	5.29	308	14.1	9.46	0.736
H31S H31R	T21 T22	30-Homohopane-22S 30-Homohopane-22R	34.9 39.2	0.898	60.3 60.1	1.80 1.80	238 281	5.29 5.29	469 433	14.1 14.1	8.91 7.09	0.736
T22A H32S	T22A T26	T22a-Gammacerane/C32-diahopane 30.31-Bishomohopane-22S	18.6 25.2	0.898	26.2 44.9	1.80 1.80	84.3 160	5.29 5.29	281 328	14.1 14.1	3.16 6.37	0.736
H32R	T27	30,31-Bishomohopane-22R	18.0	0.898	31.3	1.80	120	5.29	280	14.1	4.87	0.736
H33S H33R	T30 T31	30,31-Trishomohopane-22S 30,31-Trishomohopane-22R	26.4 21.4	0.898	39.6 27.3	1.80 1.80	155 98.9	5.29 5.29	371 282	14.1 14.1	5.54 3.51	0.736
H34S H34R	T32	Tetrakishomohopane-22S	17.7 13.4	0.898	30.9 23.1	1.80	98.2 81.4	5.29	279 251	14.1 14.1	3.16	0.736 0.736
H35S	T33 T34	Tetrakishomohopane-22R Pentakishomohopane-22S	18.9	0.898	28.5	1.80	94.9	5.29	325	14.1	4.63	0.736
H35R d27S	T35 S4	Pentakishomohopane-22R 13b(H).17a(H)-20S-Diacholestane	23.5 13.5	0.898	35.0 26.2	G 1.80 1.80	147 (145	5.29 5.29	298 96.2	14.1 14.1	U 3.41	0.736
d27R d28S	S5	13b(H),17a(H)-20R-Diacholestane	5.37 23.8	0.898	9.65	1.80	61.8	5.29	34.7 358	14.1	1.50	0.736
028S aa27S	S8 S12	13b,17a-20S-Methyldiacholestane 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	23.8 81.3	0.898	34.6 106	1.80 1.80	657	5.29	358 955	14.1 14.1	7.68 16.6	0.736 0.736
aa27R d29R	S17 S18	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) Unknown Sterane (S18)	139 16.1	0.898	168 23.5	1.80 1.80	1140 82.5	5.29 5.29	1280 132	14.1 14.1	20.0 7.19	0.736
d29S	S19	13a,17b-20S-Ethyldiacholestane	8.36	0.898	6.51	1.80	43.0	5.29	107	14.1	0.981	0.736
aa28S aa28R	S20 S24	14a,17a-20S-Methylcholestane 14a,17a-20R-Methylcholestane	129 163	0.898	125 128	1.80 1.80	1030 1340	5.29 5.29	1840 2330	14.1 14.1	13.0 13.1	0.736
aa29S aa29R	S25 S28	14a(H),17a(H)-20S-Ethylcholestane 14a(H),17a(H)-20R-Ethylcholestane	146 203	0.898	131 130	1.80 1.80	904 1200	5.29 5.29	1910 2840	14.1 14.1	14.2 15.8	0.736
bb27R	S14	14b(H),17b(H)-20R-Cholestane	27.3	0.898	54.2	1.80	376	5.29	243	14.1	4.62	0.736
bb27S bb28R	S15 S22	14b(H),17b(H)-20S-Cholestane 14b,17b-20R-Methylcholestane	24.9 97.3	0.898	53.3 130	1.80 1.80	352 1140	5.29 5.29	284 1170	14.1 14.1	4.15 12.9	0.736 0.736
bb28S bb29R	S23	14b,17b-20S-Methylcholestane	125	0.898	146	1.80	1320	5.29	1490	14.1	16.9	0.736
bb29S	S26 S27	14b(H),17b(H)-20R-Ethylcholestane 14b(H),17b(H)-20S-Ethylcholestane	117 90.1	0.898	113 86.1	1.80 1.80	1000 561	5.29 5.29	1540 787	14.1 14.1	11.9 10.2	0.736 0.736
RC26/SC27TA SC28TA	RC26/SC27TA SC28TA	C26,20R- +C27,20S- triaromatic steroid C28,20S-triaromatic steroid	921 607	0.898	724 380	1.80 1.80	3290 1500	5.29 5.29	12800 6980	14.1 14.1	128 68.5	0.736 0.736
RC27TA	RC27TA	C27,20R-triaromatic steroid	602	0.898	347	1.80	1810	5.29	9730	14.1	50.4	0.736
RC28TA	RC28TA	C28,20R-triaromatic steroid	567	0.898	248	1.80	1190	5.29	6910	14.1	28.5	0.736
		Surrogates (% Recovery)										
		Naphthalene-d8 Phenanthrene-d10	79 96		83 96		85 102		84 106		79 101	
		Benzo[a]pyrene-d12	92		96		98		99		91	
		5B(H)Cholane	N.	/A		N/A	N	/A	N/A	4	N/A	

- U: The analyte was analyzed for but not detected at the sample specific level reported.
- B: Found in associated blank as well as sample.
- J: Estimated value, below quantitation limit.
- E: Estimated value, exceeds the upper limit of calibration.
- NA: Not Applicable
- D: Secondary Dilution Performed
- D1: Tertiary Dilution Performed
- a: Value outside of QC Limits.
- §: Surrogate value outside of acceptable range.
- X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.
- G: Matrix Interference.
- P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.
- I: Due to interference, the lower value is reported.
- N: Spike recovery outside control limits.
- E: Estimated due to Interference. (Metals)
- ¤: Duplicate outside control limits.
- P: Spike compound. (Metals)
- J: Below CRDL, Project DL, or RL but greater than or equal to MDL
- C: Sample concentration is > 4 times the spike level, recovery limits do not apply. (Metals)
- S: Spike Compound, (Organics)
- §: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)
- T: Tentatively identified corexit compound.
- C: Co-elution.
- Z: Result not surrogate corrected.
- DL: Surrogate result diluted out of sample.
- W: Matrix interference may be present based on chemical reasonableness evaluation.

Project	Name:
Project	Number: JALK FEE

Client ID	Laboratory Method BI	Laboratory Method BI
Lab ID	WG947526-10	WG947526-5
Matrix	SOIL	SOIL
Matrix Description		
Reference Method	8260C	8260C
Batch ID	WG947526	WG947526
Date Collected	NA	NA
Date Received	10/31/2016	10/31/2016
Date Prepped	10/30/2016	10/28/2016
Date Analyzed	10/30/2016	10/28/2016
Sample Size(wet)	15	g 15 g
% Solid	100	100
File ID	V17161030A05	V17161028A05
Units	ug/kg	ug/kg
Final Volume	0.1	0.1
Dilution	1	1
Reporting Limit	50	50

Class	Abbrev	Analytes	Result	SSRL	Result	SSRL
С	DCM	METHYLENE CHLORIDE	U	500	U	500
С	11DCA	1,1-DICHLOROETHANE	U	75	U	75
С	CF	CHLOROFORM	U	75	U	75
С	CT	CARBON TETRACHLORIDE	U	50	U	50
С	12DCP	1,2-DICHLOROPROPANE	U	180	U	180
В	DBCM	DIBROMOCHLOROMETHANE	U	50	U	50
С	112TCA	1,1,2-TRICHLOROETHANE	U	75	U	75
С	PCE	TETRACHLOROETHENE	U	50	U	50
С	CB	CHLOROBENZENE	U	50	U	50
F	TCTFM	TRICHLOROFLUOROMETHANE	U	250	U	250
ADD	12DCA	1,2-DICHLOROETHANE	U	50	U	50
С	111TCA	1,1,1-TRICHLOROETHANE	U	50	U	50
В	BDCM	BROMODICHLOROMETHANE	U	50	U	50
С		TRANS-1,3-DICHLOROPROPENE	U	50	U	50
С	C13DCP	CIS-1,3-DICHLOROPROPENE	U	50	U	50
В	BF	BROMOFORM	U	200	U	200
С	1122PCA	1,1,2,2-TETRACHLOROETHANE	U	50	U	50
Α	В	BENZENE	U	50	5.9 J	50
Α	T	TOLUENE	U	75	9.9 J	75
Α	EB	ETHYLBENZENE	U	50	U	50
В	BM	BROMOMETHANE	U	100	22 J	100
С	VC	VINYL CHLORIDE	U	100	U	100
С	CE	CHLOROETHANE	U	100	U	100
С	11DCE	1,1-DICHLOROETHENE	U	50	U	50
С	T12DCE	TRANS-1,2-DICHLOROETHENE	U	75	U	75
С	TCE	TRICHLOROETHENE	U	50	U	50
С	12DCB	1,2-DICHLOROBENZENE	U	250	U	250
С	13DCB	1,3-DICHLOROBENZENE	U	250	U	250
С	14DCB	1,4-DICHLOROBENZENE	U	250	U	250
		METHYL TERT BUTYL ETHER	U	100	U	100
Α	MPX	P/M-XYLENE	U	100	U	100
Α	OX	O-XYLENE	U	100	U	100
С	C12DCE	CIS-1,2-DICHLOROETHENE	U	50	U	50
С	123TCP	1,2,3-TRICHLOROPROPANE	U	500	U	500
Α	STY	STYRENE	U	100	U	100
F	DCFM	DICHLORODIFLUOROMETHANE	U	500	U	500
0	ACE	ACETONE	U	1800	U	1800
0	MEK	2-BUTANONE	U	500	U	500
0	MIBK	4-METHYL-2-PENTANONE	U	500	U	500
0	THF	TETRAHYDROFURAN	U	1000	U	1000
ADD	12DBE	1,2-DIBROMOETHANE	U	200	U	200
С		1,1,1,2-TETRACHLOROETHANE	U	50	U	50
Α	BUTB	N-BUTYLBENZENE	U	50	U	50
Α	TBB	TERT-BUTYLBENZENE	U	250	U	250
		O-CHLOROTOLUENE	U	250	U	250
С	HCB	HEXACHLOROBUTADIENE	U	250	U	250
Α	IPB	ISOPROPYLBENZENE	U	50	U	50
		P-ISOPROPYLTOLUENE	U	50	U	50
Α	N0	NAPHTHALENE	U	250	8.0 J	250
Α	PROPB	N-PROPYLBENZENE	U	50	U	50
С		1,2,4-TRICHLOROBENZENE	U	250	U	250
Α	135TMB	1,3,5-TRIMETHYLBENZENE	U	250	U	250
Α	124TMB	1,2,4-TRIMETHYLBENZENE	U	250	U	250
		ETHYL ETHER	U	250	U	250

Surrogates (% Recovery)		
1,2-DICHLOROETHANE-D4	91	84
TOLUENE-D8	94	98
4-BROMOFLUOROBENZENE	88	89
DIBROMOFILIOROMETHANE	102	98

		Project Name:														
		Project Number: JALK FEE														
		Client ID Lab ID	Laboratory Control S WG947526-3						LCS Duplicate WG947526-4							
		Matrix Matrix Description	SOIL						SOIL							
		Reference Method Batch ID	8260C WG947526						8260C WG947526							
		Date Collected	NA						NA							
		Date Received Date Prepped	10/31/2016 10/28/2016						10/31/2016 10/28/2016							
		Date Analyzed Sample Size(wet)	10/28/2016						10/28/2016							
		% Solid	100	1					100	•						
		File ID Units	V17161028A01 %						V17161028A02 %							
		Final Volume Dilution	0.1						0.1							
		Reporting Limit	50						50							
Class		Analytes	Result		% REC		ower Limit I		Result		% REC	Spike Conc. I				PD Limit
C	DCM 11DCA	METHYLENE CHLORIDE 1,1-DICHLOROETHANE	1130 1110	500 75	113 111	1000 1000	70 70	130 130	1090 1050	500 75	109 105	1000 1000	70 70	130 130	4 6	30 30
C	CF	CHLOROFORM CARBON TETRACHI ORIDE	992 843	75 50	99 84	1000	70 70	130	949 803	75 50	95 80	1000	70 70	130 130	4	30 30
C	12DCP	1,2-DICHLOROPROPANE	1190	180	119	1000	70	130	1150	180	115	1000	70	130	3	30
B C	DBCM 112TCA	1,1,2-TRICHLOROETHANE	997 1090	50 75	100 109	1000 1000	70 70	130 130	1010 1080	50 75	101 108	1000 1000	70 70	130 130	1	30 30
С	PCE	TETRACHLOROETHENE CHLOROBENZENE	1030	50	103	1000	70	130	989	50	99	1000	70	130	4	30
C F	TCTFM	TRICHLOROFLUOROMETHANE	1070 795	50 250	107 80	1000 1000	70 70	130 139	1030 763	50 250	103 76	1000	70 70	130 139	4 5	30 30
ADD C	12DCA 111TCA	1,2-DICHLOROETHANE 1,1.1-TRICHLOROETHANE	870 855	50 50	87 86	1000 1000	70 70	130 130	856 821	50 50	86 82	1000 1000	70 70	130 130	1 5	30 30
В	BDCM	BROMODICHLOROMETHANE	949	50	95	1000	70	130	909	50	91	1000	70	130	4	30
C	T13DCP C13DCP	TRANS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE	984 1030	50 50	98 103	1000 1000	70 70	130 130	943 982	50 50	94 98	1000 1000	70 70	130 130	4 5	30 30
B C	BF	BROMOFORM 1.1.2.2-TETRACHLOROETHANE	1020 1070	200 50	102 107	1000	70 70	130 130	1010 1070	200 50	101 107	1000 1000	70 70	130 130	1	30 30
A	В	BENZENE	1050	50	105	1000	70	130	1000	50	100	1000	70	130	5	30
A A	T FR	TOLUENE ETHYLRENZENE	1020 992	75 50	102	1000	70 70	130	979 936	75 50	98 94	1000	70 70	130 130	4	30 30
В	ВМ	BROMOMETHANE	1110	100	111	1000	57	147	965	100	96	1000	57	147	14	30
C	VC CE	VINYL CHLORIDE CHLOROETHANE	1080 1120	100 100	108 112	1000 1000	67 50	130 151	1010 1010	100 100	101 101	1000 1000	67 50	130 151	7 10	30 30
C	11DCE T12DCE	1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	1050 1100	50 75	105 110	1000 1000	65 70	135 130	963 1020	50 75	96 102	1000 1000	65 70	135 130	9	30 30
С	TCE	TRICHLOROETHENE	1000	50	100	1000	70	130	970	50	97	1000	70	130	3	30
C	12DCB 13DCB	1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE	1040 1060	250 250	104 106	1000 1000	70 70	130 130	999 1020	250 250	100 102	1000 1000	70 70	130 130	4	30 30
C	14DCB	1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER	1050 984	250 100	105 98	1000 1000	70 66	130 130	1030 944	250 100	103 94	1000 1000	70 66	130 130	2	30 30
Α	MPX	P/M-XYLENE	2080	100	104	2000	70	130	2010	100	101	2000	70	130	3	30
A C	OX C12DCE	O-XYLENE CIS-1.2-DICHLOROETHENE	2060 1080	100 50	103 108	2000	70 70	130	2010 1070	100 50	100	2000	70 70	130 130	3	30 30
C	123TCP	1,2,3-TRICHLOROPROPANE	964	500	96	1000	68	130	929	500	93	1000	68	130	3	30
A F	STY	STYRENE DICHLORODIFLUOROMETHANE	2020 660	100 500	101 66	2000 1000	70 30	130 146	1960 630	100 500	98 63	2000 1000	70 30	130 146	3 5	30 30
0	ACE MEK	ACETONE 2-BUTANONE	1360 1170	1800 500	136 117	1000 1000	54 70	140 130	1270 1180	1800 500	127 118	1000 1000	54 70	140 130	7	30 30
0	MIBK	4-METHYL-2-PENTANONE	1090	500	109	1000	70	130	1040	500	104	1000	70	130	5	30
O ADD	THF 12DBE	TETRAHYDROFURAN 1.2-DIBROMOETHANE	1210 1060	1000 200	121 106	1000 1000	66 70	130 130	1100 1050	1000 200	110 105	1000 1000	66 70	130 130	10 1	30 30
C A	1112PCA BUTB	1,1,1,2-TETRACHLOROETHANE N-BUTYLBENZENE	1030 1010	50 50	103	1000	70 70	130 130	981 952	50 50	98 95	1000	70 70	130 130	5 6	30 30
A	TBB	TERT-BUTYLBENZENE	959	250	96	1000	70	130	914	250	91	1000	70	130	5	30
С	HCB	O-CHLOROTOLUENE HEXACHLOROBUTADIENE	962 974	250 250	96 97	1000	70 67	130	918 924	250 250	92 92	1000 1000	70 67	130 130	4	30 30
A	IPB	ISOPROPYLBENZENE	976	50	98	1000	70	130	938	50	94	1000	70	130	4	30
Α	N0	P-ISOPROPYLTOLUENE NAPHTHALENE	960 983	50 250	96 98	1000 1000	70 70	130 130	929 976	50 250	93 98	1000 1000	70 70	130 130	3 0	30 30
A C	PROPB 124TCB	N-PROPYLBENZENE 1.2.4-TRICHI OROBENZENE	985 1040	50 250	98 104	1000	70 70	130 130	940 1020	50 250	94 102	1000	70 70	130 130	4 2	30 30
Α	135TMB	1,3,5-TRIMETHYLBENZENE	954	250	95	1000	70	130	909	250	91	1000	70	130	4	30
A	124TMB	1,2,4-TRIMETHYLBENZENE ETHYL ETHER	947 1100	250 250	95 110	1000 1000	70 67	130 130	903 1030	250 250	90 103	1000 1000	70 67	130 130	5 7	30 30
									·			·				-
		Surrogates (% Recovery) 1.2-DICHLOROETHANE-D4	82						81							
		TOLUENE-D8	100						99							
		4-BROMOFLUOROBENZENE DIBROMOFLUOROMETHANE	89 98						89 100							

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

		Project Name: Project Number: JALK FEE														
		Client ID Lab ID	Laboratory Control S WG947526-8						LCS Duplicate WG947526-9							
		Matrix Matrix Description	SOIL						SOIL							
		Reference Method	8260C						8260C							
		Batch ID Date Collected	WG947526 NA						WG947526 NA							
		Date Received	10/31/2016						10/31/2016							
		Date Prepped	10/30/2016						10/30/2016							
		Date Analyzed Sample Size(wet)	10/30/2016	1					10/30/2016 15 g	1						
		% Solid	100						100							
		File ID Units	V17161030A01						V17161030A02 %							
		Final Volume	0.1						0.1							
		Dilution Reporting Limit	1 50						1 50							
Class	Abbrev	Analytes METHYLENE CHLORIDE	Result 962	SSRL 500	% REC 96	Spike Conc. L 1000	ower Limit 1	Upper Limit 130	Result 942	SSRL 9	6 REC 94	Spike Conc. I 1000	_ower Limit Up	per Limit 130	2 RPD R	PD Limit 30
С	11DCA	1,1-DICHLOROETHANE	1020	75	102	1000	70	130	978	75	98	1000	70	130	4	30
C	CF CT	CHLOROFORM CARBON TETRACHLORIDE	947 925	75 50	95 92	1000 1000	70 70	130 130	919 878	75 50	92 88	1000 1000	70 70	130 130	3	30 30
C	12DCP	1,2-DICHLOROPROPANE	1080	180	108	1000	70	130	1050	180	105	1000	70	130	3	30
B C	DBCM 112TCA	DIBROMOCHLOROMETHANE 1.1.2-TRICHLOROETHANE	945 926	50 75	94 93	1000 1000	70 70	130 130	949 927	50 75	95 93	1000 1000	70 70	130 130	1 0	30 30
C	PCE	TETRACHLOROETHENE	976	50	98	1000	70	130	924	50	92	1000	70	130	6	30
C F	CB TCTFM	CHLOROBENZENE TRICHLOROFLUOROMETHANE	974 848	50 250	97 85	1000	70 70	130 139	921 806	50 250	92 81	1000	70 70	130 139	5	30 30
ADD	12DCA	1,2-DICHLOROETHANE	904	50	90	1000	70	130	907	50	91	1000	70	130	1	30
С	111TCA BDCM	1,1,1-TRICHLOROETHANE	904 914	50	90 91	1000	70	130	849	50	85	1000	70	130	6	30
B C	T13DCP	BROMODICHLOROMETHANE TRANS-1,3-DICHLOROPROPENE	914 891	50 50	91 89	1000 1000	70 70	130 130	902 870	50 50	90 87	1000 1000	70 70	130 130	1 2	30 30
Ċ	C13DCP	CIS-1,3-DICHLOROPROPENE	934	50	93	1000	70	130	909	50	91	1000	70	130	2	30
B C	BF 1122PCA	BROMOFORM 1.1.2.2-TETRACHLOROETHANE	912 895	200 50	91 90	1000 1000	70 70	130 130	953 915	200 50	95 92	1000 1000	70 70	130 130	4 2	30 30
A	В	BENZENE	954	50	95	1000	70	130	922	50	92	1000	70	130	3	30
A A	T FR	TOLUENE ETHYLBENZENE	910 903	75 50	91 90	1000 1000	70 70	130 130	875 866	75 50	88 87	1000 1000	70 70	130 130	3	30 30
В	BM	BROMOMETHANE	820	100	82	1000	57	147	780	100	78	1000	57	147	5	30
C	VC CF	VINYL CHLORIDE CHLOROETHANE	1010 851	100	101 85	1000	67 50	130 151	869 806	100	87 81	1000	67 50	130 151	15 5	30 30
c	11DCE	1,1-DICHLOROETHENE	914	50	91	1000	65	135	859	50	86	1000	65	135	6	30
С	T12DCE TCE	TRANS-1,2-DICHLOROETHENE	985	75	98 97	1000	70	130 130	940 904	75	94 90	1000	70	130	4 7	30 30
C	12DCB	TRICHLOROETHENE 1.2-DICHLOROBENZENE	969 898	50 250	97	1000 1000	70 70	130	904	50 250	90	1000 1000	70 70	130 130	2	30
Ċ	13DCB	1,3-DICHLOROBENZENE	927	250	93	1000	70	130	940	250	94	1000	70	130	1	30
С	14DCB	1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER	923 891	250 100	92 89	1000 1000	70 66	130 130	930 885	250 100	93 88	1000 1000	70 66	130 130	1	30 30
Α	MPX	P/M-XYLENE	1930	100	96	2000	70	130	1850	100	92	2000	70	130	4	30
A C	OX C12DCE	O-XYLENE CIS-1,2-DICHLOROETHENE	1890 983	100 50	94 98	2000 1000	70 70	130 130	1830 947	100 50	91 95	2000 1000	70 70	130 130	3	30 30
С	123TCP	1,2,3-TRICHLOROPROPANE	853	500	85	1000	68	130	859	500	86	1000	68	130	1	30
A F	DCFM	STYRENE DICHLORODIFLUOROMETHANE	1840 759	100 500	92 76	2000	70 30	130 146	1810 684	100 500	90 68	2000 1000	70 30	130 146	2 11	30 30
0	ACE	ACETONE	1300	1800	130	1000	54	140	1230	1800	123	1000	54	140	6	30
0	MEK MIRK	2-BUTANONE 4-METHYL-2-PENTANONE	1150 944	500 500	115 94	1000 1000	70 70	130 130	1170 969	500 500	117 97	1000 1000	70 70	130 130	2	30 30
0	THF	TETRAHYDROFURAN	1110	1000	111	1000	66	130	1100	1000	110	1000	66	130	1	30
ADD	12DBE 1112PCA	1,2-DIBROMOETHANE	934 971	200	93 97	1000	70	130 130	934 939	200	93 94	1000	70	130 130	0	30
C A	1112PCA BUTB	1,1,1,2-TETRACHLOROETHANE N-BUTYLBENZENE	971 884	50 50	97 88	1000 1000	70 70	130 130	939 865	50 50	94 86	1000 1000	70 70	130 130	3 2	30 30
Α	TBB	TERT-BUTYLBENZENE	843	250	84	1000	70	130	828	250	83	1000	70	130	1	30
С	HCB	O-CHLOROTOLUENE HEXACHLOROBUTADIENE	848 838	250 250	85 84	1000 1000	70 67	130 130	822 845	250 250	82 84	1000 1000	70 67	130 130	4	30 30
Ä	IPB	ISOPROPYLBENZENE	857	50	86	1000	70	130	845	50	84	1000	70	130	2	30
Α	NO	P-ISOPROPYLTOLUENE NAPHTHALENE	849 842	50 250	85 84	1000 1000	70 70	130 130	833 873	50 250	83 87	1000 1000	70 70	130 130	2	30 30
A	PROPB	N-PROPYLBENZENE	862	50	86	1000	70	130	856	50	86	1000	70	130	0	30
C A	124TCB 135TMB	1,2,4-TRICHLOROBENZENE 1,3,5-TRIMETHYLBENZENE	925 832	250 250	92 83	1000 1000	70 70	130 130	941 830	250 250	94 83	1000 1000	70 70	130 130	2	30 30
A	124TMB	1,2,4-TRIMETHYLBENZENE	829	250	83	1000	70	130	828	250	83	1000	70	130	0	30
		ETHYL ETHER	838	250	84	1000	67	130	833	250	83	1000	67	130	1	30
		Surrogates (% Recovery)														
		1,2-DICHLOROETHANE-D4	95						93							
		TOLUENE-D8 4-BROMOFLUOROBENZENE	98 87						95 87							
		DIBROMOFLUOROMETHANE	102						103							

		Project Name: Project Number: JALK FEE					
			0.40.000		0.40.000		
		Client ID Lab ID	S-16-B26 L1634114-02		S-16-B30 L1634114-06		
		Matrix	SOIL		SOIL		
		Matrix Description Reference Method	8260C		8260C		
		Batch ID	WG947526		WG947526		
		Date Collected Date Received	10/18/2016 10/20/2016		10/18/2016 10/20/2016		
		Date Prepped	10/30/2016		10/30/2016		
		Date Analyzed	10/30/2016		10/30/2016 7.2	_	
		Sample Size(wet) % Solid	7.6 g 84.8		7.2 83.3	g	
		File ID	V17161030A19		V17161030A24		
		Units Final Volume	ug/kg 0.1		ug/kg 0.1		
		Dilution	1		1		
		Reporting Limit	120		140		
Class	Abbrev	Analytes	Result	SSRL	Result		SSRL
C C	DCM 11DCA	METHYLENE CHLORIDE 1,1-DICHLOROETHANE	U	1200 190		U	1400 200
С	CF	CHLOROFORM	U	190		U	200
С	CT 12DCP	CARBON TETRACHLORIDE	U	120 440		U	140
C B	DBCM	1,2-DICHLOROPROPANE DIBROMOCHLOROMETHANE	U	440 120		U	470 140
С	112TCA	1,1,2-TRICHLOROETHANE	Ü	190		Ū	200
C	PCE CB	TETRACHLOROETHENE CHLOROBENZENE	2600 U	120 120	950	IJ	140 140
F	TCTFM	TRICHLOROFLUOROMETHANE	Ŭ	630		Ü	680
ADD	12DCA 111TCA	1,2-DICHLOROETHANE	U	120 120		U	140 140
C B	BDCM	1,1,1-TRICHLOROETHANE BROMODICHLOROMETHANE	U	120		U	140
С	T13DCP	TRANS-1,3-DICHLOROPROPENE	Ü	120		Ü	140
C B	C13DCP BF	CIS-1,3-DICHLOROPROPENE BROMOFORM	U	120 500		U	140 540
C		1,1,2,2-TETRACHLOROETHANE	Ŭ	120		Ü	140
A A	B T	BENZENE	U	120		U	140
A	I EB	TOLUENE ETHYLBENZENE	U	190 120		U	200 140
В	BM	BROMOMETHANE	Ü	250		Ū	270
C	VC CE	VINYL CHLORIDE CHLOROETHANE	U	250 250		U	270 270
C	11DCE	1,1-DICHLOROETHENE	Ü	120		Ü	140
С	T12DCE	TRANS-1,2-DICHLOROETHENE	U	190		U	200
C	TCE 12DCB	TRICHLOROETHENE 1,2-DICHLOROBENZENE	U	120 630		U	140 680
С	13DCB	1,3-DICHLOROBENZENE	Ü	630		U	680
С	14DCB	1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER	U	630 250		U	680 270
Α	MPX	P/M-XYLENE	Ü	250		Ü	270
A	OX	O-XYLENE	U	250		U	270
C	C12DCE 123TCP	CIS-1,2-DICHLOROETHENE 1,2,3-TRICHLOROPROPANE	53 J	120 1200		U	140 1400
Α	STY	STYRENE	Ū	250		Ū	270
F O	DCFM ACE	DICHLORODIFLUOROMETHANE ACETONE	U	1200 4500		U	1400 4900
ŏ	MEK	2-BUTANONE	Ü	1200		Ü	1400
0	MIBK	4-METHYL-2-PENTANONE	U	1200		U	1400
O ADD	THF 12DBF	TETRAHYDROFURAN 1,2-DIBROMOETHANE	U	2500 500		U U	2700 540
С	1112PCA	1,1,1,2-TETRACHLOROETHANE	U	120		U	140
A A	BUTB TBB	N-BUTYLBENZENE TERT-BUTYLBENZENE	U	120 630		U	140 680
		O-CHLOROTOLUENE	Ü	630		U	680
C	HCB	HEXACHLOROBUTADIENE	U	630		U	680
Α	IPB	ISOPROPYLBENZENE P-ISOPROPYLTOLUENE	U	120 120		U U	140 140
Α	N0	NAPHTHALENE	140 J	630	100	Ĵ	680
A C	PROPB 124TCB	N-PROPYLBENZENE 1,2,4-TRICHLOROBENZENE	U	120 630		U	140 680
Α	135TMB	1,3,5-TRIMETHYLBENZENE	Ü	630		Ū	680
Α	124TMB	1,2,4-TRIMETHYLBENZENE	U	630		U	680
		ETHYL ETHER	U	630		U	680
		Surrogates (% Recovery)					
		1,2-DICHLOROETHANE-D4	78		80		
		TOLUENE-D8 4-BROMOFLUOROBENZENE	96 89		98 88		
		DIBROMOFLUOROMETHANE	96		98		

Project	Name:		
Project	Number:	JALK	FFF

Client ID	Laboratory Method BI
Lab ID	WG947514-5
Matrix	SOIL
Matrix Description	
Reference Method	8260C
Batch ID	WG947514
Date Collected	NA
Date Received	10/31/2016
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size(wet)	5 g
% Solid	100
File ID	V17161028A05
Units	ug/kg
Final Volume	5
Dilution	1
Reporting Limit	1.0

C	U	SSRL
C CF CHLOROFORM C C CT CARBON TETRACHLORIDE C 12DCP 1,2-DICHLOROPROPANIE B DBCM DIBROMOCHLOROMETHANIE C 112TCA 1,1-TRICHLOROETHANIE C PCE TETRACHLOROETHANIE C PCE TETRACHLOROETHANIE C PCE TETRACHLOROETHANIE C C C C CHLOROBENZENIE C 111TCA 1,1-TRICHLOROETHANIE C 111TCA 1,1-TRICHLOROETHANIE C 111TCA 1,1-TRICHLOROETHANIE C 111TCA 1,1-TRICHLOROETHANIE C 1112CA 1,2-DICHLOROETHANIE C T13DCP TRANS-1,3-DICHLOROPROPENIE C C 13DCP CIS-1,3-DICHLOROPROPENIE C C 13DCP CIS-1,3-DICHLOROPROPENIE C C 13DCP CIS-1,3-DICHLOROPROPENIE C C 1122PCA 1,12,2-TETRACHLOROETHANIE C 1122PCA 1,12,2-TETRACHLOROETHANIE C TTUDE 1,1-DICHLOROETHANIE C V C VINVL CHLORIDE C C CE CHLOROETHANIE C TIDCE 1,1-DICHLOROETHANIE C TIDCE 1,1-DICHLOROETHENIE C TIDCE TRANS-1,2-DICHLOROETHENIE C TIDCE TRANS-1,2-DICHLOROETHENIE C TIDCE TRANS-1,2-DICHLOROETHENIE C TIDCE TRANS-1,2-DICHLOROETHENIE C 12DCB 1,3-DICHLOROBENZENIE C 13DCB 1,3-DICHLOROBENZENIE C 14DCB 1,4-DICHLOROETHENIE C 14DCB 1,4-DICHLOROETHENIE C 14DCB 1,2-DICHLOROETHENIE C 123TCP 1,2,3-TRICHLOROETHENIE C 112PCA 1,1,1,2-TETRACHLOROETHANIE C 1112PCA 1,1,1,2-TETRACHLOROETHANIE		10
C CT CARBON TETRACHLORIDE C 12DCP 12-DICHLOROPROPANE B DBCM DIBROMOCH-OROMETHANE C 112TCA 1,12-TRICHLOROBETHANE C PCE TETRACHLOROETHANE C PCE TETRACHLOROETHANE C C BC CHLOROBENZENE F TOTTEM RICHLOROETHANE ADD 12DCA 1,2-DICHLOROETHANE C 111TCA 1,1-TRICHLOROETHANE B BDCM BROMDOICHLOROMETHANE C T13DCP TRANS-1,3-DICHLOROPROPENE B BF BROMPOIGH BROMPORM C 113DCP CIS-1,3-DICHLOROPROPENE B B B B BROMPORM C 1122PCA 1,1,2-TETRACHLOROETHANE A T TOLUENE A E ETHYLBENZENE B BM BROMOMETHANE C 11DCE C CHOROETHANE C T1DCE TRICHLOROETHANE C T1CE TRICHLOROETHANE C T1CE TRICHLOROETHANE C T1CE TRICHLOROETHENE C T1DCE TRICHLOROETHENE C T1DCB 1,3-DICHLOROETHENE C T123TCP 1,2-3-TRICHLOROETHENE C T123TCP 1,2-3-TRICHLOROETHENE C T121CE TRICHLOROETHENE C T11TCPCA 1,1,1,2-TETRACHLOROETHANE C T11TCPCA 1,1,1,2-TETRACHLOROETHANE C T11TCPCA 1,1,2-TETRACHLOROETHANE C T11TCPCA 1,1,2-TETRACHLOROETHANE C T11TCPCA 1,1,2-TETRACHLOROETHANE C C HCB BEAUTANONE C HCB BEAUTAN	U	1.5
C 12DCP 1.2-DICHLOROPROPANE B DBCM DIBROMOCHLOROMETHANE C 112TCA 1.1.2-TRICHLOROETHANE C 12CA 1.1.2-TRICHLOROETHANE C C C C TETRACHLOROETHENE C C B CHLOROBENZENE F TCTFM TRICHLOROFLUOROMETHANE ADD 12DCA 1.2-DICHLOROFTHANE C 111TCA 1.1.1-TRICHLOROETHANE B BDCM BROMODICHLOROMETHANE C T13DCP TRANS-1.3-DICHLOROPROPENE B BF BROMOPIOCHLOROPROPENE B BF BROMOFORM C 112PCA 1.2-DICHLOROPROPENE B BF BROMOFORM C 112PCA 1.2-TETRACHLOROETHANE A B BENZENE A T TOLUENE A E FITYLENZENE B BM BROMOMINITANE C V VINYL CHLORIDE C C C C CHLOROETHANE C T12DCE C T12DCE C T12DCE C T12DCE C T12DCE C T12DCE C T12DCB C	U	1.5
B	U	1.0
C 112TCA 1,1.2-TRICHLOROETHANE C POE TETRACHLOROETHENE C CB CHLOROBENZENE F TCTFM TRICHLOROETHANE ADD 12DCA 1,2-DICHLOROETHANE C 111TCA 1,1,1-TRICHLOROETHANE B BDCM BROMODICHLOROMETHANE C 113DCP TRANS-1,3-DICHLOROPROPENE C C 13DCP CIS-3-DICHLOROPROPENE B BF BROMOFORM C 1122PCA 1,2-ETERACHLOROETHANE A B BENZENE A T TOLUENE A EB ETHYLBENZENE B BM BROMOMINHANE C V VINYL CHLORIDE C CE CHLOROETHANE C 11DCE 1,1-DICHLOROETHENE C 11DCE 1,2-DICHLOROETHENE C 12DCB 1,2-DICHLOROBENZENE METHYL TERT BUTYL ETHER A MPX PM-XYLENE A OX O-XYLENE C 123TCP 1,2,3-TRICHLOROETHENE C 121TCP 1,2,3-TRICHLOROETHENE C 1112PCA 1,1,1,2-TETRACHOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C 1112PCA 1,1,1,2-TETRACHOROETHANE C 1112PCA 1,1,1,2	U	3.5
C PCE TETRACHLOROETHENE C C B CHLOROBENZENE F TOTEM TRICHLOROFLUGROMETHANE ADD 12DCA 1,2-DICHLOROETHANE C 111TCA 1,1-TRICHLOROETHANE C 111TCA 1,1-TRICHLOROETHANE C 113DCP TRANS-1,3-DICHLOROPROPENE C 113DCP CIS-1,3-DICHLOROPROPENE C 113DCP CIS-1,3-DICHLOROPROPENE C 112PCA 1,1,2-TETRACHLOROETHANE A B ENEXENE A T TOLUENE A T TOLUENE A E ETHYLOENZENE B BM BROMOMETHANE C V VINYL CHLORIDE C CE CHLOROETHANE C TIDCE 1,1-DICHLOROETHENE C TIDCE 1,2-DICHLOROETHENE C TIDCE 1,2-DICHLOROETHENE C 13DCB 1,3-DICHLOROBENZENE C 14DCB 1,2-DICHLOROBENZENE C 14DCB 1,2-DICHLOROETHENE C 12DCB 1,2-DICHLOROETHENE C 123TCP 1,2,3-TRICHLOROETHENE C 121TPC 1,1,1,2-TETRACHLOROETHANE C 111PCA 1,1,1,2-TETRACHOROETHANE C 111PCA 1,	U	1.0
C CB CHLOROBENZENE F TOTTM TRICHLOROFLUGROMETHANE ADD 12DCA 1,2-DICHLOROETHANE C 111TCA 1,1,1-TRICHLOROFTHANE B BDCM BROMODICHLOROMETHANE C 113DCP TRANS-1,3-DICHLOROPROPENE C C13DCP CIS.1-3-DICHLOROPROPENE B BF BROMOPORM C 1122PCA 1,2,2-TETRACHLOROETHANE A B BENZENE 0.12 A T TOLUENE 0.22 A EB ETHYLBENZENE B BM BROMOMETHANE C VC VIN'L CHLORIDE C CE CHLOROETHANE C 11DCE 1,-1DICHLOROETHENE C TIZDCE TRANS-1,2-DICHLOROETHENE C 11DCE 1,-1DICHLOROETHENE C 12DCB 1,2-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 14DCB 1,4-DICHLOROETHENE C 12DCB 1,2-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 15DCB 1,2-DICHLOROBENZENE C 15DCB 1,2-DICHLORDENTANE C 15DCB 1,	U	1.5
TOTTM	U	1.0
ADD 12DCA 1,2-DICHLOROETHANE C	U	1.0
C 111TCA 1.1.1-TRICHLOROETHANE B BDCM BROMONICHLOROMETHANE C 173DCP TRANS-1.3-DICHLOROPROPENE C 113DCP CIS-1.3-DICHLOROPROPENE B BF BROMOFORM C 1122PCA 1.1.2.2-TETRACHLOROETHANE A B BENZENE 0.22 A T TOLUENE 0.22 A E B FITHYLBENZENE B BM BROMOMETHANE 0.43 C VC VIN'YL CHLORIDE C C C C CHLOROETHANE C 11DCE 1.1-DICHLOROETHENE C 11DCE 1.1-DICHLOROETHENE C 11DCE 1.1-DICHLOROETHENE C 12DCB 1.2-DICHLOROETHENE C 12DCB 1.2-DICHLOROETHENE C 13DCB 1.3-DICHLOROENZENE C 14DCB 1.3-DICHLOROBENZENE C 14DCB 1.3-DICHLOROETHENE C 12DCB 1.2-DICHLOROETHENE C 12DCB 1.2-DICHLOROETHENE C 12DCB 1.2-DICHLOROETHENE C 12DCB 1.2-DICHLOROETHENE C 12TCP TRANS-1.2-DICHLOROETHENE C 12TCP 1.2-3-TRICHLOROETHENE C 12TCP 1.2-3-TRICHLOROETHENE C 12TCP 1.2-3-TRICHLOROETHENE C 12TCP 1.2-3-TRICHLOROETHENE C 12TCP 1.2-TRICHLOROETHENE C 11TCPCA 1.1.1.2-TETRACHOROETHANE C 11TCPCA 1.1.1.2-TETRACHOROETHANE C 11TCPCA 1.1.1.2-TETRACHOROETHANE C 11TCPCA 1.1.1.2-TETRACHLOROETHANE C 11TCPCA 1.1.1.2-TETRACHLOROETHA	U	5.0
B BDCM	U	1.0
C T13DCP TRANS-1,3-DICHLOROPROPENE C C13DCP CIS-1,3-DICHLOROPROPENE B F BROMOFORM C 1122PCA 1,1,2,2-TETRACHLOROETHANE A B BENZENE 0.26 A T TOLUENE 0.26 A EB ETHYLBENZENE B BM BROMOMETHANE 0.43 C VC VINYL CHLORIDE C CE CHLOROETHANE C 11DCE 1,-1DICHLOROETHENE C 11DCE 1,-1DICHLOROETHENE C 11DCE 1,-1DICHLOROETHENE C 12DCB 1,2-DICHLOROETHENE C 13DCB 1,2-DICHLOROEMZENE C 14DCB 1,2-DICHLOROEMZENE METHYL TERT BUTYL ETHER A OX O-XYLENE A OX O-XYLENE C 123TCP 1,2,3-TRICHLOROETHENE C 125TCP 1,2,3-TRICHLOROETHENE C 125TCP 1,2,3-TRICHLOROETHENE C 14TPC 1,2,3-TRICHLOROETHENE C 14TPC 1,2,3-TRICHLOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE C C HOB HEXACHLOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C C HOB HEXACHLOROEUTADIENE	U	1.0
C C13DCP CIS-1.3-DICHLOROPROPENE B BF BROMPORM C 1122PCA 1.1.2.2-TETRACHLOROETHANE A B BREXENE 0.12 A T TOLUENE 0.22 A EB FITH/LBENZENE 0.45 B BM BROMOMETHANE 0.45 C VC VINTYL CHLORIDE C 11DCE 1.1-DICHLOROETHENE C 11DCE 1.1-DICHLOROETHENE C 11DCE 1.1-DICHLOROETHENE C 12DCB 1.2-DICHLOROBENZENE C 13DCB 1.3-DICHLOROBENZENE C 13DCB 1.3-DICHLOROBENZENE C 14DCB 1.3-DICHLOROBENZENE METHYL TERT BUTYL ETHER A MX PM-XYLENE A OX O-XYLENE C C 123TCP 1.2.3-TRICHLOROETHENE C 123TCP 1.2.3-TRICHLOROETHENE C 123TCP 1.2.3-TRICHLOROETHENE C 123TCP 1.2.3-TRICHLOROETHENE C 2.3-TRICHLOROETHENE C 123TCP 1.2.3-TRICHLOROETHENE C 123TCP 1.2.3-TRICHLOROETHENE C 121TCN 1.2.3-TRICHLOROETHENE C 111TCN 1.2.3-TRICHLOROETHENE C 1.1.3-TRICHLOROETHENE C 1.3-TRICHLOROETHENE C 1.3-TRICHLOROETHE	U	1.0
B	U	1.0
C 1122PCA 1,12,2-TETRACHLOROETHANE A B BENZENE 0.12 A T TOLUENE 0.20 A EB ETHYLBENZENE 0.20 B BM BROMOMETHANE 0.45 C VC VINTL CHLORIDE 0.45 C 11DCE 1,1-DICHLOROETHENE 0.45 C 11DCE 1,1-DICHLOROETHENE 0.45 C 11DCE TRICHLOROETHENE 0.45 C 12DCB 1,2-DICHLOROBENZENE 0.45 C 13DCB 1,3-DICHLOROBENZENE 0.45 C 14DCB 1,3-DICHLOROBENZENE 0.45 C 14DCB 1,2-DICHLOROBENZENE 0.45 C 14DCB 1,2-DICHLOROETHENE 0.45 C 12DCB 1,2-DICHLOROETHENE 0.45 C 123TCP 1,2-3-TRICHLOROETHENE 0.45 C 121TEN 0.45 C 1127CA 1,1-2-TENACHOLOROETHANE 0.45 C 1127CA 1,1-2-TENACHOLOROETHANE 0.45 C 1127CA 1,1-2-TENACHOLOROETHANE 0.45 C 1127CA 1,1-2-TENACHOROETHANE 0.45 C 1127CA 1,1-	U	1.0
A B BENZENE 0.12 A T TOLUENE 0.20 A EB ETHYLBENZENE 0.20 B BM BROMOMETHANE 0.43 C VC VINTL CHLORIDE C CE CHLOROETHANE C T12DCE 1.101CHLOROETHENE C T12DCE TRANS-1,2-DICHLOROETHENE C T2DCB 1,2-DICHLOROETHENE C 12DCB 1,2-DICHLOROEMZENE C 13DCB 1,3-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 14DCB 1,4-DICHLOROEMZENE C 14DCB 1,4-DICHLOROEMZENE C 14DCB 1,2-DICHLOROEMZENE C 14DCB 1,2-DICHLOROEMZENE C 14DCB 1,2-JCHLOROEMZENE C 14DCB 1,2-JCHLOROEMZENE C 14DCB 1,2-JCHLOROEMZENE C 14DCB 1,2-JCHLOROEMZENE D 1,2-JCHLOROEMZENE C 123TCP 1,2,3-TRICHLOROEMENE C 123TCP 1,2,3-TRICHLOROEMENE C 123TCP 1,2,3-TRICHLOROEMENE C 12TY 1,2-TRICHLOROEMENE C 12TY 1,2-TRICHLOROEMENE C 14TYRENE D 1 1,2-DICHLORODIFLUOROMETHANE C 14TYRENE C 14TYREN	U	4.0
A T TOLUENE 0.20 A EB ETHYLBENZENE B BM BROMOMETHANE 0.43 C VC VIN'YL CHLORIDE C C C C VIN'YL CHLORIDE C 11DCE 1.1-DICHLOROETHANE C 11DCE 1.1-DICHLOROETHANE C 11DCB 1.2-DICHLOROETHENE C 12DCB 1.2-DICHLOROBENZENE C 13DCB 1.3-DICHLOROBENZENE C 14DCB 1.3-DICHLOROBENZENE C 14DCB 1.3-DICHLOROBENZENE METHYL TERT BUTYL ETHER A MPX PM-XYLENE A OX O-XYLENE C C 123TCP 1.2-STRICHLOROETHENE C 121TCP 1.2-STRICHLOROETHENE C 121TCP 1.2-STRICHLOROETHENE C 11TCP 1.2-STRICHLOROETHENE A BUTB N-BUTYLBENZENE O-CHLOROTOLUENE C HCB 1.2-DICHLOROETHENE C HCB	U	1.0
A	J	1.0
B	J	1.5
C VC VINYL CHLORIDE C C C CHLOROETHANE C 11DCE 1,1-DICHLOROETHENE C 112DCE TRANS-1,2-DICHLOROETHENE C 12DCB 1,2-DICHLOROETHENE C 12DCB 1,2-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 14DCB 1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER A MPX P/M-XYLENE A OX O-XYLENE C 123TCP 1,2,3-TRICHLOROETHENE C 123TCP 1,2,3-TRICHLOROPROPANE A STY STYRENE F DCFM DICHLORODIFLUROMETHANE O ACE ACETONE O MEK 2-BUTANONE O MEK 2-BUTANONE O MIBK 4-METHYL-2-PENTANONE O THE TETRAHYDROFURAN ADD 12DE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C HOB TETRAHYDROFURAN ADD 12DE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C HOB TETRAHYDROFURAN A BUTB N-BUTYLBENZENE A BUTB N-BUTYLBENZENE O-CHLOROTOLUENE	U	1.0
C CE CHLOROETHANE C 11DCE 1.1DICHLOROETHANE C 11DCE 1.1DICHLOROETHENE C 17DCE TRANS-1.2-DICHLOROETHENE C 12DCB 1.2-DICHLOROBENZENE C 13DCB 1.3-DICHLOROBENZENE C 14DCB 1.3-DICHLOROBENZENE METHYL TERT BUTYL ETHER A MPX PM-XYLENE A OX O-XYLENE C C 123TCP 1.2-DICHLOROETHENE C 123TCP 1.2-3-TRICHLOROETHENE C 123TCP 1.2-3-TRICHLOROETHENE C 123TCP 1.2-3-TRICHLOROETHENE C 123TCP 1.2-3-TRICHLOROETHENE C 123TCP 1.2-STRICHLOROETHENE C 123TCP 1.2-STRICHLOROETHENE C 123TCP 1.2-DICHLOROETHENE C 112TCP 1.2-DICHLOROETHENE C 111TCP 1.2-DICHLOROETHENE C 111TCP 1.2-DICHLOROETHENE A BUTB 1.2-DISROMETHANE C 111TCPCA 1.1,1.2-TETRACHLOROETHANE A BUTB 1.2-DISROMETHANE A BUTB 1.2-DISROMETHANE A TERM TETRALTYLEBUZENE O-CHLOROTOLUENE C HCB HEXACHLOROETHENE	J	2.0
C	U	2.0
C	U	2.0
C TCE TRICHLOROETHENE C 12DCB 1,2-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 14DCB 1,4-DICHLOROBENZENE C 14DCB 1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER A MPX P/M-XYLENE A OX O-XYLENE C 12DCE CIS-1,2-DICHLOROFETHENE C 123TCP 1,2-3-TRICHLOROPROPANE A STY F DCFM DICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O MEK 2-BUTANONE O THE TETRAHYDROFURAN ADD 12DEB 1,2-DIGNOMETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE	U	1.0
C 12DCB 1,2-DICHLOROBENZENE C 13DCB 1,3-DICHLOROBENZENE C 14DCB 1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER A 0X 0-XYLENE C 0.2DC 163-1,2-DICHLOROBETHENE C 123TCP 1,2-3-TRICHLOROPROPANE A STY STYRENE F DCFM DICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROPETHANE C 1112PCA 1,1,1,2-TETRACHLOROBETHANE A BUTB N-BUTYLBENZENE A TERT BUTYLBENZENE A TERT BUTYLBENZENE O-CHLOROTOLUENE	U	1.5
C 13DCB 1,3-DICHLOROBENZENE C 14DCB 1,4-DICHLOROBENZENE	U	1.0
C 14DGB 1.4-DICHLOROBENZENE METHYL TERT BUTYL ETHER A MPX PM-XYLENE C 0.2DCE CIS-1,2-DICHLOROBETHENE C 123TCP 1.2,3-TRICHLOROPROPANE A STY STYRENE F DCFM DICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O MISK 4-METHYL-2-PENTANONE O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROBETHANE C 1112PCA 1,1,1,2-TETRACHLOROBETHANE A BUTB N-BUTYLBENZENE A TER TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	U	5.0
METHYL TERT BUTYL ETHER A MPX PM-XYLENE A OX O.XYLENE C C12DCE CIS-1,2-DICHLOROETHENE C 123TCP 1,2-3-TRICHLOROPROPANE A STY STYRENE F DCFM ICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMCETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB NBUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	U	5.0
A MPX P/M-XYLENE A OX O-XYLENE C C12DCE CIS-1,2-DICHLOROETHENE C 123TCP 1,2,3-TRICHLOROPROPANE A STY STYRENE F DCFM DICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O MIBK 4-METHYL-2-PENTANONE O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A BUTB TETRAHYDROFURAN O-CHLOROTOTOLUENE C HCB CYALOROMETHANE C 1112PCA 0,1,1,2-TETRACHLOROETHANE C 1112PCA 0,-CHLOROTOTOLUENE C HCB CXACHLOROTOLUENE	U	5.0
A OX C-XYLENE C C12DCE CIS-1,2-DICHLOROETHENE C 123TCP 1,2-3-TRICHLOROPROPANE A STY STYRENE F DOFM ICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O THF TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMCETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB NBUTYJLEBRZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCGB TEACHLOROETHANE C HCGB TERT-BUTYLBENZENE O-CHLOROTOLUENE	U	2.0
C C12DCE CIS-1,2-DICHLOROETHENE C 123TCP 1,2,3-TRICHLOROPROPANE A STY STYRENE F DCFM DICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O THE TETRAHYDROFURAN ADD 12DEE 1,2-DIBROMCETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLEBUZENE A TBB TERT-BUTYLEBUZENE C HC68 HEXACHLOROBUTADIENE	U	2.0
C 123TCP 1.2.3-TRICHLOROPROPANE A STY STYRENE F DCFM DICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O THE TETRAHYDROFURAN ADD 12DBE 1.2-DIBROMOETHANE C 1112PCA 1.1.2-TETRACHICOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE C HCS HEXACHLOROBUTADIENE	U	2.0
A STY STYRENE F DCFM DICHLORODIFLUOROMETHANE O ACE ACETONE O MEK 2-BUTANONE O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMCETHANE C 1112PCA 1.1,1.2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCSA HCASCHLOROGUTADIENE	U	1.0
F	U	10
O ACE ACETONE O MEK 2-BUTANONE O MIBK 4-METHYL-2-PENTANONE O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMCETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE C-CHLOROTOLUENE C HCSACHLOROBUTADIENE	U	2.0
O ACE ACETONE O MEK 2-BUTANONE O MIBK 4-METHYL-2-PENTANONE O THF TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	U	10
O MIBK 4-METHYL-2-PENTANONE O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLLUENE C HCB HEXACHLOROBUTADIENE	U	36
O THE TETRAHYDROFURAN ADD 12DBE 1,2-DIBROMOETHANE C 1112PCA 1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCSACHLORODUTADIENE	U	10
ADD 12DBE 1,2-DIBROMOETHANE C 1112PCA 1,1,1,2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	U	10
C 1112PCA 1.1.1.2-TETRACHLOROETHANE A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCSACHLOROBUTADIENE	U	20
A BUTB N-BUTYLBENZENE A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	Ü	4.0
A TBB TERT-BUTYLBENZENE O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	Ü	1.0
O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	Ü	1.0
O-CHLOROTOLUENE C HCB HEXACHLOROBUTADIENE	Ü	5.0
C HCB HEXACHLOROBUTADIENE	Ū	5.0
	Ũ	5.0
A IPB ISOPROPYLBENZENE	Ū	1.0
P-ISOPROPYLTOLUENE	Ū	1.0
A NO NAPHTHALENE 0.16		5.0
A PROPB N-PROPYLBENZENE	Ū	1.0
C 124TCB 1.2.4-TRICHLOROBENZENE	Ü	5.0
A 135TMB 1,3,5-TRIMETHYLBENZENE	IJ	5.0
A 124TMB 1,2,4-TRIMETHYLBENZENE	Ü	5.0
ETHYL ETHER	Ü	5.0

 Surrogates (% Recovery)
 1,2-DICHLOROETHANE-D4
 84

 TOLUENE-D8
 95

 4-BROMOFLUOROBENZENE
 88

 DIBROMOFLUOROMETHANE
 98

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

		Project Name: Project Number: JALK FEE														
		Client ID Lab ID	Laboratory Control S WG947514-3						LCS Duplicate WG947514-4							
		Matrix	SOIL						SOIL							
		Matrix Description														
		Reference Method Batch ID	8260C WG947514						8260C WG947514							
		Date Collected	W G947514 NA						NA NA							
		Date Received	10/31/2016						10/31/2016							
		Date Prepped	10/28/2016						10/28/2016							
		Date Analyzed Sample Size(wet)	10/28/2016	,					10/28/2016 5 c	,						
		% Solid	100	9					100	,						
		File ID	V17161028A01						V17161028A02							
		Units Final Volume	% 5						% 5							
		Dilution	1						1							
		Reporting Limit	1.0						1.0							
Cli	ass Abbrev DCM	Analytes METHYLENE CHLORIDE	Result 23	SSRL 10	% REC 113	Spike Conc. L	ower Limit 70	Jpper Limit 130	Result 22	SSRL %	109	Spike Conc. Lov 20	ver Limit	Upper Limit 130	RPD R	PD Limit
C	11DCA	1,1-DICHLOROETHANE	22	1.5	111	20	70	130	21	1.5	105	20	70	130	6	30
C	CF CT	CHLOROFORM	20 17	1.5	99 84	20 20	70 70	130 130	19 16	1.5	95 80	20 20	70 70	130 130	4 5	30
C	12DCP	CARBON TETRACHLORIDE 1,2-DICHLOROPROPANE	17 24	1.0 3.5	119	20	70	130	23	1.0 3.5	115	20	70	130	3	30 30
В	DBCM	DIBROMOCHLOROMETHANE	20	1.0	100	20	70	130	20	1.0	101	20	70	130	1	30
С	112TCA	1,1,2-TRICHLOROETHANE	22	1.5	109	20	70	130	22	1.5	108	20	70	130	1	30
C	PCE CB	TETRACHLOROETHENE CHLOROBENZENE	21 21	1.0 1.0	103 107	20 20	70 70	130 130	20 21	1.0 1.0	99 103	20 20	70 70	130 130	4	30 30
F	TCTFM	TRICHLOROFLUOROMETHANE	16	5.0	80	20	70	139	15	5.0	76	20	70	139	5	30
ΑE		1,2-DICHLOROETHANE	17	1.0	87	20	70	130	17	1.0	86	20	70	130	1	30
C B	111TCA BDCM	1,1,1-TRICHLOROETHANE BROMODICHLOROMETHANE	17 19	1.0 1.0	86 95	20 20	70 70	130 130	16 18	1.0 1.0	82 91	20 20	70 70	130 130	5 4	30 30
Č	T13DCP		20	1.0	98	20	70	130	19	1.0	94	20	70	130	4	30
C	C13DCF		21	1.0	103	20	70	130	20	1.0	98	20	70	130	5	30
B C	1122PC	BROMOFORM A 1,1,2,2-TETRACHLOROETHANE	20 22	4.0 1.0	102 107	20 20	70 70	130 130	20 21	4.0 1.0	101 107	20 20	70 70	130 130	1	30 30
Ā	B	BENZENE	21	1.0	105	20	70	130	20	1.0	100	20	70	130	5	30
A	T	TOLUENE	20	1.5	102	20	70	130	20	1.5	98	20	70	130	4	30
A B	EB BM	ETHYLBENZENE BROMOMETHANE	20 22	1.0 2.0	99 111	20 20	70 57	130 147	19 19	1.0 2.0	94 96	20 20	70 57	130 147	5 14	30 30
Č	VC	VINYL CHLORIDE	22	2.0	108	20	67	130	20	2.0	101	20	67	130	7	30
С	CE	CHLOROETHANE	22	2.0	112	20	50	151	20	2.0	101	20	50	151	10	30
C	11DCE T12DCE	1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	21 22	1.0 1.5	105 110	20 20	65 70	135 130	19 20	1.0 1.5	96 102	20 20	65 70	135 130	9	30 30
č	TCE	TRICHLOROETHENE	20	1.0	100	20	70	130	19	1.0	97	20	70	130	3	30
С	12DCB	1,2-DICHLOROBENZENE	21	5.0	104	20	70	130	20	5.0	100	20	70	130	4	30
C	13DCB 14DCB	1,3-DICHLOROBENZENE 1.4-DICHLOROBENZENE	21 21	5.0 5.0	106 105	20 20	70 70	130 130	20 21	5.0 5.0	102 103	20 20	70 70	130 130	4 2	30 30
C	14000	METHYL TERT BUTYL ETHER	20	2.0	98	20	66	130	19	2.0	94	20	66	130	4	30
A	MPX	P/M-XYLENE	42	2.0	104	40	70	130	40	2.0	101	40	70	130	3	30
A C	OX	O-XYLENE CIS-1,2-DICHLOROETHENE	41 22	2.0 1.0	103 108	40 20	70 70	130 130	40 21	2.0 1.0	100 107	40 20	70 70	130 130	3	30 30
c	123TCP	1,2,3-TRICHLOROPROPANE	19	1.0	96	20	68	130	19	1.0	93	20	68	130	3	30
A	STY	STYRENE	41	2.0	101	40	70	130	39	2.0	98	40	70	130	3	30
F O	DCFM ACE	DICHLORODIFLUOROMETHANE ACETONE	13 27	10 36	66 136	20 20	30 54	146 140	13 25	10 36	63 127	20 20	30 54	146 140	5 7	30 30
0	MEK	2-BUTANONE	23	10	117	20	70	130	25	10	118	20	70	130	1	30
0	MIBK	4-METHYL-2-PENTANONE	22	10	109	20	70	130	21	10	104	20	70	130	5	30
0	THF	TETRAHYDROFURAN	24	20	121	20	66	130	22	20	110	20	66	130	10	30
AE C		1,2-DIBROMOETHANE A 1,1,1,2-TETRACHLOROETHANE	21 21	4.0 1.0	106 103	20 20	70 70	130 130	21 20	4.0 1.0	105 98	20 20	70 70	130 130	1 5	30 30
A	BUTB	N-BUTYLBENZENE	20	1.0	101	20	70	130	19	1.0	95	20	70	130	6	30
A	TBB	TERT-BUTYLBENZENE	19	5.0	96	20	70	130	18	5.0	91	20	70	130	5	30
С	HCB	O-CHLOROTOLUENE HEXACHLOROBUTADIENE	19 20	5.0 5.0	96 97	20 20	70 67	130 130	18 19	5.0 5.0	92 92	20 20	70 67	130 130	4 5	30 30
A	IPB	ISOPROPYLBENZENE	20	1.0	98	20	70	130	19	1.0	94	20	70	130	4	30
		P-ISOPROPYLTOLUENE	19	1.0	96	20	70	130	19	1.0	93	20	70	130	3	30
A A	N0 PROPB	NAPHTHALENE N-PROPYLBENZENE	20 20	5.0 1.0	98 98	20 20	70 70	130 130	20 19	5.0 1.0	98 94	20 20	70 70	130 130	0	30 30
ĉ	124TCB	1,2,4-TRICHLOROBENZENE	21	5.0	104	20	70	130	20	5.0	102	20	70	130	2	30
A	135TMB	1,3,5-TRIMETHYLBENZENE	19	5.0	95	20	70	130	18	5.0	91	20	70	130	4	30
Α	124TMB	1,2,4-TRIMETHYLBENZENE ETHYL ETHER	19 22	5.0 5.0	95 110	20 20	70 67	130 130	18 21	5.0 5.0	90 103	20 20	70 67	130 130	5 7	30 30
		zreemen	22	5.0	110	20	0/	130	- 21	3.0	100	20	07	130	,	30
		Surrogates (% Recovery)														
		1,2-DICHLOROETHANE-D4	82						81							

 Surrogates (% Recovery)
 8

 1.2-DICHLOROGETHANE-D4
 82

 TOLUENE-D8
 100

 4-BROMOFILUOROBENZENE
 89

 DIBROMOFILUOROMETHANE
 98

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

 100
 100

Project Number: JALK FEE		
Client ID	S-16-B26	S-16-B26
Lab ID	L1634114-02	WG947514-6
Matrix	SOIL	SOIL
Matrix Description		
Reference Method	8260C	8260C
Batch ID	WG947514	WG947514
Date Collected	10/18/2016	NA
Date Received	10/20/2016	10/31/2016
Date Prepped	10/28/2016	10/28/2016
Date Analyzed	10/28/2016	10/28/2016

 Date Collected
 10/20/2016
 10/28/2016

 Date Received
 10/28/2016
 10/28/2016

 Date Prepped
 10/28/2016
 10/28/2016

 Date Analyzed
 7.4 g
 8.6 g

 % Solid
 84.8
 84.8

 File ID
 V17161028A15
 V17161028A16

 Units
 ug/kg
 ug/kg

 Final Volume
 5
 5

 Dilution
 1
 1

 Reporting Limit
 0.8
 0.68

Class	Abbrev	Analytes	Result		SSRL	Result	SSRL	RPD	RPD Limit
C	DCM	METHYLENE CHLORIDE		U	8.0	l.			30 NC
č	11DCA	1.1-DICHLOROETHANE		Ū	1.2	ũ			30 NC
C	CF	CHLOROFORM	1.4		1.2	1.1	1.0	26	30
Ċ	CT	CARBON TETRACHLORIDE		U	0.80	L	0.68		30 NC
Ċ	12DCP	1,2-DICHLOROPROPANE		Ü	2.8	Ĺ	2.4		30 NC
В	DBCM	DIBROMOCHLOROMETHANE		Ü	0.80	Ĺ	0.68		30 NC
С	112TCA	1.1.2-TRICHLOROETHANE		Ü	1.2	Ĺ	1.0		30 NC
Ċ	PCE	TETRACHLOROETHENE	4900	Ė	0.80	3100 E	0.68	47	Q
Ċ	CB	CHLOROBENZENE	0.54	J	0.80	0.39 J	0.68		30 NC
F	TCTFM	TRICHLOROFLUOROMETHANE		U	4.0	0.28 J	3.4		30 X
ADD	12DCA	1,2-DICHLOROETHANE		U	0.80	L	0.68		30 NC
С	111TCA	1,1,1-TRICHLOROETHANE		U	0.80	L	0.68		30 NC
В	BDCM	BROMODICHLOROMETHANE		U	0.80	L	0.68		30 NC
С	T13DCP	TRANS-1,3-DICHLOROPROPENE		U	0.80	L	0.68		30 NC
С		CIS-1,3-DICHLOROPROPENE		U	0.80	L			30 NC
В	BF	BROMOFORM		U	3.2	L			30 NC
С		1,1,2,2-TETRACHLOROETHANE		U	0.80	L			30 NC
Α	В	BENZENE	0.50	J	0.80	0.21 J	0.68		30 NC
Α	T	TOLUENE	0.35		1.2	0.19 J	1.0		30 NC
Α	EB	ETHYLBENZENE		U	0.80	L			30 NC
В	BM	BROMOMETHANE		U	1.6	L			30 NC
С	VC	VINYL CHLORIDE		U	1.6	L			30 NC
С	CE	CHLOROETHANE		U	1.6	L			30 NC
С	11DCE	1,1-DICHLOROETHENE		U	0.80	L			30 NC
С	T12DCE	TRANS-1,2-DICHLOROETHENE	0.61	J	1.2	0.37 J	1.0		30 NC
С	TCE	TRICHLOROETHENE	33		0.80	22	0.68		30 Q
С	12DCB	1,2-DICHLOROBENZENE		U	4.0	L			30 NC
С	13DCB	1,3-DICHLOROBENZENE		U	4.0	L			30 NC
С	14DCB	1,4-DICHLOROBENZENE	0.20		4.0	L			30 X
		METHYL TERT BUTYL ETHER		U	1.6	Ļ			30 NC
A	MPX	P/M-XYLENE	0.30		1.6	L			30 X
A	OX	O-XYLENE		U	1.6	L			30 NC
С		CIS-1,2-DICHLOROETHENE	100		0.80	76	0.68		30
C	123TCP	1,2,3-TRICHLOROPROPANE		U	8.0	Ļ			30 NC
A F	STY	STYRENE		U	1.6	L			30 NC
	DCFM	DICHLORODIFLUOROMETHANE	0.79	_	8.0	2.3 J	6.8		30 NC
0	ACE MEK	ACETONE 2-BUTANONE	6.8	J U	29 8.0	4.8 J L	25 6.8		30 NC
0	MIBK	4-METHYL-2-PENTANONE		IJ	8.0	i.			30 NC 30 NC
0	THE			U		L.			
ADD	12DBE	TETRAHYDROFURAN		U	16 3.2	L.			30 NC 30 NC
C		1,2-DIBROMOETHANE 1,1,1,2-TETRACHLOROETHANE	5.4	U	0.80	4.5	0.68		30 NC
A	BUTB	N-BUTYLBENZENE		U	0.80	4.5 L			30 NC
A	TBB	TERT-BUTYLBENZENE		U	4.0	Ĺ			30 NC
А	IDD	O-CHLOROTOLUENE		IJ	4.0	Ĺ			30 NC
С	HCB	HEXACHLOROBUTADIENE		U	4.0	Ĺ			30 NC
A	IPB	ISOPROPYLBENZENE		U	0.80	Ĺ			30 NC
^		P-ISOPROPYLTOLUENE		IJ	0.80	ĭ			30 NC
Α	N0	NAPHTHALENE	0.12		4.0	Ü			30 X
A	PROPB	N-PROPYLBENZENE		U	0.80	ĭ			30 NC
ĉ	124TCB	1.2.4-TRICHLOROBENZENE		U	4.0	Ü			30 NC
A	135TMB	1,3,5-TRIMETHYLBENZENE		IJ	4.0	i.			30 NC
Ä	124TMB	1.2.4-TRIMETHYLBENZENE	0.13		4.0	ŭ			30 X
		ETHYL ETHER		Ū	4.0	ũ			30 NC

 Surrogates (% Recovery)
 1,2-DiCHLOROETHANE-D4
 90
 90

 TOLUENE-D8
 93
 94

 +BROMOFLUOROBENZENE
 90
 89

 DIBROMOFLUOROMETHANE
 99
 101

		Project Name: Project Number: JALK FEE										
		Client ID Lab ID	S-16-B26 L1634114-02		S-14-B27 L1634114-04		S-16-B30 L1634114-06		S-6-B28 L1634114-07		S-9-B32 L1634114-12D	
		Matrix Matrix Description	SOIL		SOIL		SOIL		SOIL		SOIL	
		Reference Method Batch ID	8260C WG947514		8260C WG947526		8260C WG947514		8260C WG947514		8260C WG947526	
		Date Collected	10/18/2016		10/18/2016		10/18/2016		10/19/2016		10/19/2016	
		Date Received Date Prepped	10/20/2016 10/28/2016		10/20/2016 10/30/2016		10/20/2016 10/28/2016		10/21/2016 10/28/2016		10/21/2016 10/30/2016	
		Date Analyzed	10/28/2016		10/30/2016		10/28/2016		10/28/2016		10/30/2016	
		Sample Size(wet) % Solid	7.4 g 84.8		7.7 g 96.5		6.8 g 83.3		6.8 84.6	g	9 g 87.6	
		File ID Units	V17161028A15		V17161030A20		V17161028A21		V17161028A22		V17161030A21	
		Final Volume	ug/kg 5		ug/kg 0.1		ug/kg 5		ug/kg 5		ug/kg 0.005	
		Dilution Reporting Limit	1 0.8		1 100		1 0.88		1 0.87		20 2000	
Class	Abbrev	Analytes	Result	SSRI	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
С	DCM	METHYLENE CHLORIDE	U	8.0	U	1000	U	8.8		U 8.7	l	20000
C	11DCA CF	1,1-DICHLOROETHANE CHLOROFORM	U 1.4	1.2 1.2	U	150 150	U			U 1.3 U 1.3	L	
С	CT	CARBON TETRACHLORIDE	U	0.80	U	100	U	0.88		U 0.87	L	2000
C B	12DCP DBCM	1,2-DICHLOROPROPANE DIBROMOCHLOROMETHANE	U	2.8 0.80	U	360 100	U			U 3.0 U 0.87	L	
С	112TCA	1,1,2-TRICHLOROETHANE	Ü	1.2	U	150	ū	1.3		U 1.3	ī	3100
C	PCE CB	TETRACHLOROETHENE CHLOROBENZENE	4900 E 0.54 J	0.80	62000 D U	410 100	1100 E	0.88	3.0	0.87 U 0.87	1100000 E	
F	TCTFM	TRICHLOROFLUOROMETHANE	U	4.0	U	510	ū	4.4		U 4.3	ū	10000
ADD C	12DCA 111TCA	1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE	U	0.80	U	100 100	U			U 0.87 U 0.87	L	
В	BDCM	BROMODICHLOROMETHANE	Ü	0.80	Ü	100	Ü	0.88		U 0.87	Ü	2000
C	T13DCP C13DCP	TRANS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE	U	0.80	U	100 100	U	0.88		U 0.87 U 0.87	L	
В	BF	BROMOFORM	Ū	3.2	Ū	410	ŭ	3.5		U 3.5	ū	8200
C A	1122PCA B	1,1,2,2-TETRACHLOROETHANE BENZENE	U 0.50 J	0.80	U 75 JI	100 2 410	U	0.88		U 0.87 U 0.87	L L	
Α	T	TOLUENE	0.35 J	1.2	U	150	ū	1.3	0.17	J 1.3	L	3100
A B	EB BM	ETHYLBENZENE BROMOMETHANE	U	0.80	U	100 200	U			U 0.87 U 1.7	L	
С	VC	VINYL CHLORIDE	U	1.6	U	200	U	1.8		U 1.7	L	4100
C C	CE 11DCE	CHLOROETHANE 1,1-DICHLOROETHENE	U	1.6 0.80	U	200	U	1.8 0.88		U 1.7 U 0.87	L	
С	T12DCE	TRANS-1,2-DICHLOROETHENE	0.61 J	1.2	Ü	150	ŭ	1.3		U 1.3	ĭ	3100
C	TCE 12DCB	TRICHLOROETHENE 1,2-DICHLOROBENZENE	33 U	0.80 4.0	U	100 510	5.3 L	0.88 4.4		J 0.87 U 4.3	440 J	2000
С	13DCB	1,3-DICHLOROBENZENE	Ū	4.0	U	510	ū	4.4		U 4.3	ū	10000
С	14DCB	1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER	0.20 J U	4.0 1.6	U	510 200	U			U 4.3 U 1.7	L	
Α	MPX	P/M-XYLENE	0.30 J	1.6	U	200	Ü	1.8		U 1.7	Ü	4100
A C	OX C12DCE	O-XYLENE CIS-1,2-DICHLOROETHENE	100	1.6 0.80	U	200 100	1.7	1.8 0.88		U 1.7 U 0.87	L	
С	123TCP	1,2,3-TRICHLOROPROPANE	U	8.0	U	1000	U	8.8		U 8.7	ī	20000
A F	STY DCFM	STYRENE DICHLORODIFLUOROMETHANE	U 0.79 J	1.6 8.0	U	200 1000	U	1.8 8.8		U 1.7 U 8.7	L L	
0	ACE	ACETONE	6.8 J	29	U	3700	U	32		U 31	L	74000
0	MEK MIBK	2-BUTANONE 4-METHYL-2-PENTANONE	U	8.0 8.0	U	1000 1000	U			U 8.7 U 8.7	L L	
0	THF	TETRAHYDROFURAN	U	16	U	2000	U	18		U 17	Ĺ	41000
ADD C	12DBE 1112PCA	1,2-DIBROMOETHANE 1,1,1,2-TETRACHLOROETHANE	5.4	3.2 0.80	U	410 100	U	3.5 0.88		U 3.5 U 0.87	L	
Α	BUTB	N-BUTYLBENZENE	U	0.80	Ū	100	ū	0.88		U 0.87	ū	
Α	TBB	TERT-BUTYLBENZENE O-CHI OROTOI UENE	U	4.0	U	510 510	U	4.4 4.4		U 4.3 U 4.3	L	
С	HCB	HEXACHLOROBUTADIENE	Ū	4.0	Ü	510	ū	4.4		U 4.3	ū	10000
Α	IPB	ISOPROPYLBENZENE P-ISOPROPYLTOLUENE	U	0.80	U	100 100	U			U 0.87 U 0.87	L L	
Α	N0	NAPHTHALENE	0.12 J	4.0	110 J	510	Ü	4.4		U 4.3	1800 J	10000
A C	PROPB 124TCB	N-PROPYLBENZENE 1,2,4-TRICHLOROBENZENE	U	0.80 4.0	U	100 510	U	0.88		U 0.87 U 4.3	L L	
Α	135TMB	1,3,5-TRIMETHYLBENZENE	Ü	4.0	Ü	510	Ü	4.4		U 4.3	Ĺ	10000
Α	124TMB	1,2,4-TRIMETHYLBENZENE ETHYL ETHER	0.13 J U	4.0 4.0	U	510 510	U	4.4		U 4.3 U 4.3	L	
						2.0						
		Surrogates (% Recovery) 1,2-DICHLOROETHANE-D4	90		79		90		93		80	
		TOLUENE-D8	93		97		95		96		97	
		4-BROMOFLUOROBENZENE DIBROMOFLUOROMETHANE	90 99		92 98		89 101		88 101		89 97	
		S.S. C.MOI EOOROWE IT MAKE	35		36		101		101		51	

		Project Name: Project Number: JALK FEE										
		Client ID	S-8-B24		S-5-B34		S-9-B34		S-3-B35		S-5-B36	
		Lab ID	L1634114-15		L1634114-20		L1634114-21		L1634114-22		L1634114-23D	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description										
		Reference Method Batch ID	8260C WG947514		8260C WG947526		8260C WG947526		8260C WG947526		8260C WG947526	
		Date Collected	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/21/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/28/2016		10/30/2016		10/30/2016		10/30/2016		10/30/2016	
		Date Analyzed	10/28/2016 8.7 a		10/30/2016 8.4 a		10/30/2016 7.7 o		10/30/2016 8.4 c		10/30/2016 7.5 c	
		Sample Size(wet) % Solid	88.5		6.4 y 92		7.7 g 91.1		92.8	,	7.5 g 89.6	
		File ID	V17161028A23		V17161030A22		V17161030A23		V17161030A25		V17161030A26	
		Units	ug/kg		ug/kg		ug/kg		ug/kg		ug/kg	
		Final Volume	5		0.1		0.1		0.1		0.025	
		Dilution Reporting Limit	1 0.65		100		110		1 100		470	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
С	DCM	METHYLENE CHLORIDE	U	6.5	U	1000	· ·	1100	l	J 1000	· ·	4700
C	11DCA CF	1,1-DICHLOROETHANE CHLOROFORM	U U	0.97	U	150 150	į.		l l		l L	
c	CT	CARBON TETRACHLORIDE	U	0.65	U	100	į		i		į	
č	12DCP	1,2-DICHLOROPROPANE	ŭ	2.3	ŭ	350	ĭ		ì		ĭ	
В	DBCM	DIBROMOCHLOROMETHANE	U	0.65	U	100	l		l		l	
С	112TCA	1,1,2-TRICHLOROETHANE	U	0.97	U	150						
C	PCE CB	TETRACHLOROETHENE CHLOROBENZENE	38 U	0.65	61000 D	400 100	59000 E		35000 [180000 E	
F	TCTFM	TRICHLOROFLUOROMETHANE	Ü	3.2	Ŭ	510	ì		ì		ĭ	
ADD	12DCA	1,2-DICHLOROETHANE	U	0.65	U	100	l		l	J 100	l	
С	111TCA	1,1,1-TRICHLOROETHANE	U	0.65	U	100	Ļ		Ļ		Ļ	
B C	BDCM T13DCP	BROMODICHLOROMETHANE TRANS-1,3-DICHLOROPROPENE	U U	0.65 0.65	U	100 100	l L		l l		l L	
Č	C13DCP	CIS-1,3-DICHLOROPROPENE	Ü	0.65	Ü	100	i		ì		i	
B	BF	BROMOFORM	Ū	2.6	Ū	400	i		i		i	
С			U	0.65	U	100	ι		l		ι	
A	B T	BENZENE	U	0.65	U	100	Ļ		l		Ļ	
A A	FR.	TOLUENE ETHYLBENZENE	U	0.97	U	150	L I		l I		l L	
В	BM	BROMOMETHANE	Ŭ	1.3	ŭ	200	ĭ		ì		ĭ	
С	VC	VINYL CHLORIDE	U	1.3	U	200	L	220	ι	J 200	l	
С	CE	CHLOROETHANE	U	1.3	Ü	200	Ļ		Į.		Ļ	
C	11DCE T12DCE	1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	U	0.65	U	100 150	l I		l		l I	
Č	TCF	TRICHI OROFTHENE	0.87	0.65	2500	100	2000	110	77 .		560	470
č	12DCB	1,2-DICHLOROBENZENE	U	3.2	U	510		560	i	500	L L	
С	13DCB	1,3-DICHLOROBENZENE	U	3.2	U	510	L		l		ι	
С	14DCB	1,4-DICHLOROBENZENE METHYL TERT BUTYL ETHER	U	3.2 1.3	U	510 200	l L		l		l L	
Α	MPX	P/M-XYLENE	Ü	1.3	Ü	200	i		i		i	
Α	OX	O-XYLENE	Ū	1.3	Ū	200	ī		i		ī	
С		CIS-1,2-DICHLOROETHENE	0.40 J	0.65	2500	100	1300	110	l		200 J	470
C	123TCP	1,2,3-TRICHLOROPROPANE	U	6.5	U	1000	Ļ		l.		Ļ	
A F	STY DCFM	STYRENE DICHLORODIFLUOROMETHANE	U	1.3 6.5	U	200 1000	L		l		l I	
o	ACE	ACETONE	Ü	23	U	3600	i		i		i	
0	MEK	2-BUTANONE	U	6.5	U	1000	Ü	1100	l	J 1000	Ų	4700
0	MIBK	4-METHYL-2-PENTANONE	U	6.5	U	1000	Ļ		Ų		Ļ	
O ADD	THF 12DBF	TETRAHYDROFURAN 1.2-DIBROMOETHANE	U	13 2.6	U	2000	L I		l		l I	
C	12DBE 1112PCA	1,1,1,2-TETRACHLOROETHANE	Ü	0.65	U	100	į		į		į	
A	BUTB	N-BUTYLBENZENE	Ü	0.65	Ŭ	100	ĭ		ì		ĭ	
Α	TBB	TERT-BUTYLBENZENE	U	3.2	U	510	L		ι		l	
		O-CHLOROTOLUENE	U	3.2	U	510	Ļ		Į.		Ļ	
C A	HCB IPB	HEXACHLOROBUTADIENE ISOPROPYLBENZENE	U	3.2 0.65	U	510 100	L L		l L		l L	
A	IPB	P-ISOPROPYLTOLUENE	U	0.65	U	100	ĺ		l		ĺ	
Α	N0	NAPHTHALENE	ŭ	3.2	94 J	510	92 J		67		310 J	
Α	PROPB	N-PROPYLBENZENE	U	0.65	U	100	ι		l		ι	
C	124TCB	1,2,4-TRICHLOROBENZENE	U	3.2	U	510	Ļ		l		Ļ	
A A	135TMB 124TMB	1,3,5-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE	U	3.2	U	510 510	L I		l		L I	
^	1241100	ETHYL ETHER	Ü	3.2	Ü	510	ĭ		ì		ĭ	
				_								
		Surrogates (% Recovery)										
		1,2-DICHLOROETHANE-D4	95		78		79		80		81	
		TOLUENE-D8	95		98		96		96		97	
		4-BROMOFLUOROBENZENE DIBROMOFLUOROMETHANE	89 102		89 96		88 95		88 96		90 98	
		DIBROWOT EUGNOWIE IT TAINE	102		90		95		96		90	

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

List of Potential Qualifiers

A: Spectra identified as "Aldol Condensation Product"

B: The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, lag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the containments in the associated method blank in the intervention limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

- D: Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte E: Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G: The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated. H: The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 I: The lower value for the two columns has been reported due to obvious interference.

- I: The lower value for the two columns has been reported due to dovlous interference.

 J: Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

 J: Estimated value. This represents an estimated concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPMErelated analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

 M: Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

 ND: Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 ND: Not detected at the reporting limit (RL) for the sample.

- NJ: Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
 P: The RPD between the results for the two columns exceeds the method-specified criteria.
- Q: The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.) R: Analytical results are from sample re-analysis. RE: Analytical results are from sample re-extraction.
- S: Analytical results are from modified screening analysis
- U: Not detected at the reported detection limit for the sample

Client ID	Method Blank
Lab ID	VS102816B03
Matrix	Soil
Reference Method	PIANO
Batch ID	VS102816B03
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	5
% Solid	100.00
File ID	V4011065.D
Units	μg/Kg
Final Volume	5
Dilution	1

		Reporting Limit	0.100	
Class	Abbrev	Analytes	Result	SSRL
T	IP	Isopentane		0.100
0	1P	1-Pentene		0.100
0	2M1B	2-Methyl-1-butene		0.100
Р	C5	Pentane		0.100
0	T2P	2-Pentene (trans)		0.100
0	C2P	2-Pentene (cis)		0.100
OX	TBA	Tertiary butanol		0.100
N	CYP	Cyclopentane		0.100
-	23DMB 2MP	2,3-Dimethylbutane		0.100
OX	MTBE	2-Methylpentane MTBE		0.100
I V	3MP	3-Methylpentane		0.100
'n	1HFX	1-Hexene		0.100
P	C6	Hexane		0.100
ox.	DIPE	Diisopropyl Ether (DIPE)		0.100
OX	FTBF	Ethyl Tertiary Butyl Ether (ETBE)		0.100
i	22DMP	2,2-Dimethylpentane		0.100
N	MCYP	Methylcyclopentane	Ü	0.100
1	24DMP	2,4-Dimethylpentane		0.100
ADD	12DCA	1,2-Dichloroethane	Ū	0.100
N	CH	Cyclohexane	U	0.100
		2-Methylhexane	U	0.100
Α	В	Benzene	U	0.100
-1	23DMP	2,3-Dimethylpentane		0.100
S	THIO	Thiophene		0.100
1	3MH	3-Methylhexane		0.100
OX	TAME	TAME		0.100
0	1H	1-Heptene/1,2-DMCP (trans) ¹		0.100
I	ISO	Isooctane		0.100
Р	C7	Heptane		0.100
1	25DMH	Methylcyclohexane 2,5-Dimethylhexane		0.100
- 1	24DMH	2,4-Dimethylhexane		0.100
i	223TMP	2,2,3-Trimethylpentane		0.100
i	234TMP	2,3,4-Trimethylpentane		0.100
i	233TMP	2,3,3-Trimethylpentane		0.100
i	23DMH	2,3-Dimethylhexane		0.100
i	3FH	3-Ethylhexane		0.100
i	2MHEP	2-Methylheptane		0.100
1	3MHEP	3-Methylheptane	Ü	0.100
Α	T	Toluene	Ü	0.100
S	2MTHIO	2-Methylthiophene	Ū	0.100
S	3MTHIO	3-Methylthiophene	Ü	0.100
0	10	1-Octene	U	0.100
P	C8	Octane	U	0.100

Client ID	Method Blank
Lab ID	VS102816B03
Matrix	Soil
Reference Method	PIANO
Batch ID	VS102816B03
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	5
% Solid	100.00
File ID	V4011065.D
Units	μg/Kg
Final Volume	5
Dilution	1
Reporting Limit	0.100

Class	Abbrev	Analytes	Result St	SRL
ADD	12DBE	1,2-Dibromoethane	U 0.	.100
4	EB	Ethylbenzene	U 0.	
3	2ETHIO	2-Ethylthiophene	U 0.	
4	MPX	p/m-Xylene	U 0.	.100
C	1N	1-Nonene	U 0.	
Р	C9	Nonane	U 0.	.100
A	STY	Styrene	U 0.	
A	OX	o-Xylene	U 0.	
A	IPB	Isopropylbenzene	U 0.	.100
A	PROPB	n-Propylbenzene	U 0.	
A	1M3EB	1-Methyl-3-ethylbenzene	U 0.	.100
A	1M4EB	1-Methyl-4-ethylbenzene	U 0.	.100
A	135TMB	1,3,5-Trimethylbenzene	U 0.	.100
0	1D	1-Decene	U 0.	.100
A	1M2EB	1-Methyl-2-ethylbenzene	U 0.	.100
Р	C10	Decane	0.180 J 0.	.100
A	124TMB	1,2,4-Trimethylbenzene	U 0.	.100
A	SECBUT	sec-Butylbenzene	U 0.	.100
A	1M3IPB	1-Methyl-3-isopropylbenzene	U 0.	.100
A	1M4IPB	1-Methyl-4-isopropylbenzene	U 0.	.100
A	1M2IPB	1-Methyl-2-isopropylbenzene	U 0.	.100
A	IN	Indan	U 0.	.100
A	1M3PB	1-Methyl-3-propylbenzene	U 0.	.100
A	1M4PB	1-Methyl-4-propylbenzene	U 0.	.100
A	BUTB	n-Butylbenzene	U 0.	.100
A	12DM4EB	1,2-Dimethyl-4-ethylbenzene	U 0.	.100
A	12DEB	1,2-Diethylbenzene	U 0.	.100
A	1M2PB	1-Methyl-2-propylbenzene	U 0.	.100
A	14DM2EB	1,4-Dimethyl-2-ethylbenzene	U 0.	.100
Р	C11	Undecane	U 0.	.100
A	13DM4EB	1,3-Dimethyl-4-ethylbenzene	U 0.	.100
A	13DM5EB	1,3-Dimethyl-5-ethylbenzene	U 0.	.100
A	13DM2EB	1,3-Dimethyl-2-ethylbenzene	U 0.	.100
A	12DM3EB	1,2-Dimethyl-3-ethylbenzene	U 0.	.100
A	1245TMP	1,2,4,5-Tetramethylbenzene	U 0.	.100
A	PENTB	Pentylbenzene	U O.	.100
Р	C12	Dodecane	U 0.	.100
2	N0	Naphthalene	U 0.	.100
2	BT0	Benzothiophene	Ü Ö.	
ADD	MMT	MMT	U 0.	.100
Р	C13	Tridecane	U 0.	.100
A	2MN	2-Methylnaphthalene	Ü 0.	
A	1MN	1-Methylnaphthalene	Ü Ö.	

 Surrogates (% Recovery)
 98

 Dibromofluoromethane
 98

 Toluene-d8
 93

 4-Bromofluorobenzene
 98

Client ID	Laboratory Control Sample
Lab ID	VS102816LCS02
Matrix	Soil
Reference Method	PIANO
Batch ID	VS102816B03
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	5
% Solid	100.00
File ID	V4011061.D
Units	μg/Kg
Final Volume	5
Dilution	1
Reporting Limit	0.100

Class	Abbrev	Analytes	Result			% Rec	Spike Conc.	Lower Limit	Upper Limit
0	1P	1-Pentene	15.2	S	0.100	76	20.0	50	130
P	C5	Pentane			0.100	62	20.0	50	130
OX	TBA	Tertiary butanol			0.100	84	100	50	130
N	CYP	Cyclopentane	16.7	S	0.100	83	20.0	50	130
-1	2MP	2-Methylpentane	16.6	S	0.100	83	20.0	50	130
OX	MTBE	MTBE			0.100	96	20.0	50	130
1	3MP	3-Methylpentane	17.4	S	0.100	87	20.0	50	130
0	1HEX	1-Hexene	16.4	S	0.100	82	20.0	50	130
Р	C6	Hexane	16.6	S	0.100	83	20.0	50	130
OX	DIPE	Diisopropyl Ether (DIPE)	17.5	S	0.100	87	20.0	50	130
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)	18.1	S	0.100	91	20.0	50	130
N	MCYP	Methylcyclopentane	17.4	S	0.100	87	20.0	50	130
1	24DMP	2,4-Dimethylpentane	17.0	s	0.100	85	20.0	50	130
N	CH	Cyclohexane	18.0	s	0.100	90	20.0	50	130
		2-Methylhexane			0.100	86	20.0	50	130
Α	В	Benzene	20.1	s	0.100	100	20.0	50	130
ï	23DMP	2,3-Dimethylpentane			0.100	90	20.0	50	130
i i	3MH	3-Methylhexane			0.100	82	20.0	50	130
OX	TAME	TAME			0.100	89	20.0	50	130
ı	ISO	Isooctane			0.100	87	20.0	50	130
P	C7	Heptane			0.100	85	20.0	50	130
	0.	Methylcyclohexane			0.100	96	20.0	50	130
1	2MHFP	2-Methylheptane			0.100	86	20.0	50	130
i	3MHEP	3-Methylheptane			0.100	83	20.0	50	130
A	T	Toluene			0.100	97	20.0	50	130
P	C8	Octane			0.100	83	20.0	50	130
A	EB	Ethylbenzene			0.100	94	20.0	50	130
Â	MPX	p/m-Xylene			0.100	95	40.0	50	130
P	C9	Nonane			0.100	78	20.0	50	130
A	OX	o-Xvlene			0.100	92	20.0	50	130
A	IPB	Isopropylbenzene			0.100	97	20.0	50	130
A	PROPB	n-Propylbenzene			0.100	94	20.0	50	130
A	1M3EB				0.100	94	20.0	50	130
A	1M4EB	1-Methyl-3-ethylbenzene			0.100	94	20.0	50	130
		1-Methyl-4-ethylbenzene			0.100	96	20.0		130
A	135TMB	1,3,5-Trimethylbenzene			0.100	90	20.0	50 50	130
0	1D	1-Decene			0.100	92			
A	1M2EB	1-Methyl-2-ethylbenzene					20.0	50	130
P	C10	Decane 10.4 Trime albulk assessed			0.100	79	20.0	50	130
A		1,2,4-Trimethylbenzene			0.100	93	20.0	50	130
A	SECBUT	sec-Butylbenzene			0.100	93	20.0	50	130
A	1M4PB	1-Methyl-4-propylbenzene			0.100	91	20.0	50	130
A	BUTB	n-Butylbenzene			0.100	90	20.0	50	130
Α	12DEB	1,2-Diethylbenzene			0.100	94	20.0	50	130
Р	C11	Undecane			0.100	83	20.0	50	130
Α	PENTB	Pentylbenzene			0.100	85	20.0	50	130
P	C12	Dodecane	17.4	S	0.100	87	20.0	50	130

Surrogates (% Recovery) Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene 93 94 96

Client ID	Laboratory Control Sample Dup
Lab ID	VS102816LCSD02
Matrix	Soil
Reference Method	PIANO
Batch ID	VS102816B03
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	5
% Solid	100.00
File ID	V4011062.D
Units	μg/Kg
Final Volume	5
Dilution	1
Reporting Limit	0.100

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
0	1P	1-Pentene	15.2	S	0.100	76	20.0	50	130	0	30
Р	C5	Pentane			0.100	66	20.0	50	130	6	30
OX	TBA	Tertiary butanol			0.100	77	100	50	130	9	30
N	CYP	Cyclopentane			0.100	84	20.0	50	130	1	30
- 1	2MP	2-Methylpentane			0.100	82	20.0	50	130	2	30
OX	MTBE	MTBE			0.100	97	20.0	50	130	2	30
1	3MP	3-Methylpentane			0.100	87	20.0	50	130	0	30
0	1HEX	1-Hexene			0.100	82	20.0	50	130	1	30
P	C6	Hexane			0.100	84	20.0	50	130	1	30
OX	DIPE	Diisopropyl Ether (DIPE)			0.100	89	20.0	50	130	1	30
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)			0.100	93	20.0	50	130	3	30
N	MCYP	Methylcyclopentane			0.100	89	20.0	50	130	2	30
I N	24DMP CH	2,4-Dimethylpentane Cyclohexane			0.100	88 89	20.0	50 50	130 130	4	30 30
N	СН	2-Methylhexane			0.100	89 87	20.0	50	130	1	30
Α	В	z-metnyinexane Benzene			0.100	101	20.0	50	130	1	30
î	23DMP	2,3-Dimethylpentane			0.100	92	20.0	50	130	3	30
i	3MH	3-Methylhexane	17.3			86	20.0	50	130	5	30
OX	TAME	TAME			0.100	90	20.0	50	130	2	30
0.7	ISO	Isooctane			0.100	89	20.0	50	130	2	30
P	C7	Heptane			0.100	85	20.0	50	130	0	30
	01	Methylcyclohexane			0.100	99	20.0	50	130	3	30
1	2MHEP	2-Methylheptane			0.100	89	20.0	50	130	3	30
i i	3MHEP	3-Methylheptane			0.100	83	20.0	50	130	1	30
A	T	Toluene			0.100	99	20.0	50	130	1	30
P	C8	Octane			0.100	84	20.0	50	130	0	30
A	EB	Ethylbenzene			0.100	96	20.0	50	130	2	30
Α	MPX	p/m-Xylene			0.100	97	40.0	50	130	2	30
Р	C9	Nonane	15.8	S	0.100	79	20.0	50	130	1	30
Α	OX	o-Xylene	19.0	S	0.100	95	20.0	50	130	3	30
Α	IPB	Isopropylbenzene	20.0	S	0.100	100	20.0	50	130	3	30
Α	PROPB	n-Propylbenzene			0.100	96	20.0	50	130	2	30
Α	1M3EB	1-Methyl-3-ethylbenzene			0.100	97	20.0	50	130	3	30
Α	1M4EB	1-Methyl-4-ethylbenzene	19.1	S	0.100	96	20.0	50	130	2	30
Α		1,3,5-Trimethylbenzene			0.100	100	20.0	50	130	4	30
0	1D	1-Decene			0.100	100	20.0	50	130	9	30
Α	1M2EB	1-Methyl-2-ethylbenzene			0.100	97	20.0	50	130	2	30
Р	C10	Decane			0.100	79	20.0	50	130	0	30
Α		1,2,4-Trimethylbenzene			0.100	96	20.0	50	130	3	30
Α	SECBUT				0.100	96	20.0	50	130	3	30
Α	1M4PB	1-Methyl-4-propylbenzene			0.100	93	20.0	50	130	3	30
A	BUTB	n-Butylbenzene			0.100	92	20.0	50	130	3	30
A	12DEB	1,2-Diethylbenzene			0.100	97	20.0	50	130	2	30
P	C11	Undecane			0.100	84	20.0	50	130	1	30
A	PENTB	Pentylbenzene			0.100	86	20.0	50	130	1	30
Р	C12	Dodecane	17.1	S	0.100	86	20.0	50	130	2	30

Surrogates (% Recovery) Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene 95 93 98

Client ID	S-16-B26	S-16-B30	S-6-B28	S-8-B24
Lab ID	1610008-02	1610008-06	1610008-07	1610008-15
Matrix	Soil	Soil	Soil	Soil
Reference Method	PIANO	PIANO	PIANO	PIANO
Batch ID	VS102816B03	VS102816B03	VS102816B03	VS102816B03
Date Collected	10/18/2016	10/18/2016	10/19/2016	10/20/2016
Date Received	10/20/2016	10/20/2016	10/21/2016	10/22/2016
Date Prepped	10/28/2016	10/28/2016	10/28/2016	10/28/2016
Date Analyzed	10/28/2016	10/28/2016	10/28/2016	10/28/2016
Sample Size (wet)	6.6	7.31	6.53	6.5
% Solid	84.78	83.26	84.58	88.49
File ID	V4011066.D	V4011067.D	V4011068.D	V4011069.D
Units	μg/Kg	μg/Kg	μg/Kg	μg/Kg
Final Volume	5	5	5	5
Dilution	1	1	1	1
Reporting Limit	0.0900	0.0800	0.0900	0.0900

		Reporting Limit	0.0900		0.0800	0.0900		0.0900	
Class	Abbrev	Analytes	Result	SSRL	Result SSRL	Result	SSRL	Result	SSRL
T	IP	Isopentane	U	0.0900	U 0.080		0.0900	U	
0	1P	1-Pentene	U		U 0.080		0.0900	U	
0	2M1B	2-Methyl-1-butene	U		U 0.080		0.0900	U	
Р	C5	Pentane	U		U 0.080		0.0900	U	
0	T2P	2-Pentene (trans)	U		U 0.080		0.0900	U	
0	C2P	2-Pentene (cis)	U	0.0900	U 0.080		0.0900	U	0.0900
OX	TBA	Tertiary butanol	U		U 0.080		0.0900	U	0.0900
N	CYP	Cyclopentane	U		U 0.080		0.0900	U	
1	23DMB	2,3-Dimethylbutane	U		U 0.080		0.0900	U	
1	2MP	2-Methylpentane	U		U 0.080		0.0900	U	
OX	MTBE	MTBE	U		U 0.080		0.0900	U	
1	3MP	3-Methylpentane	U	0.0900	U 0.080) U	0.0900	U	0.0900
0	1HEX	1-Hexene	U		U 0.080		0.0900	U	0.0900
Р	C6	Hexane	U		U 0.080		0.0900	U	0.0900
OX	DIPE	Diisopropyl Ether (DIPE)	U	0.0900	U 0.080		0.0900	U	0.0900
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)	U		U 0.080		0.0900	U	
1	22DMP	2,2-Dimethylpentane	U		U 0.080) U	0.0900	U	0.0900
N	MCYP	Methylcyclopentane	U		U 0.080		0.0900	U	0.0900
1	24DMP	2,4-Dimethylpentane	U	0.0900	U 0.080) U	0.0900	U	0.0900
ADD	12DCA	1,2-Dichloroethane	U	0.0900	U 0.080) U	0.0900	U	0.0900
N	CH	Cyclohexane	U		U 0.080		0.0900	U	0.0900
		2-Methylhexane	U	0.0900	U 0.080		0.0900	U	0.0900
Α	В	Benzene	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	23DMP	2,3-Dimethylpentane	U	0.0900	U 0.080) U	0.0900	U	0.0900
S	THIO	Thiophene	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	3MH	3-Methylhexane	U	0.0900	U 0.080) U	0.0900	U	0.0900
OX	TAME	TAME	U	0.0900	U 0.080) U	0.0900	U	0.0900
0	1H	1-Heptene/1,2-DMCP (trans)1	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	ISO	Isooctane	U		U 0.080		0.0900	U	0.0900
Р	C7	Heptane	U	0.0900	U 0.080) U	0.0900	U	0.0900
		Methylcyclohexane	U		U 0.080		0.0900	U	
1	25DMH	2,5-Dimethylhexane	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	24DMH	2,4-Dimethylhexane	U		U 0.080		0.0900	U	0.0900
1	223TMP	2,2,3-Trimethylpentane	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	234TMP	2,3,4-Trimethylpentane	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	233TMP	2,3,3-Trimethylpentane	U		U 0.080		0.0900	U	
1	23DMH	2,3-Dimethylhexane	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	3EH	3-Ethylhexane	U	0.0900	U 0.080) U	0.0900	U	0.0900
1	2MHEP	2-Methylheptane	U		U 0.080		0.0900	U	
1	3MHEP	3-Methylheptane	U	0.0900	U 0.080		0.0900	U	0.0900
Α	T	Toluene	0.360 J	0.0900	0.340 J 0.080	0.280 J	0.0900	U	0.0900
S	2MTHIO	2-Methylthiophene	U	0.0900	U 0.080		0.0900	U	0.0900
S	3MTHIO	3-Methylthiophene	U		U 0.080		0.0900	U	
0	10	1-Octene	U	0.0900	U 0.080) U	0.0900	U	0.0900
P	C8	Octane	U	0.0900	U 0.080) U	0.0900	U	0.0900

Project Name: Cardno ERI - Former XOM Jalk	Fee Property
Project Number: 850.0087.000	

		Project Number: 850.0087.000												
		Client ID	S-16-B26			S-16-B30			S-6-B28			S-8-B24		
		Lab ID	1610008-02			1610008-06			1610008-07			1610008-15		
		Matrix	Soil			Soil			Soil			Soil		
		Reference Method	PIANO			PIANO			PIANO			PIANO		
		Batch ID	VS102816B03			VS102816B03			VS102816B03			VS102816B03		
		Date Collected	10/18/2016			10/18/2016			10/19/2016			10/20/2016		
		Date Received	10/20/2016			10/20/2016			10/21/2016			10/22/2016		
		Date Prepped	10/28/2016			10/28/2016			10/28/2016			10/28/2016		
		Date Analyzed	10/28/2016			10/28/2016			10/28/2016			10/28/2016		
		Sample Size (wet)	6.6			7.31			6.53			6.5		
		% Solid	84.78			83.26			84.58			88.49		
		File ID	V4011066.D			V4011067.D			V4011068.D			V4011069.D		
		Units	μg/Kg			μg/Kg			μg/Kg			μg/Kg		
		Final Volume Dilution	5			5 1			5 1			5 1		
		Reporting Limit	0.0900			0.0800			0.0900			0.0900		
		Reporting Limit	0.0300			0.0000			0.0300			0.0500		
Class	Abbrev	Analytes	Result		SSRL	Result		SSRL	Result		SSRL	Result		SSRL
ADD	12DBE	1,2-Dibromoethane		U	0.0900			0.0800		U	0.0900			0.0900
Α	EB	Ethylbenzene		U	0.0900			0.0800		U	0.0900			0.0900
S	2ETHIO	2-Ethylthiophene		U	0.0900			0.0800		U	0.0900			0.0900
A	MPX	p/m-Xylene	0.260	J	0.0900	0.310		0.0800		U	0.0900			0.0900
O P	1N C9	1-Nonene Nonane		U	0.0900			0.0800.0		U	0.0900			0.0900
A	STY	Styrene		U	0.0900			0.0800		IJ	0.0900			0.0900
A	OX	o-Xvlene		IJ	0.0900			0.0800		U	0.0900			0.0900
A	IPB	Isopropylbenzene	0.350	J	0.0900	0.170		0.0800		U	0.0900			0.0900
A	PROPB	n-Propylbenzene	0.550	Ü	0.0900			0.0800		ŭ	0.0900			0.0900
Α	1M3EB	1-Methyl-3-ethylbenzene		Ū	0.0900	į		0.0800		Ū	0.0900			0.0900
Α	1M4EB	1-Methyl-4-ethylbenzene		U	0.0900	ı		0.0800		U	0.0900		Ü	0.0900
Α	135TMB	1,3,5-Trimethylbenzene		U	0.0900	l	J (0.0800		U	0.0900		U	0.0900
0	1D	1-Decene		U	0.0900			0.0800		U	0.0900			0.0900
Α	1M2EB	1-Methyl-2-ethylbenzene		U	0.0900			0.0800		U	0.0900			0.0900
P	C10	Decane	0.240					0.0800		U	0.0900			0.0900
A	124TMB	1,2,4-Trimethylbenzene		U	0.0900			0.0800		U	0.0900			0.0900
A	SECBUT 1M3IPB	sec-Butylbenzene		U	0.0900			0.080.0		U	0.0900			0.0900
A A	1M4IPB	1-Methyl-3-isopropylbenzene 1-Methyl-4-isopropylbenzene		U	0.0900			0.0800.0		U	0.0900			0.0900
Ä	1M2IPB	1-Methyl-2-isopropylbenzene		IJ	0.0900			0.0800		Ü	0.0900			0.0900
A	IN.	Indan		Ü	0.0900			0.0800		Ü	0.0900			0.0900
A	1M3PB	1-Methyl-3-propylbenzene		Ü	0.0900			0.0800		Ü	0.0900			0.0900
Α	1M4PB	1-Methyl-4-propylbenzene		Ū	0.0900			0.0800		Ū	0.0900			0.0900
Α	BUTB	n-Butylbenzene		Ü	0.0900	l	J	0.0800		Ü	0.0900		Ü	0.0900
Α		1,2-Dimethyl-4-ethylbenzene		U	0.0900	ı		0.0800		U	0.0900			0.0900
Α	12DEB	1,2-Diethylbenzene		U	0.0900			0.080.0		U	0.0900			0.0900
Α	1M2PB	1-Methyl-2-propylbenzene		U	0.0900			0.0800		U	0.0900			0.0900
A		1,4-Dimethyl-2-ethylbenzene		U	0.0900			0.0800		U	0.0900			0.0900
P	C11	Undecane		U	0.0900			0.080.0		U	0.0900			0.0900
A A		1,3-Dimethyl-4-ethylbenzene 1,3-Dimethyl-5-ethylbenzene		U	0.0900			0.0800.0		U	0.0900			0.0900
A		1,3-Dimethyl-2-ethylbenzene		U	0.0900			0.0800		U	0.0900			0.0900
A		1,2-Dimethyl-3-ethylbenzene		II	0.0900	ì		0.0800		Ü	0.0900			0.0900
A		1.2.4.5-Tetramethylbenzene		Ü	0.0900			0.0800		Ü	0.0900			0.0900
A	PENTB	Pentylbenzene		Ŭ	0.0900			0.0800		Ŭ	0.0900			0.0900
Р	C12	Dodecane	0.160	J	0.0900	0.120	J	0.0800		U	0.0900		Ü	0.0900
2	N0	Naphthalene		U	0.0900	Į.	J (0.080.0		U	0.0900		U	0.0900
2	BT0	Benzothiophene		U	0.0900			0.080.0		U	0.0900			0.0900
ADD	MMT	MMT		U	0.0900			0.0800		U	0.0900			0.0900
P	C13	Tridecane		U	0.0900			0.0800		U	0.0900			0.0900
A	2MN	2-Methylnaphthalene		U	0.0900			0.0800			0.0900			0.0900
Α	1MN	1-Methylnaphthalene		U	0.0900) (0.0800		U	0.0900		U	0.0900
		Surrogates (% Recovery)												
		Dibromofluoromethane	96 90			98 92			98 93			98 93		
		Toluene-d8 4-Bromofluorobenzene	90 96			92 98			93			93 97		
		4-DIOIIIOIIUOIODENZENE	96			98			96			97		

Client ID	Method Blank
Lab ID	VS102816B02
Matrix	Soil
Reference Method	PIANO High
Batch ID	VS102816B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	15
% Solid	100.00
File ID	V4011064.D
Units	μg/Kg
Final Volume	5
Dilution	1
Reporting Limit	5.00

		Reporting Limit	5.00		
Class	Abbrev	Analytes	Result		SSRL
T	IP	Isopentane		U	5.00
0	1P	1-Pentene		U	5.00
0	2M1B	2-Methyl-1-butene		U	5.00
P	C5	Pentane		U	5.00
0	T2P	2-Pentene (trans)		U	5.00
0	C2P	2-Pentene (cis)		U	
OX	TBA	Tertiary butanol		U	5.00
N	CYP	Cyclopentane		U	5.00
1	23DMB	2,3-Dimethylbutane		U	5.00
1	2MP	2-Methylpentane		U	5.00
OX	MTBE	MTBE		U	5.00
L	3MP	3-Methylpentane		U	5.00
0	1HEX	1-Hexene		U	
P	C6	Hexane		U	
OX	DIPE	Diisopropyl Ether (DIPE)		U	
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)		U	5.00
I.	22DMP	2,2-Dimethylpentane		U	5.00
N I	MCYP	Methylcyclopentane		U	5.00
ADD	24DMP	2,4-Dimethylpentane		-	5.00
N N	12DCA CH	1,2-Dichloroethane		U	
IN	СП	Cyclohexane 2-Methylhexane		IJ	5.00
Α	В	Z-Wetrlymexane Benzene		IJ	5.00
î	23DMP	2,3-Dimethylpentane		IJ	5.00
S	THIO	Z,3-Dimetriyipentarie Thiophene		IJ	5.00
ı	3MH	3-Methylhexane		IJ	5.00
OX	TAME	TAME		IJ	5.00
0	1H	1-Heptene/1,2-DMCP (trans) ¹		Ü	
ĭ	ISO	Isooctane		IJ	
P	C7	Heptane		Ü	5.00
	O,	Methylcyclohexane		IJ	5.00
1	25DMH	2,5-Dimethylhexane		Ü	5.00
i	24DMH	2,4-Dimethylhexane		Ü	5.00
i	223TMP	2,2,3-Trimethylpentane		Ũ	
i .	234TMP	2,3,4-Trimethylpentane		Ũ	
i	233TMP	2,3,3-Trimethylpentane		Ũ	5.00
1	23DMH	2,3-Dimethylhexane		Ü	5.00
1	3EH	3-Ethylhexane		Ü	5.00
1	2MHEP	2-Methylheptane		Ü	5.00
1	3MHEP	3-Methylheptane		U	5.00
Α	T	Toluene		U	5.00
S	2MTHIO	2-Methylthiophene		U	5.00
S	3MTHIO	3-Methylthiophene		Ü	5.00
0	10	1-Octene		U	5.00
Р	C8	Octane		U	5.00

Client ID	Method Blank
Lab ID	VS102816B02
Matrix	Soil
Reference Method	PIANO High
Batch ID	VS102816B02
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	15
% Solid	100.00
File ID	V4011064.D
Units	μg/Kg
Final Volume	5
Dilution	1
Reporting Limit	5.00

ADD 12DBE 1,2-Dibromoethane		5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
S 2ETHIO 2-Ethylthiophene A MPX p/m-Xylene 0 1N 1-Norene P C9 Nonane X STY A OX 0-Xylene B Isopropylenzene A IPB Isopropylenzene A 1M3EB 1-Methyl-3-ethylbenzene A 1M4EB 1-Methyl-3-ethylbenzene A 1M3EB 1-Methyl-3-ethylbenzene A 1M2EB 1-Methyl-3-ethylbenzene A 1M3EB 1-Alexander 1-Decene A 1M2EB 1-Methyl-3-isopropylenzene A 1M3EB 1-Methyl-3-isopropylbenzene A 1M3EB 1-Methyl-3-isopropylbenzene A 1M3IPB 1-Methyl-3-isopropylbenzene A 1M3IPB 1-Methyl-3-isopropylbenzene A 1M3IPB 1-Methyl-3-isopropylbenzene		5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
A MPX p/m-Xylene 0 1N 1-Nonene P C9 Nonane Nonane Normane A STY Styrene A OX o-Xylene A IM3EB 1-Methyl-3-ethylbenzene A 1M4EB 1-Methyl-4-ethylbenzene A 1M4EB 1-Methyl-2-ethylbenzene A 1M4EB 1-Methyl-3-ethylbenzene A 1M4EB 1-Methyl-3-ethylbenzene A 1M4EB 1-Methyl-3-ethylbenzene A 1M4EB 1-Methyl-3-ethylbenzene A 1M3EB 1-Methyl-3-ethylbenzene A 1M3EB 1-Methyl-3-ethylbenzene B 10.1 A 124TMB 1,24-Trimethylbenzene B 10.1 A 1M3FB 1-Methyl-3-isopropylbenzene	000000000000000000000000000000000000000	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
O	000000000000000000000000000000000000000	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
P C9 Nonane A STY Styrene A OX o-Xylene Boprophybenzene sporpolybenzene A PROPB n-Propyblenzene A 1M4EB 1-Methyl-3-ethylbenzene A 135TMB 1,3,5-Trimethylbenzene A 153TMB 1,3,5-Trimethylbenzene B 1-Decene A 1MZEB 1-Methyl-2-ethylbenzene B 2-E-Trimethylbenzene 10.0 B 2-E-Trimethylbenzene 10.0 B 1-Z4TMB 1,2-4-Trimethylbenzene B 1-Methyl-3-isopropylbenzene 10.0 B 1-Methyl-3-isopropylbenzene 10.0 B 1-Methyl-2-isopropylbenzene 10.0	0 0 0 0 0 0 0	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
A STY Styrene	0000000	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
A OX o-Xylene A IPB Isopropylbenzene n-Propylbenzene 1 MASEB 1-Methyl-3-ethylbenzene 1 135TMB 1,3-5-Trimethylbenzene 2 135TMB 1,3-5-Trimethylbenzene 3 1MZEB 1-Methyl-2-ethylbenzene 4 1MZEB 1-Methyl-2-ethylbenzene 5 10.0 D D Decane 6 1MZEB 1-Methyl-2-ethylbenzene 7 10.0 D Decane 8 124TMB 1,2-4-Trimethylbenzene 9 10.0 Decane 1 1.24TMB 1,2-4-Trimethylbenzene 9 10.0 Decane 1 1.4MIPB 1-Methyl-3-isopropylbenzene 1 1.4MIPB 1-Methyl-3-isopropylbenzene 1 1.4MIPB 1-Methyl-3-isopropylbenzene	UUUUUUUUUU	5.00 5.00 5.00 5.00 5.00 5.00 5.00
A IPB Isopropylbenzene A PROPB 1-Propylbenzene A 1M3EB 1-Methyl-3-ethylbenzene A 13STMB 1-Methyl-3-ethylbenzene A 13STMB 1,3,5-Timethylbenzene A 1M2EB 1-Methyl-2-ethylbenzene C 10 Decane 10.4 A 124TMB 1,2,4-Timethylbenzene B 2CSUT 3-Eo-Butylbenzene A 1M3IPB 1-Methyl-3-isopropylbenzene A 1M4IPB 1-Methyl-4-isopropylbenzene A 1M4IPB 1-Methyl-4-isopropylbenzene I-Methyl-4-isopropylbenzene I-Methyl-4-isopropylbenzene I-Methyl-4-isopropylbenzene	UUUUUUUUUU	5.00 5.00 5.00 5.00 5.00 5.00
A PROPB n-Propylbenzene A 1M3EB 1-Methyl-3-ethylbenzene A 1M4EB 1-Methyl-3-ethylbenzene A 135TMB 1,3-5-Trimethylbenzene A 1M2EB 1-Methyl-2-ethylbenzene A 1M2EB 1-Methyl-2-ethylbenzene Decane A 124TMB 1,2-4-Trimethylbenzene B 1SCBUT 1	UUUUU	5.00 5.00 5.00 5.00 5.00
A 1M3EB 1-Mefnyl-3-ethylbenzene 1 1M4EB 1-Methyl-4-ethylbenzene 1 135TMB 1,3,5-Timethylbenzene 1 1D 1-Decene 1 1M2EB 1-Methyl-2-ethylbenzene 2 10 Decane 10.0 2 124TMB 1,2,4-Timethylbenzene 2 10.0 3 10.0 4 124TMB 1,2,4-Timethylbenzene 3 1M3IPB 1-Methyl-3-isopropylbenzene 4 1M3IPB 1-Methyl-4-isopropylbenzene 4 1M3IPB 1-Methyl-4-isopropylbenzene 5 1-Methyl-4-isopropylbenzene 6 1 1M3IPB 1-Methyl-4-isopropylbenzene	UUUU	5.00 5.00 5.00 5.00
A 1M4EB 1-Methyl-4-ethylbenzene A 135TMB 3,5-Trimethylbenzene D 1D 1,3-5-Trimethylbenzene A 1M2EB 1-Methyl-2-ethylbenzene D 10.0 A 124TMB 1,2-4-Trimethylbenzene A 1SCGUT sec-Butylbenzene A 1M3IPB 1-Methyl-3-isopropylbenzene A 1M4IPB 1-Methyl-3-isopropylbenzene A 1M4IPB 1-Methyl-2-isopropylbenzene	UUU	5.00 5.00 5.00
A 1MAEB 1-Melthyl4-ethylbenzene A 135TMB 1,3,5-Timethylbenzene O 1D 1-Decene A 1MZEB 1-Melthyl2-ethylbenzene P C10 Decane A 124TMB 1,2-4-Trimethylbenzene A 1MSIPB 1-Methyl-3-isopropylbenzene A 1MAIPB 1-Methyl-4-isopropylbenzene A 1MZIPB 1-Methyl-2-isopropylbenzene	U	5.00 5.00
O 1D 1-Decene A 1MZEB 1-Methyl-2-ethylbenzene P C10 Decane 10.1 A 124TMB 1.24-Trimethylbenzene 10.1 A SECBUT see-Butylbenzene 1-Methyl-3-isopropylbenzene A 1MAIPB 1-Methyl-4-isopropylbenzene 1-Methyl-2-isopropylbenzene A 1MZIPB 1-Methyl-2-isopropylbenzene	Ü	5.00
O 1D 1-Decene A 1MZEB 1-Methyl-2-ethylbenzene P C10 Decane 10.1 A 124TMB 1.24-Trimethylbenzene 10.1 A SECBUT see-Butylbenzene 1-Methyl-3-isopropylbenzene A 1MAIPB 1-Methyl-4-isopropylbenzene 1-Methyl-2-isopropylbenzene A 1MZIPB 1-Methyl-2-isopropylbenzene	U	
P C10 Decane 10.1 A 124TMB 1.24-Timethylbenzene 10.1 A SECBUT sec-Butylbenzene 1.24-Timethylbenzene A 11M3IPB 1-Methyl-3-isopropylbenzene 1.4methyl-4-isopropylbenzene A 1M2IPB 1-Methyl-4-isopropylbenzene 1.4methyl-4-isopropylbenzene		
P C10 Decane 10.1 A 124TMB 1,24-Trimethylbenzene 10.1 A SECBUT sec-Butylbenzene sec-Butylbenzene A 1M3IPB 1-Methyl-3-isopropylbenzene 1-Methyl-4-isopropylbenzene A 1M4IPB 1-Methyl-4-isopropylbenzene	L a	5.00
A SECBUT sec-Butylbenzene A 1MAIPB 1-Methyl-3-isopropylbenzene A 1MAIPB 1-Methyl-4-isopropylbenzene A 1MAIPB 1-Methyl-2-isopropylbenzene		5.00
A SECBUT sec-Butylbenzene A 1M3IPB 1-Methyl-3-isopropylbenzene A 1M4IPB 1-Methyl-4-isopropylbenzene A 1M2IPB 1-Methyl-2-isopropylbenzene	Ū	
A 1M3IPB 1-Methyl-3-isopropylbenzene A 1M4IPB 1-Methyl-4-isopropylbenzene A 1M2IPB 1-Methyl-2-isopropylbenzene	Ü	5.00
A 1M4IPB 1-Methyl-4-isopropylbenzene A 1M2IPB 1-Methyl-2-isopropylbenzene	Ü	5.00
A 1M2IPB 1-Methyl-2-isopropylbenzene	Ũ	
	Ũ	
	Ü	5.00
A 1M3PB 1-Methyl-3-propylbenzene	Ü	5.00
A 1M4PB 1-Methyl-4-propylbenzene	Ũ	
A BUTB n-Butylbenzene	Ũ	
A 12DM4EB 1,2-Dimethyl-4-ethylbenzene	Ü	5.00
A 12DEB 1,2-Diethylbenzene	Ü	5.00
A 1M2PB 1-Methyl-2-propylbenzene	Ũ	
A 14DM2EB 1,4-Dimethyl-2-ethylbenzene	Ü	5.00
P C11 Undecane	Ü	5.00
A 13DM4EB 1.3-Dimethyl-4-ethylbenzene	Ũ	
A 13DM5EB 1,3-Dimethyl-5-ethylbenzene	Ũ	
A 13DM2EB 1,3-Dimethyl-2-ethylbenzene	Ü	5.00
A 12DM3EB 1,2-Dimethyl-3-ethylbenzene	Ū	5.00
A 1245TMP 1,2,4,5-Tetramethylbenzene	Ũ	
A PENTB Pentylbenzene	Ü	5.00
P C12 Dodecane	Ũ	
2 N0 Naphthalene	Ü	
2 BT0 Benzothiophene	ŭ	5.00
ADD MMT MMT	Ū	5.00
P C13 Tridecane	Ū	
A 2MN 2-Methylnaphthalene 14.		5.00
A 1MN 1-Methylnaphthalene 7.0		5.00

Surrogates (% Recovery)		
2-Bromo-1-chloropropane	90	
1-Chloro-2-fluorobenzene	96	
1,4-Dichlorobutane	68	8
Dibromofluoromethane	96	
Toluene-d8	94	
4-Bromofluorobenzene	97	

Client ID	Laboratory Control Sample
Lab ID	VS102816LCS02
Matrix	Soil
Reference Method	PIANO
Batch ID	VS102816B03
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	15
% Solid	100.00
File ID	V4011061.D
Units	μg/Kg
Final Volume	5
Dilution	1
Reporting Limit	5.0

	Abbrev	Analytes	Result				Spike Conc.		
0	1P	1-Pentene	759	S	15.0	76	1000	50	130
Р	C5	Pentane	618	S	15.0	62	1000	50	130
OX	TBA	Tertiary butanol	4220	S	15.0	84	5000	50	130
N	CYP	Cyclopentane	833	S	15.0	83	1000	50	130
1	2MP	2-Methylpentane	832	S	15.0	83	1000	50	130
OX	MTBE	MTBE	957	S	15.0	96	1000	50	130
1	3MP	3-Methylpentane	872	S	15.0	87	1000	50	130
0	1HEX	1-Hexene	819	S	15.0	82	1000	50	130
Р	C6	Hexane	830	S	15.0	83	1000	50	130
OX	DIPE	Diisopropyl Ether (DIPE)	873	S	15.0	87	1000	50	130
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)	907	S	15.0	91	1000	50	130
N	MCYP	Methylcyclopentane	872	S	15.0	87	1000	50	130
1	24DMP	2,4-Dimethylpentane	852	S	15.0	85	1000	50	130
N	CH	Cyclohexane	899	S	15.0	90	1000	50	130
		2-Methylhexane	864	S	15.0	86	1000	50	130
Α	В	Benzene	1000	S	15.0	100	1000	50	130
1	23DMP	2,3-Dimethylpentane	899	S	15.0	90	1000	50	130
1	3MH	3-Methylhexane	818	S	15.0	82	1000	50	130
OX	TAME	TAME	886	S	15.0	89	1000	50	130
1	ISO	Isooctane	874	S	15.0	87	1000	50	130
Р	C7	Heptane	851	S	15.0	85	1000	50	130
		Methylcyclohexane	957	S	15.0	96	1000	50	130
1	2MHEP	2-Methylheptane	863	S	15.0	86	1000	50	130
1	3MHEP	3-Methylheptane	829	S	15.0	83	1000	50	130
Α	Ť	Toluene	973	S	15.0	97	1000	50	130
Р	C8	Octane	834	S	15.0	83	1000	50	130
Α	EB	Ethylbenzene	943	s	15.0	94	1000	50	130
Α	MPX	p/m-Xylene	1900	S	15.0	95	2000	50	130
Р	C9	Nonane	778	S	15.0	78	1000	50	130
Α	OX	o-Xvlene	922	s	15.0	92	1000	50	130
Α	IPB	Isopropylbenzene	971	s	15.0	97	1000	50	130
Α	PROPB	n-Propylbenzene	942	S	15.0	94	1000	50	130
Α	1M3EB	1-Methyl-3-ethylbenzene	945	s	15.0	94	1000	50	130
Α	1M4EB	1-Methyl-4-ethylbenzene	935	s	15.0	94	1000	50	130
Α	135TMB	1,3,5-Trimethylbenzene	955	s	15.0	96	1000	50	130
0	1D	1-Decene	915	š	15.0	92	1000	50	130
A	1M2EB	1-Methyl-2-ethylbenzene	958	s	15.0	96	1000	50	130
P	C10	Decane	792	Š	15.0	79	1000	50	130
A	124TMB	1,2,4-Trimethylbenzene	928	š	15.0	93	1000	50	130
Α		sec-Butylbenzene	934	Š	15.0	93	1000	50	130
Α	1M4PB	1-Methyl-4-propylbenzene	906	Š	15.0	91	1000	50	130
Α	BUTB	n-Butylbenzene	895	Š	15.0	90	1000	50	130
A	12DEB	1,2-Diethylbenzene	945	s	15.0	94	1000	50	130
P	C11	Undecane	829	Š	15.0	83	1000	50	130
A	PENTB	Pentylbenzene	850	s	15.0	85	1000	50	130
P	C12	Dodecane	872	s	15.0	87	1000	50	130

Surrogates (% Recovery) 2-Bromo-1-chloropropane 1-Chloro-2-fluorobenzene 1,4-Dichlorobutane Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene N/A N/A N/A 93 94 96

Client ID	Laboratory Control Sample Dup
Lab ID	VS102816LCSD02
Matrix	Soil
Reference Method	PIANO
Batch ID	VS102816B03
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	15
% Solid	100.00
File ID	V4011062.D
Units	μg/Kg
Final Volume	5
Dilution	1
Poporting Limit	E 0

	Abbrev	Analytes	Result				Spike Conc.				RPD Limit
0	1P	1-Pentene		S	15.0	76	1000	50	130	0	30
P	C5	Pentane	658	S	15.0	66	1000	50	130	6	30
OX	TBA	Tertiary butanol	3860	S	15.0	77	5000	50	130	9	30
N	CYP	Cyclopentane	841	S	15.0	84	1000	50	130	1	30
L	2MP	2-Methylpentane	818	S	15.0	82	1000	50	130	2	30
OX	MTBE	MTBE	974	S	15.0	97	1000	50	130	2	30
- 1	3MP	3-Methylpentane	873	S	15.0	87	1000	50	130	0	30
0	1HEX	1-Hexene	824	S	15.0	82	1000	50	130	1	30
Р	C6	Hexane	840	S	15.0	84	1000	50	130	1	30
OX	DIPE	Diisopropyl Ether (DIPE)	886	S	15.0	89	1000	50	130	1	30
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)	931	S	15.0	93	1000	50	130	3	30
N	MCYP	Methylcyclopentane	889	S	15.0	89	1000	50	130	2	30
- 1	24DMP	2,4-Dimethylpentane	884	S	15.0	88	1000	50	130	4	30
N	CH	Cyclohexane	894	S	15.0	89	1000	50	130	1	30
		2-Methylhexane	873	S	15.0	87	1000	50	130	1	30
Α	В	Benzene	1010	S	15.0	101	1000	50	130	1	30
- 1	23DMP	2,3-Dimethylpentane	922	S	15.0	92	1000	50	130	3	30
- 1	3MH	3-Methylhexane	864	S	15.0	86	1000	50	130	5	30
OX	TAME	TAME	902	S	15.0	90	1000	50	130	2	30
- 1	ISO	Isooctane	887	S	15.0	89	1000	50	130	2	30
Р	C7	Heptane	848	S	15.0	85	1000	50	130	0	30
		Methylcyclohexane	988	S	15.0	99	1000	50	130	3	30
- 1	2MHEP	2-Methylheptane	894	S	15.0	89	1000	50	130	3	30
- 1	3MHEP	3-Methylheptane	834	S	15.0	83	1000	50	130	1	30
Α	T	Toluene	985	S	15.0	99	1000	50	130	1	30
P	C8	Octane	838	S	15.0	84	1000	50	130	0	30
Α	EB	Ethylbenzene	963	S	15.0	96	1000	50	130	2	30
Α	MPX	p/m-Xylene	1940	S	15.0	97	2000	50	130	2	30
P	C9	Nonane	790	S	15.0	79	1000	50	130	1	30
Α	OX	o-Xylene	952	S	15.0	95	1000	50	130	3	30
Α	IPB	Isopropylbenzene	1000	S	15.0	100	1000	50	130	3	30
Α	PROPB	n-Propylbenzene	960	S	15.0	96	1000	50	130	2	30
Α	1M3EB	1-Methyl-3-ethylbenzene	975	S	15.0	97	1000	50	130	3	30
Α	1M4EB	1-Methyl-4-ethylbenzene	955	S	15.0	96	1000	50	130	2	30
Α	135TMB	1,3,5-Trimethylbenzene	996	S	15.0	100	1000	50	130	4	30
0	1D	1-Decene	1000	S	15.0	100	1000	50	130	9	30
Α	1M2EB	1-Methyl-2-ethylbenzene	974	S	15.0	97	1000	50	130	2	30
Р	C10	Decane	795	S	15.0	80	1000	50	130	0	30
Α		1,2,4-Trimethylbenzene	958	S	15.0	96	1000	50	130	3	30
Α	SECBUT	sec-Butylbenzene	963	S	15.0	96	1000	50	130	3	30
Α	1M4PB	1-Methyl-4-propylbenzene	929	S	15.0	93	1000	50	130	3	30
Α	BUTB	n-Butylbenzene	921	S	15.0	92	1000	50	130	3	30
Α	12DEB	1,2-Diethylbenzene	967	S	15.0	97	1000	50	130	2	30
Р	C11	Undecane	835	S	15.0	84	1000	50	130	1	30
Α	PENTB	Pentylbenzene	861	S	15.0	86	1000	50	130	1	30
P	C12	Dodecane	856	S	15.0	86	1000	50	130	2	30

Surrogates (% Recovery) 2-Bromo-1-chloropropane 1-Chloro-2-fluorobenzene 1,4-Dichlorobutane Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene N/A N/A N/A 95 93 98

Client ID	Gasoline Reference Oil - LD-7
Lab ID	VS102816LD701
Matrix	Oil
Reference Method	PIANO High
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	0.1004
% Solid	100.00
File ID	V4011063.D
Units	mg/Kg
Final Volume	5
Dilution	100
Reporting Limit	49.8

		Reporting Limit	43.0							
	Abbrev	Analytes	Result		SSRL		Spike Conc.			
	IP	Isopentane	25300		49.8	81	31223.00	65	135	
0	1P	1-Pentene			49.8					
0	2M1B	2-Methyl-1-butene		U	49.8					
	C5	Pentane	20200		49.8	75	26748.00	65	135	
0	T2P	2-Pentene (trans)	211		49.8					
0	C2P	2-Pentene (cis)		U	49.8					
OX	TBA	Tertiary butanol		U	49.8					
N	CYP	Cyclopentane	3720		49.8	91	4090.00	65	135	
1	23DMB	2,3-Dimethylbutane	7870		49.8	93	8480.00	65	135	
1	2MP	2-Methylpentane	25700		49.8	76	33695.00	65	135	
OX	MTBE	MTBE		U	49.8					
1	3MP	3-Methylpentane	16900		49.8	82	20693.00	65	135	
0	1HEX	1-Hexene		U	49.8					
P	C6	Hexane	26600		49.8	85	31248.00	65	135	
OX	DIPE	Diisopropyl Ether (DIPE)		U	49.8					
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)		Ü	49.8					
Ĭ.	22DMP	2,2-Dimethylpentane	3360	-	49.8	85	3933.00	65	135	
N	MCYP	Methylcyclopentane	22700		49.8	83	27356.00	65	135	
ï	24DMP	2.4-Dimethylpentane	4580		49.8	81	5652.00	65	135	
	12DCA	1.2-Dichloroethane	4500	U	49.8	01	3032.00	00	100	
N	CH	Cyclohexane	38500	•	49.8	87	44344.00	65	135	
	011	2-Methylhexane	16100		49.8	81	19898.00	65	135	
Α	В	Benzene	3250		49.8	95	3408.00	65	135	
ı	23DMP	2.3-Dimethylpentane	6700		49.8	95	7333.00	65	135	
S	THIO	Z,3-Dimetriyiperitarie Thiophene		U	49.8	91	7333.00	65	133	
ı	3MH	3-Methylhexane	16800	U	49.8	84	19898.00	65	135	
	TAME	TAME	10000	U	49.8	04	19090.00	65	133	
0	1H	1-Heptene/1,2-DMCP (trans) ¹	11700	U	49.8	87	13444.00	65	135	
i	ISO				49.8				135	
	C7	Isooctane	10700			83	12819.00	65		
Р	C7	Heptane	26600		49.8	79	33718.00	65	135	
		Methylcyclohexane	86900		49.8	87	99570.00	65	135	
!	25DMH	2,5-Dimethylhexane	4200		49.8	86	4910.00	65	135	
!	24DMH	2,4-Dimethylhexane	5170		49.8	83	6202.00	65	135	
1	223TMP	2,2,3-Trimethylpentane	564	J	49.8					
1	234TMP	2,3,4-Trimethylpentane	3800		49.8	78	4894.00	65	135	
1	233TMP	2,3,3-Trimethylpentane	2390		49.8	77	3110.00	65	135	
1	23DMH	2,3-Dimethylhexane	3700		49.8	79	4700.00	65	135	
1	3EH	3-Ethylhexane	1770		49.8	82	2163.00	65	135	
1	2MHEP	2-Methylheptane	14400		49.8	85	16966.00	65	135	
1	3MHEP	3-Methylheptane	11000		49.8	79	13911.00	65	135	
Α	T	Toluene	2190		49.8	91	2400.00	65	135	
S	2MTHIO	2-Methylthiophene		U	49.8					
S	3MTHIO	3-Methylthiophene		U	49.8					
0	10	1-Octene		U	49.8					
P	C8	Octane	24500		49.8	77	31798.00	65	135	

Client ID	Gasoline Reference Oil - LD-7
Lab ID	VS102816LD701
Matrix	Oil
Reference Method	PIANO High
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	10/28/2016
Date Analyzed	10/28/2016
Sample Size (wet)	0.1004
% Solid	100.00
File ID	V4011063.D
Units	mg/Kg
Final Volume	5
Dilution	100
Reporting Limit	49.8

CI		Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
JA.		12DBE	1,2-Dibromoethane		U	49.8				
A		EB	Ethylbenzene	4990		49.8	89	5610.00	65	135
S	- :	2ETHIO	2-Ethylthiophene		U	49.8				
A		MPX	p/m-Xylene	15700		49.8	91	17224.00	65	135
0		1N	1-Nonene		U	49.8				
P	(C9	Nonane	20500		49.8	89	23088.00	65	135
A	;	STY	Styrene		U	49.8				
A	(OX	o-Xylene	6460		49.8	91	7075.00	65	135
A	- 1	IPB	Isopropylbenzene	1070		49.8	90	1184.00	65	135
A		PROPB	n-Propylbenzene	1350		49.8	87	1555.00	65	135
A		1M3EB	1-Methyl-3-ethylbenzene	4100		49.8	87	4712.00	65	135
A		1M4EB	1-Methyl-4-ethylbenzene	1940		49.8	94	2069.00	65	135
A		135TMB	1,3,5-Trimethylbenzene	4660		49.8	94	4982.00	65	135
0		1D	1-Decene		U	49.8				
A		1M2EB	1-Methyl-2-ethylbenzene	1710		49.8	93	1844.00	65	135
P		C10	Decane	11100		49.8	75	14859.00	65	135
A		124TMB	1,2,4-Trimethylbenzene	8570		49.8	91	9407.00	65	135
A	;	SECBUT	sec-Butylbenzene	311	J	49.8				
A		1M3IPB	1-Methyl-3-isopropylbenzene	575	J	49.8				
A		1M4IPB	1-Methyl-4-isopropylbenzene	293	J	49.8				
A		1M2IPB	1-Methyl-2-isopropylbenzene	114	J	49.8				
A	- 1	IN	Indan	762	J	49.8				
A		1M3PB	1-Methyl-3-propylbenzene	1170		49.8	94	1255.00	65	135
A		1M4PB	1-Methyl-4-propylbenzene	588	J	49.8				
A		BUTB	n-Butylbenzene	420	J	49.8				
A		12DM4EB	1,2-Dimethyl-4-ethylbenzene	1470		49.8	94	1559.00	65	135
A		12DEB	1,2-Diethylbenzene	130		49.8				
A		1M2PB	1-Methyl-2-propylbenzene	388	J	49.8				
A		14DM2EB	1,4-Dimethyl-2-ethylbenzene	822	J	49.8				
P	(C11	Undecane	3520		49.8	89	3952.00	65	135
A		13DM4EB	1,3-Dimethyl-4-ethylbenzene	847		49.8				
A		13DM5EB	1,3-Dimethyl-5-ethylbenzene	1510		49.8	92	1642.00	65	135
A		13DM2EB	1,3-Dimethyl-2-ethylbenzene	157	J	49.8				
A		12DM3EB	1,2-Dimethyl-3-ethylbenzene	460	J	49.8				
A		1245TMP	1,2,4,5-Tetramethylbenzene	1270		49.8	86	1477.00	65	135
A	- 1	PENTB	Pentylbenzene	310	J	49.8				
P	(C12	Dodecane	2010		49.8	83	2437.00	65	135
2		N0	Naphthalene	7460		49.8	94	7917.00	65	135
2		BT0	Benzothiophene		U	49.8				
IA.	DD I	MMT	MMT		U	49.8				
P		C13	Tridecane	677	J	49.8				
A		2MN	2-Methylnaphthalene	8030		49.8	101	7963.00	65	135
A		1MN	1-Methylnaphthalene	4030		49.8	92	4383.00	65	135

Surrogates (% Recovery) Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene 94 93 96

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Client ID	S-14-B27	S-9-B32
Lab ID	1610008-04	1610008-12
Matrix	Soil	Soil
Reference Method	PIANO High	PIANO High
Batch ID	VS102816B02	VS102816B02
Date Collected	10/18/2016	10/19/2016
Date Received	10/20/2016	10/21/2016
Date Prepped	10/28/2016	10/28/2016
Date Analyzed	10/28/2016	10/28/2016
Sample Size (wet)	7.13	7.31
% Solid	96.48	87.62
File ID	V4011070.D	V4011071.D
Units	μg/Kg	μg/Kg
Final Volume	5	5
Dilution	1	1
Reporting Limit	11.1	12.4

		Reporting Limit	11.1		12.4	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL
1	IP	Isopentane	U	11.1	U	12.4
0	1P	1-Pentene	U	11.1	U	12.4
0	2M1B	2-Methyl-1-butene	U	11.1	U	12.4
Р	C5	Pentane	U	11.1	U	12.4
0	T2P	2-Pentene (trans)	U	11.1	U	12.4
0	C2P	2-Pentene (cis)	U	11.1	U	12.4
OX	TBA	Tertiary butanol	U	11.1	U	12.4
N	CYP	Cyclopentane	U	11.1	U	12.4
!	23DMB	2,3-Dimethylbutane	U	11.1	U	12.4
I	2MP	2-Methylpentane	U	11.1	U	12.4
OX	MTBE	MTBE	U	11.1	U	12.4
ı	3MP	3-Methylpentane	U	11.1	U	12.4
O P	1HEX C6	1-Hexene	U	11.1 11.1	U	12.4
		Hexane	U		U	12.4
OX	DIPE	Diisopropyl Ether (DIPE)	U	11.1 11.1	U	12.4 12.4
I I	ETBE 22DMP	Ethyl Tertiary Butyl Ether (ETBE) 2,2-Dimethylpentane	U	11.1	U	12.4
N	MCYP	Methylcyclopentane Methylcyclopentane	U	11.1	IJ	12.4
IN I	24DMP	2,4-Dimethylpentane	U	11.1	U	12.4
ADD	12DCA	1.2-Dichloroethane	U	11.1	IJ	12.4
N	CH	Cyclohexane	Ü	11.1	Ü	12.4
IN	CIT	2-Methylhexane	U	11.1	Ü	12.4
Α	В	Benzene	Ü	11.1	Ü	12.4
î	23DMP	2,3-Dimethylpentane	U	11.1	Ü	12.4
s	THIO	Thiophene	Ŭ	11.1	ŭ	12.4
ĭ	3MH	3-Methylhexane	Ü	11.1	Ü	12.4
OX	TAME	TAME	Ü	11.1	Ü	12.4
0	1H	1-Heptene/1,2-DMCP (trans) ¹	ŭ	11.1	ŭ	12.4
Ĭ.	ISO	Isooctane	Ũ	11.1	Ũ	12.4
P	C7	Heptane	Ũ	11.1	Ũ	12.4
		Methylcyclohexane	Ũ	11.1	Ũ	12.4
1	25DMH	2,5-Dimethylhexane	Ū	11.1	Ü	12.4
1	24DMH	2,4-Dimethylhexane	U	11.1	U	12.4
1	223TMP	2,2,3-Trimethylpentane	U	11.1	U	12.4
1	234TMP	2,3,4-Trimethylpentane	U	11.1	U	12.4
1	233TMP	2,3,3-Trimethylpentane	U	11.1	U	12.4
1	23DMH	2,3-Dimethylhexane	U	11.1	U	12.4
1	3EH	3-Ethylhexane	U	11.1	U	12.4
1	2MHEP	2-Methylheptane	U	11.1	U	12.4
1	3MHEP	3-Methylheptane	U	11.1	U	12.4
Α	T	Toluene	U	11.1	U	12.4
S	2MTHIO	2-Methylthiophene	U	11.1	U	12.4
S	3MTHIO	3-Methylthiophene	U	11.1	U	12.4
0	10	1-Octene	U	11.1	U	12.4
Р	C8	Octane	U	11.1	U	12.4

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 950 0097 000

		Client ID	S-14-B27	S-9-B32
		Lab ID Matrix	1610008-04	1610008-12
		Reference Method	Soil PIANO High	Soil PIANO High
		Batch ID	VS102816B02	VS102816B02
		Date Collected	10/18/2016	10/19/2016
		Date Received	10/10/2016	10/13/2016
		Date Prepped	10/28/2016	10/28/2016
		Date Analyzed	10/28/2016	10/28/2016
		Sample Size (wet)	7.13	7.31
		% Solid	96.48	87.62
		File ID	V4011070.D	V4011071.D
		Units	μg/Kg	μg/Kg
		Final Volume	5	5
		Dilution	1	1
		Reporting Limit	11.1	12.4
SS	Abbrev	Analytes	Result SSRL	. Result SSRL
D	12DBE	1,2-Dibromoethane	U 11.1	U 12.4
	EB	Ethylbenzene	33.4 JB 11.1	35.5 JB 12.4
	2ETHIO	2-Ethylthiophene	U 11.1	U 12.4
	MPX	p/m-Xylene	U 11.1	U 12.4
	1N C9	1-Nonene Nonane	U 11.1 U 11.1	U 12.4 U 12.4
	STY	Styrene	U 11.1	U 12.4
	OX	o-Xylene	U 11.1	U 12.4
	IPB	Isopropylbenzene	U 11.1	U 12.4
	PROPB	n-Propylbenzene	Ü 11.1	U 12.4
	1M3EB	1-Methyl-3-ethylbenzene	U 11.1	U 12.4
	1M4EB	1-Methyl-4-ethylbenzene	U 11.1	U 12.4
	135TMB	1,3,5-Trimethylbenzene	U 11.1	U 12.4
	1D	1-Decene	U 11.1	U 12.4
	1M2EB	1-Methyl-2-ethylbenzene	U 11.1	U 12.4
	C10 124TMB	Decane 1,2,4-Trimethylbenzene	U 11.1 U 11.1	U 12.4 U 12.4
	SECBUT	sec-Butylbenzene	U 11.1	U 12.4
	1M3IPB	1-Methyl-3-isopropylbenzene	U 11.1	U 12.4
	1M4IPB	1-Methyl-4-isopropylbenzene	Ü 11.1	U 12.4
	1M2IPB	1-Methyl-2-isopropylbenzene	Ü 11.1	U 12.4
	IN	Indan	U 11.1	U 12.4
	1M3PB	1-Methyl-3-propylbenzene	U 11.1	U 12.4
	1M4PB	1-Methyl-4-propylbenzene	U 11.1	U 12.4
	BUTB	n-Butylbenzene	U 11.1	U 12.4
		1,2-Dimethyl-4-ethylbenzene	U 11.1 U 11.1	U 12.4 U 12.4
	12DEB 1M2PB	1,2-Diethylbenzene 1-Methyl-2-propylbenzene	U 11.1	U 12.4 U 12.4
		1,4-Dimethyl-2-ethylbenzene	U 11.1	U 12.4
	C11	Undecane	U 11.1	U 12.4
		1,3-Dimethyl-4-ethylbenzene	U 11.1	U 12.4
		1,3-Dimethyl-5-ethylbenzene	Ü 11.1	U 12.4
		1,3-Dimethyl-2-ethylbenzene	U 11.1	U 12.4
	12DM3EB	1,2-Dimethyl-3-ethylbenzene	U 11.1	U 12.4
		1,2,4,5-Tetramethylbenzene	U 11.1	U 12.4
	PENTB	Pentylbenzene	U 11.1	U 12.4
	C12	Dodecane	U 11.1	U 12.4
	N0 BT0	Naphthalene Benzothiophene	U 11.1 U 11.1	U 12.4 U 12.4
D	MMT	MMT	U 11.1	U 12.4
_	C13	Tridecane	U 11.1	U 12.4
	2MN	2-Methylnaphthalene	U 11.1	U 12.4
	1MN	1-Methylnaphthalene	U 11.1	U 12.4
		Currentes (9/ Beauty)		
		Surrogates (% Recovery)	100	104

Surrogates (% Recovery)		
2-Bromo-1-chloropropane	100	104
1-Chloro-2-fluorobenzene	103	108
1,4-Dichlorobutane	74	77
Dibromofluoromethane	96	97
Toluene-d8	92	92
4-Bromofluorobenzene	98	99

Project Name: Cardno ERI - Former XOM Jalk Fee Property

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000												
		Client ID Lab ID Matrix	S-5-B34 1610008-20 Soil			S-9-B34 1610008-21 Soil			S-3-B35 1610008-22 Soil			S-5-B36 1610008-23 Soil		
		Reference Method	PIANO High			PIANO High			PIANO High			PIANO High		
		Batch ID	VS102816B02			VS102816B02			VS102816B02			VS102816B02		
		Date Collected	10/20/2016			10/20/2016			10/20/2016			10/21/2016		
		Date Received	10/22/2016			10/22/2016			10/22/2016			10/22/2016		
		Date Prepped	10/28/2016			10/28/2016			10/28/2016			10/28/2016		
		Date Analyzed	10/29/2016			10/29/2016			10/29/2016			10/29/2016		
		Sample Size (wet) % Solid	6.25 92.01			6.1 91.08			6.19 92.76			7.81 89.64		
		File ID	V4011072.D			V4011073.D			V4011074.D			V4011075.D		
		Units	μg/Kg			μg/Kg			μg/Kg			μg/Kg		
		Final Volume	5			5			5			5		
		Dilution	1			1			1			1		
		Reporting Limit	13.5			14.0			13.4			11.3		
Class	Abbrev	Analytes Isopentane	Result	U	SSRL 13.5	Result	U	SSRL 14.0	Result	U	SSRL 13.4	Result	U	SSRL 11.3
0	 1P	1-Pentene		Ü	13.5		Ü	14.0		Ü	13.4		Ü	11.3
Ó	2M1B	2-Methyl-1-butene		Ü	13.5		Ü	14.0		Ü	13.4		Ü	11.3
P	C5	Pentane		U	13.5		U	14.0		U	13.4		U	11.3
0	T2P	2-Pentene (trans)		U	13.5		U	14.0		U	13.4		U	11.3
O OX	C2P TBA	2-Pentene (cis) Tertiary butanol		U	13.5 13.5		U	14.0 14.0		U	13.4 13.4		U U	11.3 11.3
N N	CYP	Cyclopentane		U	13.5		U	14.0		U	13.4		U	11.3
i	23DMB	2,3-Dimethylbutane		Ü	13.5		IJ	14.0		IJ	13.4		IJ	11.3
i	2MP	2-Methylpentane		Ŭ	13.5		Ŭ	14.0		Ŭ	13.4		Ŭ	11.3
OX	MTBE	MTBE		U	13.5		U	14.0		U	13.4		U	11.3
I	3MP	3-Methylpentane		U	13.5		U	14.0		U	13.4		U	11.3
0	1HEX	1-Hexene		U	13.5		U	14.0		U	13.4		U	11.3
P OX	C6 DIPE	Hexane Diisopropyl Ether (DIPE)		U	13.5 13.5		U	14.0 14.0		U	13.4 13.4		U	11.3 11.3
OX	ETBE	Ethyl Tertiary Butyl Ether (ETBE)		U	13.5		U	14.0		U	13.4		U	11.3
I	22DMP	2,2-Dimethylpentane		Ü	13.5		Ü	14.0		Ü	13.4		Ü	11.3
N	MCYP	Methylcyclopentane		Ü	13.5		Ü	14.0		U	13.4		Ü	11.3
I	24DMP	2,4-Dimethylpentane		U	13.5		U	14.0		U	13.4		U	11.3
ADD	12DCA	1,2-Dichloroethane		U	13.5		U	14.0		U	13.4		U	11.3
N	CH	Cyclohexane 2-Methylhexane		U	13.5 13.5		U	14.0 14.0		U	13.4 13.4		U	11.3 11.3
A	В	2-Methylnexane Benzene		U	13.5		U	14.0		U	13.4		U	11.3
î	23DMP	2,3-Dimethylpentane		U	13.5		Ü	14.0		Ü	13.4		U	11.3
s	THIO	Thiophene		Ŭ	13.5		Ŭ	14.0		Ŭ	13.4		Ŭ	11.3
I	3MH	3-Methylhexane		U	13.5		U	14.0		U	13.4		U	11.3
OX	TAME	TAME		U	13.5		U	14.0		U	13.4		U	11.3
0	1H	1-Heptene/1,2-DMCP (trans) ¹		U	13.5		U	14.0		U	13.4		U U	11.3
l P	ISO C7	Isooctane Heptane		U	13.5 13.5		U	14.0 14.0		U	13.4 13.4		U	11.3 11.3
г	Ci	Methylcyclohexane		U	13.5		Ü	14.0		Ü	13.4		U	11.3
I	25DMH	2,5-Dimethylhexane		Ŭ	13.5		Ŭ	14.0		Ŭ	13.4		Ŭ	11.3
I	24DMH	2,4-Dimethylhexane		U	13.5		U	14.0		U	13.4		U	11.3
I	223TMP	2,2,3-Trimethylpentane		U	13.5		U	14.0		U	13.4		U	11.3
ļ.	234TMP	2,3,4-Trimethylpentane		U	13.5		U	14.0		U	13.4		U	11.3
! !	233TMP 23DMH	2,3,3-Trimethylpentane		U	13.5 13.5		U	14.0 14.0		U	13.4 13.4		U U	11.3 11.3
!	3EH	2,3-Dimethylhexane 3-Ethylhexane		IJ	13.5		U	14.0		IJ	13.4		IJ	11.3
i	2MHEP	2-Methylheptane		IJ	13.5		IJ	14.0		IJ	13.4		IJ	11.3
i	3MHEP	3-Methylheptane		Ŭ	13.5		Ŭ	14.0		Ü	13.4		Ü	11.3
Α	T	Toluene		U	13.5		U	14.0		U	13.4		U	11.3
S	2MTHIO	2-Methylthiophene		U	13.5		U	14.0		U	13.4		U	11.3
S	3MTHIO	3-Methylthiophene		U	13.5		U	14.0		U	13.4		U	11.3
O P	10 C8	1-Octene Octane		U	13.5		U	14.0 14.0		U	13.4 13.4		U	11.3 11.3
г	00	Octaile		U	13.5		U	14.0		U	13.4		U	11.3

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000							
		Client ID Lab ID Lab ID Matrix Reference Method Batch ID Date Collected Date Received Date Received Date Prepped Date Analyzed Sample Size (wet) % Solid File ID Units Final Volume Dilution Reporting Limit	S-5-B34 1610008-20 Soil FIANO High VS102816B02 10/20/2016 10/28/2016 10/28/2016 6.25 92.01 V4011072_D µg/Kg 5 1 13.5		S-9-B34 1610008-21 Soil PIANO High VS102816B02 10/20/2016 10/22/2016 10/29/2016 6.1 91.08 V4011073.D µg/Kg 5 114.0	S-3-B35 1610008-22 Soill PIANO High VS102816B02 10/22/2016 10/28/2016 6.19 92.76 V4011074_D µg/Kg 5 1 1,3.4		S-5-B36 1610008-23 Soil PIANO High VS102816B02 10/21/2016 10/22/2016 10/28/2016 7.81 89.64 V4011075.D µg/kg 5 11.3	
Class	Abbrev	Analytes	Result	SSR	L Result S	SRL Result	SSRL	Result	SSRL
A S A O P A A A A A A A A A A A A A A A A A	1M3IPB 1M4IPB 1M2IPB IN 1M3PB 1M4PB BUTB 12DM4EB 12DEB 14DM2EB C11 13DM4EB 13DM5EB 13DM5EB 13DM3EB 12DM3EB	Ethylbenzene 2-Ethylthiophene p/m-Xylene 1-Nonene Nonane Styrene 0-Xylene Isopropylbenzene n-Propylbenzene 1-Methyl-3-ethylbenzene 1-Methyl-3-ethylbenzene 1-Methyl-4-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-3-isopropylbenzene 1-Methyl-3-isopropylbenzene 1-Methyl-3-isopropylbenzene 1-Methyl-3-propylbenzene 1-Methyl-4-propylbenzene 1-Methyl-4-propylbenzene 1-Methyl-4-propylbenzene 1-Methyl-4-propylbenzene 1-Methyl-2-propylbenzene 1-Methyl-2-propylbenzene 1-J-Dimylbenzene 1-J-Dimylbenzene 1-J-Dimylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-2-ethylbenzene 1-Methyl-3-ethylbenzene 1-Methyl-3-ethylbenzene 1-J-Dimethyl-4-ethylbenzene 1-J-Dimethyl-4-ethylbenzene 1-J-Dimethyl-3-ethylbenzene 1-J-Dimethyl-3-ethylbenzene Dodecane Naphthalene Benzothiophene MMT Tridecane 2-Methylmapthalene	38.8 JE U U U U U U U U U U U U U U U U U U	13.5.1 13	U U	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	IB 13.4 U 13.4	31.4 JE U U U U U U U U U U U U U U U U U U	113 113 113 113 113 113 113 113 113 113
A	1MN	1-Methylnaphthalene Surrogates (% Recovery) 2-Bromo-1-chloropropane 1-Chloro-2-fluorobenzene 1,4-Dichlorobutane Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	100 104 75 96 93 99				U 13.4	102 104 73 96 93 94	

- U: The analyte was analyzed for but not detected at the sample specific level reported.

 B: Found in associated blank as well as sample.

 J: Estimated value, below quantitation limit.

 E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable

 D: Secondary Dilution Performed

 D1: Tertiary Dilution Performed

 D1: Value outside of QC Limits.

 §: Surrogate value outside of acceptable range.

 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

 G: Matrix Interference.

 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.

 I: Due to interference, the lower value is reported.

 N: Spike recovery outside control limits.

 E: Estimated due to Interference, (Metals)

 II: Diplicate outside control limits.

 P: Spike compound. (Metals)

 J: Below CRDL, Project DL, or RL but greater than or equal to MDL.

 C: Sample concentration is 2-4 times the spike level, recovery limits do not apply. (Metals)

 S: Spike Compound. (Organics)

 S: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)

 T: Tentatively identified corexit compound.

 Z: Result not surrogate corrected.

 DI: Surrogate result diluted out of sample.

 W: Matrix Interference may be present based on chemical reasonableness evaluation.

	1 TOJECT NUMBER: SAERT EE			
	Client ID	Laboratory Method BI	Laboratory I	Method BI
	Lab ID	WG945616-1	WG	946969-1
	Matrix	SOIL		SOIL
	Matrix Description			
	Reference Method	4500CN-CE	45	00CN-CE
	Batch ID	WG945616	W	G946969
	Date Collected	NA		NA
	Date Received	10/25/2016	10	0/27/2016
	Date Prepped	10/25/2016	10	0/27/2016
	Date Analyzed	10/26/2016	10	0/28/2016
	Sample Size(wet)	1.0387 g	3	1.0842 g
	% Solid	100		100
	File ID	161026-H.TXT	1610	028-c2.txt
	Units	mg/kg		mg/kg
	Final Volume	1		1
	Dilution	1		1
	Reporting Limit	0.93		0.85
lass Abbrev	Analytes	Result	SSRL	Result SSF
	CYANIDE, TOTAL	l	J 0.93	U 0.

Project Name: Project Number: JALK FEE

 Class Abbrev
 Analytes
 Result
 SSRL % REC
 Spike Conc.
 Lower Limit
 Upper Limit

 CYANIDE, TOTAL
 60
 115
 52.2
 80
 120

Project Name: Project Number: JALK FEE

Project Number: JALK FEE

Client ID Laboratory Control S Lab ID WG946969-2 Matrix SOIL Matrix SOIL Matrix SOIL Matrix Bearing Matrix SOIL MATRIX SOIL

 Class Abbrev
 Analytes
 Result
 SSRL
 % REC
 Spike Conc.
 Lower Limit
 Upper Limit

 CYANIDE, TOTAL
 68
 130
 52.2
 80
 120
 Q

		Project Name:							
		Project Number: JALK FEE							
		Client ID	S-16-B26		S-16-B26				
		Lab ID	L1634114-02		WG945616-3				
		Matrix	SOIL		SOIL				
		Matrix Description							
		Reference Method	4500CN-CE		4500CN-CE				
		Batch ID	WG945616		WG945616				
		Date Collected	10/18/2016		NA				
		Date Received	10/20/2016		10/25/2016				
		Date Prepped	10/25/2016		10/25/2016				
		Date Analyzed	10/26/2016		10/26/2016				
		Sample Size(wet)	1.0619 g		1.0006 g				
		% Solid	84.8		84.8				
		File ID	161026-H.TXT		161026-H.TXT				
		Units	mg/kg		mg/kg				
		Final Volume	1		1				
		Dilution	1		1				
		Reporting Limit	1.1		1.2				
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD Limit	
		CYANIDE TOTAL		1.1	0.26 1	1.2		35 Y	

		CYANIDE, TOTAL	ı	J 1.1		U 1.1		35 X	(
Class	Abbrev		Result	SSRL	Result		RPD	RPD Limit	_
		Reporting Limit	1.1		1.1				
		Dilution	. 1		. 1				
		Final Volume	1		1				
		Units	mg/kg		mg/kg				
		File ID	161028-c2.txt		161028-C.TXT				
		% Solid	88.5		88.5				
		Sample Size(wet)	1.0263 g		1.0143	g			
		Date Analyzed	10/28/2016		10/28/2016				
		Date Prepped	10/27/2016		10/27/2016				
		Date Received	10/22/2016		10/27/2016				
		Date Collected	10/20/2016		NA.				
		Batch ID	WG946969		WG946969				
		Reference Method	4500CN-CE		4500CN-CE				
		Matrix Description							
		Matrix	SOIL		SOIL				
		Lab ID	L1634114-15		WG946969-3				
		Client ID	S-8-B24		S-8-B24				
		Project Number: JALK FEE							
		Project Name:							

		CYANIDE, TOTAL	L.	1.0	7.3	_	.99	74	9.9		65		135
ass Ab	obrev	Analytes	Result	SSRL	Result	SSF	RL % RE	C Spik	e Conc.	Lower	Limit	Upper	Limit
		Reporting Limit	1.0		0.99								
		Dilution	1		1								
		Final Volume	1		1								
		Units	mg/kg		%								
		File ID	161026-H.TXT		161026-H.TXT								
		% Solid	96.5		96.5								
		Sample Size(wet)	1.0134 g		1.0477	g							
		Date Analyzed	10/26/2016		10/26/2016								
		Date Prepped	10/25/2016		10/25/2016								
		Date Received	10/20/2016		10/25/2016								
		Date Collected	10/18/2016		NA								
		Batch ID	WG945616		WG945616								
		Reference Method	4500CN-CE		4500CN-CE								
		Matrix Description											
		Matrix	SOIL		SOIL								
		Lab ID	L1634114-04		WG945616-4								
		Client ID	S-14-B27		S-14-B27								

File ID Units	161028-c2.txt mg/kg	161028-C.TXT %			
% Solid	88.5	88.5	,		
Date Analyzed Sample Size(wet)	10/28/2016 1.0263 g	10/28/2016 1.0827 c	1		
Date Prepped	10/27/2016	10/27/2016			
Date Received	10/22/2016	10/27/2016			
Date Collected	10/20/2016	WG946969 NA			
Reference Method Batch ID	4500CN-CE WG946969	4500CN-CE WG946969			
Matrix Matrix Description	SOIL	SOIL			
Client ID Lab ID	S-8-B24 L1634114-15	S-8-B24 WG946969-4			

	Dilution Reporting Limit	1 1.1	1 1.0		1.1		1 1.2	
	Final Volume	1	1		1		1	
	Units	mg/kg	mg/kg		mg/kg		mg/kg	
	File ID	161026-H.TXT	161026-H.TXT		161026-H.TXT		161026-h1.txt	
	% Solid	84.8	96.5		83.3		84.6	
	Sample Size(wet)	1.0619 g	1.0134	g	1.0845	g	1.0243	g
	Date Analyzed	10/26/2016	10/26/2016		10/26/2016		10/26/2016	
	Date Prepped	10/25/2016	10/25/2016		10/25/2016		10/25/2016	
	Date Received	10/20/2016	10/20/2016		10/20/2016		10/21/2016	
	Date Collected	10/18/2016	10/18/2016		10/18/2016		10/19/2016	
	Batch ID	WG945616	WG945616		WG945616		WG945616	
	Reference Method	4500CN-CE	4500CN-CE		4500CN-CE		4500CN-CE	
	Matrix Description	SUIL	SUIL		SOIL		SOIL	
	Matrix	SOIL	SOIL		SOIL		SOIL	
	Client ID Lab ID	S-16-B26 L1634114-02	S-14-B27 L1634114-04		S-16-B30 L1634114-06		S-6-B28 L1634114-07	

		Project Name:								
		Project Number: JALK FEE								
		Client ID	S-9-B32		S-8-B24		S-5-B34		S-9-B34	
		Lab ID	L1634114-12		L1634114-15		L1634114-20		L1634114-21	
		Matrix	SOIL		SOIL		SOIL		SOIL	
		Matrix Description								
		Reference Method	4500CN-CE		4500CN-CE		4500CN-CE		4500CN-CE	
		Batch ID	WG945616		WG946969		WG945616		WG945616	
		Date Collected	10/19/2016		10/20/2016		10/20/2016		10/20/2016	
		Date Received	10/21/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/25/2016		10/27/2016		10/25/2016		10/25/2016	
		Date Analyzed	10/26/2016		10/28/2016		10/26/2016		10/26/2016	
		Sample Size(wet)	1.0962	g	1.0263	g	1.0123	g	1.064	g
		% Solid	87.6		88.5		92		91.1	
		File ID	161026-h1.txt		161028-c2.txt		161026-h1.txt		161026-h1.txt	
		Units	mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	1		1		1		1	
		Dilution	1		1		1		1	
		Reporting Limit	1.0		1.1		1.1		1.0	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
		CYANIDE TOTAL		1 10		II 11		II 11		II 10

Analytes	Result	SSRL	Result	SSRL	Result	SSRL
Reporting Limit	1.0		1.0		1.1	
Dilution	1		1		1	
Final Volume	1		1		1	
Jnits	mg/kg		mg/kg		mg/kg	
File ID	161026-h1.txt		161026-h1.txt		161026-h1.txt	
% Solid	92.8		89.6		87.4	
Sample Size(wet)	1.0304	g	1.0908	g	1.0528	g
Date Analyzed	10/26/2016		10/26/2016		10/26/2016	
Date Prepped	10/25/2016		10/25/2016		10/25/2016	
Date Received	10/22/2016		10/22/2016		10/22/2016	
Date Collected	10/20/2016		10/21/2016		10/21/2016	
Batch ID	WG945616		WG945616		WG945616	
Reference Method	4500CN-CE		4500CN-CE		4500CN-CE	
Matrix Description						
Matrix	SOIL		SOIL		SOIL	
ab ID	L1634114-22		L1634114-23		L1634114-28	
Client ID	S-3-B35		S-5-B36		S-10-B33	
Project Number: JALK FEE						
Project Name:						

	Project Name:								
	Project Number: JALK FEE								
	Client ID	Laboratory Method BI		Laboratory Method BI		Laboratory Method BI		Laboratory Method BI	
	Lab ID	WG945382-1		WG945382-1		WG945385-1		WG945387-1	
	Matrix	SOIL		SOIL		SOIL		SOIL	
	Matrix Description								
	Reference Method	6020A		6020A		6020A		6020A	
	Batch ID	WG945382		WG945382		WG945385		WG945387	
	Date Collected	NA		NA		NA		NA	
	Date Received	10/25/2016		10/25/2016		10/25/2016		10/25/2016	
	Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016	
	Date Analyzed	10/27/2016		10/31/2016		10/31/2016		10/28/2016	
	Sample Size(wet)	1 g		. 1	g	1 g		1 (1
	% Solid File ID	100		100		100		100	
	Units								
	Final Volume	mg/kg		mg/kg		mg/kg		mg/kg	
	Dilution	50 2		50 2		50 2		50 2	
	Reporting Limit	0.020		0.050		0.050		0.500	
	Reporting Limit	0.020		0.050		0.050		0.500	
Class Abbr	ev Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals Al	ALUMINUM, TOTAL	U	10.0						
Metals Sb	ANTIMONY, TOTAL					0.016 J	0.050		
Metals As	ARSENIC, TOTAL	U							
Metals Ba	BARIUM, TOTAL	U							
Metals Be	BERYLLIUM, TOTAL	U							
Metals B	BORON, TOTAL	0.102 J	0.500						
Metals Cd	CADMIUM, TOTAL	U							
Metals Ca	CALCIUM, TOTAL	U							
Metals Cr	CHROMIUM, TOTAL	U							
Metals Co	COBALT, TOTAL	U							
Metals Cu	COPPER, TOTAL	U							
Metals Fe	IRON, TOTAL	U							
Metals Pb	LEAD, TOTAL	U							
Metals Mg	MAGNESIUM, TOTAL	U							
Metals Mn	MANGANESE, TOTAL	U	0.200	0.040					
Metals Mo Metals Ni	MOLYBDENUM, TOTAL NICKEL, TOTAL	U	0.100	0.049	J 0.050				
Metals Ni		1.94 J	10.0						
Metals K	POTASSIUM, TOTAL SELENIUM. TOTAL	1.94 J 0.031 J	0.100						
Metals Ag	SILVER, TOTAL	0.031 J	0.100				0.050		
Metals Na	SODIUM, TOTAL	1.13 J	10.0			Ü	0.030		
Metals Sr	STRONTIUM, TOTAL		0.100						
Metals TI	THALLIUM, TOTAL	Ü							
Metals Sn	TIN. TOTAL	o o	0.020				0.100		
Metals Ti	TITANIUM, TOTAL			0.032	J 0.050	O	555		
Metals W	TUNGSTEN, TOTAL			3.032	. 0.000			ı	J 0.500
Metals V	VANADIUM, TOTAL	U	0.100					`	0.000
Metals Zn	ZINC, TOTAL	ŭ							
oudo Ell	0, 101112		1.00						

		Project Name: Project Number: JALK FEE										
		Client ID	Laboratory Control S						Laboratory Control S			
		Lab ID	WG945382-2						WG945382-2			
		Matrix	SOIL						SOIL			
		Matrix Description	00004									
		Reference Method Batch ID	6020A WG945382						6020A WG945382			
		Date Collected	NA NA						WG945362 NA			
		Date Received	10/25/2016						10/25/2016			
		Date Prepped	10/26/2016						10/26/2016			
		Date Analyzed	10/27/2016						10/31/2016			
		Sample Size(wet)	1.06 (1					1.06	1		
		% Solid	100						100			
		File ID										
		Units Final Volume	% 50						% 50			
		Dilution	10						50			
		Reporting Limit	0.0943						1.18			
		-										
Class		Analytes	Result	SSRL		Spike Conc.			Result	SSRL	% REC	Spike Conc.
Metals	AI	ALUMINUM, TOTAL	5140	47.2	67	7620	75	125				
Metals Metals	Sb As	ANTIMONY, TOTAL ARSENIC, TOTAL	134	0.236	98	137	75	125				
Metals	As Ba	BARIUM, TOTAL	193	1.42	98	197	75 75					
Metals		BERYLLIUM, TOTAL	92.9	0.142	101	91.8						
Metals	В	BORON, TOTAL	110	2.36	92	119	75	125				
Metals	Cd	CADMIUM, TOTAL	87.6	0.094	106	82.6						
Metals		CALCIUM, TOTAL	4810	236	90	5370						
Metals		CHROMIUM, TOTAL	136	0.943	101	135						
Metals		COBALT, TOTAL	155	0.236	107	145	75					
Metals Metals		COPPER, TOTAL IRON, TOTAL	172 9330	0.943 94.3	105 66	163 14200						
Metals		LEAD, TOTAL	139	0.283	101	14200						
Metals		MAGNESIUM, TOTAL	2120	47.2	85	2490						
Metals		MANGANESE, TOTAL	289	0.943	99	292						
Metals	Mo	MOLYBDENUM, TOTAL							105	1.18	96	109
Metals		NICKEL, TOTAL	134	0.472	110	122						
Metals		POTASSIUM, TOTAL	1720	47.2	76	2260						
Metals	Se	SELENIUM, TOTAL	167	0.472	99	168	75	125				
Metals Metals		SILVER, TOTAL SODIUM, TOTAL	759	47.2	92	820	75	125				
Metals		STRONTIUM, TOTAL	759 98.6	0.472	100	99						
	TI	THALLIUM, TOTAL	138	0.094	104	133						
Metals	Sn	TIN, TOTAL										
Metals		TITANIUM, TOTAL							248	1.18	83	298
Metals		TUNGSTEN, TOTAL										
Metals		VANADIUM, TOTAL	100	0.472	92	108						
Metals	∠n	ZINC, TOTAL	188	4.72	103	183	75	125				

		Project Name: Project Number: JALK FEE															
		Client ID			Laboratory Control S						Laboratory Control S						
		Lab ID			WG945385-2						WG945387-2						
		Matrix			SOIL						SOIL						
		Matrix Description															
		Reference Method Batch ID			6020A WG945385						6020A WG945387						
		Date Collected			WG945385 NA						WG945387 NA						
		Date Received			10/25/2016						10/25/2016						
		Date Prepped			10/26/2016						10/26/2016						
		Date Analyzed			10/31/2016						10/28/2016						
		Sample Size(wet)			0.96						1	q					
		% Solid			100						100						
		File ID															
		Units			%						%						
		Final Volume			50						50						
		Dilution Reporting Limit			10 0.26						2 0.5						
		Reporting Limit			0.26						0.5						
Class	Abbrev	Analytes	Lower Limit Up	per Limit	Result	SSRL	% REC	Spike Conc. L	ower Limit	Upper Limit	Result	SSRL	% REC	Spike Conc.	Lower Limit	Upper I	Limit
Metals		ALUMINUM, TOTAL															
Metals		ANTIMONY, TOTAL			203	0.260	198	102	75	125	;						
Metals		ARSENIC, TOTAL															
Metals		BARIUM, TOTAL															
Metals Metals		BERYLLIUM, TOTAL BORON, TOTAL															
Metals		CADMIUM, TOTAL															
Metals		CALCIUM, TOTAL															
Metals		CHROMIUM, TOTAL															
Metals		COBALT. TOTAL															
Metals		COPPER, TOTAL															
Metals	Fe	IRON, TOTAL															
Metals		LEAD, TOTAL															
Metals		MAGNESIUM, TOTAL															
Metals		MANGANESE, TOTAL															
Metals		MOLYBDENUM, TOTAL	75	125													
Metals Metals		NICKEL, TOTAL POTASSIUM, TOTAL															
Metals		SELENIUM, TOTAL															
Metals		SILVER, TOTAL			27.3	0.260	105	26.1	75	125							
Metals		SODIUM, TOTAL			21.0	0.200	100	20.1		120							
Metals		STRONTIUM, TOTAL															
Metals		THALLIUM, TOTAL															
Metals		TIN, TOTAL			135	0.521	112	120	75	125							
Metals		TITANIUM, TOTAL	75	125													
Metals		TUNGSTEN, TOTAL									97.0	0.500	97	100	7	5	125
Metals		VANADIUM, TOTAL															
Metals	Zn	ZINC, TOTAL															

		Project Name:						
		Project Number: JALK FEE						
		Client ID	S-16-B26		S-16-B26			
		Lab ID	L1634114-02		WG945382-3			
		Matrix	SOIL		SOIL			
		Matrix Description	JOIL		SOIL			
		Reference Method	6020A		6020A			
		Batch ID	WG945382		WG945382			
		Date Collected	10/18/2016		NA			
		Date Received	10/20/2016		10/25/2016			
		Date Prepped	10/26/2016		10/26/2016			
		Date Analyzed	10/27/2016		10/27/2016			
		Sample Size(wet)	1.97 g		2 g			
		% Solid	84.8		84.8			
		File ID						
		Units	mg/kg		mg/kg			
		Final Volume	50		50			
		Dilution	2		2			
		Reporting Limit	0.012		0.012			
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD Limit
Metals	Al	ALUMINUM, TOTAL						
Metals	Sb	ANTIMONY, TOTAL						
Metals	As	ARSENIC, TOTAL	1.12	0.030	1.07	0.030	5	20
Metals	Ba	BARIUM, TOTAL	128	0.180	140	0.177		20
Metals		BERYLLIUM, TOTAL	0.438	0.018	0.418	0.018		20
Metals		BORON, TOTAL	3.68	0.299	3.72	0.295		20
Metals		CADMIUM, TOTAL	0.046	0.012	0.060	0.012	27	20 Q
Metals		CALCIUM, TOTAL					_	
Metals		CHROMIUM, TOTAL	23.8	0.120	23.2	0.118		20
Metals		COBALT, TOTAL	9.42	0.030	10.2	0.030		20
Metals		COPPER, TOTAL	24.4	0.120	25.2	0.118	3	20
Metals Metals		IRON, TOTAL LEAD, TOTAL	4.28	0.036	5.48	0.035	25	20 Q
Metals		MAGNESIUM, TOTAL	4.20	0.036	5.46	0.035	25	20 Q
Metals		MANGANESE, TOTAL						
Metals		MOLYBDENUM, TOTAL						
Metals		NICKEL, TOTAL	20.0	0.060	20.8	0.059	4	20
Metals		POTASSIUM, TOTAL	20.0	0.000	20.0	0.000		20
Metals		SELENIUM, TOTAL	0.069	0.060	0.041 J	0.059		20 NC
Metals		SILVER, TOTAL	0.000	0.000	0.011 0	0.000		20 110
Metals	Na	SODIUM, TOTAL						
Metals	Sr	STRONTIUM, TOTAL	48.4	0.060	50.4	0.059	4	20
Metals	TI	THALLIUM, TOTAL	0.140	0.012	0.133	0.012	5	20
Metals		TIN, TOTAL						
Metals		TITANIUM, TOTAL						
Metals		TUNGSTEN, TOTAL						
Metals Metals		VANADIUM, TOTAL ZINC, TOTAL	27.8 75.9	0.060	27.4 75.6	0.059	1	20 20

	Project Name:													
	Project Number: JALK FEE													
	Client ID	S-16-B26		S-16-B26				S-16-B26		S-16-B26				
	Lab ID	L1634114-02		WG945382-3				L1634114-02		WG945382-3				
	Matrix	SOIL		SOIL				SOIL		SOIL				
	Matrix Description													
	Reference Method Batch ID	6020A		6020A WG945382				6020A		6020A WG945382				
	Date Collected	WG945382 10/18/2016		WG945362 NA				WG945382 10/18/2016		WG945362 NA				
	Date Received	10/10/2016		10/25/2016				10/20/2016		10/25/2016				
	Date Prepped	10/26/2016		10/26/2016				10/26/2016		10/26/2016				
	Date Analyzed	10/27/2016		10/20/2016				10/27/2016		10/27/2016				
	Sample Size(wet)	1.97	1	2 (1			1.97	1	2 g				
	% Solid	84.8	3	84.8	,			84.8	,	84.8				
	File ID													
	Units	mg/kg		mg/kg				mg/kg		mg/kg				
	Final Volume	50		50				50		50				
	Dilution	10		10				50		50				
	Reporting Limit	0.599		0.590				150		147				
Class Abbrev Metals Al	Analytes ALUMINUM, TOTAL	Result	SSRL	Result	SSRL	RPD R	PD Limit	Result 12800	SSRL 150	Result 12600	SSRL 147	2 RPD	RPD Limit	
Metals Sb	ANTIMONY, TOTAL							12000	150	12000	147	2	20	
Metals As	ARSENIC, TOTAL													
Metals Ba	BARIUM, TOTAL													
Metals Be	BERYLLIUM, TOTAL													
Metals B	BORON, TOTAL													
Metals Cd	CADMIUM, TOTAL													
Metals Ca	CALCIUM, TOTAL							5260	748	5320	737	1	20	1
Metals Cr	CHROMIUM, TOTAL													
Metals Co	COBALT, TOTAL													
Metals Cu	COPPER, TOTAL													
Metals Fe	IRON, TOTAL							23400	299	22600	295	3	20	1
Metals Pb	LEAD, TOTAL													
Metals Mg	MAGNESIUM, TOTAL							11900	150	11900	147	0	20	
Metals Mn	MANGANESE, TOTAL	420	0.599	575	0.590	31	20 Q							
Metals Mo	MOLYBDENUM, TOTAL													
Metals Ni	NICKEL, TOTAL							4400	450	4000	4.47	_		
Metals K	POTASSIUM, TOTAL							4160	150	4080	147	2	20	1
Metals Se Metals Ag	SELENIUM, TOTAL SILVER, TOTAL													
Metals Na	SODIUM, TOTAL							403	150	393	147	3	20	
Metals Sr	STRONTIUM, TOTAL							403	150	333	147	3	20	,
Metals TI	THALLIUM, TOTAL													
Metals Sn	TIN, TOTAL													
Metals Ti	TITANIUM, TOTAL													
Metals W	TUNGSTEN, TOTAL													
Metals V	VANADIUM, TOTAL													
Metals Zn	ZINC, TOTAL													

		Project Name: Project Number: JALK FEE													
		Client ID Lab ID	S-16-B26 L1634114-02		S-16-B26 WG945382-3				S-16-B26 L1634114-02		S-16-B26 WG945382-3				
		Matrix Matrix Description	SOIL		SOIL				SOIL		SOIL				
		Reference Method Batch ID	6020A WG945382		6020A WG945382				6020A WG945382		6020A WG945382				
		Date Collected Date Received	10/18/2016 10/20/2016		NA 10/25/2016				10/18/2016 10/20/2016		NA 10/25/2016				
		Date Prepped Date Analyzed	10/26/2016 10/31/2016		10/26/2016 10/31/2016				10/26/2016 10/31/2016		10/26/2016 10/31/2016				
		Sample Size(wet) % Solid	1.97 84.8	g	2 g 84.8	ı			1.97 g 84.8		2 g 84.8	ı			
		File ID Units	mg/kg		mg/kg				mg/kg		mg/kg				
		Final Volume Dilution	50 2		50 2				50 50		50 50				
		Reporting Limit	0.030		0.030				0.748		0.737				
Class		Analytes ALUMINUM, TOTAL	Result	SSRL	Result	SSRL	RPD R	PD Limit	Result	SSRL	Result	SSRL	RPD	RPD Limi	<u>t</u>
Metals	Sb	ANTIMONY, TOTAL													
Metals Metals		ARSENIC, TOTAL BARIUM, TOTAL													
Metals		BERYLLIUM, TOTAL													
Metals		BORON, TOTAL													
Metals	Cd	CADMIUM, TOTAL													
Metals		CALCIUM, TOTAL													
Metals		CHROMIUM, TOTAL													
Metals		COBALT, TOTAL													
Metals Metals		COPPER, TOTAL IRON, TOTAL													
Metals		LEAD, TOTAL													
Metals		MAGNESIUM, TOTAL													
Metals	Mn	MANGANESE, TOTAL													
Metals		MOLYBDENUM, TOTAL	0.091	0.030	0.096	0.030	5	20							
Metals		NICKEL, TOTAL													
Metals		POTASSIUM, TOTAL													
Metals		SELENIUM, TOTAL													
Metals Metals		SILVER, TOTAL SODIUM, TOTAL													
Metals		STRONTIUM, TOTAL													
Metals		THALLIUM, TOTAL													
Metals		TIN, TOTAL													
Metals		TITANIUM, TOTAL							869	0.748	825	0.737	5	20)
Metals		TUNGSTEN, TOTAL													
Metals		VANADIUM, TOTAL													
Metals	Zn	ZINC, TOTAL													

		Project Name:													
		Project Number: JALK FEE													
		Client ID	S-16-B26		S-16-B26				S-16-B26		S-16-B26				
		Lab ID	L1634114-02		WG945385-3				L1634114-02		WG945387-3				
		Matrix	SOIL		SOIL				SOIL		SOIL				
		Matrix Description													
		Reference Method	6020A		6020A				6020A		6020A				
		Batch ID	WG945385		WG945385				WG945387		WG945387				
		Date Collected	10/18/2016		NA				10/18/2016		NA				
		Date Received	10/20/2016		10/25/2016				10/20/2016		10/25/2016				
		Date Prepped	10/26/2016		10/26/2016				10/26/2016		10/26/2016				
		Date Analyzed	10/31/2016		10/31/2016				10/31/2016		10/31/2016				
		Sample Size(wet)	2.02 (g	1.84 g				1.97	3	2	g			
		% Solid	84.8		84.8				84.8		84.8				
		File ID													
		Units	mg/kg		mg/kg				mg/kg		mg/kg				
		Final Volume	50		50				50		50				
		Dilution	2		2				10		10				
		Reporting Limit	0.029		0.032				1.50		1.47				
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD Limit	Result	SSRL	Result	SSRI	RPD	RPD Limi	it
Metals		ALUMINUM, TOTAL													
Metals	Sb	ANTIMONY, TOTAL	0.808	0.029	0.629	0.032	25	20 C)						
Metals	As	ARSENIC, TOTAL													
Metals	Ba	BARIUM, TOTAL													
Metals		BERYLLIUM, TOTAL													
Metals		BORON, TOTAL													
Metals		CADMIUM, TOTAL													
Metals		CALCIUM, TOTAL													
Metals		CHROMIUM, TOTAL													
Metals		COBALT, TOTAL													
Metals		COPPER, TOTAL													
Metals		IRON, TOTAL													
Metals		LEAD, TOTAL													
Metals		MAGNESIUM, TOTAL													
Metals Metals		MANGANESE, TOTAL MOLYBDENUM, TOTAL													
Metals		NICKEL, TOTAL													
Metals		POTASSIUM, TOTAL													
Metals		SELENIUM, TOTAL													
Metals		SILVER, TOTAL	0.146	0.029	0.148	0.032	1	20							
Metals		SODIUM, TOTAL	0.140	0.025	0.140	0.032		20							
Metals		STRONTIUM, TOTAL													
Metals		THALLIUM, TOTAL													
Metals		TIN, TOTAL	0.537	0.058	0.456	0.064	16	20							
Metals		TITANIUM, TOTAL	0.007	2.000	0.100	2.501		20							
Metals		TUNGSTEN, TOTAL							0.356	J 1.50	0.380	J 1.47	7	21) NC
Metals		VANADIUM, TOTAL							2.300 (2.300			_	
Metals	Zn	ZINC, TOTAL													

		Project Name: Project Number: JALK FEE								
		Client ID	S-16-B26		S-16-B26					
		Lab ID	L1634114-02		WG945382-4					
		Matrix	SOIL		SOIL					
		Matrix Description								
		Reference Method	6020A		6020A					
		Batch ID	WG945382		WG945382					
		Date Collected	10/18/2016		NA NA					
		Date Received	10/20/2016		10/25/2016					
		Date Prepped	10/26/2016		10/26/2016					
		Date Analyzed	10/27/2016		10/27/2016					
		Sample Size(wet)	1.97	,	1.86 g					
		% Solid	84.8	4	84.8					
		File ID	04.0		04.0					
		Units	ma/ka		%					
		Final Volume	50		50					
		Dilution	2		2					
		Reporting Limit	0.012		0.0127					
		Reporting Limit	0.012		0.0127					
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	% REC	Spike Conc.	Lower Limit	Upper Limit
Metals	Al	ALUMINUM, TOTAL								
Metals	Sb	ANTIMONY, TOTAL								
Metals	As	ARSENIC, TOTAL	1.12	0.030	130	0.0317	102	127	75	125
Metals	Ba	BARIUM, TOTAL	128	0.180	285	0.19	124	127	75	125
Metals	Be	BERYLLIUM, TOTAL	0.438	0.018	62.2	0.019	97	63.4		
Metals	В	BORON, TOTAL	3.68	0.299	98.0	0.317	74	127		
Metals	Cd	CADMIUM, TOTAL	0.046	0.012	65.2	0.0127	103	63.4	75	125
Metals	Ca	CALCIUM, TOTAL								
Metals	Cr	CHROMIUM, TOTAL	23.8	0.120	158	0.127	106	127	75	125
Metals	Co	COBALT, TOTAL	9.42	0.030	135	0.0317	99	127	75	125
Metals	Cu	COPPER, TOTAL	24.4	0.120	150	0.127	99	127	75	125
Metals	Fe	IRON, TOTAL								
Metals	Pb	LEAD, TOTAL	4.28	0.036	111	0.038	84	127	75	125
Metals	Mg	MAGNESIUM, TOTAL								
Metals	Mn	MANGANESE, TOTAL								
Metals	Mo	MOLYBDENUM, TOTAL								
Metals	Ni	NICKEL, TOTAL	20.0	0.060	148	0.0634	101	127	75	125
Metals	K	POTASSIUM, TOTAL								
Metals	Se	SELENIUM, TOTAL	0.069	0.060	134	0.0634	106	127	75	125
Metals	Ag	SILVER, TOTAL								
Metals	Na	SODIUM, TOTAL								
Metals	Sr	STRONTIUM, TOTAL	48.4	0.060	189	0.0634	111	127		
Metals	TI	THALLIUM, TOTAL	0.140	0.012	105	0.0127	83	127	75	125
Metals	Sn	TIN, TOTAL								
Metals	Ti	TITANIUM, TOTAL								
Metals	W	TUNGSTEN, TOTAL								
Metals	V	VANADIUM, TOTAL	27.8	0.060	161	0.0634	105	127		
Metals	Zn	ZINC, TOTAL	75.9	0.599	199	0.634	97	127	75	125

		Project Name: Project Number: JALK FEE																		
		Client ID	S-16-B26		S-16-B26							S-16-B26		S-16-B26						
		Lab ID	L1634114-02		WG945382-4							L1634114-02		WG945382-4						
		Matrix	SOIL		SOIL							SOIL		SOIL						
		Matrix Description	JOIL		JOIL							JOIL		JOIL						
		Reference Method	6020A		6020A							6020A		6020A						
			WG945382		WG945382							W G945382		WG945382						
		Batch ID Date Collected	10/18/2016									10/18/2016								
					NA									NA						
		Date Received	10/20/2016		10/25/2016							10/20/2016		10/25/2016						
		Date Prepped	10/26/2016		10/26/2016							10/26/2016		10/26/2016						
		Date Analyzed	10/27/2016		10/27/2016							10/27/2016		10/27/2016						
		Sample Size(wet)	1.97 g		1.86 g							1.97 g		1.86 g						
		% Solid	84.8		84.8							84.8		84.8						
		File ID																		
		Units	mg/kg		%							mg/kg		%						
		Final Volume	50		50							50		50						
		Dilution	10		10							50		50						
		Reporting Limit	0.599		0.634							150		158						
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	% REC Spike Co	onc.	Lower Limit	Upper Lir	nit	Result	SSRL	Result	SSRL	% REC :	Spike Conc.	Lower Limit	Upper Li	mit
Metals	Al	ALUMINUM, TOTAL										12800	150	13600	158	126	634	75		125 Q
Metals	Sb	ANTIMONY, TOTAL																		
Metals	As	ARSENIC, TOTAL																		
Metals	Ba	BARIUM, TOTAL																		
Metals	Be	BERYLLIUM, TOTAL																		
Metals	В	BORON, TOTAL																		
Metals	Cd	CADMIUM, TOTAL																		
Metals	Ca	CALCIUM, TOTAL										5260	748	6010	792	118	634	75		125
Metals	Cr	CHROMIUM, TOTAL																		
Metals	Co	COBALT, TOTAL																		
Metals	Cu	COPPER, TOTAL																		
Metals	Fe	IRON, TOTAL										23400	299	24500	317	174	634	75		125 Q
Metals	Pb	LEAD, TOTAL																		
Metals	Mg	MAGNESIUM, TOTAL										11900	150	13200	158	205	634	75		125 Q
Metals	Mn	MANGANESE, TOTAL	420	0.599	1210	0.634	609	127	75	5	125 Q									
Metals	Mo	MOLYBDENUM, TOTAL																		
Metals	Ni	NICKEL, TOTAL																		
Metals	K	POTASSIUM, TOTAL										4160	150	4700	158	85	634	75		125
Metals	Se	SELENIUM, TOTAL										4100	100	-1100	100		00			120
Metals	Aa	SILVER, TOTAL																		
Metals	Na	SODIUM, TOTAL										403	150	987	158	92	634	75		125
Metals	Sr	STRONTIUM, TOTAL										400	150	301	100	02	634	. 75		.20
Metals	TI	THALLIUM, TOTAL																		
Metals	Sn	TIN, TOTAL																		
Metals																				
	Ti W	TITANIUM, TOTAL																		
Metals Metals	W	TUNGSTEN, TOTAL VANADIUM, TOTAL																		

		Project Name: Project Number: JALK FEE																
		Client ID Lab ID Matrix	S-16-B26 L1634114-02 SOIL		S-16-B26 WG945382-4 SOIL						S-16-B26 L1634114-02 SOIL		S-16-B26 WG945382-4 SOIL					
		Matrix Description Reference Method Batch ID Date Collected	6020A WG945382 10/18/2016		6020A WG945382 NA						6020A WG945382 10/18/2016		6020A WG945382 NA					
		Date Received Date Prepped Date Analyzed	10/20/2016 10/26/2016 10/31/2016		10/25/2016 10/26/2016 10/31/2016						10/20/2016 10/26/2016 10/31/2016		10/25/2016 10/26/2016 10/31/2016					
		Sample Size(wet) % Solid File ID	1.97 g 84.8		1.86 g 84.8						1.97 e 84.8	9	1.86 g 84.8					
		Units Final Volume Dilution	mg/kg 50 2		% 50 2						mg/kg 50 50		% 50 50					
		Reporting Limit	0.030		0.0317						0.748		0.792					
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	% REC	Spike Conc.	Lower Limit	Upper Limit	Result	SSRL	Result	SSRL	% REC Spike Co	nc. Lower Limit	Upper L	imit
Metals	Al	ALUMINUM, TOTAL																
Metals	Sb	ANTIMONY, TOTAL																
Metals	As	ARSENIC, TOTAL																
Metals	Ba	BARIUM, TOTAL																
Metals	Be	BERYLLIUM, TOTAL																
Metals	В	BORON, TOTAL																
Metals	Cd	CADMIUM, TOTAL																
Metals	Ca	CALCIUM, TOTAL																
	Cr	CHROMIUM, TOTAL																
Metals	Co	COBALT, TOTAL																
Metals	Cu	COPPER, TOTAL																
Metals	Fe	IRON, TOTAL																
Metals Metals	Pb Mg	LEAD, TOTAL MAGNESIUM, TOTAL																
Metals	Mn	MANGANESE, TOTAL																
Metals	Mo	MOLYBDENUM, TOTAL	0.091	0.030	110	0.0317	87	12	7 7	5 125								
Metals	Ni	NICKEL, TOTAL	0.031	0.000	110	0.0317	01	12	, ,	3 123								
Metals	K	POTASSIUM, TOTAL																
Metals	Se	SELENIUM, TOTAL																
	Aa	SILVER, TOTAL																
Metals	Na	SODIUM. TOTAL																
Metals	Sr	STRONTIUM, TOTAL																
	TI	THALLIUM, TOTAL																
Metals	Sn	TIN, TOTAL																
Metals	Ti	TITANIUM, TOTAL									869	0.748	930	0.792	48	127	75	125 Q
Metals		TUNGSTEN, TOTAL																
Metals	V	VANADIUM, TOTAL																
Metals	Zn	ZINC, TOTAL																

		Project Name: Project Number: JALK FEE																	
		Client ID	S-16-B26		S-16-B26							S-16-B26		S-16-B26					
		Lab ID	L1634114-02	W	G945385-4							L1634114-02		WG945387-4					
		Matrix	SOIL		SOIL							SOIL		SOIL					
		Matrix Description	0012		0012							COIL		0012					
		Reference Method	6020A		6020A							6020A		6020A					
		Batch ID	WG945385		VG945385							WG945387		WG945387					
		Date Collected	10/18/2016	۰	NA							10/18/2016		NA NA					
		Date Received	10/20/2016		10/25/2016							10/20/2016		10/25/2016					
		Date Prepped	10/26/2016		10/25/2016							10/26/2016		10/26/2016					
		Date Prepped Date Analyzed	10/26/2016		10/26/2016							10/26/2016		10/31/2016					
														10/31/2016 1.97 g					
		Sample Size(wet)	2.02 g		1.85 g	1						1.97 g	1						
		% Solid	84.8		84.8							84.8		84.8					
		File ID																	
		Units	mg/kg		%							mg/kg		%					
		Final Volume	50		50							50		50					
		Dilution	2		2							10		10					
		Reporting Limit	0.029		0.0319							1.50		1.5					
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	% REC	Spike Conc.	Lower Limit	Upper L	imit	Result	SSRL	Result	SSRL	% REC Spike C	onc. Lower Limit	Upper L	imit
Metals	Al	ALUMINUM, TOTAL																	
Metals	Sb	ANTIMONY, TOTAL	0.808	0.029	2.07	0.0319	99	1.27	7	75	125								
Metals	As	ARSENIC, TOTAL																	
Metals	Ba	BARIUM, TOTAL																	
Metals	Be	BERYLLIUM, TOTAL																	
Metals	В	BORON, TOTAL																	
Metals	Cd	CADMIUM, TOTAL																	
Metals	Ca	CALCIUM, TOTAL																	
Metals	Cr	CHROMIUM, TOTAL																	
Metals	Co	COBALT, TOTAL																	
Metals	Cu	COPPER, TOTAL																	
Metals	Fe	IRON, TOTAL																	
Metals	Pb	LEAD. TOTAL																	
Metals	Mg	MAGNESIUM, TOTAL																	
Metals	Mn	MANGANESE, TOTAL																	
Metals	Mo	MOLYBDENUM, TOTAL																	
Metals	Ni	NICKEL, TOTAL																	
Metals	K	POTASSIUM, TOTAL																	
Metals	se s	SELENIUM, TOTAL																	
		SILVER, TOTAL	0.146	0.029	1.65	0.0319	118	1.27		75	125								
Metals	Ag		0.146	0.029	1.00	0.0319	118	1.2		15	125								
Metals	Na Sr	SODIUM, TOTAL STRONTIUM, TOTAL																	
Metals																			
Metals	TI O-	THALLIUM, TOTAL	0.555	0.050	202	0.000=	05.0			**	405								
Metals	Sn	TIN, TOTAL	0.537	0.058	306	0.0637	95.8	319	,	75	125								
		TITANIUM, TOTAL																	
Metals		TUNGSTEN, TOTAL										0.356	1.50	47.2	1.5	79	59.9	5	125
Metals		VANADIUM, TOTAL																	
Metals	Źn	ZINC, TOTAL																	

		Project Name:												
		Project Number: JALK FEE												
		Client ID	S-16-B26		S-16-B26		S-16-B26		S-16-B26		S-16-B26		S-16-B26	
		Lab ID	I 1634114-02		I 1634114-02		I 1634114-02		I 1634114-02		L 1634114-02		I 1634114-02	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description												
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID	WG945382		WG945382		WG945382		WG945382		WG945382		WG945385	
		Date Collected	10/18/2016		10/18/2016		10/18/2016		10/18/2016		10/18/2016		10/18/2016	
		Date Received	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/27/2016		10/27/2016		10/27/2016		10/31/2016		10/31/2016		10/31/2016	
		Sample Size(wet)	1.97 g		1.97 g		1.97 g		1.97 g	1	1.97 g	3	2.02 g	1
		% Solid	84.8		84.8		84.8		84.8		84.8		84.8	
		File ID												
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	2		10		50		2		50		2	
		Reporting Limit	0.012		0.599		150		0.030		0.748		0.029	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL					12800	150						
Metals	Sb	ANTIMONY, TOTAL											0.808	0.029
Metals	As	ARSENIC, TOTAL	1.12	0.030										
Metals	Ba	BARIUM, TOTAL	128	0.180										
Metals		BERYLLIUM, TOTAL	0.438	0.018										
Metals		BORON, TOTAL	3.68	0.299										
Metals		CADMIUM, TOTAL	0.046	0.012										
Metals		CALCIUM, TOTAL					5260	748						
Metals		CHROMIUM, TOTAL	23.8	0.120										
Metals		COBALT, TOTAL	9.42	0.030										
Metals		COPPER, TOTAL	24.4	0.120										
Metals Metals		IRON, TOTAL	4.28	0.036			23400	299						
Metals		LEAD, TOTAL MAGNESIUM, TOTAL	4.28	0.036			11900	150						
		MANGANESE, TOTAL			420	0.599	11900	150						
	Mo	MOLYBDENUM, TOTAL			420	0.599			0.091	0.030				
Metals		NICKEL, TOTAL	20.0	0.060					0.051	0.030				
Metals		POTASSIUM, TOTAL	20.0	0.000			4160	150						
Metals		SELENIUM, TOTAL	0.069	0.060			4100	100						
Metals		SILVER, TOTAL	0.000	0.000									0.146	0.029
Metals		SODIUM, TOTAL					403	150						
Metals		STRONTIUM, TOTAL	48.4	0.060										
Metals		THALLIUM, TOTAL	0.140	0.012										
Metals	Sn	TIN, TOTAL											0.537	0.058
Metals	Ti	TITANIUM, TOTAL									869	0.748		
Metals		TUNGSTEN, TOTAL												
Metals			27.8	0.060										
Metals		VANADIUM, TOTAL ZINC, TOTAL	75.9	0.599										

		Project Name: Project Number: JALK FEE												
		Client ID Lab ID	S-16-B26 L1634114-02		S-14-B27 L1634114-04		S-14-B27 L1634114-04		S-14-B27 L1634114-04		S-14-B27 L1634114-04		S-14-B27 L1634114-04	
		Matrix Matrix Description	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID Date Collected	WG945387 10/18/2016		WG945382 10/18/2016		WG945382 10/18/2016		WG945382 10/18/2016		WG945382 10/18/2016		WG945385 10/18/2016	
		Date Received	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/31/2016		10/27/2016		10/27/2016		10/31/2016		10/31/2016		10/31/2016	
		Sample Size(wet)	1.97 g		1.87 g		1.87 g		1.87 g		1.87 g	1	2.03 g	
		% Solid File ID	84.8		96.5		96.5		96.5		96.5		96.5	
		Units Final Volume	mg/kg 50		mg/kg 50		mg/kg 50		mg/kg 50		mg/kg 50		mg/kg 50	
		Dilution	10		2		10		2		10		2	
		Reporting Limit	1.50		0.011		138		0.028		0.138		0.026	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL	Result	JONE	Result	JOIL	4360	27.7	Result	JOIL	resuit	JUNE	resuit	JOKE
Metals		ANTIMONY, TOTAL					1000						0.506	0.026
Metals	As	ARSENIC, TOTAL			2.78	0.028								
Metals		BARIUM, TOTAL			87.4	0.166								
Metals		BERYLLIUM, TOTAL			0.166	0.017								
Metals		BORON, TOTAL			0.514	0.277								
Metals Metals		CADMIUM, TOTAL CALCIUM, TOTAL			0.043	0.011	1780	138						
Metals		CHROMIUM, TOTAL			9.15	0.111	1700	130						
Metals		COBALT, TOTAL			4.61	0.028								
Metals		COPPER, TOTAL			11.1	0.111								
Metals	Fe	IRON, TOTAL					9440	55.4						
Metals		LEAD, TOTAL			2.51	0.033								
Metals		MAGNESIUM, TOTAL					2700	27.7						
Metals		MANGANESE, TOTAL			259	0.111			0.440	0.000				
Metals Metals		MOLYBDENUM, TOTAL NICKEL, TOTAL			9.56	0.055			0.118	0.028				
Metals		POTASSIUM, TOTAL			9.56	0.055	1190	27.7						
Metals		SELENIUM, TOTAL			0.087	0.055	1130	27.7						
Metals		SILVER, TOTAL											0.012 J	0.026
Metals		SODIUM, TOTAL					106	27.7						
Metals		STRONTIUM, TOTAL			20.9	0.055								
Metals		THALLIUM, TOTAL			0.082	0.011								
Metals		TIN, TOTAL									346	0.400	0.192	0.051
Metals Metals		TITANIUM, TOTAL TUNGSTEN, TOTAL	0.356 J	1.50							346	0.138		
Metals		VANADIUM, TOTAL	U.336 J	1.50	15.2	0.055								
Metals		ZINC, TOTAL			27.8	0.554								
otais		Line, reme			21.0	0.004								

		Project Name: Project Number: JALK FEE												
		Client ID	S-14-B27		S-16-B30		S-16-B30		S-16-B30		S-16-B30		S-16-B30	
		Lab ID Matrix	L1634114-04 SOIL		L1634114-06 SOIL		L1634114-06 SOIL		L1634114-06 SOIL		L1634114-06 SOIL		L1634114-06 SOIL	
		Matrix Description	SUIL		SUIL		SUIL		SUIL		SOIL		SOIL	
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID	WG945387		WG945382		WG945382		WG945382		WG945382		WG945382	
		Date Collected	10/18/2016		10/18/2016		10/18/2016		10/18/2016		10/18/2016		10/18/2016	
		Date Received	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/28/2016		10/27/2016		10/27/2016		10/27/2016		10/31/2016		10/31/2016	
		Sample Size(wet)	1.87	g	1.87 g		1.87	1	1.87 g	ı	1.87 g	ı	1.87 g	
		% Solid	96.5		83.3		83.3		83.3		83.3		83.3	
		File ID												
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	2		2		10		50		2		10	
		Reporting Limit	0.277		0.013		0.642		321		0.032		0.160	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL					9680	32.1						
Metals	Sb	ANTIMONY, TOTAL												
Metals	As	ARSENIC, TOTAL			4.84	0.032								
Metals	Ba	BARIUM, TOTAL			122	0.192								
Metals	Be	BERYLLIUM, TOTAL			0.332	0.019								
Metals		BORON, TOTAL			1.12	0.321								
Metals		CADMIUM, TOTAL			0.036	0.013								
Metals	Ca	CALCIUM, TOTAL					3770	160						
Metals		CHROMIUM, TOTAL			23.0	0.128								
Metals		COBALT, TOTAL			11.2	0.032								
Metals		COPPER, TOTAL			24.8	0.128								
Metals		IRON, TOTAL							22500	321				
Metals		LEAD, TOTAL			5.07	0.039								
Metals		MAGNESIUM, TOTAL					6480	32.1						
	Mn	MANGANESE, TOTAL					456	0.642			0.400	0.000		
Metals		MOLYBDENUM, TOTAL			40.0	0.004					0.160	0.032		
Metals		NICKEL, TOTAL			19.8	0.064	0740	00.4						
Metals Metals	K Se	POTASSIUM, TOTAL SELENIUM. TOTAL			0.064 J	0.064	2740	32.1						
	Ag	SILVER, TOTAL			0.064 J	0.064								
Metals		SODIUM, TOTAL					263	32.1						
Metals		STRONTIUM, TOTAL			50.4	0.064	203	32.1						
Metals		THALLIUM, TOTAL			0.141	0.064								
Metals		TIN, TOTAL			0.141	0.013								
Metals		TITANIUM, TOTAL											721	0.160
Metals		TUNGSTEN, TOTAL	0.356	0.277									121	0.100
Metals		VANADIUM, TOTAL	0.550	J.211	35.2	0.064								
Metals		ZINC. TOTAL			64.0	0.642								

		Project Name: Project Number: JALK FEE												
		Client ID	S-16-B30		S-16-B30		S-6-B28		S-6-B28		S-6-B28		S-6-B28	
		Lab ID	L1634114-06		L1634114-06		L1634114-07		L1634114-07		L1634114-07		L1634114-07	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description												
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID	WG945385		WG945387		WG945382		WG945382		WG945382		WG945382	
		Date Collected	10/18/2016		10/18/2016		10/19/2016		10/19/2016		10/19/2016		10/19/2016	
		Date Received	10/20/2016		10/20/2016		10/21/2016		10/21/2016		10/21/2016		10/21/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/31/2016		10/28/2016		10/27/2016		10/27/2016		10/27/2016		10/31/2016	
		Sample Size(wet)	1.82 g	1	1.87 g		1.81 g	1	1.81 g		1.81 g		1.81 g	
		% Solid	83.3		83.3		84.6		84.6		84.6		84.6	
		File ID					_		_					
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	2		2		2		10		50		2	
		Reporting Limit	0.033		0.321		0.013		0.653		163		0.033	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL									11000	163		
Metals	Sb	ANTIMONY, TOTAL	1.03	0.033										
Metals	As	ARSENIC, TOTAL					18.1	0.033						
Metals	Ba	BARIUM, TOTAL							339	0.980				
Metals	Be	BERYLLIUM, TOTAL					0.419	0.020						
Metals	В	BORON, TOTAL					4.28	0.326						
Metals	Cd	CADMIUM, TOTAL					0.428	0.013						
Metals		CALCIUM, TOTAL									6450	816		
Metals		CHROMIUM, TOTAL					28.5	0.131						
Metals		COBALT, TOTAL					10.9	0.033						
Metals		COPPER, TOTAL					41.8	0.131						
Metals		IRON, TOTAL									25000	326		
	Pb	LEAD, TOTAL					36.2	0.039						
	Mg	MAGNESIUM, TOTAL									6040	163		
Metals	Mn	MANGANESE, TOTAL							426	0.653				
Metals		MOLYBDENUM, TOTAL											1.40	0.033
Metals		NICKEL, TOTAL					31.3	0.065						
Metals		POTASSIUM, TOTAL									3640	163		
Metals		SELENIUM, TOTAL	0.050	0.000			0.286	0.065						
Metals		SILVER, TOTAL	0.053	0.033										
Metals Metals		SODIUM, TOTAL STRONTIUM, TOTAL					62.7	0.065			269	163		
Metals Metals		THALLIUM, TOTAL TIN, TOTAL	0.434	0.066			0.151	0.013						
Metals		TITANIUM, TOTAL	0.434	0.006										
Metals		TUNGSTEN, TOTAL			0.318 J	0.321								
Metals		VANADIUM, TOTAL			U.318 J	0.321	38.2	0.065						
Metals		ZINC. TOTAL					113	0.653						

Client ID			Project Name: Project Number: JALK FEE												
Matrix Description Reference Method Batch ID WiG945382 WiG945385 WiG945385 WiG945382 W															
Reference Method Roco				SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
Description			Reference Method												
Date Received 10/21/2016															
Date Peepped 10/26/2016 10/26/2016 10/26/2016 10/26/2016 10/26/2016 10/26/2016 10/27/2016 1															
Date Analyzed 10/31/2016 10/31/2016 10/31/2016 10/27/2016															
Sample Size(werth 1.81 g															
File D				1.81	g	1.82 g		1.81	1	1.99 g		1.99 g		1.99 g	1
Dilution				84.6		84.6		84.6		87.6		87.6		87.6	
Final Volume				ma/ka		malka		ma/ka		ma/ka		ma/ka		malka	
Diution So															
Reporting Limit 0.816 0.033 0.326 0.012 0.574 143															
Metals Al															
Metals Al	Class	Abbrev	Analytes	Result	SSRL										
Metals As ARSENIC, TOTAL 4.55 0.029 Metals Ba BARIUM, TOTAL 115 0.172 Metals Ba BERYLLIUM, TOTAL 0.420 0.017 Metals B BERYLLIUM, TOTAL 0.232 0.287 Metals C CADMIUM, TOTAL 0.140 0.012 Metals C CADMIUM, TOTAL 19.8 0.115 Metals C C CHROMIUM, TOTAL 19.8 0.115 Metals C C COBALT, TOTAL 8.49 0.029 Metals C C COPPER, TOTAL 19.7 0.115 Metals P L EAD, TOTAL 19.7 0.115 Metals P L EAD, TOTAL 13.4 0.034 Metals P MAGNESIUM, TOTAL 4270 143 Metals Mn MAGARISE, TOTAL 347 0.574 Metals Mn MOLYBERDIM, TOTAL 15.0 0.057 Metals K P DTASSIUM, TOTAL 15.0 0.057	Metals	Al	ALUMINUM, TOTAL											8960	143
Metals Ba Metals Ba Metals Ba Metals Ba BERYLLUM TOTAL 115 O.172 O.1						1.90	0.033								
Metals Bream Metals Bream Boron, TOTAL 0.420 (0.017) 0.017 (0.017) 0.017 (0.017) 0.017 (0.017) 0.017 (0.017) 0.017 (0.017) 0.012 (0.017)<															
Metals Retails Bdetails Cd CADMIUM, TOTAL 2.32 0.287 Metals Cd CADMIUM, TOTAL 0.140 0.012 291 717 Metals Cr CHROMIUM, TOTAL 19.8 0.115 5 5 6 717 6 6 717 6 717 <td></td>															
Metals Cd Metals Cd CALCIMUM, TOTAL 0.140 0.012 200 71 Metals Ca CALCIMUM, TOTAL 19.8 0.115 2910 717 Metals Co COBALT, TOTAL 8.49 0.029 1015 1016 287 Metals Fe IRON, TOTAL 19.7 0.115 16600 287 Metals Pe LEAD, TOTAL 19.3 0.03 16600 287 Metals Mg MANGNESIUM, TOTAL 19.8 0.03 17.8 4270 143 Metals Mg MANGARSE, TOTAL 19.8 0.057 18.9															
Metals Cr CHROMIUM, TOTAL 19.8 (CHROMIUM, TOTAL) 19.8 (CHROMIUM, TOTAL) 19.9 (CHROMIUM, TOTAL) 2910 (CHROMIUM, TOTAL) 2910 (CHROMIUM, TOTAL) 19.7 (CHROMIUM, TOTAL) 19.7 (CHROMIUM, TOTAL) 19.7 (CHROMIUM, TOTAL) 16600 (CHROMIUM, TOTAL) 287 (CHROMIUM, TOTAL) 19.7 (CHROMIUM, TOTAL) 4270 (CHROMIUM, TOTA															
Metals Cr Metals Cr COBALT, TOTAL 19.8 (a) 0.15 (b) 0										0.140	0.012			2010	717
Metals Cu CODBALT, TOTAL 8.49 0.029 Metals Cu COPPER, TOTAL 19.7 0.15 Metals Fe IRON, TOTAL 13.4 0.034 Metals Pb LEAD, TOTAL 13.4 0.034 Metals MangARISE, TOTAL 4270 143 Metals Montals Montals Montals MOLVSDERJUM, TOTAL 347 0.574 Metals Montals Motals Motals Montals Metals Most MolvSDERJUM, TOTAL 15.0 0.057 2890 143 Metals K POTASSIUM, TOTAL 0.138 0.057 2890 143										19.8	0.115			2310	, , , ,
Metals Cumber of Metals Metal															
Metals Metals Metals Mn MANGANESE, TOTAL 4270 143 Metals Metals Mn MANGANESE, TOTAL Metals Mn MANGANESE, TOTAL METALS MOLTBDENUM, TOTAL 347 0.574 Metals Motis Motis Montal Moltbdenum, TOTAL 15.0 0.057 143 Metals K POTASSIUM, TOTAL 2890 143 Metals S SELENIUM, TOTAL 0.138 0.057	Metals	Cu								19.7	0.115				
Metals Mg MAGNESIUM, TOTAL 4270 143 Metals Mn MANGANESE, TOTAL 347 0.574 Metals Ni MOLVSDEDIUM, TOTAL 15.0 0.057 Metals Ni POTASSIUM, TOTAL 2890 143 Metals K POTASSIUM, TOTAL 2890 143 Metals S SELENIUM, TOTAL 0.138 0.057														16600	287
Metals Mn MANGANESE, TOTAL 347 0.574 Metals Motals Motals Motals Motals Motals NICKEL, TOTAL 15.0 0.057 Metals K POTASSIUM, TOTAL 15.0 0.057 Metals K POTASSIUM, TOTAL 2890 143 Metals Se SELENIUM, TOTAL 0.138 0.057										13.4	0.034				
Metals Number MOLYBDENUM, TOTAL 15.0 0.057 Metals K POTASSIUM, TOTAL 2890 143 Metals Se SELENIUM, TOTAL 0.138 0.057														4270	143
Metals Ni NICKEL, TOTAL 15.0 0.057 Metals K POTASSIUM, TOTAL 2890 143 Metals Se SELENIUM, TOTAL 0.138 0.057												347	0.574		
Metals K POTASSIUM, TOTAL 2890 143 Metals Se SELENIUM, TOTAL 0.138 0.057										15.0	0.057				
Metals Se SELENIUM, TOTAL 0.138 0.057										15.0	0.057			2890	1/13
										0.138	0.057			2090	143
Metals Ag SILVER, TOTAL 0.087 0.033						0.087	0.033			0.100	0.001				
Metals Na SODIUM, TOTAL 252 143														252	143
Metals Sr STRONTIUM, TOTAL 30.4 0.057	Metals	Sr	STRONTIUM, TOTAL							30.4	0.057				
Metals TI THALLIUM, TOTAL 0.109 0.012										0.109	0.012				
Metals Sn TIN, TOTAL 5.50 0.065						5.50	0.065								
Metals Ti TITANIUM, TOTAL 717 0.816				717	0.816										
Metals W TUNGSTEN, TOTAL 0.756 0.326 Metals V VANADIUM, TOTAL 33.4 0.057								0.756	0.326	22.4	0.057				
Metals V VANADIUM, TOTAL 33.4 0.057 Metals Zn ZINC, TOTAL 59.3 0.574															

		Project Name:												
		Project Number: JALK FEE												
		Client ID	S-9-B32		S-9-B32		S-9-B32		S-9-B32		S-8-B24		S-8-B24	
		Lab ID	L1634114-12		L1634114-12		L1634114-12		L1634114-12		L1634114-15		L1634114-15	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description												
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID	WG945382		WG945382		WG945385		WG945387		WG945382		WG945382	
		Date Collected	10/19/2016		10/19/2016		10/19/2016		10/19/2016		10/20/2016		10/20/2016	
		Date Received	10/21/2016		10/21/2016		10/21/2016		10/21/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/31/2016		10/31/2016		10/31/2016		10/28/2016		10/27/2016		10/27/2016	
		Sample Size(wet)	1.99	1	1.99 g		1.82 g		1.99 g		2.01 c	ı	2.01	1
		% Solid	87.6		87.6		87.6		87.6		88.5		88.5	
		File ID												
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution Reporting Limit	0.029		50 0.717		0.031		10 1.43		0.011		10 0.562	
		Reporting Limit	0.029		0.717		0.031		1.43		0.011		0.562	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL												
Metals		ANTIMONY, TOTAL					1.00	0.031						
Metals	As	ARSENIC, TOTAL									9.60	0.028		
Metals	Ba	BARIUM, TOTAL									127	0.169		
Metals		BERYLLIUM, TOTAL									0.562	0.017		
Metals		BORON, TOTAL									1.65	0.281		
Metals		CADMIUM, TOTAL									0.046	0.011		
	Ca	CALCIUM, TOTAL												
Metals		CHROMIUM, TOTAL									30.4	0.112		
Metals		COBALT, TOTAL									14.9	0.028		
Metals		COPPER, TOTAL									30.3	0.112		
	Fe	IRON, TOTAL									7.45	0.004		
Metals	Pb	LEAD, TOTAL									7.15	0.034		
Metals	Mg	MAGNESIUM, TOTAL MANGANESE, TOTAL											530	0.562
Metals Metals	Mn Mo	MOLYBDENUM, TOTAL	0.401	0.029									530	0.562
Metals		NICKEL, TOTAL	0.401	0.029							22.5	0.056		
Metals		POTASSIUM, TOTAL									22.5	0.056		
Metals	Se	SELENIUM, TOTAL									0.111	0.056		
Metals	Ag	SILVER, TOTAL					0.061	0.031			0.111	0.056		
	Na Na	SODIUM, TOTAL					0.001	0.031						
Metals	Sr	STRONTIUM, TOTAL									40.4	0.056		
	TI	THALLIUM, TOTAL									0.123	0.056		
Metals	Sn	TIN. TOTAL					0.984	0.063			0.123	0.011		
Metals		TITANIUM, TOTAL			682	0.717	0.504	0.003						
Metals		TUNGSTEN, TOTAL			002	0.717			0.342 J	1.43				
Metals		VANADIUM, TOTAL							0.542 0	1.73	49.8	0.056		
Metals		ZINC, TOTAL									57.6	0.562		

		Project Name: Project Number: JALK FEE												
		Client ID	S-8-B24		S-8-B24		S-8-B24		S-8-B24		S-8-B24		S-5-B34	
		Lab ID	L1634114-15		L1634114-15		L1634114-15		L1634114-15		L1634114-15		L1634114-20	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description	00004		00004		00004		00004		00004		00004	
		Reference Method Batch ID	6020A WG945382		6020A WG945382		6020A WG945382		6020A WG945385		6020A WG945387		6020A WG945382	
		Date Collected	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/27/2016		10/31/2016		10/31/2016		10/31/2016		10/28/2016		10/27/2016	
		Sample Size(wet)	2.01 c	1	2.01	1	2.01	1	1.81 c	ı	2.01 c	ı	1.82	1
		% Solid	88.5		88.5		88.5	•	88.5		88.5		92	•
		File ID												
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	50		2		50		2		10		2	
		Reporting Limit	140		0.028		0.703		0.031		1.40		0.012	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL	13500	140										
Metals	Sb	ANTIMONY, TOTAL							1.50	0.031				
Metals	As	ARSENIC, TOTAL											4.30	0.030
Metals	Ba	BARIUM, TOTAL											115	0.179
Metals Metals	Be B	BERYLLIUM, TOTAL											0.397 2.16	0.018
Metals	Cq	BORON, TOTAL CADMIUM, TOTAL											0.139	0.299
Metals	Ca	CALCIUM, TOTAL	3390	703									0.139	0.012
Metals	Cr	CHROMIUM, TOTAL	3330	703									19.5	0.119
Metals	Co	COBALT, TOTAL											8.66	0.030
Metals	Cu	COPPER, TOTAL											18.3	0.119
Metals	Fe	IRON. TOTAL	27600	281									10.0	0.110
Metals	Pb	LEAD, TOTAL											11.7	0.036
Metals	Mg	MAGNESIUM, TOTAL	6700	140										
Metals	Mn	MANGANESE, TOTAL												
Metals	Mo	MOLYBDENUM, TOTAL			0.209	0.028								
Metals	Ni	NICKEL, TOTAL											14.2	0.060
Metals	K	POTASSIUM, TOTAL	4380	140										
Metals	Se	SELENIUM, TOTAL											0.138	0.060
Metals	Ag	SILVER, TOTAL							0.058	0.031				
Metals	Na	SODIUM, TOTAL	273	140										
Metals	Sr	STRONTIUM, TOTAL											29.3	0.060
Metals Metals	TI Sn	THALLIUM, TOTAL TIN. TOTAL							0.910	0.062			0.116	0.012
Metals	Sn Ti	TITANIUM, TOTAL					818	0.703	0.910	0.002				
Metals	W	TUNGSTEN, TOTAL					010	0.703			0.357 J	1.40		
	V	VANADIUM, TOTAL									0.337 3	1.40	34.7	0.060
Metals		ZINC, TOTAL											100	0.597

		Project Name:												
		Project Number: JALK FEE												
		Client ID	S-5-B34		S-5-B34		S-5-B34		S-5-B34		S-5-B34		S-5-B34	
		Lab ID	L1634114-20		L1634114-20		L1634114-20		L1634114-20		L1634114-20		L1634114-20	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description												
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID	WG945382		WG945382		WG945382		WG945382		WG945385		WG945387	
		Date Collected	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/27/2016		10/27/2016		10/31/2016		10/31/2016		10/31/2016		10/28/2016	
		Sample Size(wet)	1.82 g		1.82 g		1.82 g		1.82 g		1.88 g		1.82 g	1
		% Solid	92		92		92		92		92		92	
		File ID												
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	10		50		2		10		2		10	
		Reporting Limit	0.597		299		0.030		0.149		0.029		1.49	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL	8020	29.9										
Metals	Sb	ANTIMONY, TOTAL									0.882	0.029		
Metals	As	ARSENIC, TOTAL												
Metals	Ba	BARIUM, TOTAL												
Metals		BERYLLIUM, TOTAL												
	В	BORON, TOTAL												
	Cd	CADMIUM, TOTAL												
	Ca	CALCIUM, TOTAL	2060	149										
	Cr	CHROMIUM, TOTAL												
Metals		COBALT, TOTAL												
Metals		COPPER, TOTAL												
Metals		IRON, TOTAL			17700	299								
	Pb	LEAD, TOTAL												
Metals	Mg	MAGNESIUM, TOTAL	3930	29.9										
Metals	Mn	MANGANESE, TOTAL	381	0.597										
	Mo	MOLYBDENUM, TOTAL					0.363	0.030						
Metals		NICKEL, TOTAL	0700	00.0										
	K	POTASSIUM, TOTAL	2720	29.9										
Metals	Se	SELENIUM, TOTAL									0.054	0.029		
Metals Metals	Ag Na	SILVER, TOTAL SODIUM. TOTAL	211	29.9							0.054	0.029		
Metals		STRONTIUM, TOTAL	211	29.9										
	TI	THALLIUM, TOTAL												
	11	HIALLIUW, TOTAL												
Metals	Sn	TINI TOTAL												
	Sn Ti	TIN, TOTAL							560	0 1/10	0.806	0.058		
	Ti	TITANIUM, TOTAL							560	0.149	0.806	0.058	0.313	1 / 1 / 10
Metals Metals	Ti W								560	0.149	0.806	0.058	0.313 J	1.49

		Project Name: Project Number: JALK FEE												
		Client ID	S-9-B34		S-9-B34		S-9-B34		S-9-B34		S-9-B34		S-9-B34	
		Lab ID Matrix Matrix Description	L1634114-21 SOIL		L1634114-21 SOIL		L1634114-21 SOIL		L1634114-21 SOIL		L1634114-21 SOIL		L1634114-21 SOIL	
		Reference Method Batch ID	6020A WG945382		6020A WG945382		6020A WG945382		6020A WG945382		6020A WG945382		6020A WG945385	
		Date Collected	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/20/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/27/2016		10/27/2016		10/27/2016		10/31/2016		10/31/2016		10/31/2016	
		Sample Size(wet)	1.86 g		1.86 g		1.86 g		1.86 g	1	1.86 g	ı	1.88 g	1
		% Solid File ID	91.1		91.1		91.1		91.1		91.1		91.1	
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	2		10		50		2		50		2	
		Reporting Limit	0.012		0.590		148		0.030		0.738		0.029	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL					12400	148						
Metals Metals		ANTIMONY, TOTAL	7.77	0.000									1.25	0.029
Metals		ARSENIC, TOTAL BARIUM, TOTAL	115	0.030										
Metals		BERYLLIUM, TOTAL	0.498	0.018										
Metals		BORON, TOTAL	1.72	0.295										
Metals		CADMIUM, TOTAL	0.029	0.012										
Metals	Ca	CALCIUM, TOTAL					3490	738						
Metals	Cr	CHROMIUM, TOTAL	25.6	0.118										
Metals		COBALT, TOTAL	12.0	0.030										
Metals		COPPER, TOTAL	25.5	0.118										
Metals		IRON, TOTAL					23900	295						
Metals		LEAD, TOTAL	5.55	0.035										
Metals		MAGNESIUM, TOTAL			450	0.500	6370	148						
Metals Metals	Mn	MANGANESE, TOTAL MOLYBDENUM, TOTAL			456	0.590			0.160	0.030				
		NICKEL, TOTAL	19.9	0.059					0.100	0.030				
Metals		POTASSIUM. TOTAL	13.3	0.000			4320	148						
Metals		SELENIUM, TOTAL	0.081	0.059			1020							
Metals		SILVER, TOTAL											0.047	0.029
Metals	Na	SODIUM, TOTAL					259	148						
Metals	Sr	STRONTIUM, TOTAL	39.6	0.059										
Metals		THALLIUM, TOTAL	0.124	0.012										
Metals		TIN, TOTAL											0.473	0.058
Metals		TITANIUM, TOTAL									801	0.738		
Metals		TUNGSTEN, TOTAL	44.0	0.050										
Metals		VANADIUM, TOTAL ZINC, TOTAL	41.8 53.8	0.059										
Metals	ZII	ZING, TOTAL	53.8	0.590										

		Project Name: Project Number: JALK FEE												
		Client ID	S-9-B34		S-3-B35		S-3-B35		S-3-B35		S-3-B35		S-3-B35	
		Lab ID Matrix	L1634114-21 SOIL		L1634114-22 SOIL		L1634114-22 SOIL		L1634114-22 SOIL		L1634114-22 SOIL		L1634114-22 SOIL	
		Matrix Description												
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID Date Collected	WG945387 10/20/2016		WG945382 10/20/2016		WG945382 10/20/2016		WG945382 10/20/2016		WG945382 10/20/2016		WG945382 10/20/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/28/2016		10/27/2016		10/27/2016		10/27/2016		10/31/2016		10/31/2016	
		Sample Size(wet)	1.86 g		1.91 g		1.91	g	1.91	3	1.91 g	1	1.91 g	1
		% Solid File ID	91.1		92.8		92.8		92.8		92.8		92.8	
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	10		2		10		50		2		10	
		Reporting Limit	1.48		0.011		0.564		141		0.028		0.141	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL							10300	141				
Metals		ANTIMONY, TOTAL												
Metals		ARSENIC, TOTAL			6.04	0.028								
Metals Metals		BARIUM, TOTAL BERYLLIUM, TOTAL			111 0.365	0.169								
Metals		BORON, TOTAL			1.98	0.282								
Metals		CADMIUM, TOTAL			0.186	0.011								
Metals		CALCIUM, TOTAL							8430	705				
Metals		CHROMIUM, TOTAL			20.6	0.113								
Metals		COBALT, TOTAL			8.54	0.028								
Metals Metals		COPPER, TOTAL IRON, TOTAL			19.1	0.113			40000	282				
Metals		LEAD, TOTAL			8.22	0.034			18800	282				
Metals		MAGNESIUM, TOTAL			O.LL	0.001			5530	141				
Metals	Mn	MANGANESE, TOTAL					398	0.564						
Metals		MOLYBDENUM, TOTAL									0.343	0.028		
Metals		NICKEL, TOTAL			14.2	0.056								
Metals		POTASSIUM, TOTAL			0.447	0.050			2860	141				
Metals Metals		SELENIUM, TOTAL SILVER, TOTAL			0.117	0.056								
Metals		SODIUM, TOTAL							325	141				
Metals		STRONTIUM, TOTAL			48.0	0.056			320					
Metals	TI	THALLIUM, TOTAL			0.119	0.011								
Metals		TIN, TOTAL												
Metals		TITANIUM, TOTAL											557	0.141
Metals Metals		TUNGSTEN, TOTAL VANADIUM, TOTAL	0.322 J	1.48	36.4	0.056								
Metals		ZINC, TOTAL			55.0	0.564								
ivicials	411	ZINO, TOTAL			55.0	0.504								

		Project Name: Project Number: JALK FEE												
		Client ID	S-3-B35		S-3-B35		S-5-B36		S-5-B36		S-5-B36		S-5-B36	
		Lab ID	L1634114-22		L1634114-22		L1634114-23		L1634114-23		L1634114-23		L1634114-23	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description												
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID	WG945385		WG945387		WG945382		WG945382		WG945382		WG945382	
		Date Collected	10/20/2016		10/20/2016		10/21/2016		10/21/2016		10/21/2016		10/21/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/31/2016		10/28/2016		10/27/2016		10/27/2016		10/27/2016		10/31/2016	
		Sample Size(wet)	1.84 (]	1.91 g		1.83 g		1.83 g		1.83 g		1.83 g	
		% Solid File ID	92.8		92.8		89.6		89.6		89.6		89.6	
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	111g/kg 50		111g/kg 50		111g/kg 50		111g/kg 50		111g/kg 50		111g/kg 50	
		Dilution	2		10		2		10		50		2	
		Reporting Limit	0.029		1.41		0.012		0.610		152		0.031	
		reporting Limit	0.023		1.41		0.012		0.010		132		0.001	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL									10800	152		
Metals	Sb	ANTIMONY, TOTAL	1.50	0.029										
Metals	As	ARSENIC, TOTAL					4.59	0.031						
Metals	Ba	BARIUM, TOTAL					129	0.183						
Metals		BERYLLIUM, TOTAL					0.472	0.018						
Metals		BORON, TOTAL					1.76	0.305						
Metals		CADMIUM, TOTAL					0.195	0.012						
Metals	Ca	CALCIUM, TOTAL									2010	762		
Metals		CHROMIUM, TOTAL					21.1	0.122						
Metals		COBALT, TOTAL												
Metals		COPPER, TOTAL					9.80	0.031						
Metals	Fe						9.80 19.3	0.031 0.122						
Metals		IRON, TOTAL					19.3	0.122			19200	305		
		LEAD, TOTAL												
Metals	Mg	LEAD, TOTAL MAGNESIUM, TOTAL					19.3	0.122			19200 4800	305 152		
Metals Metals	Mg Mn	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL					19.3	0.122	478	0.610				
Metals Metals Metals	Mg Mn Mo	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL					19.3 7.15	0.122	478	0.610			0.280	0.031
Metals Metals Metals Metals	Mg Mn Mo Ni	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL					19.3	0.122	478	0.610	4800	152	0.280	0.031
Metals Metals Metals Metals Metals	Mg Mn Mo Ni K	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL					19.3 7.15 15.9	0.122 0.037 0.061	478	0.610			0.280	0.031
Metals Metals Metals Metals Metals Metals	Mg Mn Mo Ni K Se	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL	0.005	0.000			19.3 7.15	0.122	478	0.610	4800	152	0.280	0.031
Metals Metals Metals Metals Metals Metals Metals	Mg Mn Mo Ni K Se Ag	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SILVER, TOTAL	0.065	0.029			19.3 7.15 15.9	0.122 0.037 0.061	478	0.610	4800	152 152	0.280	0.031
Metals Metals Metals Metals Metals Metals Metals Metals	Mg Mn Mo Ni K Se Ag Na	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SILVER, TOTAL SODIUM, TOTAL	0.065	0.029			19.3 7.15 15.9 0.082	0.122 0.037 0.061 0.061	478	0.610	4800	152	0.280	0.031
Metals Metals Metals Metals Metals Metals Metals Metals Metals	Mg Mn Mo Ni K Se Ag Na Sr	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SODIUM, TOTAL STRONTIUM, TOTAL	0.065	0.029			19.3 7.15 15.9 0.082 27.7	0.122 0.037 0.061 0.061	478	0.610	4800	152 152	0.280	0.031
Metals Metals Metals Metals Metals Metals Metals Metals Metals Metals	Mg Mn Mo Ni K Se Ag Na Sr TI	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SELENIUM, TOTAL SODIUM, TOTAL STRONTIUM, TOTAL THALLIUM, TOTAL					19.3 7.15 15.9 0.082	0.122 0.037 0.061 0.061	478	0.610	4800	152 152	0.280	0.031
Metals	Mg Mn Mo Ni K Se Ag Na Sr TI Sn	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SILVER, TOTAL SODIUM, TOTAL STRONTIUM, TOTAL THALLIUM, TOTAL TIN, TOTAL	0.065	0.029			19.3 7.15 15.9 0.082 27.7	0.122 0.037 0.061 0.061	478	0.610	4800	152 152	0.280	0.031
Metals	Mg Mn Mo Ni K Se Ag Na Sr TI Sn Ti	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SILVER, TOTAL SODIUM, TOTAL STRONTIUM, TOTAL TINALIUM, TOTAL TIN, TOTAL TITANIUM, TOTAL					19.3 7.15 15.9 0.082 27.7	0.122 0.037 0.061 0.061	478	0.610	4800	152 152	0.280	0.031
Metals	Mg Mn Mo Ni K Se Ag Na Sr TI Sn Ti W	LEAD, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL MOLYBDENUM, TOTAL NICKEL, TOTAL POTASSIUM, TOTAL SELENIUM, TOTAL SILVER, TOTAL SODIUM, TOTAL STRONTIUM, TOTAL THALLIUM, TOTAL TIN, TOTAL			L	1.41	19.3 7.15 15.9 0.082 27.7	0.122 0.037 0.061 0.061	478	0.610	4800	152 152	0.280	0.031

		Project Name: Project Number: JALK FEE												
		Client ID	S-5-B36		S-5-B36		S-5-B36		S-10-B33		S-10-B33		S-10-B33	
		Lab ID	L1634114-23		L1634114-23		L1634114-23		L1634114-28		L1634114-28		L1634114-28	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description												
		Reference Method	6020A		6020A		6020A		6020A		6020A		6020A	
		Batch ID	WG945382		WG945385		WG945387		WG945382		WG945382		WG945382	
		Date Collected	10/21/2016		10/21/2016		10/21/2016		10/21/2016		10/21/2016		10/21/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/31/2016		10/31/2016		10/28/2016		10/27/2016		10/27/2016		10/27/2016	
		Sample Size(wet)	1.83 (g	1.85 g	1	1.83 g	3	2.01 g	1	2.01 g		2.01 g	l
		% Solid	89.6		89.6		89.6		87.4		87.4		87.4	
		File ID												
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	50		2		2		2		10		50	
		Reporting Limit	0.762		0.030		0.305		0.011		0.569		142	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL											11200	142
Metals	Sb	ANTIMONY, TOTAL			1.09	0.030								
Metals	As	ARSENIC, TOTAL							6.56	0.029				
Metals		BARIUM, TOTAL							146	0.171				
Metals		BERYLLIUM, TOTAL							0.503	0.017				
Metals		BORON, TOTAL							1.42	0.285				
Metals		CADMIUM, TOTAL							0.032	0.011				
Metals	Ca	CALCIUM, TOTAL											2860	712
Metals		CHROMIUM, TOTAL							23.5	0.114				
Metals		COBALT, TOTAL							9.78	0.029				
Metals		COPPER, TOTAL							22.2	0.114				
Metals		IRON, TOTAL											21000	285
Metals		LEAD, TOTAL							5.03	0.034				
Metals		MAGNESIUM, TOTAL											5780	142
Metals	Mn	MANGANESE, TOTAL									456	0.569		
	Мо	MOLYBDENUM, TOTAL												
Metals		NICKEL, TOTAL							17.0	0.057				
Metals		POTASSIUM, TOTAL											3220	142
Metals		SELENIUM, TOTAL							0.076	0.057				
	Ag	SILVER, TOTAL			0.072	0.030								
Metals		SODIUM, TOTAL											204	142
Metals		STRONTIUM, TOTAL							38.5	0.057				
Metals		THALLIUM, TOTAL			0.555	0.000			0.108	0.011				
Metals		TIN, TOTAL	000	0.700	0.525	0.060								
Metals		TITANIUM, TOTAL	826	0.762			0.461							
Metals		TUNGSTEN, TOTAL					0.181 J	J 0.305	20.0	0.057				
Metals		VANADIUM, TOTAL							38.8 52.2	0.057				
Metals	411	ZINC, TOTAL							52.2	0.569				

		Project Name: Project Number: JALK FEE								
		Client ID	S-10-B33		S-10-B33		S-10-B33		S-10-B33	
		Lab ID	L1634114-28		L1634114-28		L1634114-28		L1634114-28	
		Matrix	SOIL		SOIL		SOIL		SOIL	
		Matrix Description								
		Reference Method	6020A		6020A		6020A		6020A	
		Batch ID	WG945382		WG945382		WG945385		WG945387	
		Date Collected	10/21/2016		10/21/2016		10/21/2016		10/21/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/26/2016		10/26/2016		10/26/2016		10/26/2016	
		Date Analyzed	10/31/2016		10/31/2016		10/31/2016		10/28/2016	
		Sample Size(wet) % Solid	2.01 g 87.4	3	2.01 g 87.4	1	2.05 g 87.4)	2.01 g 87.4	
		% Solid File ID	87.4		87.4		87.4		87.4	
		Units	mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	111g/kg 50		111g/kg 50		111g/kg 50		111g/kg 50	
		Dilution	2		10		2		2	
		Reporting Limit	0.029		0.142		0.028		0.285	

Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Al	ALUMINUM, TOTAL								
Metals	Sb	ANTIMONY, TOTAL					1.05	0.028		
Metals	As	ARSENIC, TOTAL								
Metals	Ba	BARIUM, TOTAL								
Metals	Be	BERYLLIUM, TOTAL								
Metals	В	BORON, TOTAL								
Metals	Cd	CADMIUM, TOTAL								
Metals	Ca	CALCIUM, TOTAL								
Metals	Cr Co	CHROMIUM, TOTAL								
Metals	Cu	COBALT, TOTAL COPPER, TOTAL								
Metals Metals	Cu Fe	IRON, TOTAL								
Metals	Pb	LEAD, TOTAL								
Metals	Ma	MAGNESIUM, TOTAL								
Metals	Mn	MANGANESE, TOTAL								
Metals	Mo	MOLYBDENUM, TOTAL	0.146	0.029						
Metals	Ni	NICKEL, TOTAL	0.140	0.023						
Metals	K	POTASSIUM, TOTAL								
Metals	Se	SELENIUM, TOTAL								
Metals	Aa	SILVER, TOTAL					0.052	0.028		
Metals	Na	SODIUM, TOTAL					0.002	0.020		
Metals	Sr	STRONTIUM, TOTAL								
Metals	TI	THALLIUM, TOTAL								
Metals	Sn	TIN, TOTAL					0.437	0.056		
Metals	Ti	TITANIUM, TOTAL			585	0.142				
Metals	W	TUNGSTEN, TOTAL							0.206 J	0.285
Metals	V	VANADIUM, TOTAL								
Metals	Zn	ZINC, TOTAL								

Project Name: Project Number: JALK FEE

 Class
 Abbrev
 Analytes
 Result
 SSRL

 Metals
 Hg
 MERCURY, TOTAL
 U
 0.013

Project Name: Project Number: JALK FEE

Project Number: JALK FEE

Client ID Laboratory Control S
Lab ID WG945388-2
Matrix SOIL

Matrix SOIL

Matrix Parent Matrix SOIL

Matrix Batch ID WG945388

Date Collected NA
Date Received 10/25/2016
Date Analyzed 10/25/2016
Date Analyzed 10/31/2016
Sample Size(wet) 0.54 g
% Soil ID 10

Units %
Final Volume 50
Reporting Limit 0.231

 Class Abbrev
 Analytes
 Result
 SSRL % REC
 Spike Conc.
 Lower Limit
 Upper Limit

 Metals Hg
 MERCURY, TOTAL
 12.8
 0.231
 104
 12.3
 78
 128

Project Name:	
Project Number: JALK F	EE

Client ID	S-16-B26	S-16-B26
Lab ID	L1634114-02	WG945388-3
Matrix	SOIL	SOIL
Matrix Description		
Reference Method	7474	7474
Batch ID	WG945388	WG945388
Date Collected	10/18/2016	NA
Date Received	10/20/2016	10/25/2016
Date Prepped	10/25/2016	10/25/2016
Date Analyzed	10/31/2016	10/31/2016
Sample Size(wet)	1.19 g	1.13 g
% Solid	84.8	84.8
File ID		
Units	mg/kg	mg/kg
Final Volume	50	50
Dilution	5	5
Reporting Limit	0.012	0.013

 Class
 Abbrev
 Analytes
 Result
 SSRL
 Result
 SSRL
 RPD
 RPD Limit

 Metals
 Hg
 MERCURY, TOTAL
 0.081
 0.012
 0.095
 0.013
 16
 20

Project Name:	
Project Number: JALK F	EE

Client ID	S-16-B26	S-16-B26
Lab ID	L1634114-02	WG945388-4
Matrix	SOIL	SOIL
Matrix Description		
Reference Method	7474	7474
Batch ID	WG945388	WG945388
Date Collected	10/18/2016	NA
Date Received	10/20/2016	10/25/2016
Date Prepped	10/25/2016	10/25/2016
Date Analyzed	10/31/2016	10/31/2016
Sample Size(wet)	1.19 g	1.1 g
% Solid	84.8	84.8
File ID		
Units	mg/kg	%
Final Volume	50	50
Dilution	5	5
Reporting Limit	0.012	0.0134

 Class
 Abbrev
 Analytes
 Result
 SSRL
 Result
 SSRL
 % REC
 Spike Conc.
 Lower Limit
 Upper Limit

 Metals
 Hq
 MERCURY, TOTAL
 0.081
 0.012
 0.737
 0.0134
 98
 0.67
 80
 120

Project Name:	
Project Number: JALK F	EE

Metals	Ha	MERCURY, TOTAL	0.081	0.012	0.022	0.012	0.061	0.013	0.248	0.013	0.049	0.013
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
		Reporting Limit	0.012		0.012		0.013		0.013		0.013	
		Dilution	5		5		5		5		5	
		Final Volume	50		50		50		50		50	
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		File ID										
		% Solid	84.8		96.5		83.3		84.6		87.6	
		Sample Size(wet)	1.19 g		1.13 g		1.17 g		1.13 g		1.11 g	
		Date Analyzed	10/31/2016		10/31/2016		10/31/2016		10/31/2016		10/31/2016	
		Date Prepped	10/25/2016		10/25/2016		10/25/2016		10/25/2016		10/25/2016	
		Date Received	10/20/2016		10/20/2016		10/20/2016		10/21/2016		10/21/2016	
		Date Collected	10/18/2016		10/18/2016		10/18/2016		10/19/2016		10/19/2016	
		Batch ID	WG945388		WG945388		WG945388		WG945388		WG945388	
		Reference Method	7474		7474		7474		7474		7474	
		Matrix Description	OOIL		OOIL		OOIL		OOIL		OOIL	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL	
		Lab ID	L1634114-02		L1634114-04		L1634114-06		I 1634114-07		_1634114-12	
		Client ID	S-16-B26		S-14-B27		S-16-B30		S-6-B28		S-9-B32	

Project Name:	
Project Number:	JALK FEE

		1 TOJOCE INGINIDOL DALIE												
		Client ID	S-8-B24		S-5-B34		S-9-B34		S-3-B35		S-5-B36		S-10-B33	
		Lab ID	L1634114-15	l	1634114-20		_1634114-21		L1634114-22		L1634114-23		L1634114-28	
		Matrix	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Matrix Description												
		Reference Method	7474		7474		7474		7474		7474		7474	
		Batch ID	WG945388		WG945388		WG945388		WG945388		WG945388		WG945388	
		Date Collected	10/20/2016		10/20/2016		10/20/2016		10/20/2016		10/21/2016		10/21/2016	
		Date Received	10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016		10/22/2016	
		Date Prepped	10/25/2016		10/25/2016		10/25/2016		10/25/2016		10/25/2016		10/25/2016	
		Date Analyzed	10/31/2016		10/31/2016		10/31/2016		10/31/2016		10/31/2016		10/31/2016	
		Sample Size(wet)	1.06 g		1.01	g	0.99 g		1.14 g		1.08 g	l	1.04 g	9
		% Solid	88.5		92		91.1		92.8		89.6		87.4	
		File ID												
		Units	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
		Final Volume	50		50		50		50		50		50	
		Dilution	5		5		5		5		5		5	
		Reporting Limit	0.013		0.013		0.014		0.012		0.013		0.014	
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
Metals	Hg	MERCURY, TOTAL	0.033	0.013	0.064	0.013	0.041	0.014	0.031	0.012	0.048	0.013	0.024	0.014

List of Potential Qualifiers

A: Spectra identified as "Aldol Condensation Product"

B: The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, lag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the containments in the associated method blank in the intervention limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

C: Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.

D: Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte E: Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

G: The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated. H: The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

I: The lower value for the two columns has been reported due to obvious interference.

I: The lower value for the two columns has been reported due to dovlous interference.

J: Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

J: Estimated value. This represents an estimated concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPMErelated analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

M: Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

ND: Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

ND: Not detected at the reporting limit (RL) for the sample.

NJ: Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
P: The RPD between the results for the two columns exceeds the method-specified criteria.

Q: The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.) R: Analytical results are from sample re-analysis. RE: Analytical results are from sample re-extraction.

S: Analytical results are from modified screening analysis

U: Not detected at the reported detection limit for the sample

Attachment C – Raw Data for Oil Samples Analyzed in 2016

Project Name: Cardno ERI - Former XOM Jalk Fee Property

Project	Number:	850.0087.000
FIUJECT	Nullibel.	000.0007.000

Client ID	Method Blank
Lab ID	SO120216B02
Matrix	Product
Reference Method	SHC
Batch ID	SO120216B02
Date Collected	N/A
Date Received	N/A
Date Prepped	12/02/2016
Date Analyzed	12/04/2016
Sample Size (wet)	0.1
% Solid	100.00
File ID	F1712041614.d
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	4200

Class	Abbrev	Analytes	Result		SSRL
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)		U	6600
		C10 C20 DDO	2050	- 1	4200

Surrogates (% Recovery)	
ortho-Terphenyl	97
d50-Tetracosane	94

Project Name: Cardno ERI - Former XOM Jalk Fee Property
D1 No 050 0007 000

Project	Number:	850.0087.000	

0110		C10-C28 DRO	766000	4040	749000	4110	2	30
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	870000	6350	851000	6460	2	30
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD Limit
		Reporting Limit	4040		4110			
		Dilution	1		1			
		Final Volume	20		20			
		Units	mg/Kg		mg/Kg			
		File ID	F1712041620.d		F1712041622.d			
		% Solid	100.00		100.00			
		Sample Size (wet)	0.104		0.1022			
		Date Analyzed	12/04/2016		12/04/2016			
		Date Prepped	12/02/2016		12/02/2016			
		Date Received	11/23/2016		11/23/2016			
		Date Collected	11/22/2016		11/22/2016			
		Batch ID	SO120216B02		SO120216B02			
		Reference Method	SHC		SHC			
		Matrix	Product		Product			
		Lab ID	1611009-01		1611009-01D			
		Client ID	CUTTING OIL		CUTTING OIL			

 Surrogates (% Recovery)
 94
 94

 ortho-Terphenyl
 90
 88

 d50-Tetracosane
 90
 88

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Client ID	Alaska North Slope Crude
Lab ID	TS111315ANC04
Matrix	Oil
Reference Method	SHC
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	10/27/2015
Sample Size (wet)	0.10382
% Solid	100.00
File ID	F17102615026.d
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	2000

SSRL % Rec Spike Conc. Lower Limit Upper Limit 3200 2000 Class Abbrev Analytes
SHC TPH Total Petroleum Hydrocarbons (C9-C44)
C10-C28 DRO

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Page C4 February 2017

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

	Project Number: 850.0087.000								
	Client ID	CUTTING OIL		MOBILMET 426 CUTTING OIL		MOBIL VELOCITE 6 SPINDLE OIL		MOBIL VELOCITE OIL No. 3	
	Lab ID	1611009-01		1611009-02		1611009-03		1611009-04	
	Matrix	Product		Product		Product		Product	
	Reference Method	SHC		SHC		SHC		SHC	
	Batch ID	SO120216B02		SO120216B02		SO120216B02		SO120216B02	
	Date Collected	11/22/2016		11/22/2016		11/22/2016		11/22/2016	
	Date Received	11/23/2016		11/23/2016		11/23/2016		11/28/2016	
	Date Prepped	12/02/2016		12/02/2016		12/02/2016		12/02/2016	
	Date Analyzed	12/04/2016		12/05/2016		12/05/2016		12/05/2016	
	Sample Size (wet)	0.104		0.1064		0.1008		0.1079	
	% Solid	100.00		100.00		100.00		100.00	
	File ID	F1712041620.d		F1712041624.d		F1712041626.d		F1712041628.d	
	Units	mg/Kg		mg/Kg		mg/Kg		mg/Kg	
	Final Volume	20		20		20		20	
	Dilution	1		1		1		1	
	Reporting Limit	4040		3950		4170		3890	
Class Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
SHC TPH	Total Petroleum Hydrocarbons (C9-C44)	870000	6350	931000	6200	914000	6550	911000	6120
	C10-C28 DRO	766000	4040	580000	3950	851000	4170	915000	3890
•									
	Surrogates (% Recovery)								
	ortho-Terphenyl	94		95		102		94	
	d50-Tetracosane	90		92		91		93	

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

	Project Number: 850.0087.000							
	Client ID	CP70T	CP200T	CP350T	CP500T	BROWNELLS TOUGH QUENCH	100 QUENCHING OIL - BLACK BEAR	
	Lab ID	1611009-05	1611009-06	1611009-07	1611009-08	1611009-09	1611009-10	
	Matrix	Product	Product	Product	Product	Product	Product	
	Reference Method	SHC	SHC	SHC	SHC	SHC	SHC	
	Batch ID	SO120216B02	SO120216B02	SO120216B02	SO120216B02	SO120216B02	SO120216B02	
	Date Collected	11/23/2016	11/23/2016	11/23/2016	11/23/2016	11/22/2016	11/22/2016	
	Date Received	11/28/2016	11/28/2016	11/28/2016	11/28/2016	11/28/2016	11/28/2016	
	Date Prepped	12/02/2016	12/02/2016	12/02/2016	12/02/2016	12/02/2016	12/02/2016	
	Date Analyzed	12/05/2016	12/05/2016	12/05/2016	12/05/2016	12/05/2016	12/05/2016	
	Sample Size (wet)	0.1031	0.1028	0.103	0.108	0.1004	0.1001	
	% Solid	100.00	100.00	100.00	100.00	100.00	100.00	
	File ID	F1712041630.d	F1712041632.d	F1712041640.d	F1712041642.d	F1712041644.d	F1712041646.d	
	Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
	Final Volume	20	20	20	20	20	20	
	Dilution	1	1	1	1	1	1	
	Reporting Limit	4070	4090	4080	3890	4180	4200	
Class Abbrev	Analytes	Result	SSRL Result	SSRL Result	SSRL Result	SSRL Result	SSRL Result	SSRL
SHC TPH	Total Petroleum Hydrocarbons (C9-C44)	966000	6400 852000	6420 889000	6410 928000	6110 950000	6570 1010000	6590
	C10-C28 DRO	968000	4070 610000	4090 456000	4080 134000	3890 765000	4180 815000	4200
	Surrogates (% Recovery)							
	ortho-Terphenyl	106	93	96	97	93	98	
	d50-Tetracosane	93	84	85	90	99	99	
	GOO TONGOOGETO	33	04	65	30	99	99	

Project Name: Cardno ERI - Former XOM Jalk Fee Property

	Project Number: 850.0087.000										
	Client ID	MOBIL VELOCITE No.10	MOB	IL VACTRA No. 2 WAY OIL	N	IOBIL VACTRA No. 4		Reference Material - Reserve Tank Oil		New Oil	
	Lab ID	1611009-11		1611009-12		1611009-13		1611009-14		1611009-15	
	Matrix	Product		Product		Product		Product		Product	
	Reference Method	SHC		SHC		SHC		SHC		SHC	
	Batch ID	SO120216B02		SO120216B02		SO120216B02		SO120216B02		SO120216B02	
	Date Collected	11/22/2016		11/22/2016		12/01/2016		11/21/2014		12/18/2014	
	Date Received	11/28/2016		11/28/2016		12/01/2016		11/25/2014		12/22/2014	
	Date Prepped	12/02/2016		12/02/2016		12/02/2016		12/02/2016		12/02/2016	
	Date Analyzed	12/05/2016		12/05/2016		12/05/2016		12/05/2016		12/06/2016	
	Sample Size (wet)	0.1055		0.1046		0.1026		0.1017		0.1017	
	% Solid	100.00		100.00		100.00		100.00		100.00	
	File ID	F1712041648.d		F1712041650.d		F1712041652.d		F1712041654.d		F1712041656.d	
	Units	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
	Final Volume	20		20		20		20		20	
	Dilution	1		1		1		1		1	
	Reporting Limit	3980		4010		4090		4130		4130	
Class Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL
SHC TPH	Total Petroleum Hydrocarbons (C9-C44)	976000	6260	884000	6310	628000	6430	996000	6490	954000	6490
	C10-C28 DRO	743000	3980	340000	4010	91400	4090	784000	4130	800000	4130
	Surrogates (% Recovery)										
	ortho-Terphenyl	95		96		96		94		94	
	d50-Tetracosane	94		93		90		91		99	

Client ID	Method Blank
Lab ID	SO120216B02
Matrix	Product
Reference Method	SHC
Batch ID	SO120216B02
Date Collected	N/A
Date Received	N/A
Date Prepped	12/02/2016
Date Analyzed	12/04/2016
Sample Size (wet)	0.1
% Solid	100.00
File ID	F1712041614.d
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	200

Class	Abbrev	Analytes	Result		SSRL
SHC	C9	n-Nonane (C9)		U	200
SHC	C10	n-Decane (C10)		U	200
SHC	C11	n-Undecane (C11)		U	200
SHC	C12	n-Dodecane (C12)		U	200
SHC	C13	n-Tridecane (C13)		U	200
SHC	1380	2,6,10 Trimethyldodecane (1380)		U	200
SHC	C14	n-Tetradecane (C14)		U	200
SHC	1470	2,6,10 Trimethyltridecane (1470)		U	200
SHC	C15	n-Pentadecane (C15)		U	200
SHC	C16	n-Hexadecane (C16)		U	200
SHC	1650	Norpristane (1650)		U	200
SHC	C17	n-Heptadecane (C17)		U	200
SHC	Pr	Pristane		U	200
SHC	C18	n-Octadecane (C18)		U	200
SHC	Ph	Phytane		U	200
SHC	C19	n-Nonadecane (C19)		U	200
SHC	C20	n-Eicosane (C20)		U	200
SHC	C21	n-Heneicosane (C21)		U	200
SHC	C22	n-Docosane (C22)		U	200
SHC	C23	n-Tricosane (C23)	6.20	J	200
SHC	C24	n-Tetracosane (C24)		U	200
SHC	C25	n-Pentacosane (C25)		U	200
SHC	C26	n-Hexacosane (C26)		U	200
SHC	C27	n-Heptacosane (C27)		U	200
SHC	C28	n-Octacosane (C28)		U	200
SHC	C29	n-Nonacosane (C29)		U	200
SHC	C30	n-Triacontane (C30)		U	200
SHC	C31	n-Hentriacontane (C31)		U	200
SHC	C32	n-Dotriacontane (C32)		U	200
SHC	C33	n-Tritriacontane (C33)		U	200
SHC	C34	n-Tetratriacontane (C34)		U	200
SHC	C35	n-Pentatriacontane (C35)		U	200
SHC	C36	n-Hexatriacontane (C36)		U	200
SHC	C37	n-Heptatriacontane (C37)		U	200
SHC	C38	n-Octatriacontane (C38)		U	200
SHC	C39	n-Nonatriacontane (C39)		U	200
SHC	C40	n-Tetracontane (C40)		U	200
SHC	TSH	Total Saturated Hydrocarbons	6.20	J	200
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)		U	6600

Surrogates (% Recovery)
ortho-Terphenyl 97
d50-Tetracosane 94

Client ID	Laboratory Control Sample
Lab ID	SO120216LCS02
Matrix	Product
Reference Method	SHC
Batch ID	SO120216B02
Date Collected	N/A
Date Received	N/A
Date Prepped	12/02/2016
Date Analyzed	12/04/2016
Sample Size (wet)	0.1
% Solid	100.00
File ID	F1712041616.d
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	200

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
SHC	C9	n-Nonane (C9)	4370	S	200	109	4000	50	130
SHC	C10	n-Decane (C10)	4180	S	200	105	4000	50	130
SHC	C12	n-Dodecane (C12)	4230	S	200	106	4000	50	130
SHC	C14	n-Tetradecane (C14)	4240	S	200	106	4000	50	130
SHC	C16	n-Hexadecane (C16)	4520	S	200	113	4000	50	130
SHC	C18	n-Octadecane (C18)	4450	S	200	111	4000	50	130
SHC	C19	n-Nonadecane (C19)	4210	S	200	105	4000	50	130
SHC	C20	n-Eicosane (C20)	4290	S	200	107	4000	50	130
SHC	C22	n-Docosane (C22)	4310	S	200	108	4000	50	130
SHC	C24	n-Tetracosane (C24)	4330	S	200	108	4000	50	130
SHC	C26	n-Hexacosane (C26)	4320	S	200	108	4000	50	130
SHC	C28	n-Octacosane (C28)	4420	S	200	110	4000	50	130
SHC	C30	n-Triacontane (C30)	4380	S	200	110	4000	50	130
SHC	C36	n-Hexatriacontane (C36)	4360	S	200	109	4000	50	130

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Page C9 February 2017

Client ID
Lab ID
Matrix
Reference Method
Batch ID
Date Collected
Date Received
Date Received
Date Analyzed
Sample Size (wet)
% Solid
File ID
Units
Final Volume
Dilution
Reporting Limit Laboratory Control Sample Dup SO120216LCSD02 0120216LCSD02 Product SHC SO120216B02 N/A N/A 12/02/2016 12/04/2016 0.1 100.00 F1712041618.d mg/Kg 20 1 200

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
SHC	C9	n-Nonane (C9)	4650	S	200	116	4000	50	130	6	30
SHC	C10	n-Decane (C10)	4250	S	200	106	4000	50	130	2	30
SHC	C12	n-Dodecane (C12)	4310	S	200	108	4000	50	130	2	30
SHC	C14	n-Tetradecane (C14)	4320	S	200	108	4000	50	130	2	30
SHC	C16	n-Hexadecane (C16)	4620	S	200	115	4000	50	130	2	30
SHC	C18	n-Octadecane (C18)	4550	S	200	114	4000	50	130	2	30
SHC	C19	n-Nonadecane (C19)	4290	S	200	107	4000	50	130	2	30
SHC	C20	n-Eicosane (C20)	4400	S	200	110	4000	50	130	2	30
SHC	C22	n-Docosane (C22)	4390	S	200	110	4000	50	130	2	30
SHC	C24	n-Tetracosane (C24)	4410	S	200	110	4000	50	130	2	30
SHC	C26	n-Hexacosane (C26)	4390	S	200	110	4000	50	130	2	30
SHC	C28	n-Octacosane (C28)	4500	S	200	112	4000	50	130	2	30
SHC	C30	n-Triacontane (C30)	4460	S	200	112	4000	50	130	2	30
SHC	C36	n-Hexatriacontane (C36)	4430	S	200	111	4000	50	130	2	30

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

95 92

Client ID	CUTTING OIL	CUTTING OIL
Lab ID	1611009-01	1611009-01D
Matrix	Product	Product
Reference Method	SHC	SHC
Batch ID	SO120216B02	SO120216B02
Date Collected	11/22/2016	11/22/2016
Date Received	11/23/2016	11/23/2016
Date Prepped	12/02/2016	12/02/2016
Date Analyzed	12/04/2016	12/04/2016
Sample Size (wet)	0.104	0.1022
% Solid	100.00	100.00
File ID	F1712041620.d	F1712041622.d
Units	mg/Kg	mg/Kg
Final Volume	20	20
Dilution	1	1
Reporting Limit	192	196

Class	Abbrev	Analytes	Result		SSRL	Result		SSRL	RPD	RPD Limit	
SHC	C9	n-Nonane (C9)		U	192		U	196		30	N/A
SHC	C10	n-Decane (C10)	19.2	J	192	20.2	J	196	5	30	
SHC	C11	n-Undecane (C11)	36.2	J	192	31.3	J	196	14	30	
SHC	C12	n-Dodecane (C12)	55.8	J	192	51.9	J	196	7	30	
SHC	C13	n-Tridecane (C13)	288	G	192	279	G	196	3	30	
SHC	1380	2,6,10 Trimethyldodecane (1380)	39.4	J	192	41.5	J	196	5	30	
SHC	C14	n-Tetradecane (C14)	139	J	192	134	J	196	4	30	
SHC	1470	2,6,10 Trimethyltridecane (1470)	380		192	390		196	3	30	
SHC	C15	n-Pentadecane (C15)	174	J	192	169	J	196	3	30	
SHC	C16	n-Hexadecane (C16)	314		192	317		196	1	30	
SHC	1650	Norpristane (1650)	486		192	474		196	2	30	
SHC	C17	n-Heptadecane (C17)	472		192	450		196	5	30	
SHC	Pr	Pristane	1420		192	1400		196	1	30	
SHC	C18	n-Octadecane (C18)	722		192	799		196	10	30	
SHC	Ph	Phytane	1130		192	1090		196	3	30	
SHC	C19	n-Nonadecane (C19)	647		192	704		196	8	30	
SHC	C20	n-Eicosane (C20)	4350		192	4280		196	1	30	
SHC	C21	n-Heneicosane (C21)	651		192	639		196	2	30	
SHC	C22	n-Docosane (C22)	471		192	438		196	7	30	
SHC	C23	n-Tricosane (C23)	534		192	517		196	3	30	
SHC	C24	n-Tetracosane (C24)	192		192	231		196	18	30	
SHC	C25	n-Pentacosane (C25)		U	192		U	196		30	N/A
SHC	C26	n-Hexacosane (C26)		U	192		U	196		30	N/A
SHC	C27	n-Heptacosane (C27)		U	192		U	196		30	N/A
SHC	C28	n-Octacosane (C28)		U	192		U	196		30	N/A
SHC	C29	n-Nonacosane (C29)		U	192		U	196		30	N/A
SHC	C30	n-Triacontane (C30)		U	192		U	196		30	N/A
SHC	C31	n-Hentriacontane (C31)	170	J	192	112	J	196	42	30	п
SHC	C32	n-Dotriacontane (C32)		U	192		U	196		30	N/A
SHC	C33	n-Tritriacontane (C33)		U	192		U	196		30	N/A
SHC	C34	n-Tetratriacontane (C34)		U	192		U	196		30	N/A
SHC	C35	n-Pentatriacontane (C35)		U	192		U	196		30	N/A
SHC	C36	n-Hexatriacontane (C36)		U	192		U	196		30	N/A
SHC	C37	n-Heptatriacontane (C37)		U	192		U	196		30	N/A
SHC	C38	n-Octatriacontane (C38)		U	192		U	196		30	N/A
SHC	C39	n-Nonatriacontane (C39)		U	192		U	196		30	N/A
SHC	C40	n-Tetracontane (C40)		U	192		U	196		30	N/A
SHC	TSH	Total Saturated Hydrocarbons	12700		192	12600		196	1	30	
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	870000		6350	851000		6460	2	30	

 Surrogates (% Recovery)
 94
 94

 ortho-Terphenyl
 90
 88

 d50-Tetracosane
 90
 88

Client ID	Alaska North Slope Crude
Lab ID	TS111315ANC04
Matrix	Oil
Reference Method	SHC
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	10/27/2015
Sample Size (wet)	0.10382
% Solid	100.00
File ID	F17102615026.d
Units	mg/Kg
Final Volume	10
Dilution	1
Reporting Limit	96.3

		Analytes	Result	SSRL		Spike Conc.	Lower Limit	
SHC	C9	n-Nonane (C9)	7120	96.3	113	6286.00	65	135
SHC	C10	n-Decane (C10)	5700	96.3	113	5047.00	65	135
SHC	C11	n-Undecane (C11)	5180	96.3	110	4703.00	65	135
SHC	C12	n-Dodecane (C12)	4730	96.3	114	4155.00	65	135
SHC	C13	n-Tridecane (C13)	4360	96.3	107	4058.00	65	135
SHC	1380	2,6,10 Trimethyldodecane (1380)	990	96.3	117	845.00	65	135
SHC	C14	n-Tetradecane (C14)	4030	96.3	110	3670.00	65	135
SHC	1470	2,6,10 Trimethyltridecane (1470)	1500	96.3	110	1367.00	65	135
SHC	C15	n-Pentadecane (C15)	4410	96.3	121	3660.00	65	135
SHC	C16	n-Hexadecane (C16)	3610	96.3	108	3330.00	65	135
SHC	1650	Norpristane (1650)	1160	96.3	106	1093.00	65	135
SHC	C17	n-Heptadecane (C17)	3140	96.3	104	3012.00	65	135
SHC	Pr	Pristane	2440	96.3	114	2145.00	65	135
SHC	C18	n-Octadecane (C18)	2700	96.3	100	2700.00	65	135
SHC	Ph	Phytane	1500	96.3	124	1215.00	65	135
SHC	C19	n-Nonadecane (C19)	2670	96.3	116	2305.00	65	135
SHC	C20	n-Eicosane (C20)	2820	96.3	121	2337.00	65	135
SHC	C21	n-Heneicosane (C21)	2330	96.3	114	2044.00	65	135
SHC	C22	n-Docosane (C22)	2180	96.3	110	1972.00	65	135
SHC	C23	n-Tricosane (C23)	1920	96.3	110	1745.00	65	135
SHC	C24	n-Tetracosane (C24)	1840	96.3	112	1641.00	65	135
SHC	C25	n-Pentacosane (C25)	1780	96.3	114	1562.00	65	135
SHC	C26	n-Hexacosane (C26)	1510	96.3	110	1378.00	65	135
SHC	C27	n-Heptacosane (C27)	1170	96.3	108	1083.00	65	135
SHC	C28	n-Octacosane (C28)	845	96.3	109	776.00	65	135
SHC	C29	n-Nonacosane (C29)	846	96.3	115	734.00	65	135
SHC	C30	n-Triacontane (C30)	672	96.3	107	627.00	65	135
SHC	C31	n-Hentriacontane (C31)	528	96.3	103	514.00	65	135
SHC	C32	n-Dotriacontane (C32)	560	96.3	122	458.00	65	135
SHC	C33	n-Tritriacontane (C33)	386	96.3	99	388.00	65	135
SHC	C34	n-Tetratriacontane (C34)	370	96.3	107	347.00	65	135
SHC	C35	n-Pentatriacontane (C35)	266	96.3	96	278.00	65	135
SHC	C36	n-Hexatriacontane (C36)	198	96.3	107	186.00	65	135
SHC	C37	n-Heptatriacontane (C37)	169	96.3	111	152.00	65	135
SHC	C38	n-Octatriacontane (C38)	144	96.3	110	131.00	65	135
SHC	C39	n-Nonatriacontane (C39)	97.0	96.3	109	89.00	65	135
SHC	C40	n-Tetracontane (C40)	89.7	96.3	97	92.00	65	135
SHC	TSH	Total Saturated Hydrocarbons	76000	96.3	111	68122.00	65	135
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	613000	3180	111	554993.00	65	135

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 950 0097 000

	Project Number: 850.0087.000							
	Client ID	CUTTING OIL		MOBILMET 426 CUTTING OIL		MOBIL VELOCITE 6 SPINDLE OIL		MOBIL VELOCITE OIL No. 3
	Lab ID	1611009-01		1611009-02		1611009-03		1611009-04
	Matrix	Product		Product		Product		Product
	Reference Method	SHC		SHC		SHC		SHC
	Batch ID	SO120216B02		SO120216B02		SO120216B02		SO120216B02
	Date Collected	11/22/2016		11/22/2016		11/22/2016		11/22/2016
	Date Received	11/23/2016		11/23/2016		11/23/2016		11/28/2016
	Date Prepped	12/02/2016		12/02/2016		12/02/2016		12/02/2016
	Date Analyzed	12/04/2016		12/05/2016		12/05/2016		12/05/2016
	Sample Size (wet)	0.104		0.1064		0.1008		0.1079
	% Solid	100.00		100.00		100.00		100.00
	File ID	F1712041620.d		F1712041624.d		F1712041626.d		F1712041628.d
	Units	mg/Kg		mg/Kg		mg/Kg		mg/Kg
	Final Volume	20		20		20		20
	Dilution	1		1		1		1
	Reporting Limit	192		188		198		185
	Reporting Limit	192		100		190		165
Class Abbre		Result	SSR		SSRL	Result	SSRL	Result SSRL
SHC C9	n-Nonane (C9)		U 192		J 188		U 198	U 185
SHC C10	n-Decane (C10)	19.2				64.3	J 198	4160 185
SHC C11	n-Undecane (C11)	36.2	J 192		J 188	201	198	44800 D 927
SHC C12	n-Dodecane (C12)		J 192		J 188	412	198	84600 D 927
SHC C13	n-Tridecane (C13)	288	G 192			759	198	60600 D 927
SHC 1380	2,6,10 Trimethyldodecane (1380)	39.4	J 192		J 188		U 198	2230 185
SHC C14	n-Tetradecane (C14)	139	J 192	23.1	J 188	1070	198	11800 185
SHC 1470	2,6,10 Trimethyltridecane (1470)	380	192	10.9	J 188	700	198	547 185
SHC C15	n-Pentadecane (C15)	174	J 192	28.8	J 188	1000	198	891 185
SHC C16	n-Hexadecane (C16)	314	192	32.1	J 188	894	198	236 185
SHC 1650	Norpristane (1650)	486	192	12.2	J 188	736	198	112 J 185
SHC C17	n-Heptadecane (C17)	472	192	29.5	J 188	746	198	484 185
SHC Pr	Pristane	1420	192	61.6	J 188	1690	198	324 185
SHC C18	n-Octadecane (C18)	722	192			520	198	961 185
SHC Ph	Phytane	1130	192		188	3340		683 185
SHC C19	n-Nonadecane (C19)	647	192			298	198	1610 185
SHC C20	n-Eicosane (C20)	4350	192		J 188	200	U 198	1640 185
SHC C21	n-Heneicosane (C21)	651	192		J 188	1470	198	1100 185
SHC C22	n-Docosane (C22)	471	192		J 188	607	198	381 185
SHC C23	n-Tricosane (C23)	534	192		J 188	007	U 198	128 J 185
SHC C24	n-Tetracosane (C24)	192						
SHC C25		192	192 U 192		J 188 J 188		U 198 U 198	U 185 U 185
	n-Pentacosane (C25)						0 .00	
SHC C26	n-Hexacosane (C26)		U 192		J 188		U 198	U 185
SHC C27	n-Heptacosane (C27)		U 192		J 188		U 198	U 185
SHC C28	n-Octacosane (C28)		U 192		J 188		U 198	U 185
SHC C29	n-Nonacosane (C29)		U 192		J 188		U 198	U 185
SHC C30	n-Triacontane (C30)		U 192		J 188		U 198	U 185
SHC C31	n-Hentriacontane (C31)	170	J 192		188	324	198	U 185
SHC C32	n-Dotriacontane (C32)		U 192		J 188		U 198	14.1 J 185
SHC C33	n-Tritriacontane (C33)		U 192		188		U 198	U 185
SHC C34	n-Tetratriacontane (C34)		U 192		J 188		U 198	U 185
SHC C35	n-Pentatriacontane (C35)		U 192		J 188		U 198	U 185
SHC C36	n-Hexatriacontane (C36)		U 192		J 188		U 198	U 185
SHC C37	n-Heptatriacontane (C37)		U 192		J 188		U 198	U 185
SHC C38	n-Octatriacontane (C38)		U 192		J 188		U 198	U 185
SHC C39	n-Nonatriacontane (C39)		U 192		J 188		U 198	U 185
SHC C40	n-Tetracontane (C40)		U 192		J 188		U 198	U 185
SHC TSH	Total Saturated Hydrocarbons	12700	192	3180	188	14800	198	239000 185
SHC TPH	Total Petroleum Hydrocarbons (C9-C44)	870000	6350	931000	6200	914000	6550	911000 6120
_	-							
	Surrogates (% Recovery)							
	ortho-Terphenyl	94		95		102		94
	d50-Tetracosane	90		92		91		93
	acc ronacodanic	50		92		31		33

	Project Name: Cardno ERI - Former XOM Jalk Fee Property													
	Project Number: 850.0087.000													
	Client ID	CP70T			CP200T			CP350T		CP500T		BROWNELLS TOUGH QUI		
	Lab ID Matrix	1611009-05 Product			1611009-06 Product			1611009-07 Product		1611009-08 Product		16110	roduct	
	Reference Method	SHC			SHC			SHC		SHC		-	SHC	
	Batch ID	SO120216B02			SO120216B02			SO120216B02		SO120216B02		SO1202		
	Date Collected	11/23/2016			11/23/2016			11/23/2016		11/23/2016			2/2016	
	Date Received	11/28/2016			11/28/2016			11/28/2016		11/28/2016		11/28	3/2016	
	Date Prepped	12/02/2016			12/02/2016			12/02/2016		12/02/2016			2/2016	
	Date Analyzed	12/05/2016			12/05/2016			12/05/2016		12/05/2016			/2016	
	Sample Size (wet)	0.1031			0.1028			0.103		0.108			0.1004	
	% Solid File ID	100.00 F1712041630.d			100.00 F1712041632.d			100.00 F1712041640.d		100.00 F1712041642.d		F1712041	00.00	
	Units	mg/Kg			mg/Kg			mg/Kg		mg/Kg			mg/Kg	
	Final Volume	20			20			20		20			20	
	Dilution	1			1			1		1			1	
	Reporting Limit	194			195			194		185			199	
	Analytes	Result		SSRL	Result		SSRL	Result	SSRI				Result	SSRL
SHC C9 SHC C10	n-Nonane (C9) n-Decane (C10)		U	194 194		U J	195 195	1.55 · 2.52 ·				85 85	1.39 J	199 199
SHC C11	n-Undecane (C11)		Ü	194		J	195	2.52				85	1.59 J	
SHC C12	n-Dodecane (C12)		Ū	194		Ĵ	195	4.27				85	4.98 J	
SHC C13	n-Tridecane (C13)		U	194		J	195	3.11		4.82		85	13.7 J	
SHC 1380	2,6,10 Trimethyldodecane (1380)		U	194		U	195		J 194			85	U	
SHC C14	n-Tetradecane (C14)		U	194		J	195	4.47				85	51.2 J	199
SHC 1470 SHC C15	2,6,10 Trimethyltridecane (1470)	8.92	U	194 194		J	195 195	3.69 · 10.9 ·				85 85	30.9 J 182 J	199 199
SHC C16	n-Pentadecane (C15) n-Hexadecane (C16)		J	194		J	195	7.38				85	539	199
SHC 1650	Norpristane (1650)	5.24	Ü	194	0.01	Ü	195		J 194			85	119 J	199
SHC C17	n-Heptadecane (C17)	26.6	Ĵ	194		Ĵ	195	15.5				85	1080	199
SHC Pr	Pristane	35.9	J	194	19.6	J	195	25.2	J 194	21.7	J 1	85	481	199
SHC C18	n-Octadecane (C18)		J	194		J	195	59.8				85	1770	199
SHC Ph	Phytane		J	194		J	195	74.8				85	645	199
SHC C19 SHC C20	n-Nonadecane (C19) n-Eicosane (C20)	439	U	194 194	255	U	195 195	185 . I				85 85	2260 2420	199 199
SHC C21	n-Heneicosane (C21)		U	194		IJ	195		J 194 J 194			oo 85	3140	199
SHC C22	n-Docosane (C22)		Ü	194		Ü	195		J 194 J 194			85	1720	199
SHC C23	n-Tricosane (C23)		Ū	194	696	-	195	476	194			85	514	199
SHC C24	n-Tetracosane (C24)		U	194		U	195					85	U	199
SHC C25	n-Pentacosane (C25)		U	194		U	195	l				85	U	199
SHC C26	n-Hexacosane (C26)		U	194		U	195					85	U	199
SHC C27 SHC C28	n-Heptacosane (C27)		U	194		U U	195 195		J 194 J 194			85	U	
SHC C28	n-Octacosane (C28) n-Nonacosane (C29)		U	194 194		U	195					85 85	U	
SHC C30	n-Triacontane (C30)		Ü	194		Ü	195	ì				85	Ü	199
SHC C31	n-Hentriacontane (C31)		Ū	194		Ū	195	i				85	Ū	199
SHC C32	n-Dotriacontane (C32)		U	194		U	195	ı	J 194		U 1	85	U	199
SHC C33	n-Tritriacontane (C33)		U	194		U	195		J 194			85	U	
SHC C34	n-Tetratriacontane (C34)		U	194		U	195					85	U	
SHC C35 SHC C36	n-Pentatriacontane (C35)		U	194		U	195	Į.				85	U	199 199
SHC C36 SHC C37	n-Hexatriacontane (C36) n-Heptatriacontane (C37)		U	194 194		U	195 195		J 194 J 194			85 85	U	199
SHC C38	n-Octatriacontane (C38)		U	194		U	195		J 194 J 194			85	U	
SHC C39	n-Nonatriacontane (C39)		Ü	194		Ü	195		J 194			85	Ŭ	
SHC C40	n-Tetracontane (C40)		U	194		U	195	ı	J 194		U 1	85	Ü	199
SHC TSH	Total Saturated Hydrocarbons	773		194	1160		195	877	194	379	1		15000	199
SHC TPH	Total Petroleum Hydrocarbons (C9-C44)	966000		6400	852000		6420	889000	6410	928000	6	110 9	50000	6570
	Surrogates (% Recovery)													
	ortho-Terphenyl	106			93			96		97			93	
	d50-Tetracosane	93			84			85		90			99	

Client ID	100 QUENCHING OIL - BLACK BEAR
Lab ID	1611009-10
Matrix	Product
Reference Method	SHC
Batch ID	SO120216B02
Date Collected	11/22/2016
Date Received	11/28/2016
Date Prepped	12/02/2016
Date Analyzed	12/05/2016
Sample Size (wet)	0.1001
% Solid	100.00
File ID	F1712041646.d
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	200

Class	Abbrev	Analytes	Result		SSRL
SHC	C9	n-Nonane (C9)	6.19	J	200
SHC	C10	n-Decane (C10)	0.999	J	200
SHC	C11	n-Undecane (C11)	1.20	J	200
SHC	C12	n-Dodecane (C12)	4.00	J	200
SHC	C13	n-Tridecane (C13)	5.20	J	200
SHC	1380	2,6,10 Trimethyldodecane (1380)		U	200
SHC	C14	n-Tetradecane (C14)	9.59	J	200
SHC	1470	2,6,10 Trimethyltridecane (1470)	19.4	J	200
SHC	C15	n-Pentadecane (C15)	27.4	j	200
SHC	C16	n-Hexadecane (C16)	30.4	j	200
SHC	1650	Norpristane (1650)	23.6	j	200
SHC	C17	n-Heptadecane (C17)	55.3	j	200
SHC	Pr	Pristane	154	j	200
SHC	C18	n-Octadecane (C18)	91.1	j	200
SHC	Ph	Phytane	103	j	200
SHC	C19	n-Nonadecane (C19)	88.1	j	200
SHC	C20	n-Eicosane (C20)		Ü	200
SHC	C21	n-Heneicosane (C21)	648		200
SHC	C22	n-Docosane (C22)	662		200
SHC	C23	n-Tricosane (C23)	1200		200
SHC	C24	n-Tetracosane (C24)	1060		200
SHC	C25	n-Pentacosane (C25)		U	200
SHC	C26	n-Hexacosane (C26)		U	200
SHC	C27	n-Heptacosane (C27)		Ü	200
SHC	C28	n-Octacosane (C28)		Ü	200
SHC	C29	n-Nonacosane (C29)		Ü	200
SHC	C30	n-Triacontane (C30)		Ü	200
SHC	C31	n-Hentriacontane (C31)	233		200
SHC	C32	n-Dotriacontane (C32)		U	200
SHC	C33	n-Tritriacontane (C33)		Ü	200
SHC	C34	n-Tetratriacontane (C34)		Ü	200
SHC	C35	n-Pentatriacontane (C35)		Ü	200
SHC	C36	n-Hexatriacontane (C36)		Ü	200
SHC	C37	n-Heptatriacontane (C37)		Ū	200
SHC	C38	n-Octatriacontane (C38)		Ü	200
SHC	C39	n-Nonatriacontane (C39)		Ū	200
SHC	C40	n-Tetracontane (C40)		Ū	200
SHC	TSH	Total Saturated Hydrocarbons	4420	-	200
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	1010000		6590

Surrogates (% Recovery) ortho-Terphenyl d50-Tetracosane

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 950 0097 000

		Project Number: 850.0087.000									
		Client ID Lab ID Matrix Reference Method Batch ID Date Collected Date Received Date Received Date Analyzed Sample Size (vet) % Solid File ID Units Final Volume	MOBIL VELOCITE No. 10 1611009-11 Product SHC SO120216B02 11/22/2016 11/28/2016 12/02/2016 0.1055 100.00 F1712041648.d mg/Kg 20			MOBIL VACTRA No. 2 WAY OIL 1611009-12 Product SHC SO120216802 11/22/2016 11/28/2016 12/02/2016 12/05/2016 0.1046 100.00 F1712041650.d mg/kg 20			MOBIL VACTRA No. 4 1611009-13 Product SHC SO120216B02 1201/2016 120022016 0.1026 100.00 F1712041652.d mg/kg 20		
		Dilution Reporting Limit	1 190			1 191			1 195		
Class	Abbrev	Analytes	Result		SSRL	Result		SSRL	Result		SSRL
SHC	C9	n-Nonane (C9)	resuit	U	190	4.78	J	191	5.46	J	195
SHC	C10	n-Decane (C10)	3.79	J	190	9.37	J	191	9.75	J	195
SHC	C11	n-Undecane (C11)	6.64		190	7.27	J	191	8.97	J	195
SHC	C12	n-Dodecane (C12)	10.2		190	7.65	J	191	7.21	J	195
SHC	C13 1380	n-Tridecane (C13)	16.7		190	8.41	IJ	191	5.26	IJ	195 195
SHC	1380 C14	2,6,10 Trimethyldodecane (1380) n-Tetradecane (C14)	23.1	U	190 190	22.4	J	191 191	20.1	J	195
SHC	1470	2,6,10 Trimethyltridecane (1470)	18.4		190	11.1	J	191	9.36	J	195
SHC	C15	n-Pentadecane (C15)	35.4		190	9.94	Ĵ	191	15.6	Ĵ	195
SHC	C16	n-Hexadecane (C16)	30.5	J	190	6.50	J	191	7.21	J	195
SHC	1650	Norpristane (1650)	50.8		190	1.91	J	191	2.73	J	195
SHC	C17	n-Heptadecane (C17)	9.29		190	10.1	J	191	7.99	J	195
SHC	Pr C18	Pristane (Q40)	170	IJ	190 190	5.35 124	J	191 191	128	U	195 195
SHC	Ph	n-Octadecane (C18) Phytane	583	U	190	49.5		191	26.1		195
SHC	C19	n-Nonadecane (C19)	503	U	190	45.5	U	191	20.1	U	195
SHC	C20	n-Eicosane (C20)		Ū	190		Ū	191		Ū	195
SHC	C21	n-Heneicosane (C21)		U	190		U	191		U	195
SHC	C22	n-Docosane (C22)		U	190		U	191		U	195
SHC	C23	n-Tricosane (C23)		U	190		U	191		U	195
SHC	C24 C25	n-Tetracosane (C24)		U	190 190		U	191 191		U	195 195
SHC	C25	n-Pentacosane (C25) n-Hexacosane (C26)		U	190		U	191		U	195
SHC	C27	n-Heptacosane (C27)		IJ	190		IJ	191		IJ	195
SHC	C28	n-Octacosane (C28)		Ū	190		Ū	191		Ū	195
SHC	C29	n-Nonacosane (C29)		U	190		U	191		U	195
SHC	C30	n-Triacontane (C30)		U	190		U	191		U	195
SHC	C31	n-Hentriacontane (C31)	1130		190	2420		191	900		195
SHC	C32 C33	n-Dotriacontane (C32)		U	190 190		U	191 191		U	195
SHC	C34	n-Tritriacontane (C33) n-Tetratriacontane (C34)		IJ	190		IJ	191		U	195 195
SHC	C35	n-Pentatriacontane (C35)		Ü	190		Ü	191	904	•	195
SHC	C36	n-Hexatriacontane (C36)		U	190		U	191		U	195
SHC	C37	n-Heptatriacontane (C37)		U	190		U	191		U	195
SHC	C38	n-Octatriacontane (C38)		U	190		U	191		U	195
SHC	C39 C40	n-Nonatriacontane (C39)		U	190		U	191 191		U	195 195
SHC	TSH	n-Tetracontane (C40) Total Saturated Hydrocarbons	2090	U	190 190	2700	U	191	2060	U	195
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	976000		6260	884000		6310	628000		6430
-		Surrogates (% Recovery) ortho-Terphenyl	95			96			96		
		d50-Tetracosane	94			93			90		

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Decided Number 950 0007 000

		Project Number: 850.0087.000						
		Client ID	Defense Material Bassa Trade 01			N 07		
		Lab ID	Reference Material - Reserve Tank Oil 1611009-14			New Oil 1611009-15		
		Matrix	Product			Product		
		Reference Method	SHC			SHC		
		Batch ID	SO120216B02			SO120216B02		
		Date Collected	11/21/2014			12/18/2014		
		Date Received	11/25/2014			12/22/2014		
		Date Prepped	12/02/2016			12/02/2016		
		Date Analyzed	12/05/2016			12/06/2016		
		Sample Size (wet)	0.1017			0.1017		
		% Solid	100.00			100.00		
		File ID	F1712041654.d			F1712041656.d		
		Units	mg/Kg			mg/Kg		
		Final Volume	20			20		
		Dilution	. 1			1		
		Reporting Limit	197			197		
Class	Abbrev	Analytes	Result		SSRL	Result		SSRL
SHC	C9	n-Nonane (C9)		U	197		U	197
SHC	C10	n-Decane (C10)	2.36	J	197	7.08	J	197
SHC	C11	n-Undecane (C11)	3.34	J	197	2.56	J	197
SHC	C12	n-Dodecane (C12)	5.90	J	197	7.08	J	197
SHC	C13	n-Tridecane (C13)	109	GJ	197	32.1		197
SHC	1380	2,6,10 Trimethyldodecane (1380)	33.6	J	197	18.1	J	197
SHC	C14	n-Tetradecane (C14)	260		197	186	j	197
SHC	1470	2,6,10 Trimethyltridecane (1470)	472		197	118		197
SHC	C15	n-Pentadecane (C15)	859		197	743		197
SHC	C16	n-Hexadecane (C16)	1670		197	1870		197
SHC	1650	Norpristane (1650)	649		197	706		197
SHC	C17	n-Heptadecane (C17)	1830		197	3380		197
SHC	Pr	Pristane	1730		197	1910		197
SHC	C18	n-Octadecane (C18)	1920		197	5490		197
SHC	Ph	Phytane	1170		197	3460		197
SHC	C19	n-Nonadecane (C19)	2020		197	7060		197
SHC	C20	n-Eicosane (C20)	1370		197	5520		197
SHC	C21	n-Heneicosane (C21)	993		197	2260		197
SHC	C22	n-Docosane (C22)	445		197	569		197
SHC	C23	n-Tricosane (C23)	194	J	197		U	197
SHC	C24	n-Tetracosane (C24)	101	ŭ	197		Ŭ	197
SHC	C25	n-Pentacosane (C25)		Ũ	197		Ũ	197
SHC	C26	n-Hexacosane (C26)		Ū	197		Ū	197
SHC	C27	n-Heptacosane (C27)		Ū	197		Ũ	197
SHC	C28	n-Octacosane (C28)		Ū	197		Ū	197
SHC	C29	n-Nonacosane (C29)		ŭ	197		Ŭ	197
SHC	C30	n-Triacontane (C30)		Ũ	197		Ũ	197
SHC	C31	n-Hentriacontane (C31)	96.6	Ĵ	197	112		197
SHC	C32	n-Dotriacontane (C32)	55.5	ŭ	197		Ŭ	197
SHC	C33	n-Tritriacontane (C33)		Ü	197		Ü	197
SHC	C34	n-Tetratriacontane (C34)		ŭ	197		Ü	197
SHC	C35	n-Pentatriacontane (C35)		ŭ	197		Ŭ	197
SHC	C36	n-Hexatriacontane (C36)		Ü	197		Ü	197
SHC	C37	n-Heptatriacontane (C37)		Ũ	197		Ũ	197
SHC	C38	n-Octatriacontane (C38)		Ū	197		Ū	197
SHC	C39	n-Nonatriacontane (C39)		Ü	197		Ŭ	197
SHC	C40	n-Tetracontane (C40)		Ü	197		Ü	197
SHC	TSH	Total Saturated Hydrocarbons	15800	-	197	33400	-	197
SHC	TPH	Total Petroleum Hydrocarbons (C9-C44)	996000		6490	954000		6490
		•						

 Surrogates (% Recovery)
 94
 94

 ortho-Terphenyl
 91
 99

 d50-Tetracosane
 91
 99

Client ID	Method Blank
Lab ID	SO120216B02
Matrix	Product
Reference Method	Modified 8270D
Batch ID	SO120216B02
Date Collected	N/A
Date Received	N/A
Date Prepped	12/02/2016
Date Analyzed	12/05/2016
Sample Size (wet)	0.1
% Solid	100.00
File ID	F312051606.D
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	2.00

		reporting Limit	2.00
Class	Abbrev	Analytes	Result SSRL
2	D0	cis/trans-Decalin	U 2.00
2	D1	C1-Decalins	U 2.00
2	D2	C2-Decalins	U 2.00
2	D3	C3-Decalins	U 2.00
2	D4	C4-Decalins	U 2.00
2	BT0	Benzothiophene	U 2.00
2	BT1	C1-Benzo(b)thiophenes	U 2.00
2	BT2	C2-Benzo(b)thiophenes	U 2.00
2	BT3	C3-Benzo(b)thiophenes	U 2.00
2	BT4	C4-Benzo(b)thiophenes	U 2.00
2	N0	Naphthalene	0.103 J 2.00
2	N1	C1-Naphthalenes	0.162 J 2.00
2	N2	C2-Naphthalenes	U 2.00
2	N3	C3-Naphthalenes	U 2.00
2	N4	C4-Naphthalenes	U 2.00
2	В	Biphenyl	U 2.00
3	DF	Dibenzofuran	U 2.00
3	AY	Acenaphthylene	U 2.00
3	AE	Acenaphthene	U 2.00
3	F0	Fluorene	0.116 J 2.00
3	F1	C1-Fluorenes	U 2.00
3	F2	C2-Fluorenes	U 2.00
3	F3	C3-Fluorenes	U 2.00
3	A0	Anthracene	U 2.00
3	P0	Phenanthrene	U 2.00
3	PA1	C1-Phenanthrenes/Anthracenes	U 2.00
3	PA2	C2-Phenanthrenes/Anthracenes	U 2.00
3	PA3	C3-Phenanthrenes/Anthracenes	U 2.00
3	PA4	C4-Phenanthrenes/Anthracenes	U 2.00
3	RET	Retene	U 2.00
3	DBT0	Dibenzothiophene	U 2.00
3	DBT1	C1-Dibenzothiophenes	U 2.00
3	DBT2	C2-Dibenzothiophenes	U 2.00
3	DBT3	C3-Dibenzothiophenes	U 2.00
3	DBT4	C4-Dibenzothiophenes	U 2.00
4	BF	Benzo(b)fluorene	U 2.00
4	FL0	Fluoranthene	U 2.00
4	PY0	Pyrene	U 2.00
4	FP1	C1-Fluoranthenes/Pyrenes	U 2.00
4	FP2	C2-Fluoranthenes/Pyrenes	U 2.00
4	FP3	C3-Fluoranthenes/Pyrenes	U 2.00
4	FP4	C4-Fluoranthenes/Pyrenes	U 2.00
4	NBT0	Naphthobenzothiophenes	U 2.00
4	NBT1	C1-Naphthobenzothiophenes	U 2.00
4	NBT2	C2-Naphthobenzothiophenes	U 2.00
4	NBT3	C3-Naphthobenzothiophenes	U 2.00
4	NBT4	C4-Naphthobenzothiophenes	U 2.00
4	BA0	Benz[a]anthracene	U 2.00
4	C0	Chrysene/Triphenylene	U 2.00
4	BC1	C1-Chrysenes	U 2.00
4	BC2	C2-Chrysenes	U 2.00
4	BC3	C3-Chrysenes	U 2.00
4	BC4	C4-Chrysenes	U 2.00

riojouritambor. occ.ocor.coc

Client ID	Method Blank
Lab ID	SO120216B02
Matrix	Product
Reference Method	Modified 8270D
Batch ID	SO120216B02
Date Collected	N/A
Date Received	N/A
Date Prepped	12/02/2016
Date Analyzed	12/05/2016
Sample Size (wet)	0.1
% Solid	100.00
File ID	F312051606.D
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	2.00

BBF	Class	Abbrev	Analytes	Result	SSRL
5 BAF Benzolajluranthene U 2.00 5 BAP Berzolajpyrene U 2.00 6 BAP Berzolajpyrene U 2.00 6 BAP Berzolajpyrene U 2.00 6 BAP Dibenziahjanthacene Dibenziacjanthracene U 2.00 6 GH BRADIA Dibenziahjanthracene Dibenziacjanthracene U 2.00 3 CAR Carbazole U 2.00 3 4MDT 4-Methylidebrazothiophene U 2.00 3 2MDT 23-Methylidebrazothiophene U 2.00 3 2MD 23-Methylidebrazothiophene U 2.00 3 2MP 2-Methylidebrazothiophene U 2.00 3 3 MMP 3-Methylidebrazothiophene U 2.00 3 3 MMP 9/4-Methylidebrazothiophene U 2.00 3 3 MMP 1-Methylidebrazothiophene U 2.00 3 1 MMP 1-Methylidebrazothiophene U 2.00 1 2 2 TA 2-Methylidebrazothiophene U 2.00 2 3 MMP 3-Methylidebrazothiophene U 2.00 2 3 MMP 3-Methylidebrazothiophene U 2.00 2 3 MMP 1-Methylidebrazot					
5 BEP Berzolejbyrene U 2.00 5 BAP Berzolejbyrene U 2.00 6 IND Indendi (2.3-cdpyrene) U 2.00 6 IND Indendi (2.3-cdpyrene) U 2.00 6 IND OH Debruzijahjanthracene Dibarzijacianthracene U 2.00 3 CAR CAR Carbarzele U 2.00 3 CARDI 23-Martinacene U 2.00 3 MDT 23-Martinacene U 2.00 3 MDT 13-Martyldhenarithrophene U 2.00 3 MP 3-Martyldhenarithrophene U 2.00 3 MP 2-Martylphanarithrophene U 2.00 3 MP 3-Martylphanarithrophene U 2.00 3 MP 3-Martylphanarithrophene U 2.00 3 MP 1-Martylphanarithrophene U 2.00 2 MP 2-Martylphanarithrophene U 2.00 2 MD 1-Martylphanarithrophene U 2.00 <td></td> <td></td> <td>Benzo[j]fluoranthene/Benzo[k]fluoranthene</td> <td></td> <td>2.00</td>			Benzo[j]fluoranthene/Benzo[k]fluoranthene		2.00
5 BAP Benzolalpyrene U 2.00 6 IND Indend 1,2,3-odjpyrene U 2.00 6 IND Indend 1,2,3-odjpyrene U 2.00 6 IND Indend 1,2,3-odjpyrene U 2.00 3 IND CAR Carbacole U 2.00 3 AMM CAR Carbacole U 2.00 3 INDT 21-Methyldibenzothiophene U 2.00 3 INDT 3-Methyldibenzothiophene U 2.00 3 INDT 3-Methyldibenzothiophene U 2.00 3 INDT 3-Methylphenanthrene U 2.00 3 INDT 3-Methylphenanthrene U 2.00 3 INDT 3-Methylphenanthrene U 2.00 3 IND 3-Methylphenanthrene U 2.00 3 IND 3-Methylphenanthrene U 2.00 2 INDT 2-Methylphenanthrene U 2.00 2 I					
56 PER Perylene U 2.00 6 IND Indenof1; 2,3-cdjpyrene U 2.00 6 DA Dibendjahjantracene/Dibenzjacjanthracene U 2.00 6 GH Bezogla, Highyriene U 2.00 3 4MDT 4-Methyldeharcothiophene U 2.00 3 2MDT 22-Methyldeharcothiophene U 2.00 3 3MP 3-Methyldeharcothiophene U 2.00 3 3MP 2-Methylphanthracene U 2.00 4 2-Methylphanthracene U 2.00 2 3 MP 2-Methylphanthracene U 2.00 2 3 MP 2-Methylphanthracene U 2.00 2 4 15 C 24 Tricyclic Terpane U 2.00 12 7 6 C 25 Tricyclic Terpane U 2.00 12 <td></td> <td></td> <td></td> <td></td> <td></td>					
6 ND Indend11_2.3-cdjpyrene	5				
6 G Hd Bibera/jahipathracene/Dibera/ja-jahthracene U 2.00 3 CAR Carbazole U 2.00 3 4MDT 4-Mehyldibenzothiophene U 2.00 3 4MDT 22-Methyldibenzothiophene U 2.00 3 1MDT 22-Methyldibenzothiophene U 2.00 3 2MDT 3-Methyldibenzothiophene U 2.00 3 2MD 3-Methyldibenzothiophene U 2.00 3 2MD 3-Methyldibenzothiophene U 2.00 3 2MA 2-Methylainthracene U 2.00 3 1MP 1-Methylphenanthrene U 2.00 122 Tricyclic Terpane U 2.00 123 Tf C 223 Tricyclic Terpane U 2.00 124 T5 C 24 Tricyclic Terpane U 2.00 125 T6 C 25 Tricyclic Terpane U 2.00 126 T7 C 25 Tricyclic Terpane U 2.00 128 T7 C 28 Tricyclic Terpane 228 U 2.00 128 T7 C 28 Tricyclic Terpane 228 U 2.00 128 T8 T8 C 28 Tricyclic Terpane 228 U 2.00 128 T9 C 29 Tricyclic Terpane 228 U 2.00 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
6 HI Benzo[a, hi]penylene U 2.00 3 CAR Carbazole U 2.00 3 HMDT 4-Methyldibenzohiophene U 2.00 3 MM 2 1-Methyldibenzohiophene U 2.00 3 MM 3 3-Methyldibenzohiophene U 2.00 3 MM 2 2-Methylpheranthrene U 2.00 3 MM 3 3-Methylpheranthrene U 2.00 3 MM 4 2-Methylpheranthrene U 2.00 3 MM 5 1-Methylpheranthrene U 2.00 3 MM 6 1-Methylpheranthrene U 2.00 2 M 7 1 Methylpheranthrene U 2.00 2 M 7 1 Methylpheranthrene U 2.00 2 M 7 1 Methylpheranthrene U 2.00 2 M 7 1 C 2 Tricyclic Terpane U 2.00 1 M 7 1 C 2 Tricyclic Terpane U 2.00 1 E25 T 6 C 2 Tricyclic Terpane U 2.00 1 E28 T 76 C 2 Tricyclic Terpane U 2.00 1 E28 T 76 C 2 Tricyclic Terpane U 2.00 1 E28 T 76 C 2 Tricyclic Terpane U 2.00 1 E28 T 77 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
3					
3					
3 MD 7 -Methylicheranthrene U 2.00 3 MP 8 -Methylicheranthrene U 2.00 3 2MA 2MA 2-Methylicheranthrene U 2.00 3 MP 9 94-Methylicheranthrene U 2.00 3 1MP 1-Methylicheranthrene U 2.00 1 MP 1-Methylicheranthrene U 2.00 123 1MP 1-Methylicheranthrene U 2.00 124 1 TS 22 Tricyclic Terpane U 2.00 125 1 TS 22 Tricyclic Terpane U 2.00 126 1 TS 22 Tricyclic Terpane U 2.00 128 1 TS 22 Tricyclic Terpane U 2.00 128 1 TS 22 Tricyclic Terpane-22R U 2.00 128 1 TS 22 Tricyclic Terpane-22R U 2.00 128 1 TS 2 Tricyclic Terpane-22R U 2.00 128 1 TS 2 Tricyclic Terpane-22R U 2.00 128 1 Tricyclic Terpane-22R U 2.00 <td< td=""><td>3</td><td>4MDT</td><td>4-Methyldibenzothiophene</td><td>U</td><td>2.00</td></td<>	3	4MDT	4-Methyldibenzothiophene	U	2.00
3					
3 AMA 2-Methylphenanthrene U 2.00 3 BMP 94-Methylphenanthrene U 2.00 3 MMP 94-Methylphenanthrene U 2.00 123 T4 C23 Tircyclic Terpane U 2.00 124 T5 C24 Tircyclic Terpane U 2.00 125 T6 C25 Tircyclic Terpane U 2.00 128 T6 C25 Tircyclic Terpane U 2.00 128 T6 C25 Tircyclic Terpane-228 U 2.00 128 T6 C25 Tircyclic Terpane-228 U 2.00 128 T6 C25 Tircyclic Terpane-228 U 2.00 128 T7 C26 Tircyclic Terpane-228 U 2.00 128 T8 T6 C28 Tircyclic Terpane-228 U 2.00 128 T8 T6 C28 Tircyclic Terpane-228 U 2.00 128 T8 T1 C28 Tircyclic Terpane-228 U 2.00 128 T8 T1 C28 Tircyclic Terpane-228 U 2.00 139 T1 T1 C3 Tircyclic Terpane-228 U 2.00 130 T1 T1 C3 Tircyclic Terpane-228 U 2.00 130 T1 T1 C3 Tircyclic Terpane-228 U 2.00					
3 SMMP 24-Methylphenanthrene U 200 3 MMP 14-Methylphenanthrene U 200 123 T4 C23 Tricyciic Terpane U 200 124 T5 C24 Tricyciic Terpane U 200 125 T6 C25 Tricyciic Terpane U 200 1285 T6 C24 Tricyciic Terpane U 200 1285 T6 C25 Tricyciic Terpane U 200 1287 T7 C28 Tricyciic Terpane-22R U 200 1288 T7 C28 Tricyciic Terpane-22R U 200 1287 T8 C28 Tricyciic Terpane-22R U 200 1287 T8 C28 Tricyciic Terpane-22R U 200 1288 T10 C28 Tricyciic Terpane-22R U 200 1398 T11a C30 Tricyciic Terpane-22R U 200 1308 T11a C30 Tricyciic Terpane-22R U 200 1509 T14a					
3 SMP 94-Methylphenanthrene U 200 13 TMP 1-Methylphenanthrene U 200 123 T4 C23 Tricyclic Terpane U 200 125 T6 C25 Tricyclic Terpane U 200 125 T6 C25 Tricyclic Terpane U 200 1268 T6 C26 Tricyclic Terpane-22S U 200 1288 T7 C28 Tricyclic Terpane-22S U 200 1288 T8 C28 Tricyclic Terpane-22S U 200 1289 T9 C28 Tricyclic Terpane-22S U 200 1298 T1 C228 Tricyclic Terpane-22S U 200 1298 T1 C29 Tricyclic Terpane-22S U 200 1308 T11 18a-22_2,93-Trisnomeohopane-TS U 200 1308 T11 C30 Tricyclic Terpane-22S U 200 1308 T11 C30 Tricyclic Terpane-22S U 200 140 T19<					
3					
123					
124					
1624 T6a C24 Tertacyclic Terpane U 200 1288 T6b C26 Tricyclic Terpane-228 U 200 1288 T6c C26 Tricyclic Terpane-228 U 200 1288 T7 C28 Tricyclic Terpane-228 U 200 1288 T8 C28 Tricyclic Terpane-228 U 200 1298 T9 C29 Tricyclic Terpane-228 U 200 1298 T10 C29 Tricyclic Terpane-228 U 200 1308 T11 C30 Tricyclic Terpane-228 U 200 1308 T11a C30 Tricyclic Terpane-228 U 200 1308 T11b C30 Tricyclic Terpane-228 U 200 1308 T11b C30 Tricyclic Terpane-228 U 200				Ū	2.00
1268 T6b C26 Tircyclic Terpane-22R U 200 1288 T6 C26 Tircyclic Terpane-22R U 200 1288 T7 C28 Tircyclic Terpane-22R U 200 1298 T8 C28 Tircyclic Terpane-22R U 200 1298 T9 C29 Tircyclic Terpane-22B U 200 1308 T11 18a-22_9,30-Tisnomeohopane-TS U 200 1308 T111 C30 Tircyclic Terpane-22B U 200 1308 T111 C30 Tircyclic Terpane-22B U 200 1308 T111 C30 Tircyclic Terpane-22B U 200 1308 T114 17a(H)-12-19-30-7-18 (ap.30-18) U 200 1308 T114 17a(H)-12-19-29-30-Tisnomopane-TM U 200 1308 T144 17a(H)-12-19-29-30-Tisnomopane-22B U 200 142 T14 17a(H)-12-19-29-30-Tisnomopane-22B U 200 142 T14 17a(H)-12-19-19-29-30-Tisnomopane-22B U <td></td> <td></td> <td></td> <td>Ü</td> <td>2.00</td>				Ü	2.00
126R T6c C26 Tricyclic Terpane-22R U 200 128R T8 C28 Tricyclic Terpane-22S U 200 129R T8 C28 Tricyclic Terpane-22S U 200 129R T10 C29 Tricyclic Terpane-22S U 200 129R T10 C29 Tricyclic Terpane-22S U 200 130S T11a C30 Tricyclic Terpane-22R U 200 130S T11a C30 Tricyclic Terpane-22R U 200 Tm T12 17a(H)-22_9,30-Trisnorhopane-TM U 200 Tm T14 17a(H)-21,216(H)-25-Norhopane U 200 SN T14b 17a(H)-216(H)-25-Norhopane U 200 LP3 T15 30-Norhopane U 200 C23Ts T16 18a(H)-30-Normorbane-22BT U 200 M29 T17 30-Normoretane U 200 M21 T17 30-Normoretane U 200 M22 T17 30-Normoretane U 200 M30 T20 Moretane U 200 H31 T22	te24		C24 Tetracyclic Terpane	_	
1288 T7 C28 Tricyclic Terpane-22R U 200 1298 T8 C28 Tricyclic Terpane-22R U 200 1298 T9 C29 Tricyclic Terpane-22R U 200 Ts T11 18a-22-29-30-Trisomeohopane-TS U 200 1308 T114 C30 Tricyclic Terpane-22R U 200 1308 T114 C30 Tricyclic Terpane-22R U 200 1308 T114 C30 Tricyclic Terpane-22R U 200 1308 T14 C30 Tricyclic Terpane-22R U 200 1308 T14 C30 Tricyclic Terpane-22R U 200 1308 T14 C30 Tricyclic Terpane-22R U 200 BNH T14a 17a(h), 21b(h), 22,23-30-Bisnorhopane U 200 28N T14b 17a(h), 21b(h), 22h, 30-Bisnorhopane U 200 28N T16 180 Northopane U 200 29T T16 180 Northopane U 200 29T T17 30 Northopane U 200 M29 T17 30 Northopane U 200 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
128R T8 C28 Tricyclic Terpane-22R U 200 129R T10 C29 Tricyclic Terpane-22R U 200 128R T10 C29 Tricyclic Terpane-22R U 200 130R T11a C30 Tricyclic Terpane-22R U 200 130R T11b C30 Tricyclic Terpane-22R U 200 130R T11b C30 Tricyclic Terpane-22R U 200 17m T12 T174(H)-22-3,0-Trisnorhopane-TM U 200 BNH T14a 17a(H)-22-3,0-Trisnorhopane U 200 ESN T14b 17a(H)-12-19-28,0-Trisnorhopane U 200 E2N T14b 17a(H)-12-19-1-28,0-Trongane U 200 H29 T15 30-Normoretane U 200 K29T T16 18a(H)-3 Normoretane U 200 M29 T17 30-Normoretane U 200 M30 T20 Moretane U 200 H318					
129S T9 C29 Tricyclic Terpane-22S U 200 129R T10 C29 Tricyclic Terpane-22S U 200 130S T11 18a-22-29-30-Trisomeohopane-TS U 200 130R T11b C30 Tricyclic Terpane-22R U 200 130R T11b C30 Tricyclic Terpane-22R U 200 17m T12 17a(H)-22-29-30-Trisomothopane-TM U 200 BNH T14a 17a(H)-21b(H)-22-30-Bisnorthopane U 200 ESN T14b 17a(H)-21b(H)-22-30-Bisnorthopane U 200 ESN T14b 17a(H)-21b(H)-22-30-Bisnorthopane U 200 ESN T16 18a(H)-30-Normorebopane U 200 C29T T16 18a(H)-30-Normorebane U 200 M29 T17 30-Normoretane U 200 N X X 7(34(H)-Dishopane U 200 H31 T12 30-Homohopane-22S U 200					
129R T10 C29 Tricyclic Terpane-22R U 2.00 Ts T111 18a-222.93.93-Trisomenopane-TS U 2.00 130S T11a C30 Tricyclic Terpane-22S U 2.00 130R T11b C30 Tricyclic Terpane-22R U 2.00 Tm T12 T7a(H)-22,29.30-Trisomorpane-TM U 2.00 BNH T14a 17a(H),21b(H)-25-Norhopane U 2.00 SN T14b 17a(H),21b(H)-25-Norhopane U 2.00 H29 T15 30-Norhopane U 2.00 K X X 17a(H)-Diahopane U 2.00 M29 T17 30-Normoretane U 2.00 M20 T18 18a(H)818b(H)-Oleananes U 2.00 M30 T20 Moretane U 2.00 M31 T2 Moretane U 2.00 H318 T21 30-Homohopane-228 U 2.00 H328 T26					
TS T11 18a-22_93_0-Trisomoehopane-TS U					
130S					
130R					
Tm T12 174(H)-22.29,30-Tisnorhopane-TM U 2.00 BNH T14a 17ab, 21b/22,30-Bisnorhopane U 2.00 2SN T14b 17a(H),21b(H)-25-Norhopane U 2.00 L29 T15 30-Norhopane U 2.00 C29Ts T16 18a(H)-30-Normechopane-C29Ts U 2.00 M29 T17 30-Normectane U 2.00 M29 T17 30-Normectane U 2.00 M30 T19 Hopane U 2.00 M30 T20 Moretane U 2.00 H31R T21 30-Homohopane-22S U 2.00 H31R T22 30-Homohopane-22R U 2.00 H32R T26 30,31-Bishomohopane-22S U 2.00 H33S T36 30,31-Bishomohopane-22S U 2.00 H33R T32 T24 30,31-Bishomohopane-22R U 2.00 H33S T36 Pa					
25N T14b 174(H).21b(H).25-Norhopane U 2.00 C29Ts T16 18a(H)-30-Normeohopane-C29Ts U 2.00 X X X 17a(H)-Diatopane U 2.00 M29 T17 30-Normedane U 2.00 NL T18 18a(H)8.18b(H)-Oleananes U 2.00 M30 T19 Hopane U 2.00 M30 T20 Moretane U 2.00 H318 T21 30-Homohopane-22S U 2.00 H318 T22 30-Homohopane-22S U 2.00 H318 T22 30-Homohopane-22S U 2.00 H328 T26 30,31-Bishomohopane-22S U 2.00 H328 T26 30,31-Bishomohopane-22S U 2.00 H338 T30 30,31-Trishomohopane-22S U 2.00 H338 T30 30,31-Trishomohopane-22S U 2.00 H348 T32 Tetrakishom		T12		Ū	
H29	BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	U	2.00
C29TS T16 184(H)-30-Norneohopane-C29TS U 2.00 X X 174(H)-Diahopane U 2.00 M29 T17 30-Normoretane U 2.00 NB 118 184(H)&18k(H)-Oleannes U 2.00 M30 T19 Hopane U 2.00 M90 T20 Moretane U 2.00 H31R T21 30-Homohopane-22R U 2.00 H31R T22 30-Homohopane-22R U 2.00 H32S T26 30,31-Bishomohopane-22R U 2.00 H33S T26 30,31-Bishomohopane-22R U 2.00 H33S T30 30,31-Tishomohopane-22R U 2.00 H33S T30 30,31-Tishomohopane-22R U 2.00 H34S T32 Tetrakishomohopane-22R U 2.00 H34S T32 Tetrakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R	25N	T14b	17a(H),21b(H)-25-Norhopane	U	2.00
X X 174(H-Diahopane U 2.00 M29 177 30-Normoretane U 2.00 OL 718 18a(H)&18b(H)-Oleananes U 2.00 H30 719 Hopane U 2.00 M30 720 Moretane U 2.00 H31S 721 30-Homohopane-22S U 2.00 H31R 722 30-Homohopane-22B U 2.00 182X 726 722A 722A-Gammacerane/C32-diahopane U 2.00 182X 726 30,31-Bishomohopane-22S U 2.00 183X 736 30,31-Bishomohopane-22S U 2.00 183X 731 30,31-Trishomohopane-22S U 2.00 183X 731 30,31-Trishomohopane-22R U 2.00 183X 732 Tetrakishomohopane-22R U 2.00 183X 734 Pentakishomohopane-22R U 2.00 185X 734 Pentak					
M29					
OL T18 184(H)8.18b(H)-Oleananes U 2.00 M30 T20 Moretane U 2.00 H31S T21 Moretane U 2.00 H31R T22 30-Homohopane-22S U 2.00 H31R T22 30-Homohopane-22R U 2.00 H32S T26 30,31-Bishomohopane-22S U 2.00 H32R T27 30,31-Bishomohopane-22R U 2.00 H33R T30 30,31-Tishomohopane-22R U 2.00 H33R T31 30,31-Tishomohopane-22R U 2.00 H34R T33 30,31-Tishomohopane-22R U 2.00 H34R T33 Tetrakishomohopane-22R U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 27F S4 23b(H), T3(H)-					
H30					
M30				-	
H31S T21 30-Homohopane-22R U 2.00 H31R T22 30-Homohopane-22R U 2.00 T22A T22A T22A-Gammacerane/C32-diahopane U 2.00 H32S T26 30,31-Bishomohopane-22R U 2.00 H33R T30 30,31-Trishomohopane-22R U 2.00 H33R T31 30,31-Trishomohopane-22R U 2.00 H34S T32 Tetrakishomohopane-22R U 2.00 H34R T32 Tetrakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R U 2.00 d27S S4 13b(H),174(H)-20S-Diacholestane U 2.00 d27S S4 13b(H),174(H)-20S-Cholestane U 2.00 d28S S8 13b,(H),172(H)-20S-Cholestane U 2.00 <t< td=""><td></td><td></td><td></td><td>-</td><td></td></t<>				-	
H31R T22 30-Homohopane-22R U 2.00 T22A T22A T22a Glahopane U 2.00 H32S T26 30,31-Bishomohopane-22R U 2.00 H32R T27 30,31-Bishomohopane-22R U 2.00 H33R T30 30,31-Trishomohopane-22R U 2.00 H33R T31 30,31-Trishomohopane-22R U 2.00 H34R T32 Tetrakishomohopane-22R U 2.00 H35R T33 Tetrakishomohopane-22R U 2.00 H35R T34 Pentakishomohopane-22R U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 267S S4 336(H),17a(H)-20S-Diacholestane U 2.00 27R S5 13b(H),17a(H)-20S-Diacholestane U 2.00 28S S8 13b,17a-20S-Methyldiacholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) U 2.0					
H32S 726 30,31-Bishomohopane-22S U 2.00 H32R 727 30,31-Bishomohopane-22R U 2.00 H33S 730 30,31-Tirishomohopane-22S U 2.00 H33R 731 30,31-Tirishomohopane-22R U 2.00 H34R 732 Tetrakishomohopane-22S U 2.00 H35S 734 Tetrakishomohopane-22R U 2.00 H35S 734 Pentakishomohopane-22R U 2.00 H35R 735 Pentakishomohopane-22R U 2.00 H35R 735 Pentakishomohopane-22R U 2.00 227S S4 13b(H),17a(H)-20S-Diacholestane U 2.00 227R S5 13b(H),17a(H)-20S-Diacholestane U 2.00 227S S1 13b(H),17a(H)-20S-Diacholestane U 2.00 282FS S8 13b,17a-20S-Methyldiacholestane U 2.00 282FS S12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) U 2.00 292S S19 13a,17b-20S-Ethyldiacholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S17) U 2.00					
H32S T26 30,31-Bishomohopane-22R U 2.00 H32R T27 30,31-Bishomohopane-22R U 2.00 H33S T30 30,31-Trishomohopane-22R U 2.00 H34S T32 Tetrakishomohopane-22R U 2.00 H34R T32 Tetrakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 227S S4 336(H,172H)-20S-Diacholestane U 2.00 22RS S8 13b(H,174(H)-20S-Diacholestane U 2.00 28S S8 13b(H,174(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) U 2.00 aa2PR S17 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S17) U 2.00 d29S S19 13a,17b-	T22A	T22A	T22a-Gammacerane/C32-diahopane	Ü	2.00
H33S T30 30,31-Trishomohopane-22R U 2,00 H33R T31 30,31-Trishomohopane-22R U 2,00 H34R T32 Tetrakishomohopane-22R U 2,00 H34R T33 Tetrakishomohopane-22R U 2,00 H35R T34 Pentakishomohopane-22R U 2,00 H35R T35 Pentakishomohopane-22R U 2,00 427R S4 13b(H),17a(H)-20B-cholestane U 2,00 627R S5 13b(H),17a(H)-20B-cholestane U 2,00 628S S8 13b,17a-20S-Methyldiacholestane U 2,00 aa27R S12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S12) U 2,00 d29R S18 Unknown Sterane (S18) U 2,00 d29R S18 Unknown Sterane (S18) U 2,00 d29S S19 13a,17b-20S-Ethyldiacholestane U 2,00 aa28BR S20 14a,17a-20R-Methylcholestane	H32S	T26		U	2.00
H33R T31 30,31-Trishomohopane-22R U 2.00 H34R T32 Tetrakishomohopane-22R U 2.00 H34R T33 Tetrakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22R U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 627S S4 13b(H),17a(H)-20S-Diacholestane U 2.00 627S S5 13b(H),17a(H)-20S-Diacholestane U 2.00 628S S8 13b,(H),7a(H)-20S-Diacholestane U 2.00 828S S8 13b,(H),17a(H)-20S-Cholestane(13b(H),17a(H)-20S-Ethyldiacholestane U 2.00 829T S12 14a(H),17a(H)-20S-Cholestane(13b(H),17a(H)-20R-Ethyldiacholestane (S17) U 2.00 429R S18 Unknown Sterane (S18) U 2.00 429S S19 13a,17b-20S-Ethyldiacholestane U 2.00 429S S19 13a,17b-20S-Ethyldiacholestane U 2.00 428S S20			30,31-Bishomohopane-22R		
H34S T32 Tetrakishomohopane-22S U 2.00 H34R T33 Tetrakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22S U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 d27S S4 13b(H), T7a(H)-20S-Diacholestane U 2.00 d27R S5 13b(H), T7a(H)-20S-Diacholestane U 2.00 d28S S8 13b, 17a-20S-Methyldiacholestane U 2.00 aa27R S12 14a(H), 17a(H)-20S-Cholestane/13b(H), 17a(H)-20S-Ethyldiacholestane (S17) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29R S19 13a, 17b-20S-Ethyldiacholestane U 2.00 aa28R S20 14a, 17a-20S-Methylcholestane U 2.00 aa29R S25 14a(H), 17a(H)-20S-Ethylcholestane U 2.00 bb27R S28 14a(H), 17b(H)-2DS-Cholestane U 2.00 bb27R S28 14a(
H34R T33 Tetrakishomohopane-22R U 2.00 H35S T34 Pentakishomohopane-22S U 2.00 H35R T35 Pentakishomohopane-22R U 2.00 d27S S4 13b(H), 17a(H)-20S-Diacholestane U 2.00 d27S S5 13b(H), 17a(H)-20R-Diacholestane U 2.00 d28S S8 13b(H), 17a(H)-20R-Diacholestane U 2.00 aa27S S12 14a(H), 17a(H)-20S-Cholestane/13b(H), 17a(H)-20R-Ethyldiacholestane (S12) U 2.00 aa27R S17 14a(H), 17a(H)-20R-Cholestane/13b(H), 17a(H)-20R-Ethyldiacholestane (S17) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29S S19 13a, 17b-20S-Ethyldiacholestane U 2.00 aa28R S2 14a, 17a-20R-Methylcholestane U 2.00 aa29R <					
H3SS T34 Pentakishomohopane-22S U 2.00 H3SR T35 Pentakishomohopane-22R U 2.00 d27S S4 13b(H),17a(H)-20S-Diacholestane U 2.00 d27R S5 13b(H),17a(H)-20S-Diacholestane U 2.00 d28S S8 13b,17a-20S-Methyldiacholestane U 2.00 aa27R S12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S17) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29S S19 13a,17b-20S-Ethyldiacholestane U 2.00 a28S S20 14a,17a-20S-Ethyldicholestane U 2.00 aa28R S24 14a,17a-20S-Methylcholestane U 2.00 aa29S S25 14a(H),17f(H)-20S-Ethylcholestane U 2.00 bb27R S28 14a(H),17f(H)-20S-Ethylcholestane U 2.00 bb27R S15 14b(H),17b(H)-20S-Cholestane U 2.00 bb27S S15					
H35R 735 Pentakishomohopane-22R U 2.00 d27S \$4 13b(H),17a(H)-20S-Diacholestane U 2.00 d27R \$5 13b(H),17a(H)-20R-Diacholestane U 2.00 d28S \$8 13b,17a-20S-Methydiacholestane U 2.00 aa27R \$17 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) U 2.00 d29R \$18 Unknown Sterane (\$18) U 2.00 d29S \$19 13a,17a-20S-Methylcholestane U 2.00 d29S \$19 13a,17a-20S-Methylcholestane U 2.00 aa28R \$20 14a,17a-20S-Methylcholestane U 2.00 aa28R \$21 14a,17a-20S-Methylcholestane U 2.00 aa29R \$28 14a(H),17a(H)-20R-Ethylcholestane U 2.00 bb27R \$14 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb27R \$15 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb28R \$23 <td></td> <td></td> <td></td> <td></td> <td></td>					
d27S S4 13b(H),17a(H)-20S-Diacholestane U 2.00 d27R S5 13b(H),17a(H)-20R-Diacholestane U 2.00 d28S S8 13b,17a-20S-Methyldiacholestane U 2.00 aa27S S12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29S S19 13a,17b-20S-Ethyldiacholestane U 2.00 aa28S S20 14a,17a-20S-Methylcholestane U 2.00 aa28S S20 14a,17a-20S-Methylcholestane U 2.00 aa29S S25 14a(H),17a(H)-20S-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Cholestane U 2.00 bb27S S15 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R S22 14b(H),17b(H)-20S-Cholestane U 2.00 bb28S S					
d27R \$5 13b(H),17a(H)-20R-Diacholestane U 2.00 d28S \$8 13b,17a-20S-Methyldiacholestane U 2.00 aa27R \$12 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (\$17) U 2.00 aa27R \$17 14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (\$17) U 2.00 d29R \$18 Unknown Sterane (\$18) U 2.00 d29S \$19 13a,17b-20S-Ethyldiacholestane U 2.00 aa28R \$20 14a,17a-20S-Methylcholestane U 2.00 aa28R \$24 14a,17a-20S-Methylcholestane U 2.00 aa29R \$25 14a(H),17a(H)-20R-Ethylcholestane U 2.00 aa29R \$28 14a(H),17a(H)-20R-Ethylcholestane U 2.00 bb27R \$14 14b(H),17b(H)-20R-Cholestane U 2.00 bb27R \$15 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R \$22 14b(H),17b(H)-20R-Ethylcholestane U 2.00 <td></td> <td></td> <td></td> <td></td> <td></td>					
d28S S8 13b,17a-20S-Methyldiacholestane U 2.00 aa27R 512 14a(H),17a(H)-20S-Cholestaner(13b(H),17a(H)-20R-Ethyldiacholestane (S17) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29S S19 13a,17b-20S-Ethyldiacholestane U 2.00 aa28S S20 14a,17a-20S-Ethyldiocholestane U 2.00 aa28S S24 14a,17a-20S-Methylcholestane U 2.00 aa29S S25 14a(H),17a(H)-20S-Ethylcholestane U 2.00 aa29R S28 14a(H),17b(H)-20R-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Cholestane U 2.00 bb27S S15 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R S22 14b(H),17b(H)-20S-Cholestane U 2.00 bb28B S23 14b(H),17b(H)-20S-Cholestane U 2.00 bb28S S23 14b(H),17b(H)-20S-Cholestane U 2.00 bb28S					
aa27S 512 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) U 2.00 aa27R S17 14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) U 2.00 d29R S18 Unknown Sterane (S18) U 2.00 d29S S19 13a,17b-20S-Ethyldiacholestane U 2.00 aa28R S20 14a,17a-20S-Methylcholestane U 2.00 aa28R S24 14a,(H)-20S-Ethylcholestane U 2.00 aa29R S25 14a(H),17a(H)-20S-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R S22 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb28R S23 14b,17b-20S-Ethylcholestane U 2.00 bb28R S23 14b,17b-20S-Ethylcholestane U 2.00 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 <td></td> <td></td> <td></td> <td></td> <td></td>					
aa27R 517 144(H),178(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) U 2.00 d29R 518 Unknown Sterane (S18) U 2.00 d29S 519 13a,17b-20S-Ethyldiacholestane U 2.00 aa28R S20 14a,17a-20R-Methylcholestane U 2.00 aa29R S24 14a,17a-20R-Methylcholestane U 2.00 aa29R S25 14a(H),176(H)-20S-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Cholestane U 2.00 bb27R S15 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R S22 14b,17b-20S-Shethylcholestane U 2.00 bb28R S23 14b,17b-20S-Methylcholestane U 2.00 bb28R S23 14b,17b-20S-Methylcholestane U 2.00 bb28S S23 14b,17b-20S-Ethylcholestane U 2.00 bb28S S23 14b(H),17b(H)-20S-Ethylcholestane U 2.00 bb28S S27<					
d29S 519 13a,17b-20S-Ethyldiacholestane U 2.00 aa28R 520 14a,17a-20R-Methylcholestane U 2.00 aa28R S24 14a,17a-20R-Methylcholestane U 2.00 aa29R S25 14a(H),17g(H)-20S-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb27R S15 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R S22 14b,17b-20R-Methylcholestane U 2.00 bb28R S22 14b,17b-20S-Methylcholestane U 2.00 bb28R S23 14b,17b-20S-Methylcholestane U 2.00 bb28R S26 14b,17b-CH-20R-Ethylcholestane U 2.00 bb28R S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb28S S27 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bc28A S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bc28A S27 C26,0R-+c27,20S-triaromatic steroid U 2.00 SC28TA S28A C28,0R-+c27,20S-triaromatic steroid U 2.00 <td>aa27R</td> <td>S17</td> <td></td> <td>U</td> <td>2.00</td>	aa27R	S17		U	2.00
aa28S \$20 14a,17a-20F-Methylcholestane U 2.00 aa28R \$24 14a,17a-20F-Methylcholestane U 2.00 aa29S \$25 14a(H),17a(H)-20F-Ethylcholestane U 2.00 bb27R \$14 14b(H),17b(H)-20F-Cholestane U 2.00 bb27S \$15 14b(H),17b(H)-20F-Cholestane U 2.00 bb28R \$22 14b,17b-20F-Methylcholestane U 2.00 bb28S \$23 14b,17b-20F-Methylcholestane U 2.00 bb28R \$26 14b(H),17b(H)-20F-Ethylcholestane U 2.00 bb28R \$26 14b(H),17b(H)-20F-Ethylcholestane U 2.00 bb28S \$26 14b(H),17b(H)-20F-Ethylcholestane U 2.00 bb28S \$26 14b(H),17b(H)-20F-Ethylcholestane U 2.00 bb28S \$26 12b(H),17b(H)-20F-Ethylcholestane U 2.00 bb28S \$26 12b(H),17b(H)-20F-Ethylcholestane U 2.00 5C28TA \$C28,20R-Liram	d29R		Unknown Sterane (S18)		
aa28R S24 14a,17a-20R-Methylcholestane U 2.00 aa29R S25 14a,(H),17a,(H)-20S-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Cholestane U 2.00 bb27R S15 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R S22 14b,17b-20R-Methylcholestane U 2.00 bb28R S23 14b,17b-20S-Methylcholestane U 2.00 bb28R S26 14b,17b-20S-Ethylcholestane U 2.00 bb28R S27 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb28S S27 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bc28F S27 14b(H),17b(H)-20R-Ethylcholestane U 2.00 RC2FXA C26,20R-+c27,20S-triaromatic steroid U 2.00 RC2FXA C26,20R-+c27,20S-triaromatic steroid U 2.00 RC2FXA C26,20R-triaromatic steroid U 2.00					
aa29S S25 144(H),176(H)-20S-Ethylcholestane U 2.00 bb27R S28 144(H),176(H)-20R-Ethylcholestane U 2.00 bb27R S14 14b(H),17b(H)-20R-Cholestane U 2.00 bb28R S22 14b(H),17b(H)-20S-Cholestane U 2.00 bb28R S23 14b,17b-20S-Methylcholestane U 2.00 bb28R S26 14b(H),17b(H)-20S-Ethylcholestane U 2.00 bb28R S26 14b(H),17b(H)-20S-Ethylcholestane U 2.00 bb28S S26 14b(H),17b(H)-20S-Ethylcholestane U 2.00 bb28S C26 C26,20R-40C,272,0S-trianomatic steroid U 2.00 SC28TA SC28TA C26,20R-40C,272,0S-trianomatic steroid U 2.00 SC28TA RC27TA C27,20R-trianomatic steroid U 2.00					
aa28R 528 14.4[H], 17.4[H]-20R-Ethylcholestane U 2.00 bb27R S14 14b(H), 17b(H)-20R-Cholestane U 2.00 bb28R S15 14b(H), 17b(H)-20S-Cholestane U 2.00 bb28R S22 14b, 17b-20R-Methylcholestane U 2.00 bb28R S23 14b, 17b-20S-Methylcholestane U 2.00 bb29R S26 14b(H), 17b(H)-20R-Ethylcholestane U 2.00 bb29S S27 14b(H), 17b(H)-20R-Ethylcholestane U 2.00 RC26/SC27TA RC26/SC27TA C26, 20R-+C27,20S- triaromatic steroid U 2.00 SC28TA SC28TA C28, 20S-triaromatic steroid U 2.00 RC27TA RC27TA C27, 20R-triaromatic steroid U 2.00					
bb27R 514 14b(H),17b(H)-20R-Cholestane U 2.00 bb27S 515 14b(H),17b(H)-20S-Cholestane U 2.00 bb28R 522 14b,17b-20R-Methylcholestane U 2.00 bb28R S23 14b,17b-20R-Methylcholestane U 2.00 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 RC26/SC27TA RC26/SC27TA C26,20R-4c27,20S-trianomatic steroid U 2.00 SC28TA SC28TA C28,20R-trianomatic steroid U 2.00 RC27TA RC27TA C27,20R-trianomatic steroid U 2.00					
bb27S 515 14b(H),17b(H)-20S-Cholestane U 2.00 bb28R 522 14b,17b-20R-Methylcholestane U 2.00 bb28S S23 14b,17b-20R-Methylcholestane U 2.00 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb29S S27 14b(H),17b(H)-20R-Ethylcholestane U 2.00 RC26SC27TA RC26S/C27TA C26_20R-+C27,20S- triaromatic steroid U 2.00 RC27TA RC3 C28_20S-triaromatic steroid U 2.00 RC27TA RC3 C27_20R-triaromatic steroid U 2.00					
bb28R S22 14b,17b-20R-Methylcholestane U 2.00 bb28S S23 14b,17b-20R-Methylcholestane U 2.00 bb29R S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb29S S27 14b(H),17b(H)-20R-Ethylcholestane U 2.00 RC26/SC27TA RC26/SC27TA C26,20R-4c27,20S-trianomatic steroid U 2.00 SC28TA SC28TA C28,20R-trianomatic steroid U 2.00 RC27TA RC27TA C27,20R-trianomatic steroid U 2.00					
bb28S S23 14b,17b-20S-Methylcholestane U 2.00 bb28R S26 14b(H),17b(H)-20R-Ethylcholestane U 2.00 bb29S S27 14b(H),17b(H)-20R-Ethylcholestane U 2.00 RC26/SC27TA C62,60R-+C27,20S- triaromatic steroid U 2.00 SC28TA C528TA C28,20S-triaromatic steroid U 2.00 RC27TA RC27TA C77,20R-triaromatic steroid U 2.00					
bb28R S26 14b(H), 17b(H)-20R-Ethylcholestane U 2.00 bb29S S27 14b(H), 17b(H)-20R-Ethylcholestane U 2.00 RC28/SC27TA RC26/SC27TA C26, 20R-+027, 20S- triaromatic steroid U 2.00 SC28TA SC28TA C28, 20R-+027, 20S- triaromatic steroid U 2.00 RC27TA RC27TA C27, 20R-triaromatic steroid U 2.00					
bb29S S27 14b(H),17b(H)-20S-Ethylcholestane U 2.00 RC26/SC27TA RC26/SC27TA C26,20R-4C27,20S- triaromatic steroid U 2.00 SC28TA SC28TA C28,20S-triaromatic steroid U 2.00 RC27TA RC27TA C27,20R-triaromatic steroid U 2.00					
RC28/SC27TA RC26/SC27TA C26_20R-+C27_20S- triaromatic steroid U 2.00 SC28TA SC28TA C28_20S-triaromatic steroid U 2.00 RC27TA RC27TA C27_20R-triaromatic steroid U 2.00					
SC28TA SC28TA C28,20S-triaromatic steroid U 2.00 RC27TA RC27TA C27,20R-triaromatic steroid U 2.00		RC26/SC27TA		Ü	
	SC28TA	SC28TA			2.00
RC28TA RC28TA C28,20R-triaromatic steroid U 2.00					
	RC28TA	RC28TA	C28,20R-triaromatic steroid	U	2.00

 Surrogates (% Recovery)
 10°

 Naphthalene-d8
 10°

 Phenanthrene-d10
 10°

 Benzo(alpyrene-d12
 10°

 5B(H)Cholane
 10°

Client ID	Laboratory Control Sample
Lab ID	SO120216LCS02
Matrix	Product
Reference Method	Modified 8270D
Batch ID	SO120216B02
Date Collected	N/A
Date Received	N/A
Date Prepped	12/02/2016
Date Analyzed	12/05/2016
Sample Size (wet)	0.1
% Solid	100.00
File ID	F312051607.D
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	2.00

Class	Abbrev	Analytes	Result		SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
2	N0	Naphthalene	200	S	2.00	100	0.200	50	130
3	AY	Acenaphthylene	203	S	2.00	101	0.200	50	130
3	AE	Acenaphthene	211	S	2.00	106	0.200	50	130
3	F0	Fluorene	210	S	2.00	105	0.200	50	130
3	A0	Anthracene	217	S	2.00	109	0.200	50	130
3	P0	Phenanthrene	208	S	2.00	104	0.200	50	130
4	FL0	Fluoranthene	168	S	2.00	84	0.200	50	130
4	PY0	Pyrene	169	S	2.00	84	0.200	50	130
4	BA0	Benz[a]anthracene	189	S	2.00	95	0.200	50	130
4	C0	Chrysene/Triphenylene	193	S	2.00	96	0.200	50	130
5	BBF	Benzo[b]fluoranthene	203	S	2.00	102	0.200	50	130
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	221	S	2.00	111	0.200	50	130
5	BAP	Benzo[a]pyrene	228	S	2.00	114	0.200	50	130
6	IND	Indeno[1,2,3-cd]pyrene	191	S	2.00	96	0.200	50	130
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	218	S	2.00	109	0.200	50	130
6	GHI	Benzo[g,h,i]perylene	205	S	2.00	102	0.200	50	130

Surrogates (% Recovery)	
Naphthalene-d8	102
Phenanthrene-d10	101
Benzo[a]pyrene-d12	110
5B(H)Cholane	101

Page C20 February 2017

Client ID	Laboratory Control Sample Dup
Lab ID	SO120216LCSD02
Matrix	Product
Reference Method	Modified 8270D
Batch ID	SO120216B02
Date Collected	N/A
Date Received	N/A
Date Prepped	12/02/2016
Date Analyzed	12/05/2016
Sample Size (wet)	0.1
% Solid	100.00
File ID	F312051608.D
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	2.00

Class	Abbrev	Analytes	Result	s	SRL	% Rec	Spike Conc.	Lower Limit	Upper Limit	RPD	RPD Limit
2	N0	Naphthalene	212	S 2	2.00	106	0.200	50	130	6	30
3	AY	Acenaphthylene	219	S 2	2.00	109	0.200	50	130	8	30
3	AE	Acenaphthene	224	S 2	2.00	112	0.200	50	130	6	30
3	F0	Fluorene	222	S 2	2.00	111	0.200	50	130	6	30
3	A0	Anthracene	232	S 2	2.00	116	0.200	50	130	7	30
3	P0	Phenanthrene	222	S 2	2.00	111	0.200	50	130	7	30
4	FL0	Fluoranthene	179	S 2	2.00	89	0.200	50	130	6	30
4	PY0	Pyrene	180	S 2	2.00	90	0.200	50	130	6	30
4	BA0	Benz[a]anthracene	205	S 2	2.00	103	0.200	50	130	8	30
4	C0	Chrysene/Triphenylene	211	S 2	2.00	105	0.200	50	130	9	30
5	BBF	Benzo[b]fluoranthene	222	S 2	2.00	111	0.200	50	130	9	30
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	242	S 2	2.00	121	0.200	50	130	9	30
5	BAP	Benzo[a]pyrene	248	S 2	2.00	124	0.200	50	130	9	30
6	IND	Indeno[1,2,3-cd]pyrene	222	S 2	2.00	111	0.200	50	130	15	30
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	238	S 2	2.00	119	0.200	50	130	9	30
6	GHI	Benzo[g,h,i]perylene	224	S 2	2.00	112	0.200	50	130	9	30

Surrogates (% Recovery)	
Naphthalene-d8	100
Phenanthrene-d10	99
Benzo[a]pyrene-d12	109
5B(H)Cholane	99

Page C21 February 2017

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 950 0097 000

Client ID	CUTTING OIL	CUTTING OIL
Lab ID	1611009-01	1611009-01D
Matrix	Product	Product
Reference Method	Modified 8270D	Modified 8270D
Batch ID	SO120216B02	SO120216B02
Date Collected	11/22/2016	11/22/2016
Date Received	11/23/2016	11/23/2016
Date Prepped	12/02/2016	12/02/2016
Date Analyzed	12/06/2016	12/06/2016
Sample Size (wet)	0.104	0.1022
% Solid	100.00	100.00
File ID	F312051609.D	F312051610.D
Units	mg/Kg	mg/Kg
Final Volume	20	20
Dilution	1	1
Reporting Limit	1.92	1.96

		Reporting Limit	1.92	1.96				
Class	Abbrev	Analytes	Result SS	RL Result	SSRL	RPD R	PD Limi	t
2	D0	cis/trans-Decalin	53.9 1.	92 56.1	1.96	4	30	
2	D1	C1-Decalins	109 1.	92 119	1.96	9	30	
2	D2	C2-Decalins	277 1.	92 309	1.96	11	30	
2	D3	C3-Decalins	270 1.	92 313	1.96	15	30	
2	D4	C4-Decalins	527 1.	92 582	1.96	10	30	
2	BT0	Benzothiophene	0.619 J 1.	92 0.784	1.96	24	30	
2	BT1	C1-Benzo(b)thiophenes	7.88 1.	92 7.93	1.96	1	30	
2	BT2	C2-Benzo(b)thiophenes	10.3 1.	92 10.1	1.96	1	30	
2	BT3	C3-Benzo(b)thiophenes	U 1.	92 l	J 1.96		30	N/A
2	BT4	C4-Benzo(b)thiophenes	U 1.	92 l	J 1.96		30	N/A
2	N0	Naphthalene	3.03 1.	92 3.05	1.96	1	30	
2	N1	C1-Naphthalenes	9.13 1.	92 9.37	1.96	3	30	
2	N2	C2-Naphthalenes	30.5 1.	92 30.6	1.96	0	30	
2	N3	C3-Naphthalenes	51.9 1.	92 52.1	1.96	0	30	
2	N4	C4-Naphthalenes	104 1.		1.96	4	30	
2	В	Biphenyl		92 45.7	1.96	1	30	
3	DF	Dibenzofuran	4.44 1.		1.96	1	30	
3	AY	Acenaphthylene	4.35 G 1.			1	30	
3	AE	Acenaphthene	6.97 G 1.			o o	30	
3	F0	Fluorene		92 8.09	1.96	5	30	
3	F1	C1-Fluorenes		92 45.8	1.96	12	30	
3	F2	C2-Fluorenes		92 186	1.96	4	30	
3	F3	C3-Fluorenes	232 1.		1.96	5	30	
3	A0	Anthracene	232 1. U 1.		J 1.96	3	30	N/A
3	P0	Phenanthrene		92 4.00	1.96	10	30	IN/A
3	PA1	C1-Phenanthrenes/Anthracenes		92 30.5	1.96	13	30	
3	PA2	C2-Phenanthrenes/Anthracenes	53.7 1.		1.96	3	30	
3	PA3	C3-Phenanthrenes/Anthracenes		92 52.3 92 50.6	1.96	3	30	
3	PA4	C4-Phenanthrenes/Anthracenes	35.0 1.		1.96	9	30	
3	RET	Retene	35.0 I. U 1.		J 1.96	9	30	N/A
3	DBT0	Dibenzothiophene	1.77 J 1.			6	30	IN/A
3	DBT0 DBT1	C1-Dibenzothiophenes	26.6 1.		1.96	2	30	
3	DBT2	C2-Dibenzothiophenes		92 27.1	1.96	3	30	
3	DBT3			92 62.2 92 63.8	1.96	1		
	DBT4	C3-Dibenzothiophenes					30	
3	BF	C4-Dibenzothiophenes	49.1 1. U 1.	92 49.0	1.96 J 1.96	0	30 30	NI/A
4	FL0	Benzo(b)fluorene Fluoranthene	0.393 J 1.			21	30	N/A
	PY0						30	
4	FP1	Pyrene			1.96	3		
4		C1-Fluoranthenes/Pyrenes		92 8.40	1.96	5	30	
4	FP2	C2-Fluoranthenes/Pyrenes		92 20.6	1.96	1	30	
4	FP3	C3-Fluoranthenes/Pyrenes	16.7 G 1.			2	30	
4	FP4	C4-Fluoranthenes/Pyrenes	18.4 G 1.			11	30	
4	NBT0	Naphthobenzothiophenes	U 1.		J 1.96		30	N/A
4	NBT1	C1-Naphthobenzothiophenes	10.4 G 1.			4	30	
4	NBT2	C2-Naphthobenzothiophenes	U 1.		J 1.96		30	N/A
4	NBT3	C3-Naphthobenzothiophenes	U 1.		J 1.96		30	N/A
4	NBT4	C4-Naphthobenzothiophenes	U 1.		J 1.96		30	N/A
4	BA0	Benz[a]anthracene	U 1.		J 1.96		30	N/A
4	C0	Chrysene/Triphenylene	U 1.		J 1.96		30	N/A
4	BC1	C1-Chrysenes	18.2 G 1.			7	30	
4	BC2	C2-Chrysenes	U 1.		J 1.96		30	N/A
4	BC3	C3-Chrysenes	U 1.		J 1.96		30	N/A
4	BC4	C4-Chrysenes	U 1.	92 l	J 1.96		30	N/A

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Project Number: 850.0087.000

Client ID	CUTTING OIL	CUTTING OIL
Lab ID	1611009-01	1611009-01D
Matrix	Product	Product
Reference Method	Modified 8270D	Modified 8270D
Batch ID	SO120216B02	SO120216B02
Date Collected	11/22/2016	11/22/2016
Date Received	11/23/2016	11/23/2016
Date Prepped	12/02/2016	12/02/2016
Date Analyzed	12/06/2016	12/06/2016
Sample Size (wet)	0.104	0.1022
% Solid	100.00	100.00
File ID	F312051609.D	F312051610.D
Units	mg/Kg	mg/Kg
Final Volume	20	20
Dilution	1	1
Reporting Limit	1.92	1.96

Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	RPD	RPD Lim	it
5	BBF	Benzo[b]fluoranthene		J 1.92	U			30	N/A
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene		J 1.92	U			30	N/A
5	BAF	Benzo[a]fluoranthene		J 1.92 J 1.92	U			30	N/A
5 5	BEP BAP	Benzo[e]pyrene		J 1.92 J 1.92	U			30 30	N/A N/A
5	PER	Benzo[a]pyrene Perylene	i		U			30	N/A
6	IND	Indeno[1,2,3-cd]pyrene	i		ŭ			30	N/A
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	ı	J 1.92	Ü	1.96		30	N/A
6	GHI	Benzo[g,h,i]perylene	0.527		0.489 J		7	30	
3	CAR	Carbazole	1.37		1.35 J	1.96	2	30	
3	4MDT	4-Methyldibenzothiophene	8.79	1.92	8.60	1.96	2	30	
3	2MDT	2/3-Methyldibenzothiophene	8.85	1.92	9.33	1.96	5	30	
3	1MDT 3MP	1-Methyldibenzothiophene 3-Methylphenanthrene	1.81 6.52	J 1.92 1.92	1.86 J 5.38	1.96 1.96	3 19	30 30	
3	2MP	2-Methylphenanthrene	6.29	1.92	5.94	1.96	6	30	
3	2MA	2-Methylanthracene	1.54		1.08 J	1.96	35	30	п
3	9MP	9/4-Methylphenanthrene	6.99	1.92	7.13	1.96	2	30	
3	1MP	1-Methylphenanthrene	3.69	1.92	3.80	1.96	3	30	
t23	T4	C23 Tricyclic Terpane	46.9	1.92	43.7	1.96	7	30	
t24	T5	C24 Tricyclic Terpane	19.4	1.92	19.1	1.96	2	30	
t25	T6	C25 Tricyclic Terpane	21.4	1.92	20.4	1.96	5	30	
te24 t26S	T6a T6b	C24 Tetracyclic Terpane C26 Tricyclic Terpane-22S	21.3 7.48	1.92	20.0 8.75	1.96 1.96	6 16	30 30	
t26R	T6c	C26 Tricyclic Terpane-22S C26 Tricyclic Terpane-22R	6.70	1.92	8.03	1.96	18	30	
t28S	T7	C28 Tricyclic Terpane-22S	17.3	1.92	15.2	1.96	13	30	
t28R	T8	C28 Tricyclic Terpane-22R	22.4	1.92	23.0	1.96	2	30	
t29S	T9	C29 Tricyclic Terpane-22S	7.37	1.92	8.78	1.96	17	30	
t29R	T10	C29 Tricyclic Terpane-22R	12.8	1.92	11.1	1.96	14	30	
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	24.3	1.92	23.9	1.96	2	30	
t30S	T11a	C30 Tricyclic Terpane-22S	6.87	1.92	8.92	1.96	26	30	
t30R	T11b	C30 Tricyclic Terpane-22R	6.75	1.92	7.55	1.96	11	30	
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	18.6	1.92	19.9	1.96	7	30	
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	1.00		U			30	N/A
25N H29	T14b T15	17a(H),21b(H)-25-Norhopane	4.96 70.8	1.92 1.92	5.15 71.4	1.96 1.96	4	30 30	
C29Ts	T16	30-Norhopane 18a(H)-30-Norneohopane-C29Ts	13.8	1.92	16.0	1.96	14	30	
X	X	17a(H)-Diahopane	3.83	1.92	4.36	1.96	13	30	
M29	T17	30-Normoretane	6.68	1.92	6.21	1.96	7	30	
OL	T18	18a(H)&18b(H)-Oleananes		J 1.92	U		-	30	N/A
H30	T19	Hopane	68.9	1.92	69.1	1.96	0	30	
M30	T20	Moretane	5.80	1.92	6.44	1.96	10	30	
H31S	T21	30-Homohopane-22S	27.6	1.92	27.9	1.96	1	30	
H31R	T22	30-Homohopane-22R	24.2	1.92	24.5	1.96	1	30	
T22A	T22A	T22a-Gammacerane/C32-diahopane	7.22	1.92	6.42	1.96	12	30	
H32S	T26	30,31-Bishomohopane-22S	15.4	1.92	14.6	1.96	5	30 30	
H32R H33S	T27 T30	30,31-Bishomohopane-22R 30,31-Trishomohopane-22S	10.1 9.10	1.92 1.92	10.8 9.20	1.96 1.96	7 1	30	
H33R	T31	30,31-Trishomohopane-22R	5.81	1.92	5.64	1.96	3	30	
H34S	T32	Tetrakishomohopane-22S	4.76	1.92	5.04	1.96	6	30	
H34R	T33	Tetrakishomohopane-22R	2.87	1.92	3.70	1.96	25	30	
H35S	T34	Pentakishomohopane-22S	3.28	1.92	4.08	1.96	22	30	
H35R	T35	Pentakishomohopane-22R	3.69	1.92	3.13	1.96	16	30	
d27S	S4	13b(H),17a(H)-20S-Diacholestane	22.5	1.92	20.8	1.96	8	30	
d27R	S5	13b(H),17a(H)-20R-Diacholestane	16.1	1.92	17.4	1.96	8	30	
d28S	S8 S12	13b,17a-20S-Methyldiacholestane 14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	22.4	1.92 1.92	20.1	1.96	11	30 30	
aa27S aa27R	S12 S17	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) 14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	32.1 33.2	1.92	31.6 31.2	1.96 1.96	1 6	30	
d29R	S18	Unknown Sterane (S18)	7.65	1.92	7.71	1.96	1	30	
d29S	S19	13a,17b-20S-Ethyldiacholestane	2.66	1.92	2.28	1.96	16	30	
aa28S	S20	14a,17a-20S-Methylcholestane	14.4	1.92	14.2	1.96	2	30	
aa28R	S24	14a,17a-20R-Methylcholestane	7.66	1.92	7.69	1.96	0	30	
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	12.0	1.92	10.8	1.96	10	30	
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	11.6	1.92	12.1	1.96	4	30	
bb27R	S14	14b(H),17b(H)-20R-Cholestane	21.6	1.92	20.8	1.96	3	30	
bb27S	S15	14b(H),17b(H)-20S-Cholestane	22.8	1.92	22.5	1.96	1	30	
bb28R	S22	14b,17b-20R-Methylcholestane	16.3	1.92	12.7	1.96	25	30	
bb28S	S23	14b,17b-20S-Methylcholestane	17.2	1.92	17.0	1.96	1	30	
bb29R bb29S	S26 S27	14b(H),17b(H)-20R-Ethylcholestane 14b(H),17b(H)-20S-Ethylcholestane	23.4 15.8	1.92 1.92	24.6 15.3	1.96 1.96	5 3	30 30	
RC26/SC27TA			5.17	1.92	6.02	1.96	15	30	
SC28TA	SC28TA	C28,20S-triaromatic steroid	6.66	1.92	5.96	1.96	11	30	
RC27TA	RC27TA	C27,20R-triaromatic steroid	4.64	1.92	4.41	1.96	5	30	
RC28TA	RC28TA	C28,20R-triaromatic steroid		J 1.92	U		-	30	N/A

 Surrogates (% Recovery)
 107
 113

 Naphthalene-d8
 107
 113

 Phenanthrene-d10
 60
 58

 Benzo(alpyrene-d12
 115
 117

 5B(H)Cholane
 101
 103

Project Number: 85
Client ID
Lab ID
Matrix
Reference Method
Batch ID
Date Collected
Date Received
Date Received
Date Propped
Date Analyzed
Sample Size (wet)
% Solid
Units
Final Volume
Dilution
Reporting Limit Alaska North Slope Crude SS112816ANC01 Oil Modified 8270D N/A N/A N/A 11/10/2016 0.0502 100.00 F311091613,0 11 11 1,99

Class	Abbrev	Analytes	Result	SSRL		Spike Conc.		
2	D0	cis/trans-Decalin	574	1.99	120	479.20	65	135
2	D1	C1-Decalins	905	1.99	124	728.90	65	135
2	D2	C2-Decalins	760	1.99	120	635.50	65	135
2	D3	C3-Decalins	412	1.99	125	329.80	65	135
2	D4	C4-Decalins	397	1.99	122	326.50	65	135
2	BT0	Benzothiophene	5.29	1.99	98	5.40	65	135
2	BT1	C1-Benzo(b)thiophenes	28.6	1.99	99	28.90	65	135
2	BT2	C2-Benzo(b)thiophenes	45.8	1.99	92	49.60	65	135
2	BT3	C3-Benzo(b)thiophenes	86.8	1.99	88	99.00	65	135
2	BT4	C4-Benzo(b)thiophenes	74.4	1.99	85	87.10	65	135
2	N0	Naphthalene	589	1.99	106	555.80	65	135
2	N1	C1-Naphthalenes	1200	1.99	103	1167.30	65	135
2	N2	C2-Naphthalenes	1370	1.99	97	1409.70	65	135
2	N3	C3-Naphthalenes	961	1.99	93	1035.90	65	135
2	N4	C4-Naphthalenes	542	1.99	97	561.10	65	135
2	В	Biphenyl	152	1.99	105	145.70	65	135
3	DF	Dibenzofuran	47.6	1.99	93	51.20	65	135
3	AY	Acenaphthylene	7.61	1.99	117	6.50	65	135
3	AE	Acenaphthene	14.3	1.99	76	18.70	65	135
3	F0	Fluorene	62.0	1.99	83	74.60	65	135
3	F1	C1-Fluorenes	143	1.99	84	170.20	65	135
3	F2	C2-Fluorenes	224	1.99	88	255.40	65	135
3	F3	C3-Fluorenes	211	1.99	88	238.50	65	135
3	A0	Anthracene	U					
3	P0	Phenanthrene	164	1.99	77	212.20	65	135
3	PA1	C1-Phenanthrenes/Anthracenes	315	1.99	73	432.70	65	135
3	PA2	C2-Phenanthrenes/Anthracenes	406	1.99	87	465.90	65	135
3	PA3	C3-Phenanthrenes/Anthracenes	292	1.99	92	317.40	65	135
3	PA4	C4-Phenanthrenes/Anthracenes	125	1.99	97	129.00	65	135
3	RET	Retene	U					
3	DBT0	Dibenzothiophene	121	1.99	87	138.90	65	135
3	DBT1	C1-Dibenzothiophenes	238	1.99	85	278.60	65	135
3	DBT2	C2-Dibenzothiophenes	301	1.99	80	377.50	65	135
3	DBT3	C3-Dibenzothiophenes	289	1.99	85	341.40	65	135
3	DBT4	C4-Dibenzothiophenes	166	1.99	91	183.40	65	135
4	BF	Benzo(b)fluorene	5.43	1.99				
4	FL0	Fluoranthene	3.23	1.99	81	4.00	65	135
4	PY0	Pyrene	9.38	1.99	72	13.00	65	135
4	FP1	C1-Fluoranthenes/Pyrenes	45.0	1.99	71	63.10	65	135
4	FP2	C2-Fluoranthenes/Pyrenes	75.1	1.99	73	102.20	65	135
4	FP3	C3-Fluoranthenes/Pyrenes	97.9	1.99	82	119.60	65	135
4	FP4	C4-Fluoranthenes/Pyrenes	82.8	1.99	80	104.00	65	135
4	NBT0	Naphthobenzothiophenes	35.0	1.99	80	43.80	65	135
4	NBT1	C1-Naphthobenzothiophenes	91.4	1.99	78	117.20	65	135
4	NBT2	C2-Naphthobenzothiophenes	126	1.99	77	163.30	65	135
4	NBT3	C3-Naphthobenzothiophenes	108	1.99	84	128.70	65	135
4	NBT4	C4-Naphthobenzothiophenes	76.5	1.99	86	89.00	65	135
4	BA0	Benz[a]anthracene	1.58 J		75	2.10	65	135
4	C0	Chrysene/Triphenylene	29.8	1.99	85	35.20	65	135
4	BC1	C1-Chrysenes	56.8	1.99	90	62.80	65	135
4	BC2	C2-Chrysenes	69.6	1.99	81	86.00	65	135
4	BC3	C3-Chrysenes	91.1	1.99	93	97.60	65	135
4	BC4	C4-Chrysenes	58.0	1.99	98	59.40	65	135

Client ID	Alaska North Slope Crude
Lab ID	SS112816ANC01
Matrix	Oil
Reference Method	Modified 8270D
Batch ID	N/A
Date Collected	N/A
Date Received	N/A
Date Prepped	N/A
Date Analyzed	11/10/2016
Sample Size (wet)	0.0502
% Solid	100.00
File ID	F311091613.D
Units	mg/Kg
Final Volume	10
Dilution	1
Poporting Limit	1.00

		Reporting Limit	1.99					
Class	Abbrev	Analytes	Result	SSRL	% Rec	Spike Conc.	Lower Limit	Upper Limit
5	BBF	Benzo[b]fluoranthene	4.53	1.99	87	5.20	65	135
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	0.563					
5	BAF BEP	Benzo[a]fluoranthene	0.22		0.4	0.00	e.e.	125
5 5	BAP	Benzo[e]pyrene Benzo[a]pyrene	9.22 1.57	1.99 J 1.99	94 82	9.80 1.90	65 65	135 135
5	PER	Perylene	3.30	1.99	118	2.80	65	135
6	IND	Indeno[1,2,3-cd]pyrene	0.807		110	2.00	00	100
6	DA	Dibenz[ah]anthracene/Dibenz[ac]anthracene	1.50					
6	GHI	Benzo[q,h,i]perylene	3.72	1.99	120	3.10	65	135
3	CAR	Carbazole	4.54	1.99	76	6.00	65	135
3	4MDT	4-Methyldibenzothiophene	113	1.99	86	131.80	65	135
3	2MDT	2/3-Methyldibenzothiophene	92.0	1.99	94	97.50	65	135
3	1MDT	1-Methyldibenzothiophene	29.0	1.99	66	44.20	65	135
3	3MP	3-Methylphenanthrene	62.8	1.99	70	89.40	65	135
3	2MP	2-Methylphenanthrene	65.5	1.99	67	97.70	65	135
3	2MA	2-Methylanthracene	2.08	1.99	65	3.20	65	135
3	9MP 1MP	9/4-Methylphenanthrene 1-Methylphenanthrene	111 67.8	1.99 1.99	78 70	141.20 97.40	65 65	135 135
t23	T4	C23 Tricyclic Terpane	78.3	1.99	116	67.30	65	135
t24	T5	C24 Tricyclic Terpane	35.9	1.99	83	43.00	65	135
t25	T6	C25 Tricyclic Terpane	38.4	1.99	92	42.00	65	135
te24	T6a	C24 Tetracyclic Terpane	13.6	1.99	92	14.80	65	135
t26S	T6b	C26 Tricyclic Terpane-22S	15.7	1.99	89	17.70	65	135
t26R	T6c	C26 Tricyclic Terpane-22R	14.3	1.99	93	15.40	65	135
t28S	T7	C28 Tricyclic Terpane-22S	13.9	1.99	83	16.80	65	135
t28R	T8	C28 Tricyclic Terpane-22R	14.7	1.99	81	18.10	65	135
t29S	T9	C29 Tricyclic Terpane-22S	17.9	1.99	86	20.80	65	135
t29R	T10	C29 Tricyclic Terpane-22R	18.8	1.99	83	22.60	65	135
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	25.9	1.99	83	31.30	65	135
t30S	T11a T11b	C30 Tricyclic Terpane-22S	11.6	1.99	71 87	16.20	65	135 135
t30R Tm	T11b T12	C30 Tricyclic Terpane-22R	14.2 30.5	1.99	87 81	16.40 37.80	65 65	135 135
BNH	T14a	17a(H)-22,29,30-Trisnorhopane-TM 17a/b,21b/a 28,30-Bisnorhopane	6.80	1.99	97	7.00	65	135
25N	T14a T14b	17a(H),21b(H)-25-Norhopane	7.92	1.99	91	8.70	65	135
H29	T15	30-Norhopane	86.5	1.99	87	99.70	65	135
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	20.6	1.99	82	25.20	65	135
X	X	17a(H)-Diahopane	11.2	1.99	79	14.20	65	135
M29	T17	30-Normoretane	8.80	1.99	76	11.60	65	135
OL	T18	18a(H)&18b(H)-Oleananes	l	J 1.99				
H30	T19	Hopane	155	1.99	89	173.60	65	135
M30	T20	Moretane	14.7	1.99	84	17.50	65	135
H31S	T21	30-Homohopane-22S	67.5	1.99	90	75.10	65	135
H31R	T22	30-Homohopane-22R	57.2	1.99	89	64.10	65	135
T22A	T22A	T22a-Gammacerane/C32-diahopane	12.1	1.99	95	50.00	65	135
H32S H32R	T26	30,31-Bishomohopane-22S	51.0	1.99	95	53.60	65	135
H33S	T27 T30	30,31-Bishomohopane-22R 30,31-Trishomohopane-22S	36.4 41.5	1.99 1.99	92	39.60 41.80	65	135
H33R	T31	30,31-Trishomohopane-22R	30.5	1.99	112	27.20	65	135
H34S	T32	Tetrakishomohopane-22S	30.7	1.99	103	29.80	65	135
H34R	T33	Tetrakishomohopane-22R	21.9	1.99	103	21.20	65	135
H35S	T34	Pentakishomohopane-22S	37.4	1.99	124	30.20	65	135
H35R	T35	Pentakishomohopane-22R	26.3	1.99	112	23.50	65	135
d27S	S4	13b(H),17a(H)-20S-Diacholestane	44.1	1.99	88	50.00	65	135
d27R	S5	13b(H),17a(H)-20R-Diacholestane	22.2	1.99	84	26.30	65	135
d28S	S8	13b,17a-20S-Methyldiacholestane	20.7	1.99	81	25.70	65	135
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	50.2	1.99	77	65.00	65	135
aa27R d29R	S17 S18	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17) Unknown Sterane (S18)	59.8 14.7	1.99 1.99	79 69	75.80 21.30	65 65	135 135
d29S	S19	13a,17b-20S-Ethyldiacholestane	2.94	1.99	75	3.90	65	135
aa28S	S20	14a,17a-20S-Methylcholestane	28.3	1.99	76	37.30	65	135
aa28R	S24	14a,17a-20R-Methylcholestane	31.4	1.99	91	34.50	65	135
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	59.8	1.99	117	51.00	65	135
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	39.6	1.99	100	39.50	65	135
bb27R	S14	14b(H),17b(H)-20R-Cholestane	40.4	1.99	97	41.50	65	135
bb27S	S15	14b(H),17b(H)-20S-Cholestane	36.0	1.99	85	42.50	65	135
bb28R	S22	14b,17b-20R-Methylcholestane	42.0	1.99	94	44.80	65	135
bb28S	S23	14b,17b-20S-Methylcholestane	47.1	1.99	85	55.40	65	135
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	61.4	1.99	101	60.90	65	135
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane	32.1	1.99	80	40.30	65	135
RC26/SC27TA		C26,20R- +C27,20S- triaromatic steroid	296	1.99	101	293.90	65	135
SC28TA RC27TA	SC28TA RC27TA	C28,20S-triaromatic steroid C27,20R-triaromatic steroid	183 170	1.99 1.99	97 95	187.60 180.20	65 65	135 135
RC27TA RC28TA	RC27TA RC28TA	C28,20R-triaromatic steroid	170	1.99	95	150.20	65	135
NOZUTA	NOZUTA	020,2017-maiomano stor010	140	1.39	30	100.00	00	100

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

Project Name: Cardno ERI - Former XOM Jalk Fee Property

		Project Number: 850.0087.000						
		Client ID	CUTTING OIL	MOBILMET 426 CUTTING OIL	MOBIL VELOCITE 6 SPINDLE OIL		MOBIL VELOCITE OIL No. 3	
		Lab ID	1611009-01	1611009-02	1611009-03		1611009-04	
		Matrix	Product	Product	Product		Product	
		Reference Method	Modified 8270D	Modified 8270D	Modified 8270D		Modified 8270D	
		Batch ID Date Collected	SO120216B02 11/22/2016	SO120216B02 11/22/2016	SO120216B02 11/22/2016		SO120216B02 11/22/2016	
		Date Received	11/23/2016	11/23/2016	11/22/2016		11/28/2016	
		Date Prepped	12/02/2016	12/02/2016	12/02/2016		12/02/2016	
		Date Analyzed	12/06/2016	12/06/2016	12/06/2016		12/06/2016	
		Sample Size (wet)	0.104	0.1064	0.1008		0.1079	
		% Solid	100.00	100.00	100.00		100.00	
		File ID Units	F312051609.D mg/Kg	F312051611.D mg/Kg	F312051612.D mg/Kg		F312051613.D mg/Kg	
		Final Volume	mg/Kg 20	mg/Kg 20	mg/kg 20		mg/kg 20	
		Dilution	1	1	1		1	
		Reporting Limit	1.92	1.88	1.98		1.85	
Class	Abbrev	Analytes	Result SSR		SRL Result	SSRL	Result	SSRL
2	D0	cis/trans-Decalin	53.9 1.93		.88 4.26	1.98	1320	1.85
2	D1 D2	C1-Decalins C2-Decalins	109 1.93 277 1.93		88 27.2 88 103	1.98 1.98	5940 5070	1.85 1.85
2	D3	C3-Decalins	277 1.9.		.88 135	1.98	1820	1.85
2	D4	C4-Decalins	527 1.93		88 345	1.98	613	1.85
2	BTO	Benzothiophene	0.619 J 1.9			U 1.98	29.0	1.85
2	BT1	C1-Benzo(b)thiophenes	7.88 1.93			U 1.98	100	1.85
2	BT2	C2-Benzo(b)thiophenes	10.3 1.93			U 1.98	8.49	1.85
2	BT3 BT4	C3-Benzo(b)thiophenes C4-Benzo(b)thiophenes	U 1.93 U 1.93	2 U 1. 2 U 1.		U 1.98 U 1.98		U 1.85 U 1.85
2	NO	Naphthalene	3.03 1.9				136	1.85
2	N1	C1-Naphthalenes	9.13 1.9				159	1.85
2	N2	C2-Naphthalenes	30.5 1.93	2 2.75 1.		G 1.98	80.0	1.85
2	N3	C3-Naphthalenes	51.9 1.93		.88 11.2	1.98	15.8	1.85
2	N4	C4-Naphthalenes	104 1.93		.88 20.9	1.98	13.4	1.85
2	B DF	Biphenyl Dibenzofuran	45.4 1.93 4.44 1.93		.88 3.33 .88 3.91	1.98 1.98	196 1.87	1.85 1.85
3	AY	Acenaphthylene	4.44 1.9 4.35 G 1.9			J 1.98		J 1.85
3	AE	Acenaphthene	6.97 G 1.93			J 1.98		G 1.85
3	F0	Fluorene	8.49 1.93			U 1.98		JB 1.85
3	F1	C1-Fluorenes	51.5 1.93		.88 3.50	1.98	2.96	1.85
3	F2	C2-Fluorenes	193 1.93		88 14.1	1.98	16.5	1.85
3	F3 A0	C3-Fluorenes Anthracene	232 1.93 U 1.93		88 35.2 88	1.98 U 1.98	33.0 0.322	1.85 J 1.85
3	P0	Phenanthrene	4.41 1.93			J 1.98	2.62	1.85
3	PA1	C1-Phenanthrenes/Anthracenes	34.5 1.9		.88 5.30	1.98	10.7	1.85
3	PA2	C2-Phenanthrenes/Anthracenes	53.7 1.9		88 10.5	1.98	26.0	1.85
3	PA3	C3-Phenanthrenes/Anthracenes	52.0 1.93		88 8.92	1.98	25.2	1.85
3	PA4	C4-Phenanthrenes/Anthracenes	35.0 1.93			U 1.98	25.2	1.85
3	RET DBT0	Retene Dibenzothiophene	U 1.93 1.77 J 1.93			U 1.98 J 1.98		U 1.85 J 1.85
3	DBT0 DBT1	C1-Dibenzothiophenes	1.77 J 1.9. 26.6 1.9		.88 0.526 .88 9.19	J 1.98	1.28	J 1.85
3	DBT2	C2-Dibenzothiophenes	64.2 1.9		.88 31.6	1.98	15.3	1.85
3	DBT3	C3-Dibenzothiophenes	63.4 1.9		.88 34.5	1.98	18.8	1.85
3	DBT4	C4-Dibenzothiophenes	49.1 1.93		88 21.2	1.98	12.1	1.85
4	BF	Benzo(b)fluorene	U 1.93			U 1.98		U 1.85
4	FL0	Fluoranthene	0.393 J 1.9			U 1.98		U 1.85
4	PY0 FP1	Pyrene C1-Fluoranthenes/Pyrenes	2.91 1.93 8.80 1.93			U 1.98 U 1.98		J 1.85 U 1.85
4	FP2	C2-Fluoranthenes/Pyrenes	20.5 1.9			U 1.98		U 1.85
4	FP3	C3-Fluoranthenes/Pyrenes	16.7 G 1.9			U 1.98		U 1.85
4	FP4	C4-Fluoranthenes/Pyrenes	18.4 G 1.9			U 1.98		U 1.85
4	NBT0	Naphthobenzothiophenes	U 1.93	2 0.363 J 1.	88	U 1.98		U 1.85
4	NBT1	C1-Naphthobenzothiophenes	10.4 G 1.93			U 1.98		U 1.85
4	NBT2	C2-Naphthobenzothiophenes	U 1.93			U 1.98		U 1.85
4	NBT3 NBT4	C3-Naphthobenzothiophenes C4-Naphthobenzothiophenes	U 1.93 U 1.93			U 1.98 U 1.98		U 1.85 U 1.85
4	BA0	Benz[a]anthracene	U 1.9.			U 1.98		U 1.85
4	CO	Chrysene/Triphenylene	U 1.9			U 1.98		U 1.85
4	BC1	C1-Chrysenes	18.2 G 1.9			U 1.98		U 1.85
4	BC2	C2-Chrysenes	U 1.93			U 1.98		U 1.85
4	BC3	C3-Chrysenes	U 1.93			U 1.98		U 1.85
4	BC4	C4-Chrysenes	U 1.93	2 U 1.	88	U 1.98		U 1.85

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000				
		Client ID Lab ID Matrix Reference Method Batch ID Date Collected Date Received Date Proped Date Proped Sample Size (wet) % Solid File ID Units File ID Units File ID Units Reporting Limit	CUTTING OIL 1811009-01 1811009-01 Modified 82700 50120218802 11/22/2016 12/22/2016 12/22/2016 100.00 100.00 F312051690.D mol/Kq 1 1 1,92	MOBILMET 426 CUTTING OIL 1611009-02 Product Modified 8270D S0120216802 11/22/2016 13/2016 13/2	MOBIL VELOCITE 6 SPINDLE OIL 1611008-03 Product Modified 82700 SO120216802 11/22/2016 11/22/2016 12/06/2016 0.1008 100.00 F312051612.D mg/Kq 20 11.98	MOBIL VELOCITE OIL No. 3 1611009-04 Product Modified 8270D SO120216802 11/22/2016 11/28/2016 12/06/2016 12/06/2016 10.009 100.00 F312051613.D mg/Kq 20 1 1.85
Class	Abbrev BBF	Analytes	Result SSRL U 1.92	. Result SSRL U 1.88		SRL Result SSRL .98 U 1.85
5 5 5 5 6 6 6 6 6 3 3 3 3 3 3 3 3 3 3 3	BJKF BLKF BEP BEP BEP BEP BEP BEP BER BEP BER BEP BER BEP BER	Benzollifluoranthene Debenzollifluoranthene Debenzollifluoranthene Debenzollifluoranthene Landerbenzothiophene Lan	U 1,92 U	U 1.88 U	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	.98
bb27R bb27S bb28R bb28R bb29R bb29R bb29S RC26/SC27TA SC28TA RC27TA	\$14 \$15 \$22 \$23 \$26 \$27 RC26/SC27TA \$C28TA RC27TA	146(H) 176(H) 20/B-Cholestaine 146(H) 176(H) 20/B-Cholestaine 146(H) 176(H) 20/S-Cholestaine 146(H) 20/B-Cholestaine 146(H) 176(H) 20/B-Cholestaine 146(H) 176(H) 20/B-Ehlytholestaine 146(H) 176(H) 20/B-Ehlytholestaine 146(H) 176(H) 20/B-Ehlytholestaine 126(H) 176(H) 20/B-Ehlytholestaine 126(B) 20/B-Hariamonatic steroid 126(B) 20/B-Hariamonatic steroid 127(B) 20/B-Hariamonatic steroid 128(B) 20/B-Hariamo	11.6 1.92 22.6 1.92 22.8 1.92 16.3 1.92 17.2 1.92 23.4 1.92 15.8 1.92 5.17 1.92 6.66 1.92 4.64 1.92 U 1.92	201 1.88 142 1.88 110 1.88 161 1.88 307 1.88 53.6 1.88 53.6 1.88 67.6 1.88	93.3 1 85.9 1 50.6 1 60.5 1 84.9 7 72.5 1 6.84 8.87 1 7.69 1	.98 0,981 J 1,85 98 0,888 J 1,85 ,98 0,761 J 1,85 ,98 0,761 J 1,85 ,98 0,88 J 1,85 ,98 0,98 J 1,85 ,98 U 1,85
		Surrogates (% Recovery) Naphthalene-d3 Phenanthrene-d10 Benzoallayrene-d12 5B(H)Cholane	107 60 115 101	94 92 120 104	111 67 125 101	101 121 150 § 105

		Project Name: Cardno ERI - Former XOM Jalk Fee Property									
		Project Number: 850.0087.000 Client ID Lab ID Matrix Reference Method Batch ID Date Collected Date Received Date Analyzed Date Analyzed Sample Size (vet) % Solid File ID Units Final Volume Dilution Reporting Limit	CP70T 1611009-05 PProduct Modified 8270D SO120218802 11/23/2016 12/02/2016 12/02/2016 0.1031 100.00 F312051615.D mg/Kg 20 1 1.9		CP200T 1611099-06 Product Modified 827/D SO120216802 11/23/2016 11/28/2016 12/02/2016 12/02/2016 12/02/2016 12/00/2016 12		CP350T 1611009-07 Product Modified 8270D SO120216B02 11/28/2016 11/28/2016 12/02/2016 0.103 100.00 F312051617, D mg/Kq 1.94		CP500T 1611009-08 Product Modified 8270D SO120216B02 11/23/2016 11/28/2016 12/02/2016 0.108 100.00 F312051618.D mg/Kg 1 1 1.85		BROWNELLS TOUGH QUENCH 1611009-09 Product Modified 52700 SO120218802 11/22/2016 11/28/2016 12/08/2016 12/08/2016 10:000 F3120519:D, mg/Kg 20 1 1,99
Class	Abbrev	Analytes	Result	SSRL	Result	SSRL	Result	SSRL	Result	SSRL	Result
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DO D1 D1 D2 D3 D4 D8 D1 D3 D4 BT0 D3 D4 BT1 BT1 BT2 BT2 BT3 BT3 BT4 BT4 BT5 BT3 BT4 BT4 BT6 BT7	distrans-Decalin C1-Decalins C2-Decalins C2-Decalins C3-Decalins C4-Decalins C	0.0956 L 0.0956 L 0.207 JI U U U U U U U U U U U U U U U U U U U	1 194 1 1 194 1 1 1 1 1 1 1 1 1	0.542 J 2.92	195 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1	0.716 2.61 4.68 4.09 4.41 0.104 0.220 JI 0.0625 J 0.122 J 0.12	1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94	1.41 4.08 7.22 5.70 8.46	J 1.85 1.85 1.85 1.85 1.85 1.85 J 1.85 J 1.85 J 1.85 J 1.85 J 1.85	1.18 J 6.40 13.6 60.1 U U U 0.0825 JB 0.336 JB 0.336 JB 1.48 J 4.32 11.6 0.276 J U U U 0.687 J U U 0.687 J U U 0.701 J 0.701 J 1.000 1.001 J 1.000 J 1.0
4	BC3 BC4	C3-Chrysenes C4-Chrysenes	u		U		L L			J 1.85 J 1.85	U U

		Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000									
		Client ID Lab ID Matrix Reference Method Reference Method Debter Collected Date Received Date Received Date Prepped Date Analyzed Sample Size (wet) % Solid Units Final Volume Dilution Dilution Dilution	CP70T 1611009-05 Product Modified 82701 S01108-0201 S01108-0201 11/28/2016 11/28/2016 12/08/2016 12/08/2016 10.000 F312051615.D ma/Ka 20 1 1.94	Mo SC	CP200T 1611009-06 Product dified 8270D 1120216802 11/28/2016 11/28/2016 12/02/2016 0.1028 100.00 12051616.D mg/Kq 20 1.95		CP350T 1611009-07 Product Modified 9270D SO120216802 11/23/2016 11/28/2016 12/02/2016 12/02/2016 12/08/2016 12		CP500T 1611009-08 Product Modified 8270D 50120216B02 11/23/2016 12/02/2016 12/02/2016 0.108 100.00 F312051618.D ma/Ka 20 1.85	E	PROWNELLS TOUGH QUENCH 161109-99 Product Modified B2702 \$01002,20016 11/28/2016 12/08/2016 12/08/2016 0.1004 100.00 F312051619.D marKq 20 1.99
Class 5	Abbrev	Analytes Benzolbifluoranthene		SRL 1.94	Result	SSRL 1.95	Result	SSRL 1.94		SRL .85	Result
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	BJKF BEFP BBFP BBFP BBFP BBFP BBFP BBFP BBF	Benzciallucranthene/Benzciallucranthene Benzcialquiscranthene Benzcialquiscranthene Benzcialquiscranthene Benzcialquiscranthene Benzcialquiscranthene Benzcialquiscranthene Benzcialquiscranthene Indexid als activation of the property of th	U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	.934 .934 .934 .934 .934 .934 .934 .934	U U U U U U U U U U U U U U U U U U U	1,95 1,95 1,95 1,95 1,95 1,95 1,95 1,95	0.0948 J 0.0	1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94	U 1 U U	.85.85.85.85.85.85.85.85.85.85.85.85.85.	0.737 J U U U U U U U U U U U U U U U U U U
		Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzolalpyrene-d12 5B(H)Cholane	95 91 149 § 110		93 91 129 103		92 93 117 104		91 98 93 97		99 64 127 105

Project Name: Cardno ERI - Former XOM Jalk Fee Propert

Client ID	100 QUENCHING OIL - BLACK BEAR
Lab ID	1611009-10
Matrix	Product
Reference Method	Modified 8270D
Batch ID	SO120216B02
Date Collected	11/22/2016
Date Received	11/28/2016
Date Prepped	12/02/2016
Date Analyzed	12/06/2016
Sample Size (wet)	0.1001
% Solid	100.00
File ID	F312051620.D
Units	mg/Kg
Final Volume	20
Dilution	1
Penarting Limit	2.00

Class	Abbrev	Analytes	SSRL	Result SS
2	D0	cis/trans-Decalin	1.99	U 2.
2	D1	C1-Decalins	1.99	1.23 J 2.
2	D2	C2-Decalins	1.99	3.50 2.
2	D3	C3-Decalins	1.99	6.87 2.
2	D4	C4-Decalins	1.99	30.3 2.
2	BT0	Benzothiophene	1.99	U 2.
2	BT1	C1-Benzo(b)thiophenes	1.99	U 2.
2	BT2	C2-Benzo(b)thiophenes	1.99	U 2.
2	BT3	C3-Benzo(b)thiophenes	1.99	U 2.
2	BT4	C4-Benzo(b)thiophenes	1.99	U 2.
2	N0	Naphthalene	1.99	0.139 JB 2.
2	N1	C1-Naphthalenes	1.99	0.321 JB 2.
2	N2	C2-Naphthalenes	1.99	1.05 J 2.
2	N3	C3-Naphthalenes	1.99	4.00 2.
2	N4	C4-Naphthalenes	1.99	10.4 2.
2	В	Biphenyl	1.99	0.789 J 2.
3	DF	Dibenzofuran	1.99	0.559 J 2.
3	AY	Acenaphthylene	1.99	0.133 J 2.
3	AE	Acenaphthene	1.99	0.324 J 2.
3	F0	Fluorene	1.99	0.871 JB 2.
3	F1	C1-Fluorenes	1.99	4.66 2.
3	F2	C2-Fluorenes	1.99	15.4 2
3	F3	C3-Fluorenes	1.99	24.1 2.
3	AO	Anthracene	1.99	U 2
3	PO	Phenanthrene	1.99	0.294 J 2.
3	PA1	C1-Phenanthrenes/Anthracenes	1.99	U 2.
3	PA2	C2-Phenanthrenes/Anthracenes	1.99	U 2
3	PA3	C3-Phenanthrenes/Anthracenes	1.99	U 2.
3	PA4	C4-Phenanthrenes/Anthracenes	1.99	U 2
3	RET	Retene	1.99	U 2.
3	DBTO	Dibenzothiophene	1.99	0.202 J 2.
3	DBT1	C1-Dibenzothiophenes	1.99	2.05 G 2.
3	DBT2	C2-Dibenzothiophenes	1.99	6.42 2.
3	DBT2	C3-Dibenzothiophenes	1.99	11.6 2
3	DB13 DBT4	C4-Dibenzothiophenes	1.99	11.6 2.
4	BF	Benzo(b)fluorene	1.99	U 2.
4	FL0	Fluoranthene	1.99	U 2.
	PY0	Pyrene		0.274 .1 2
4	FP1		1.99	0.274 J 2. U 2.
4		C1-Fluoranthenes/Pyrenes	1.99	
4	FP2	C2-Fluoranthenes/Pyrenes	1.99	3.74 2.
4	FP3	C3-Fluoranthenes/Pyrenes	1.99	3.95 2.
4	FP4	C4-Fluoranthenes/Pyrenes	1.99	5.48 2.
4	NBT0	Naphthobenzothiophenes	1.99	U 2.
4	NBT1	C1-Naphthobenzothiophenes	1.99	U 2.
4	NBT2	C2-Naphthobenzothiophenes	1.99	U 2.
4	NBT3	C3-Naphthobenzothiophenes	1.99	U 2.
4	NBT4	C4-Naphthobenzothiophenes	1.99	U 2.
4	BA0	Benz[a]anthracene	1.99	U 2.
4	C0	Chrysene/Triphenylene	1.99	U 2.
4	BC1	C1-Chrysenes	1.99	U 2.
4	BC2	C2-Chrysenes	1.99	U 2.
4	BC3	C3-Chrysenes	1.99	U 2.
4	BC4	C4-Chrysenes	1.99	U 2.

Project Name: Cardno ERI - Former XOM Jalk Fee Property
Decine Number 850 0097 000

Client ID	100 QUENCHING OIL - BLACK BEAR
Lab ID	1611009-10
Matrix	Product
Reference Method	Modified 8270D
Batch ID	SO120216B02
Date Collected	11/22/2016
Date Received	11/28/2016
Date Prepped	12/02/2016
Date Analyzed	12/06/2016
Sample Size (wet)	0.1001
% Solid	100.00
File ID	F312051620.D
Units	mg/Kg
Final Volume	20
Dilution	1
Reporting Limit	2.00

Class	Abbrev	Analytes	SSRL	Result		SSRL
5	BBF	Benzo[b]fluoranthene	1.99		U	2.00
5	BJKF	Benzo[j]fluoranthene/Benzo[k]fluoranthene	1.99		U	2.00
5	BAF	Benzo[a]fluoranthene	1.99		U	2.00
5	BEP	Benzo[e]pyrene	1.99		U	2.00
5	BAP	Benzo(a)pyrene	1.99		U	2.00
5 6	PER IND	Perylene	1.99 1.99		U	2.00
6	DA	Indeno[1,2,3-cd]pyrene Dibenz[ah]anthracene/Dibenz[ac]anthracene	1.99		Ü	2.00
6	GHI	Benzo[g,h,i]perylene	1.99		Ü	2.00
3	CAR	Carbazole	1.99		Ü	2.00
3	4MDT	4-Methyldibenzothiophene	1.99	0.348		2.00
3	2MDT	2/3-Methyldibenzothiophene	1.99		U	2.00
3	1MDT	1-Methyldibenzothiophene	1.99		U	2.00
3	3MP	3-Methylphenanthrene	1.99		U	2.00
3	2MP	2-Methylphenanthrene	1.99		U	2.00
3	2MA 9MP	2-Methylanthracene 9/4-Methylphenanthrene	1.99 1.99		U	2.00
3	1MP	1-Methylphenanthrene	1.99		U	2.00
123	T4	C23 Tricyclic Terpane	1.99	79.0		2.00
124	T5	C24 Tricyclic Terpane	1.99	36.5		2.00
t25	T6	C25 Tricyclic Terpane	1.99	25.3		2.00
te24	T6a	C24 Tetracyclic Terpane	1.99	51.5		2.00
t26S	T6b	C26 Tricyclic Terpane-22S	1.99	16.6		2.00
t26R	T6c	C26 Tricyclic Terpane-22R	1.99	11.6		2.00
t28\$	T7	C28 Tricyclic Terpane-22S	1.99	14.8		2.00
t28R	T8	C28 Tricyclic Terpane-22R	1.99	10.7		2.00
t29S t29R	T9 T10	C29 Tricyclic Terpane-22S C29 Tricyclic Terpane-22R	1.99 1.99	8.98 8.25		2.00
Ts	T11	18a-22,29,30-Trisnorneohopane-TS	1.99	8.25 59.7		2.00
t30S	T11a	C30 Tricyclic Terpane-22S	1.99	8.30		2.00
t30R	T11b	C30 Tricyclic Terpane-22R	1.99	7.28		2.00
Tm	T12	17a(H)-22,29,30-Trisnorhopane-TM	1.99	9.31		2.00
BNH	T14a	17a/b,21b/a 28,30-Bisnorhopane	1.99	3.30		2.00
25N	T14b	17a(H),21b(H)-25-Norhopane	1.99	4.64		2.00
H29	T15	30-Norhopane	1.99	75.5		2.00
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts	1.99	16.8		2.00
X	X	17a(H)-Diahopane	1.99	4.47		2.00
M29 OL	T17 T18	30-Normoretane 18a(H)&18b(H)-Oleananes	1.99 1.99	9.71	U	2.00
H30	T19	Honane	1.99	65.5		2.00
M30	T20	Moretane	1.99	6.74		2.00
H31S	T21	30-Homohopane-22S	1.99	28.2		2.00
H31R	T22	30-Homohopane-22R	1.99	26.0		2.00
T22A	T22A	T22a-Gammacerane/C32-diahopane	1.99	11.6		2.00
H32S	T26	30,31-Bishomohopane-22S	1.99	17.1		2.00
H32R	T27	30,31-Bishomohopane-22R	1.99	11.8		2.00
H33S	T30	30,31-Trishomohopane-22S	1.99	8.78		2.00
H33R H34S	T31 T32	30,31-Trishomohopane-22R Tetrakishomohopane-22S	1.99 1.99	6.34 5.82		2.00
H34R	T33	Tetrakishomohopane-228	1.99	3.95		2.00
H35S	T34	Pentakishomohopane-22S	1.99	5.35	U	2.00
H35R	T35	Pentakishomohopane-22R	1.99		Ū	2.00
d27S	S4	13b(H),17a(H)-20S-Diacholestane	1.99	42.9		2.00
d27R	S5	13b(H),17a(H)-20R-Diacholestane	1.99	24.6		2.00
d28S	S8	13b,17a-20S-Methyldiacholestane	1.99	20.0		2.00
aa27S	S12	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12)	1.99	36.8		2.00
aa27R	S17	14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)	1.99	35.1 10.0		2.00
d29R d29S	S18 S19	Unknown Sterane (S18) 13a.17b-20S-Ethyldiacholestane	1.99 1.99	10.0	J	2.00
0295 aa28S	S20	13a,17b-20S-Ethyldiacholestane 14a,17a-20S-Methylcholestane	1.99	21.9	J	2.00
aa28R	S24	14a.17a-208-Methylcholestane	1.99	8.58		2.00
aa29S	S25	14a(H),17a(H)-20S-Ethylcholestane	1.99	11.3		2.00
aa29R	S28	14a(H),17a(H)-20R-Ethylcholestane	1.99	9.62		2.00
bb27R	S14	14b(H),17b(H)-20R-Cholestane	1.99	18.8		2.00
bb27S	S15	14b(H),17b(H)-20S-Cholestane	1.99	16.6		2.00
bb28R	S22	14b,17b-20R-Methylcholestane	1.99	14.1		2.00
bb28S	S23	14b,17b-20S-Methylcholestane	1.99	14.7		2.00
bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane	1.99	20.0		2.00
bb29S	S27 RC26/SC27TA	14b(H),17b(H)-20S-Ethylcholestane	1.99	10.6	U	2.00
RC26/SC27TA SC28TA	SC28TA	C26,20R- +C27,20S- triaromatic steroid C28,20S-triaromatic steroid	1.99 1.99		U	2.00
RC27TA	RC27TA	C27,20R-triaromatic steroid	1.99		U	2.00
RC28TA	RC28TA	C28,20R-triaromatic steroid	1.99		U	2.00
			1.00			2.00

94
76
120
105

Pro	ojec	t I	Name	: C	ardno	ERI	-	Former	XOM	Jalk	Fee	Property	٧

		Project Number: 850.0087.000						
		Client ID	MOBIL VELOCITE No.10		MOBIL VACTRA No. 2 WAY OIL	MOBIL VACTRA No. 4		Reference Material - Reserve Tank Oil
		Lab ID	1611009-11		1611009-12	1611009-13		1611009-14
		Matrix	Product		Product	Product		Product
		Reference Method	Modified 8270D		Modified 8270D	Modified 8270D		Modified 8270D
		Batch ID	SO120216B02		SO120216B02	SO120216B02		SO120216B02
		Date Collected	11/22/2016		11/22/2016	12/01/2016		11/21/2014
		Date Received	11/28/2016		11/28/2016	12/01/2016		11/25/2014
		Date Prepped	12/02/2016		12/02/2016	12/02/2016		12/02/2016
		Date Analyzed Sample Size (wet)	12/07/2016 0.1055		12/07/2016 0.1046	12/07/2016 0.1026		12/07/2016 0.1017
		% Solid	100.00		100.00	100.00		100.00
		File ID	F312051621.D		F312051623.D	F312051624.D		F312051625.D
		Units	mg/Kg		mg/Kg	mg/Kg		mg/Kg
		Final Volume	20		20	20		20
		Dilution	1		1	1		1
		Reporting Limit	1.90		1.91	1.95		1.97
Class	Abbrev	Analytes	Result	SSR		SRL Result	SSRL	Result
2	D0	cis/trans-Decalin		U 1.90		.91 0.322		4.11
2	D1	C1-Decalins C2-Decalins	1.22 3.72	J 1.90		.91 1.42		16.0
2	D2 D3	C2-Decalins C3-Decalins	3.72 3.91	1.90			J 1.95 J 1.95	131 261
2	D3	C4-Decalins		G 1.90			J 1.95	776
2	BT0	Benzothiophene	12.0	U 1.90			J 1.95	0.199
2	BT1	C1-Benzo(b)thiophenes		U 1.90			J 1.95	2.42
2	BT2	C2-Benzo(b)thiophenes	1.93	1.90		.91 0.469		6.89
2	BT3	C3-Benzo(b)thiophenes	2.19	1.90			J 1.95	
2	BT4	C4-Benzo(b)thiophenes	4.22	1.90	Ď Ú 1	.91 I	J 1.95	
2	N0	Naphthalene	0.170		0.363 JB 1	.91 0.305 J	B 1.95	6.52
2	N1	C1-Naphthalenes	0.374			i.91 1.24 J	B 1.95	13.2
2	N2	C2-Naphthalenes	3.56	1.90		1.91 1.61		26.4
2	N3	C3-Naphthalenes	9.70	1.90			3 1.95	38.2
2	N4	C4-Naphthalenes	16.4	1.90		.91 2.78	1.95	58.6
2	B DF	Biphenyl Dibenzofuran		J 1.90		.91 0.212 . .91 0.0676 .		5.57 2.44
3	AY	Acenaphthylene		J 1.90			J 1.95 J 1.95	7.20
3	AE AE	Acenaphthene		J 1.90			J 1.95 J 1.95	7.20 3.07
3	FO	Fluorene	0.195			.91 0.160 J		2.04
3	F1	C1-Fluorenes	2.78	1.90			J 1.95	11.3
3	F2	C2-Fluorenes	14.3	1.90		.91 1.52		38.3
3	F3	C3-Fluorenes	34.0	1.90		.91 3.02	1.95	61.3
3	A0	Anthracene	0.239	J 1.90		.91 I	J 1.95	1.30
3	P0	Phenanthrene	1.62	J 1.90		.91 0.290		5.41
3	PA1	C1-Phenanthrenes/Anthracenes	9.26	1.90		.91 0.660		22.3
3	PA2	C2-Phenanthrenes/Anthracenes	21.7	1.90		.91 2.37	1.95	25.9
3	PA3	C3-Phenanthrenes/Anthracenes	18.8	1.90		.91 3.50	1.95	18.7
3	PA4	C4-Phenanthrenes/Anthracenes		U 1.90			J 1.95	
3	RET DBT0	Retene Dibenzothiophene	3.31	U 1.90		.91 0.200 .		1.27
3	DBT1	C1-Dibenzothiophenes	28.0	1.90		.91 1.21		7.55
3	DBT2	C2-Dibenzothiophenes	61.6	1.90		.91 3.90	1.95	12.8
3	DBT3	C3-Dibenzothiophenes	66.0	1.90		.91 6.64	1.95	15.9
3	DBT4	C4-Dibenzothiophenes	36.2	1.90		.91 5.55	1.95	17.9
4	BF	Benzo(b)fluorene		U 1.90		.91 l		
4	FL0	Fluoranthene		U 1.90			J 1.95	0.463
4	PY0	Pyrene		U 1.90			J 1.95	1.78
4	FP1	C1-Fluoranthenes/Pyrenes		U 1.90		l.91 l		5.48
4	FP2	C2-Fluoranthenes/Pyrenes		U 1.90			J 1.95	7.49
4	FP3	C3-Fluoranthenes/Pyrenes		U 1.90			J 1.95	7.10
4	FP4	C4-Fluoranthenes/Pyrenes		U 1.90		.91		7.81
4	NBT0 NBT1	Naphthobenzothiophenes		J 1.90		i.91		2.00
4	NBT2	C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes	3.97 4.06	1.90		l.91 1.11 .	J 1.95 1.95	3.80 5.13
4	NBT3	C3-Naphthobenzothiophenes	4.06	U 1.90		.91 2.08 l.91 2.31	1.95	5.13
4	NBT4	C4-Naphthobenzothiophenes		U 1.90		i.91 2.31		
4	BA0	Benz[a]anthracene		U 1.90			J 1.95	
4	CO	Chrysene/Triphenylene	0.414	J 1.90			J 1.95	0.437
4	BC1	C1-Chrysenes		U 1.90		.91 I		1.56
4	BC2	C2-Chrysenes		U 1.90		.91 I		
4	BC3	C3-Chrysenes		U 1.90			J 1.95	
4	BC4	C4-Chrysenes		U 1.90	D U 1	.91 I	J 1.95	

Project Name: Cardno ERI - Former XOM Jalk Fee Property Project Number: 850.0087.000

Surrogates (% Recovery) Naphthalene-d8 Phenanthrene-d10 Benzo[a]pyrene-d12 5B(H)Cholane

		Client ID Lab ID Lab ID Lab ID Lab ID Matrix Reference Method Batch ID Date Collected Date Received Date Received Date Prepped Date Analyzed Sample Size (wet) % Solid File ID Units Final Volume Dilution	MOBIL VELOCITE No.10 161109-11 Product Modified 8270D \$0120216902 11/22/2016 11/20/2016 12/07/2016 12/07/2016 10,000 F312051621.D mg/Kg		MOBIL VACTRA No. 2 WAY OIL 1611008-12 Product Modified 82705 S0120216802 11/22/2016 11/22/2016 12/02/2016 12/02/2016 0.1046 100.00 F312051623.D mg/Kg	MOBIL VACTRA No. 4 1611009-13 Product Modified 8270D S0120216802 120112016 12012016 12012016 12072016 12072016 10.1026 10.000 F312051624.D molNq	Reference Material - Reserve Tank Oil 161109-14 Product Modified 82700 SO 120216802 SO 120216802 H121/21014 1128/2014 1202/2016 1207/2016 0.1017 100.00 F312051625.D mg/Kg
		Reporting Limit	1.90		1.91	1.95	1.97
Class	Abbrev	Analytes	Result	SSRL	. Result SSRI		Result
5 5 5 5 5 6 6 6 6 6 3 3 3 3 3 3 3 3 3 3	BBF BLIFF BAF BAF BAF BAF BAF BAF BAF BAF BAF B	Benzoll/blucranthene Benzoll/silvoranthene Dienzoll/silvoranthene Dienzoll/silvoranthene Dienzoll/silvoranthene Dienzoll/silvoranthene Dienzoll/silvoranthene 2/3-Menty/dienzothiophene 1/3-Menty/dienzothiophene 1/4-Methy/dibenzothiophene 1/4-Methy/dibenzothioph	0.444 0.260 J 11.5 11.9 4.24 1.07 J 1.39 J 4.24 1.07 J 2.38 J 2.42 2.33 3.55.2 60.7 2.14 2.5.1 2.29 2.94 2.92 2.93 2.93 2.93 2.94 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95	J 1,909 J 1,90	U 191	U 198	0.540 3.37 0.651 3.96 3.82 0.542 5.04 2.54 162 6.23 2.55,1 2.4.0 2.8.4 2.2.4 2.3.4 2
RC27TA RC28TA	RC27TA RC28TA	C27,20R-triaromatic steroid C28,20R-triaromatic steroid	27.2 7.30	1.90	44.6 1.91 15.2 1.91	15.5 1.95	4.12
HOZUIA	ozo.n	C25,2UN-thanoniauc steroid Surronates (% Recovery)	1.30	1.00	19.2 1.91	0.00 1.90	

February 2017	Page C33

Project Number: 850.0087.000

		Project Number: 850.0087.000					
		Client ID Lab ID Matrix			New Oil 1611009-15 Product		
		Reference Method			Modified 8270D		
		Batch ID			SO120216B02		
		Date Collected			12/18/2014		
		Date Received Date Prepped			12/22/2014 12/02/2016		
		Date Analyzed			12/07/2016		
		Sample Size (wet)			0.1017		
		% Solid			100.00		
		File ID			F312051626.D		
		Units Final Volume			mg/Kg 20		
		Dilution			1		
		Reporting Limit			1.97		
Class	Abbrev	Analytes		SSRL	Result		SSRL
2	D0 D1	cis/trans-Decalin C1-Decalins		1.97	0.367 2.09	J	1.97 1.97
2	D2	C1-Decains C2-Decalins		1.97	2.09		1.97
2	D3	C3-Decalins		1.97	5.96		1.97
2	D4	C4-Decalins		1.97	23.2		1.97
2	BT0	Benzothiophene	J	1.97		U	1.97
2	BT1	C1-Benzo(b)thiophenes		1.97	0.557	J	1.97
2	BT2 BT3	C2-Benzo(b)thiophenes C3-Benzo(b)thiophenes	U	1.97	0.627	Ŋ	1.97 1.97
2	BT4	C4-Benzo(b)thiophenes		1.97		Ü	1.97
2	N0	Naphthalene		1.97	0.654		1.97
2	N1	C1-Naphthalenes		1.97	1.83	J	1.97
2	N2	C2-Naphthalenes		1.97	6.27		1.97
2	N3 N4	C3-Naphthalenes C4-Naphthalenes		1.97	22.6 46.6		1.97 1.97
2	B	Biphenyl		1.97	1.92	J	1.97
3	DF	Dibenzofuran		1.97	0.999	Ĵ	1.97
3	AY	Acenaphthylene		1.97		U	1.97
3	AE	Acenaphthene	G	1.97	0.248	J	1.97
3	F0 F1	Fluorene C1-Fluorenes		1.97	2.15 12.8		1.97 1.97
3	F2	C2-Fluorenes		1.97	44.1		1.97
3	F3	C3-Fluorenes		1.97	72.5		1.97
3	A0	Anthracene	J	1.97		U	1.97
3	P0	Phenanthrene		1.97	7.32		1.97
3	PA1 PA2	C1-Phenanthrenes/Anthracenes C2-Phenanthrenes/Anthracenes		1.97	27.5 44.7		1.97 1.97
3	PA3	C3-Phenanthrenes/Anthracenes		1.97	36.6		1.97
3	PA4	C4-Phenanthrenes/Anthracenes	U	1.97	33.0		1.97
3	RET	Retene		1.97		U	1.97
3	DBT0	Dibenzothiophene	J	1.97	3.27		1.97
3	DBT1 DBT2	C1-Dibenzothiophenes C2-Dibenzothiophenes		1.97	20.9 30.3		1.97 1.97
3	DBT3	C3-Diberzothiophenes		1.97	31.4		1.97
3	DBT4	C4-Dibenzothiophenes		1.97	19.7		1.97
4	BF	Benzo(b)fluorene		1.97		U	1.97
4	FL0	Fluoranthene	J	1.97		U	1.97
4	PY0 FP1	Pyrene C1-Fluoranthenes/Pyrenes	J	1.97	0.533 5.02	J	1.97 1.97
4	FP2	C2-Fluoranthenes/Pyrenes		1.97	5.02	U	1.97
4	FP3	C3-Fluoranthenes/Pyrenes		1.97		Ŭ	1.97
4	FP4	C4-Fluoranthenes/Pyrenes		1.97		U	1.97
4	NBT0	Naphthobenzothiophenes	U	1.97		U	1.97
4	NBT1 NBT2	C1-Naphthobenzothiophenes C2-Naphthobenzothiophenes		1.97		U	1.97 1.97
4	NBT3	C3-Naphthobenzothiophenes	U	1.97		U	1.97
4	NBT4	C4-Naphthobenzothiophenes	ŭ	1.97		Ü	1.97
4	BA0	Benz[a]anthracene	U	1.97		U	1.97
4	C0	Chrysene/Triphenylene	J	1.97	0.461	J	1.97
4	BC1	C1-Chrysenes	J	1.97		U	1.97
4	BC2 BC3	C2-Chrysenes C3-Chrysenes	U	1.97		U	1.97 1.97
4	BC4	C4-Chrysenes	Ü	1.97		Ü	1.97
			-			-	

Project Name: Cardno ERI - Forme	r XOM	Jalk Fee	Property
Project Number: 850.0087.000			

		Project Number: 850.0087.000					
		Client ID			New Oil		
		Lab ID			1611009-15		
		Matrix Reference Method			Product Modified 8270D		
		Batch ID			SO120216B02		
		Date Collected			12/18/2014		
		Date Received Date Prepped			12/22/2014 12/02/2016		
		Date Analyzed			12/07/2016		
		Sample Size (wet)			0.1017		
		% Solid			100.00		
		File ID Units			F312051626.D mg/Kg		
		Final Volume			20		
		Dilution			1 1.97		
		Reporting Limit			1.97		
Class	Abbrev	Analytes		SSRL	Result		SSRL
5 5	BBF BJKF	Benzo[b]fluoranthene Benzo[j]fluoranthene/Benzo[k]fluoranthene	U	1.97		U	1.97 1.97
5	BAF	Benzo[alfluoranthene	IJ	1.97		IJ	1.97
5	BEP	Benzo[e]pyrene	ŭ	1.97		Ü	1.97
5	BAP	Benzo[a]pyrene	U	1.97		U	1.97
5 6	PER IND	Perylene Indeno[1,2,3-cd]pyrene	U	1.97		U	1.97 1.97
6	DA .	Dibenz[ah]anthracene/Dibenz[ac]anthracene	U	1.97		U	1.97
6	GHI	Benzo(g,h,i)perylene	J	1.97	0.635	J	1.97
3	CAR	Carbazole	U	1.97	0.638	J	1.97
3	4MDT	4-Methyldibenzothiophene		1.97	10.6		1.97
3 3	2MDT 1MDT	2/3-Methyldibenzothiophene 1-Methyldibenzothiophene	U J	1.97	6.40 1.38	J	1.97 1.97
3	3MP	3-Methylphenanthrene	,	1.97	4.76	,	1.97
3	2MP	2-Methylphenanthrene		1.97	5.11		1.97
3	2MA 9MP	2-Methylanthracene	J	1.97	8.20	U	1.97
3	1MP	9/4-Methylphenanthrene 1-Methylphenanthrene		1.97	8.20 4.47		1.97
123	T4	C23 Tricyclic Terpane		1.97	285		1.97
t24	T5	C24 Tricyclic Terpane		1.97	131		1.97
t25 te24	T6 T6a	C25 Tricyclic Terpane		1.97	56.4 10.4		1.97
te24 t26S	T6b	C24 Tetracyclic Terpane C26 Tricyclic Terpane-22S		1.97	10.4 14.5		1.97
126R	T6c	C26 Tricyclic Terpane-22R		1.97	13.6		1.97
t28S	T7	C28 Tricyclic Terpane-22S		1.97	7.63		1.97
t28R	T8	C28 Tricyclic Terpane-22R		1.97	7.10		1.97
129S 129R	T9 T10	C29 Tricyclic Terpane-22S C29 Tricyclic Terpane-22R		1.97	5.25 5.27		1.97
Ts	T11	18a-22,29,30-Trisnorneohopane-TS		1.97	14.0		1.97
t30S	T11a	C30 Tricyclic Terpane-22S		1.97	3.86		1.97
t30R	T11b	C30 Tricyclic Terpane-22R		1.97	4.19		1.97
Tm BNH	T12 T14a	17a(H)-22,29,30-Trisnorhopane-TM 17a/b,21b/a 28,30-Bisnorhopane		1.97	7.26	U	1.97
25N	T14b	17a(H),21b(H)-25-Norhopane		1.97	3.50		1.97
H29	T15	30-Norhopane		1.97	54.0		1.97
C29Ts	T16	18a(H)-30-Norneohopane-C29Ts		1.97	8.68 2.47		1.97
X M29	X T17	17a(H)-Diahopane 30-Normoretane		1.97	2.47 4.01		1.97
OL	T18	18a(H)&18b(H)-Oleananes	U	1.97	4.01	U	1.97
H30	T19	Hopane		1.97	48.2		1.97
M30	T20	Moretane		1.97	4.18		1.97 1.97
H31S H31R	T21 T22	30-Homohopane-22S 30-Homohopane-22R		1.97	25.8 21.8		1.97
T22A	T22A	T22a-Gammacerane/C32-diahopane		1.97	6.26		1.97
H32S	T26	30,31-Bishomohopane-22S		1.97	15.0		1.97
H32R H33S	T27 T30	30,31-Bishomohopane-22R 30,31-Trishomohopane-22S		1.97 1.97	10.0 10.1		1.97 1.97
H33R	T31	30,31-Trishomohopane-22R		1.97	6.00		1.97
H34S	T32	Tetrakishomohopane-22S		1.97	5.42		1.97
H34R	T33	Tetrakishomohopane-22R		1.97	5.28		1.97
H35S H35R	T34 T35	Pentakishomohopane-22S Pentakishomohopane-22R		1.97	4.78 4.02		1.97 1.97
d27S	S4	13b(H),17a(H)-20S-Diacholestane		1.97	18.6		1.97
d27R	S5	13b(H),17a(H)-20R-Diacholestane		1.97	9.42		1.97
d28S	S8	13b,17a-20S-Methyldiacholestane		1.97	6.63		1.97
aa27S aa27R	S12 S17	14a(H),17a(H)-20S-Cholestane/13b(H),17a(H)-20S-Ethyldiacholestane (S12) 14a(H),17a(H)-20R-Cholestane/13b(H),17a(H)-20R-Ethyldiacholestane (S17)		1.97	22.2 19.4		1.97
d29R	S18	Unknown Sterane (S18)		1.97	3.56		1.97
d29S	S19	13a,17b-20S-Ethyldiacholestane		1.97		U	1.97
aa28S	S20	14a,17a-20S-Methylcholestane		1.97	9.50		1.97
aa28R aa29S	S24 S25	14a,17a-20R-Methylcholestane 14a(H).17a(H)-20S-Ethylcholestane		1.97	6.23 10.2		1.97 1.97
aa295 aa29R	S28	14a(H),17a(H)-20S-Ethylcholestane 14a(H),17a(H)-20R-Ethylcholestane		1.97	10.2		1.97
bb27R	S14	14b(H),17b(H)-20R-Cholestane		1.97	14.4		1.97
bb27S	S15	14b(H),17b(H)-20S-Cholestane		1.97	13.7		1.97
bb28R bb28S	S22 S23	14b,17b-20R-Methylcholestane 14b.17b-20S-Methylcholestane		1.97	8.84 12.5		1.97 1.97
bb288 bb29R	S26	14b(H),17b(H)-20R-Ethylcholestane		1.97	12.5		1.97
bb29S	S27	14b(H),17b(H)-20S-Ethylcholestane		1.97	14.1		1.97
RC26/SC27TA	RC26/SC27TA	C26,20R- +C27,20S- triaromatic steroid		1.97		U	1.97
SC28TA RC27TA	SC28TA RC27TA	C28,20S-triaromatic steroid C27,20R-triaromatic steroid		1.97	2.42	U	1.97 1.97
RC28TA	RC28TA	C28,20R-triaromatic steroid	U	1.97		Ü	1.97

 Surrogates (% Recovery)
 \$ 101

 Vaphthalene-d8
 \$ 63

 Penzalphyrene-d10
 63

 Penzalphyrene-d2
 128

 PBIMCP-byron
 105

FORENSIC SIGNATURE OF HYDROCARBONS IN SOIL AT THE FORMER JALK FEE FACILITY

- U: The analyte was analyzed for but not detected at the sample specific level reported.

 B: Found in associated blank as well as sample.

 J: Estimated value, below quantitation limit.

 E: Estimated value, exceeds the upper limit of calibration.

 NA: Not Applicable

 D: Secondary Dilution Performed

 D1: Tertiary Dilution Performed

 D1: Value outside of QC Limits.

 §: Surrogate value outside of acceptable range.

 X: It is not possible to calculate RPD, one result is below the detection limit, the other is above reporting limit.

 G: Matrix Interference.

 P: Greater than 40% RPD between the two columns, the higher value is reported according to the method.

 I: Due to interference, the lower value is reported.

 N: Spike recovery outside control limits.

 E: Estimated due to Interference, (Metals)

 II: Diplicate outside control limits.

 P: Spike compound. (Metals)

 J: Below CRDL, Project DL, or RL but greater than or equal to MDL.

 C: Sample concentration is 2-4 times the spike level, recovery limits do not apply. (Metals)

 S: Spike Compound. (Organics)

 S: RPD criteria not applicable to results less than 5 times the reporting limit. (Metals)

 T: Tentatively identified corexit compound.

 Z: Result not surrogate corrected.

 DI: Surrogate result diluted out of sample.

 W: Matrix Interference may be present based on chemical reasonableness evaluation.

Marla D. Madden ExxonMobil Environmental Services Company Lead Project Manager

8941 Atlanta Avenue, #384 Huntington Beach, California 92646 714 964 4935 Telephone 832 544 3413 Cellular marla.d.madden@exxonmobil.com

August 25, 2017

Mr. Luis Changkuon California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

SUBJECT Response to Continental Heat Treating's Allegations

Former ExxonMobil Jalk Fee Property 10607 Norwalk Boulevard Santa Fe Springs, California CRWQCB-LAR Case No. 0203; Site I.D. No. 1848000

Mr. Changkuon:

At the request of ExxonMobil Environmental Services Company (EMES), on behalf of ExxonMobil Production Company (ExxonMobil), Cardno has prepared this *Response to Continental Heat Treating's Allegations* for the above-referenced site. Representatives of Continental Heat Treating (CHT) submitted several documents to the California Regional Water Quality Control Board – Los Angeles Region (CRWQCB-LAR) from March 2015 to June 2017, which dispute the facts of ExxonMobil's site conceptual model and evidence that CHT is the source of chlorinated solvents in soil at Jalk Fee. As neither CHT, nor the CRWQCB-LAR uploaded the documents to GeoTracker or sent copies to ExxonMobil when originally submitted, we only recently became aware of these documents, therefore are now providing this response to the allegations made by CHT in their documents.

The enclosed report from Cardno and the supporting reports in the appendices, which were prepared by experts in forensic science and aerial photo interpretation, demonstrate the inaccuracies of CHT's claims, and again demonstrate that CHT is the source of the chlorinated solvents in soil on the Jalk Fee property, including:

- ExxonMobil never used or stored chlorinated solvents at the Jalk Fee property (Site).
- The distribution of chlorinated solvents in soil and soil gas do not support CHT's allegations of dumping by third parties on the Jalk Fee property but point to CHT as the source.
- CHT used and stored extensive quantities of chlorinated solvents, primarily PCE, in its degreasing operations from approximately 1969 to 1995.
- CHT stored, used and generated significant quantities of quench oil and quench oil sludge as part of
 its heat treating operations. These types of oils are not used or generated in exploration and
 production (E&P) activities.
- A process flow diagram of CHT's historical operations, provided by CHT's consultant (Waterstone), shows that the mineral and waste oils used and generated in CHT's operations, including used quench oil, were commingled with PCE in the course of CHT's operations.
- CHT had poor operational and waste management practices that resulted in spills of chlorinated solvents and other chemicals, including used quench oil/quench oil sludge and waste oil, to the ground surface.
- CHT received various agency citations and notices of violation (NOVs) for its releases to the ground.

- CHT's waste disposal manifests only account for a small percentage of the amount of PCE that CHT generated or disposed of, based on its own statements.
- Information provided by CHT's consultant (Waterstone) on CHT operations and quench oil chemistry provided further confirmation of the conclusions reached in the 2016 forensic study by NewFields that found quench oil/quench oil sludge, a mineral oil unique to the heat treating process, were co-located with PCE in shallow soil on the Jalk Fee property along the property boundary with CHT.

There is only one obvious source of PCE on the Jalk Fee and CHT properties and this source resulted from CHT's operations, including its waste disposal practices. CHT's chemical use history, the distribution of PCE at the properties, and forensic analysis provide further evidence that CHT is the source of chlorinated solvents on the Jalk Fee property.

Please call the undersigned at (832) 544-3413 with any questions regarding the content of this document.

Sincerely,

Marla D. Madden Lead Project Manager

Marla D Madden

Attachment: Response to Continental Heat Treating's Allegations, prepared by Cardno.

C: w/attachment

Mr. Thomas Clark, Coast Aluminum and Architectural Inc./Clark Holdings, LLC, Property

Owner (Jalk Fee)

Ms. Michelle F. Smith, Property Owner (Jalk Fee)

Mr. Howard Schwimmer, Rexford

Mr. Preston Brooks, Cox Castle Nicholson LLP

Mr. Elizabeth Weaver, Norton Rose Fulbright US LLP

Ms. Sara Morey, EMES

C: w/o attachment

Mr. James Anderson, Cardno

August 25, 2017 Cardno 08115504.R27

Ms. Marla D. Madden
ExxonMobil Environmental Services Company
8941 Atlanta Avenue, #384
Huntington Beach, California 92646

SUBJECT Response to Continental Heat Treating's Allegations

Former ExxonMobil Jalk Fee Property
10607 Norwalk Boulevard
Santa Fe Springs, California
CRWQCB-LAR Case No. 0203; Site I.D. No. 1848000

Ms. Madden:

At the request of ExxonMobil Environmental Services Company (EMES), on behalf of ExxonMobil US Production Company (ExxonMobil), Cardno has prepared this *Response to Continental Heat Treating's Allegations* for the above-referenced site (Plate 1). In Cardno ERI's *Request to Name Continental Heat Treating as Discharger* dated March 25, 2015 (March 2015 Report), and Cardno's *Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger* dated February 8, 2017 (February 2017 Report), compelling evidence was presented to the California Regional Water Quality Control Board - Los Angeles Region (CRWQCB-LAR) which demonstrated:

- 1. ExxonMobil never used or stored chlorinated solvents at the Jalk Fee property (Site).
- 2. Continental Heat Treating (CHT) used and stored extensive quantities of chlorinated solvents in its degreasing operations from approximately 1969 to 1995.

Cardno License A/C10-611383

4572 Telephone Road Suite 916 Ventura, CA 93003 USA

Phone 805 644 4157 Fax 805 644 5610

www.cardno.com

- 3. CHT stored, used, and generated significant quantities of quench oil and waste oil sludge as part of its heat treating operations. These types of oils are not used, or generated in oil production activities.
- 4. CHT had poor operational and waste management practices that resulted in spills of chlorinated solvents and other chemicals, including used quench oil and waste oil, to the ground surface.
- 5. CHT received various agency citations and notices of violation (NOVs) for their releases of chlorinated solvents, waste oils, and other chemicals to the ground.
- Mineral oils found in the shallow soil on the Jalk Fee property, co-located with PCE along the property boundary with CHT, included used quench oil and quench oil sludge, products unique to the heat-treating business.

In the following listed submittals to the CRWQCB-LAR, various unsupported and inaccurate allegations were made regarding evidence presented by ExxonMobil to the CRWQCB-LAR:

- DDSF, Del Guercio, Springer & Francis, LLP's (DDSF) letter, ExxonMobil is the Discharger of Waste dated, May 22, 2015 (DDSF, 2015).
- DDSF's letter, Continental Heat Treating, dated January 31, 2017 (DDSF, 2017a).
- DDSF's letter, Continental Heat Treating, dated May 23, 2017 (DDSF, 2017b).
- DDSF's letter, Continental Heat Treating, dated June 1, 2017 (DDSF, 2017c).
- Waterstone Environmental, Inc.'s (Waterstone) report, Response to Cardno's Report of Additional Evidence in Support to Name Continental Heat Treating as Discharger (Waterstone Report), dated April 27, 2017 (Waterstone, 2017).

Claims made by CHT related to the NewFields' forensic study, alleged uncontrolled dumping at Jalk Fee, and non-CHT sources of chlorinated solvents are addressed first followed by responses to the remaining allegations. CHT's allegations are summarized in italics, followed by Cardno's detailed response.

FORENSIC STUDY DEMONSTRATING USED QUENCH OIL/QUENCH OILSLUDGE IN SOIL ON JALK FEE PROPERTY

Cardno and ExxonMobil contend that heat treating quench oil was co-located with chlorinated solvents in the soil samples taken on the Jalk Fee Property and suggest this proves CHT is responsible for the chlorinated solvents located on Jalk Fee. However, these contentions are fallacious, as they do not demonstrate any compelling information supporting their claim that heat treating quench oil is located in the soil samples on the Jalk Fee Property; the evidence demonstrates otherwise. PCE is not present in virgin quench oil, the quench oil that was

used, or any waste quench oil at CHT's facility, therefore any co-location of these chemicals would be purely coincidental.

ExxonMobil engaged NewFields, a leader in environmental forensics, as an independent consultant to conduct a forensic study of soil samples collected on the Jalk Fee property in the area where the highest PCE concentrations in soil are located and directly north of the property boundary with CHT (Plates 2 and 3). NewFields' analysis was presented as part of Cardno's February 2017 Report and demonstrated that the shallow soil on the Jalk Fee Site, directly north of the CHT equipment storage and repair area, contains used quench oil/quench oil sludge and varying types/mixtures of other mineral oil sludge/waste, co-located with PCE, consistent with the waste that was generated by CHT's operations during the years when it was also using PCE in its degreasing operations (Cardno, 2017; NewFields, 2017a).

NewFields prepared a detailed point-by-point response (NewFields, 2017b) to Waterstone's allegations (Waterstone, 2017) about the forensic investigation, which is included as Appendix A to this report. Briefly, the responses are summarized as follows:

- 1) Waterstone's Report includes a pre-1995 process flow diagram of CHT's operations, which was provided by CHT and shows that both PCE and used quench oil were present in some wastes generated by CHT's heat treating operations (see Figure 4 of Appendix A).
- Waterstone's analysis of chromatograms reviewed by NewFields' and generated by laboratories used to analyze the soil samples ignored inter-laboratory analytical and presentation differences, which when considered clearly show the quench oils historically used at CHT (and analyzed by Waterstone) are virtually identical to the quench oil reference material from the heat treating facility used in the NewFields forensic study. In other words, by providing chromatograms representing CHT's on-site quench oil (which when corrected for presentation differences, closely matched the exemplar quench oil used by CHT), Waterstone's work confirms that used quench oil/quench oil sludge from CHT are present in Jalk Fee soil near the CHT property boundary (co-located with PCE).
- 3) Waterstone's study of the aromatic content of CHT's quench oils only analyzed for 17 different PAHs, whereas Newfieds' study analyzed for 50 different PAHs, which is typical for forensic analyses. Waterstone then incorrectly concluded that the concentrations of PAHs in CHT's and NewFields' quench oils were significantly different. When the same number of PAH analytes are compared, there was no disparity in total PAH concentration between CHT samples and Newfield's quench oils, including in the oils in on-site soil near the CHT property boundary.

- 4) Because quench oils are de-aromatized, the low aromatic content found in oils in soil samples from the subject site along the CHT property boundary is further evidence that used quench oil/quench oil sludges are present in several of the soil samples.
- 5) Other soil samples from the forensic study contained varying types/mixtures of mineral oil sludges/wastes characteristically used in metal working (e.g., cutting oils, machining forming) that would have been generated by CHT in cleaning/washing arriving metal parts. Such oils are not consistent with or used in exploration and production field operations such as those conducted at the Jalk Fee property.
- 6) The new information provided by Waterstone provides further support for NewFields' conclusion that used quench oil/ quench oil sludges, which are unique to the heat-treating process, are co-located with PCE in the shallow soil on the Jalk Fee property along the property boundary with CHT.

CHT'S ALLEGATIONS OF DUMPING AND NON-CHT SOURCES OF CHLORINATED SOLVENTS ON OR ADJACENT TO JALK FEE PROPERTY

ExxonMobil clearly had no control of the Jalk Fee Property for a period of over 50 years, so they have no knowledge of what chemicals were used or dumped during that time. As demonstrated previously through historic aerial photos, it is clear that the Jalk Fee property was an unsecured property upon which dumping occurred with easy access from Norwalk Boulevard for almost its entire existence as an oil field. It was, in effect, an uncontrolled waste dumping ground for over 50 years. Therefore, beginning in 1994, it became a "controlled" dumping ground due to its use as a land treatment unit for receipt of impacted soil.

Cardno's February 9, 2017 report attempts to address only the former trucking operations; it does not even mention the historical aerial photographs, initial Mobil consultant report references, DTSC Preliminary Assessments, EPA investigations, and other documentation identifying sources of chlorinated solvents on the Jalk Fee Property, including: 1) decades of unrestricted dumping; 2) the former boneyard; 3) historic solvent vapor discharges from borings in the eastern section of the site; 4) the former tenant that used solvents; and 5) Mobil employee discussions of off-site solvent dumping that may have occurred near the northern property boundary.

Charles Sotelo was a CHT employee during the periods 1982-1991 and 2004 – present. During Mr. Sotelo's first period of employment, Mr. Sotelo stated he witnessed several tank trucks come onto the Jalk Fee property and discharged dark oily liquids onto the site (DDSF, 2015).

ExxonMobil failed to mention or acknowledge that the occupant of 12110 Clark Street (Duncan Industries) to the north of the Jalk Fee property had an active degreaser.

The SFSFD (City of Santa Fe Springs Fire Department) report describes, "Dug illegal trench in dirt field & illegal sewer lines- spilling diesel, oil & solvent to the ground and will not clean up."..The address written on the SFSFD report for the field where dumping occurred in 10601 Norwalk Blvd, and this is the address associated with the "notch" on the northeast corner of the Jalk Fee Site and which at that time was occurred by Maple John Construction & Development Co.

Some of the above statements reference aerial photos presented in the DDSF letter dated January 31, 2017 as evidence of uncontrolled dumping. On these aerial photos, CHT highlighted the presence of alleged sumps, the presence of dark colored soil, earth moving equipment, trucks and apparent land farming operations. However, there is not a single aerial photo that shows activities at Jalk Fee that are inconsistent with those of an operating exploration and production oil field in the time period in which the aerial photos were taken. The aerial photos do not demonstrate uncontrolled dumping or the introduction of chlorinated solvents.

An example of the unsubstantiated dumping allegations made by CHT is a 1963 aerial photo that CHT states showed dump trucks coming on site and dumping dark-stained soil. ExxonMobil commissioned Aero-Data Corporation, a firm experienced with aerial photo evaluation, to review the interpretations in the DDSF letter. Aero-Data evaluated the 1963 photo and a subsequent photo and found that, in fact, trucks from an adjacent off-site road construction project in Norwalk Boulevard were simply using the eastern edge of the Site as a turnaround, so that trucks could re-enter traffic safely (Aero-Data, 2017) (Appendix B). There was no evidence of dumping.

The Site features and actions alleged in the DDSF letters and Waterstone Report to be indicators of uncontrolled dumping and, by inference, to be sources of chlorinated solvents are individually discussed in the following subsections.

<u>Sumps</u>

Sumps are a standard part of exploration and production operations, they were used to hold petroleum-based fluids, and are not indicators of uncontrolled dumpling. Further, the purpose of sumps was to hold drilling mud, oil, and oily produced water from activities such as drilling or workover of oil wells, or tank batteries; therefore, the sumps would exclusively have contained petroleum-related liquids and have not contained chlorinated solvents. The sumps would be associated with and located in proximity to other oil field infrastructure, such as oil wells or tank batteries, and not in isolated areas. As part of ExxonMobil's historic assessment activities, various former

sumps were sampled over multiple investigations, including for chlorinated solvents, and none of these sump areas were found to contain anything more than trace chlorinated solvent concentrations (Levine Fricke, 1991; Alton, 1997, Alton, 1998; TRC Alton, 2000).

While some of the structures identified as sumps in the aerial photos in the DDSF letter are, in fact, sumps associated with exploration and production operations as explained above, many of the smaller dark areas labeled as sumps by DDSF, especially those along the CHT/Jalk Fee property boundary, are not sumps at all. Aero-Data reviewed the original photograph film and identified that what DDSF called sumps were actually a piece of dust on the film, sheds, shadows from trees, sheds and other elevated structures, and remnant features from a pipeline (Appendix B). This was, in fact, a failed desperate attempt by DDSF to identify any structure or area along the CHT property boundary as a sump when, in fact, there were no sumps along the CHT property boundary.

Dark-Colored Soil and Landfarming

The Jalk Fee property was an operating exploration and production facility from the 1920s to the 1990s. The presence of dark-colored, petroleum-stained soil can result from these operations and is commonly found on oil fields. It in no way represents uncontrolled dumping from off-site sources or the presence of chlorinated solvents.

Further, oil fields have periodic construction activities that require moving and use of soil for the construction of roads, drilling pads, installation of piping, and construction of tankage and berms. This often requires large equipment (e.g. graders, dump trucks) to move the soil. In addition, landfarming (the spreading of petroleum-containing soil to aerate and bioremediate the petroleum hydrocarbons) was an accepted industry practice at oil fields. Thus, the appearance of trucks and earth-moving equipment, the presence of dark-colored, petroleum-containing soil, and the spreading and remediation of such soil on the property were part of normal oil field operations during the time frame of the aerial photos, and are not indicators of uncontrolled dumping on the Jalk Fee property, nor the introduction of chlorinated solvents.

In 1993 and 1994, two biocells were constructed on site to bioremediate petroleum-containing soil from the Jalk Fee and three other ExxonMobil-operated oil field sites from the Santa Springs oil field area. The southern boundary (berm) of the biocells were more than 60 feet from the Jalk Fee / CHT property boundary. The scope of work for this project was presented in McLaren Hart's *Remedial Action Plan*, dated December 21, 1993, which was approved by the CRWQCB-LAR (McLaren Hart, 1993). As stated in McLaren Hart's First Quarter 1994 Status Report:

The principal objective of the land treatment operation is to reduce the concentration of total recoverable petroleum hydrocarbons (TRPH) in soil transported to the land treatment wells to below 1,000 parts per million (ppm). As presented in the RAP, the soil transported to the Jalk

Fee Site is derived solely from properties in the Mobil Operated Santa Fe Springs Oil Field, including the Jalk Fee, DeWenter Jordan/Green, Baker/Humble properties and Oil Well 732-C. The biocells were monitored and sampled per CRWQCB requirements and, upon reaching standards, soils were removed and returned to excavations on the same oil field properties (McLaren Hart, 1994).

Lastly, the areas beneath the former biocells were later sampled for chlorinated solvents as part of site investigations and soil excavations leading up to sale of the property and redevelopment, and chlorinated solvents were not detected, except for an occasional low concentration, in the soil samples (Alton, 1997; Alton, 1998; TRC Alton, 2000).

Rather than illegal dumping of "dark-stained soils", movement and bioremediation of petroleum-containing soil were standard oil field practices, done with regulatory oversight, and in no way were these bioremediation activities evidence of uncontrolled dumping or a potential source of chlorinated solvents.

As presented in Cardno's March 2015 Report, ExxonMobil confirmed by contacting oil production personnel that chlorinated solvents were not used by ExxonMobil Production at oil field sites, which is true for both Jalk Fee and the other former ExxonMobil oil field sites in California (Cardno ERI, 2015). Further, chlorinated solvents were not historically used in oil field operations across the industry. Oil production sites typically use petroleum-based solvents, as they are readily and cheaply available, not chlorinated-based solvents. This is further supported from a state-wide review of the State Water Resource Control Board's GeoTracker system which did not identify chlorinated solvent contamination resulting from oil field operations, and discussion with the Central Valley Regional Water Quality Control Board and Santa Barbara County Environmental Health Services, two jurisdictions with many historical exploration and production remediation sites, who indicated that they were not aware of any oil field sites that had chlorinated solvent contamination. These facts have been raised several times to the CRWQCB-LAR and have not been disputed.

Former Truck Parking Area

CHT claimed that a historic on-site trucking operation is evidence of an on-site source of PCE. ExxonMobil's expert aerial photo interpreter (Aero-Data) previously confirmed that in the mid-1980s parked trucks were observed in the northcentral part of the subject site. The expert also confirmed that no storage tanks or buildings of the size necessary for truck repairs were observed in the northcentral area of the Site in the aerial photos. Although CHT alleged that the trucks were tankers, implying they were dumping waste on site, Aero-Data saw no evidence of tanker trucks in any of the aerial photos, and interpreted they were mostly likely box trailer trucks (Appendix B) (Cardno ERI, 2015).

The truck parking was in the same area that McLaren Hart conducted a soil gas investigation in 1996 in direct response to the question of whether a trucking operation was a potential source of PCE (McLaren Hart, 1996). The investigation concluded there was no source of PCE in the trucking area. The soil gas PCE concentrations found in the truck parking area were low and were four orders of magnitude lower than found at the property boundary with CHT. The source of PCE in soil gas is clearly along the property boundary with CHT and laterally diffuses from there, as low concentrations were only detected in two of the 18 soil gas samples collected by McLaren Hart (the other 16 samples had no detectable concentrations), which is consistent with lateral transport from the source area along the CHT property boundary (McLaren Hart, 1996).

Lastly, soil boring B22, with a maximum concentration of PCE of 5.46 mg/kg at 10 feet bgs, has also been alleged to be associated with the truck parking area (Plate 2). However, the aerial photo analysis confirmed that the location of B22 was well outside the perimeter of the area where the trucks were observed to be parking. Further, the maximum PCE concentration measured in B22 is 3 to 4 orders of magnitude lower than the concentrations measured in the source area along the CHT property boundary. Thus, dissolved-phase and/or soil gas migration from the property boundary source area is likely the cause of the PCE concentrations at B22 (Cardno ERI, 2015).

Former Boneyard

Waterstone alleged that the boneyard could be a potential source of chlorinated solvents. A boneyard is simply an area in which exploration and production equipment that may be reused at a future date or is no longer required, was stored. The boneyard is located more than 500 feet from where the chlorinated solvents in soil have been found along the CHT/Jalk Fee property boundary. Additionally, Levine-Fricke investigated the boneyard area with a series of trench samples and soil borings. The analyses conducted included analyzing for chlorinated solvents, and no chlorinated solvents were detected in these soil samples. Therefore, the boneyard could not have been a source of chlorinated solvents (Levine Fricke, 1991).

Historic Solvent Vapor Discharges from Borings in the Eastern Section of the Site

All of the historical soil and soil gas investigations have indicated the source of chlorinated solvents is along the CHT/Jalk Fee property boundary and that concentrations decrease by orders of magnitude moving to the north and east, confirming that the concentrations are the result of lateral migration from the CHT property boundary and not a separate source to the north or east. The presence of vapors in historical borings in the southeastern portion of the Site is consistent with where laterally transported concentrations have been identified, ExxonMobil's site conceptual model, and the source along the CHT/Jalk Fee boundary, and is not indicative of a separate source area.

Former Tenant that Used Solvents

ExxonMobil has conducted an extensive review of its lease files, and there is no evidence in the files that the property was leased to or operated by any company other than Hathaway Oil. While an old report prepared by one of ExxonMobil's former consultants stated that a portion of the property was leased by a company that utilized chlorinated solvents, ExxonMobil has since thoroughly investigated this statement and has found no information or documents that support this claim, including lease documents to other companies.

Off-Site Solvent Dumping Alleged to have Occurred Near the Northern Property Boundary

CHT alleged that solvent dumping along the northern property boundary, the adjacent property to the north (Duncan Industries) which operated a degreaser, and from a trucking company that allegedly operated onsite (associated with the adjacent parcel northeast of the Site (Maple John Construction and Development Co.)), may be sources of the chlorinated solvents on the southeastern portion of the Jalk Fee property.

Levine Fricke investigated the area of the northern property boundary specifically in response to the allegations above, and other than a trace detection of PCE of 0.035 mg/kg, the soil samples along the northern property boundary had no detectable concentrations of PCE. In addition, portions of the northern boundary and central eastern area of the Site were sampled during previous soil removal activities prior to sale and redevelopment of the property, and no chlorinated solvents were found (Levine Fricke, 1991; Alton, 1997; Alton, 1998; TRC, 2000).

As the PCE concentrations in soil and soil gas decrease by more than 4 orders of magnitude moving north from the CHT property boundary across the Jalk Fee site, there is no mechanism by which PCE released at the northern property boundary could have migrated across the property, leaving no trace in the northern half of the property, and resulted in the source area which has been well substantiated along the Jalk Fee/CHT property boundary.

Sotelo Statements on Alleged Tanker Truck Dumping

Mr. Sotelo stated that the dumping occurred 20 to 25 feet north of the property boundary. The attached Plate 3 shows the location of all elevated PCE concentrations in shallow soil (=/<10 feet bgs) on the Jalk Fee property. These concentrations range from 100s to 10,000s mg/kg of PCE and only in two locations (i.e., immediately north of the CHT equipment storage and repair area, and immediately north of the CHT building between CHT's 575 gallon PCE aboveground storage tank and the degreaser) all within 10 to 12 feet of the property boundary.

For the distribution of PCE observed in soil at Jalk Fee to have resulted from dumping by vacuum trucks, the tanker truck would have had to illegally enter an oil field site, pull up right along the property boundary, and have been carrying thousands of gallons of PCE (not oil or produced oily water). On a property which is 8.8 acres in size, much of it well away from roads and adjacent businesses, its strains credulity to think that a tanker truck driver would have decided to pull up right along the property boundary, in full view of CHT's employees and Norwalk Boulevard, to illegally dump a load of waste that happened to contain the same chlorinated solvent being used at the adjacent business.

On the other hand, vacuum trucks are commonly used in oil production operations to transport petroleum fluids. Mr. Sotelo stated he observed, "dark oily looking liquids", which is consistent with the oil or produced oily water that would have been held in a vacuum truck on an oil field site, and clearly not liquid chlorinated solvents. While there is no evidence of sumps right along the property boundary, there were historic sumps within the southeast quadrant of the Jalk Fee site, and normal operations would have the produced oily water discharged into a sump prior to skimming and collection of the oil.

Regulatory References

The EPA report referenced in Waterstone's allegations above, in fact, states, "TCE, PCE, and 1,1-DCE have been found in high concentrations in the groundwater. Based on studies of past site activities and sampling performed by Alton Geoscience, this contamination may be due to past and present activities at Continental Heat Treat rather than Jalk Fee" (EPA, 1999).

CHT'S POOR WASTE HANDLING AND MANAGEMENT PRACTICES

Contrary to Cardno's and ExxonMobil's arguments, waste handling practices by CHT were very good, especially with respect to chlorinated solvents, and there were no documented releases or poor waste handling practices by CHT that resulted in either quench oil, waste oil, or chlorinated solvents that resulted in releases impacting the Jalk Fee property.

CHT was issued numerous NOVs and demands by regulatory agencies to address spills, releases, and improper waste handling practices including spills to the ground. Specifically, there were three reported PCE degreaser fires, earthquake damage to equipment, a documented release from the degreaser to subsurface soil, and citations for poor handling practices for waste solvents and waste oil. It should also be noted that the regulatory files do not cover the entire timeframe when CHT used PCE in its operations (1969 to 1995), but begin in 1978, a time when regulatory oversight of hazardous materials was starting.

The NOVs and agency demands included:

- A Los Angeles County, Department of Health Services NOV, dated March 16, 1985, directing CHT "to remove oil from the ground in rear storage area" (LADHS, 1985).
- A 1989 Los Angeles County Department of Health Services NOV documenting that CHT needed to do the following items (italic font indicates items hand written by inspector) (LADHS, 1989).
 - Discontinue disposal of hazardous waste to unauthorized point(s) any waste oil onto the ground
 - "Remove and legally dispose of oily surface in rear asphalted yard".
 - Store hazardous waste in compatible containers that are closed and in good condition..."keep lids and bungs on, don't overfill"
 - Properly label all containers with the following words: "Hazardous waste" "PERC"
 - "Label waste oil as waste oil"
 - Submit to this office "all completed manifests"
 - Submit to this office a copy of your facilities hazardous materials contingency plan and employee
 training plan (underline added by inspector)
- A County of Los Angeles Fire Department Order to Comply, dated October 6, 1994, to investigate an area below the degreaser, in which subsurface soil were subsequently found to be impacted with PCE (LAFD, 1994).

These documents and numerous others presented in Cardno's March 2015 and February 2017 reports demonstrate CHT's long history of poor housekeeping and waste management practices (Cardno ERI, 2015; Cardno, 2017).

Cardno conducted file reviews with the Department of Toxic Substances Control (DTSC), and ExxonMobil's outside counsel, Norton, Rose Fulbright US LLP submitted a Freedom of Information Act request to USPEA to obtain any documentation for CHT's legal disposal of PCE. Only 12 manifests were located, which span from 1984 and 1991 and indicate a total of only 4,330 gallons of PCE being taken to a legal offsite disposal facility during its 26 years of generating spent PCE (1969 to 1995) (Table 1).

However, a County of Los Angeles survey report, dated May 19, 1989, indicated that CHT was generating 2,200 gallons of PERC per year (County, 1989), and in its 1982 South Coast Air Quality Management District application, CHT reported that its 575 gallon AST had "26 refills per yr", indicating CHT used up to 14,950 gallons of PCE per year. While the exact quantity of spent PCE that was generated by CHT is not known, clearly tens of thousands of gallons were used, while the disposal of less than 5,000 gallons to a legal disposal facility can be accounted for.

STORAGE AND MOVEMENT OF PCE AT CHT

Cardno claims CHT had a "575-gallon outdoor aboveground storage tank (AST) for PCE located off the northwest corner of CHT's building, which was located along the property boundary with Jalk Fee." This is also untrue. The planned site map included in the SCAQMD October 31, 1979 application for permit to construct and operate the 575 gallon AST does not reflect the actual final location of that AST...CHT's employees identify that the PCE AST was located approximately 20 feet southeast of the location set out on the site map".

Whether the AST was located at the position shown on the application CHT submitted to the SCAQMD, or 20 feet to the southeast as stated by Waterstone, the 575-gallon AST was located near the northern boundary of the CHT property and handled large quantities of PCE. According to the SCAQMD documentation, the tank was filled up to 15 times a year, which represents use of up to 15,000 gallons of PCE per year. CHT stated in previous submittals that no pipes connected the tank with the degreaser, and that the PCE was manually transported in drums via forklift to the degreaser (DDSF, 2017a; 2017b, 2017c). This transport was likely done on frequent basis, and would have required pumping the PCE from the AST to the transport container(s). As the SCAQMD documentation does not indicate that there was secondary containment around the AST, each time the tank was filled, and each time PCE was transferred to a drum represents a possible discharge opportunity of PCE to the ground.

ALLEGATIONS OF DUMPING AT OMEGA

Interestingly, ExxonMobil is identified as a potentially responsible party for the dumping of waste at the nearby Omega Superfund Site [Omega], which includes contamination similar to that in the subsurface of the Jalk Fee Property. Specifically, ExxonMobil was named because over a period of three years from 1988 to 1991, eight different ExxonMobil entities ranging from automobile service stations to Exxon Chemical Corporation sent waste to the Omega site. Thus, it is not unlikely that during the prior fifty years ExxonMobil related facilities may likewise have dumped solvents on the ExxonMobil owned Jalk Fee property.

This allegation by CHT is false. Waste was legally sent from Exxon Chemical Company (Exxon) and by other affiliated entities to the Omega Facility, which at the time was a licensed facility authorized to accept such waste. ExxonMobil has never been identified as or accused of dumping waste on the Omega facility. Further, Jalk Fee was owned by Mobil Oil Corporation (Mobil) during its years of operation as an oil field and Mobil did not transport waste to Omega. The merger between Mobil and Exxon did not occur until 1999, by which time PCE had already been identified and assessed on the Jalk Fee property. Therefore, Exxon Chemical Company had no relationship with Mobil and would not have accessed the Jalk Fee property, prior to 1988, as falsely insinuated by CHT.

CHLORINATED SOLVENTS NOT USED AT OILFIELDS

....the "Townlots Project", which is located just a few blocks away, where significant soil contamination with chlorinated solvents was identified and remediated prior to development of this former oil field property located at the southwest corner of Telegraph Road and Bloomfield Avenue. This site is in the public record and confirms not only that chlorinated solvents are commonly used in oil fields, but that this was the general practice in other oil operations within the Santa Fe Springs Oil Field (Waterstone, 2009).

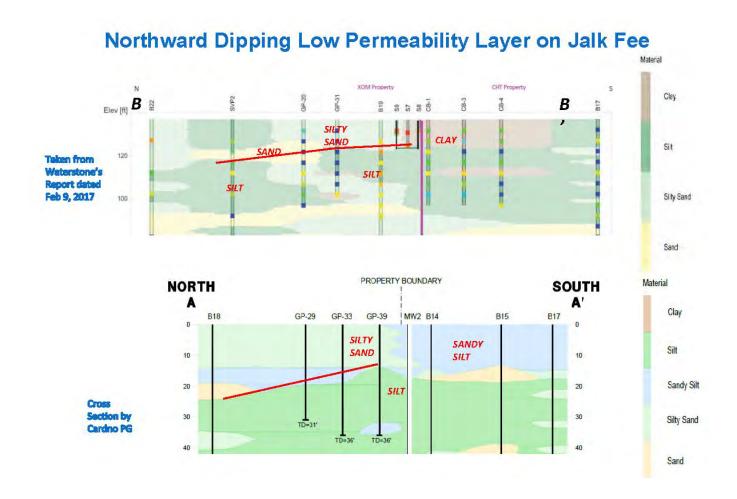
In its report, Waterstone claimed to have firsthand knowledge of a nearby site, which was a former oil field property that had significant chlorinated solvent soil contamination (Townlots Project). The implication was that ExxonMobil's information that chlorinated solvents were not chemicals used during oil exploration and production activities was incorrect.

Cardno conducted file reviews using the DTSC's Envirostor database, and the hard copy files in the CRWQCB-LAR's office for the Townlots Project (10485 Bloomfield Avenue, Santa Fe Springs), which is also known as the Beaumon Trust (Beaumon) Property (12525 Park Avenue, Santa Fe Springs) (DTSC, 2017). As demonstrated by the information in the agency files, Waterstone's assertion was disingenuous. Although the Beaumon property was used in oil production operations from ~the 1920s to the 1950s, the site was later used for a drum recycling business from 1971 to 1984. An interview with Richard Espinoza, a former forklift operator for Ameron, one of the businesses that sent drums to the Beaumon property, stated, "some of the drums contained waste solvent and sludge." Mr. Jesse Ruiz, the General Foreman for Ameron, stated that "30-60 drums per load" were picked up and taken to the Beaumon property, indicating a high volume of drums and waste passing through the property. In 1985, the City of Santa Fe Springs contacted the owners "to discuss the condition of the Subject Property, which reportedly was covered with 55-gallon drums (some full of chemicals), 5 gallon plastic buckets and had chemical residues on the dirt surface of the site", and in January 1986, "City Health Officers respond to a complaint alleging that drums of hazardous waste are abandoned on the Subject Property. Approximately 140 steel drums, many corroded or open, are observed on the Subject Property." (Waterstone, 2005).

The information in the agency files makes it clear that the chlorinated solvent contamination on the property was the result of the extremely poor handling practices by the drum recycling business that operated on the property for 13 years and allowed waste and residues in the drums to be released onto the dirt surface of the property. In fact, Waterstone was the environmental consultant for this property, and in one of their reports to the CRWQCB-LAR, stated, "a number of VOCs including chlorinated compounds exist beyond the boundaries of the Beaumon Trust Property indicating that the drum recycling activities have caused offsite impact", which contradicts the implication

in the 2017 Waterstone Report that the PCE on the property was from historical oil field activities (Waterstone, 2005).

The operation of a drum recycling business on the Townlots property has nothing to do with the Jalk Fee site or E&P operations and in no way confirms that chlorinated solvents are commonly used in oil fields or that this was a general practice in other oil operations within the Santa Fe Springs Oil Field.


SITE CONCEPTUAL MODEL

ExxonMobil's Site Conceptual Model SCM) did not fully explain how alleged PCE released by CHT at the property boundary would have migrated onto and across the Jalk Fee property. Since CHT began operations, the property line has been fenced and the CHT Property has been fully paved for surface flow to the southwest.

Cardno and ExxonMobil fully stand by the site conceptual model previously submitted to the CRWQCB-LAR in Cardno's February 2015 Report and February 2017 Report (Cardno ERI, 2015; Cardno, 2017). CHT's allegations confuse regional topography and regional groundwater flow with local subsurface site stratigraphy. Surface topography and regional groundwater flow in the saturated zone do not have effect on contaminant migration in the shallow vadose zone, whereas the local site stratigraphy can significantly influence the movement of contaminants in the soil. Both the distribution of PCE in soil and the local site stratigraphy confirm ExxonMobil's site conceptual model as evidenced by:

- The local site stratigraphy, which includes a lower permeability layer of silt at 15 feet bgs near the property boundary between CHT and Jalk Fee, slopes downward to approximately 25 feet bgs when moving north away from the property boundary.
- The elevated concentrations of PCE in shallow soil (< 10 feet bgs) are only found immediately along the Jalk Fee / CHT property boundary.
- As one moves away from the immediate vicinity of the property boundary, elevated concentrations of PCE
 of similar magnitude are only found in deeper soil along the silt layer and not in samples collected from
 shallower depths, indicating lateral and downward migration from the property boundary.

This northward dipping lower permeability layer, which supports the site conceptual model, is shown below, as well as in Plates 2 and 4 and Appendix E. It should be noted that one of the cross sections was generated by Waterstone and is taken from their report (Waterstone, 2017).

SAMPLING HISTORY

Even this history is indicative of ExxonMobil's slanted bias as ExxonMobil failed to sample adequately for chlorinated VOCs and instead devoted most of its historic sample efforts to TPH. On those limited occasions when chlorinated VOCs were analyzed...

CHT apparently has not adequately reviewed ExxonMobil's extensive investigation activities. ExxonMobil's consultants have collected a very substantial data set for PCE, in which approximately 450 soil samples collected on the Jalk Fee property have been analyzed for chlorinated solvents (Plates 1 and 2). In contrast, only

approximately 75 soil samples have been collected on the CHT property for PCE analysis, many of which were actually collected during ExxonMobil's 2012 investigation, leaving areas such as the PCE-containing soil beneath and surrounding CHT's former degreaser inadequately investigated.

IDENTIFICATION OF NATIVE SOIL

Cardno made an attempt to collect soil samples that were in the native soil and not the backfill soil for borings in excavation SB49 or other soil samples collected during the October 2016 investigation outside of the excavation boundaries. However, if one closely examines their boring logs for this investigation, it is very clear that they did not accomplish this very important task.

Where fill material was observed and interpreted in some samples, Cardno logged them as fill on the logs (Cardno, 2017). Cardno stands by its interpretation that most of the samples analyzed during the 2016 forensic investigation were collected in native soil for the following reasons.

The SB49 excavation proceeded to depths ranging from 6 to 13 feet bgs; Waterstone appears to have assumed that any samples from shallower depths would be in fill material. However, the excavation would not have had sheer walls, and the sidewalls would have sloughed, or been sloped from the center of the excavation outward to meet OSHA requirements. Therefore, samples shallower than 6 to 13 feet bgs along the perimeter of the excavation could have been in native soil.

The fact that many of the soil samples collected during the 2016 forensic investigation contained both PCE and used quench oil as demonstrated by NewFields is proof that the samples were of native soil, as the releases of PCE and used quench oil were all prior to the 2000 excavation and backfill of SB49, and the soil impacts wouldn't have migrated upward after the excavation was backfilled (Cardno, 2017; Newfield, 2017).

Waterstone asserted that the presence of trace gravel in several of the samples was evidence that the soil was not native. During site redevelopment after the excavation was backfilled, base material would likely have been imported to the Site. During grading activities, the top several feet of surface soil would have been disturbed and become mixed with the imported gravel base, thus a trace amount of gravel in near surface soil is common at redeveloped properties. Further, where trace gravel was reported, in general the gravel disappeared within the first few top feet of the boring.

All soil logging during the forensic investigation was performed by one of Cardno's Professional Geologist's (PG). Several borings were advanced outside of the footprint of the SB49 excavation to ensure native soil was accurately

identified. Based upon review of logs from previous CHT and Jalk Fee investigations and the observations during sampling, Cardno's PG identified reddish-brown sandy silt or clay silt in shallow soil in the majority of the borings, including those located well outside of the SB49 excavation footprint where fill material would not be expected at those depths. Below the reddish-brown soil, a poorly graded sand was typically found. Where fill material was observed at the near surface, it was logged as fill. Based upon the occurrence of the reddish-brown sandy silt or clayey silt at varying depths and its presence in both the borings within the SB49 excavation footprint and outside of the former excavation, this soil is clearly native at the Site, and Cardno stands by its interpretation and that the samples from the forensic study correctly represented native soil.

Backfill of SB49 Excavation

The second event that could have an even more dramatic effect on the TPH fingerprint is that the SB49 Excavation had varied bottom depths (6-13 feet bgs), and once the final depth was achieved, it appears to have been backfilled with former TPH impacted soil that was thermally desorbed offsite by American Remedial Technologies (ART) and brought back onsite as backfill material for this excavation.

Cardno reviewed the trucking logs and Keantan Laboratories (Keantan) compaction report contained in TRC's Site Closure Report and Risk Assessment Report dated November 28, 2000, which documented the excavation and backfill activities associated with SB49 (TRC Alton, 2000).

According to the trucking logs, importing of thermally treated soil to the Site from ART only occurred on November 13 and 14th, 2000 (Appendix C). According to the Keantan report, SB49 was tested for compaction, and thus backfilled, from 9 feet bgs to 2 to 3 feet bgs on November 8 and 9, 2000 (Appendix D). Therefore, while the top 2 to 3 feet of the SB49 excavation could have been backfilled with thermally treated soil, the sequence of dates demonstrate that the vast majority of the excavation, from 2 to 3 to 13 feet bgs, could not have been backfilled with thermally treated soil from ART. Additionally, as NewFields' explains in its response, the hydrocarbons found in the soil samples during the forensic study were altered by weathering and bioremediation, and not by thermal desorption, thus the soil used to backfill the SB49 excavation had no effect on the TPH fingerprints in the forensic evaluation (Appendix A).

CONCLUSIONS

While CHT's allegations were spurious or disproved in the responses above, Waterstone did provide several pieces of information in its report that further supported ExxonMobil's site conceptual model, including the pre-1995 CHT operations process flow diagram that showed how PCE and quench oil/waste oil became mixed, the cross-section

showing the northward dipping silt layer on the Jalk Fee property, and the forensic analysis of quench oils used by CHT that were very similar to the fingerprints and PAH content of the quench oil obtained by NewFields and found in site soil samples collected on the Jalk Fee property during ExxonMobil's forensic study.

The following can be concluded based upon the evidence provided to the CRWQCB-LAR in Cardno's March 2015 Report and February 2017 Report (Cardno ERI, 2015; Cardno, 2017), the additional evidence provided in the February 2017 Waterstone Report (Waterstone, 2017), and subsequent research presented in this report.

- Only CHT used, stored and disposed of PCE, which was in large quantities.
- CHT's waste manifests only account for a small percentage of CHT PCE disposal.
- Only CHT had episodic waste releases documented by agency NOVs and notices.
- There is no evidence of any chlorinated solvent use or storage on the Jalk Fee property.
- Review of the GeoTracker database did not identify an oil field site that caused chlorinated contamination, further supporting the position that chlorinated solvents were not used in exploration and production operations which supports other data showing Jalk Fee is not the source of PCE contamination.
- The distribution of PCE in soil is consistent with releases occurring from the CHT property.
 - All high concentrations of PCE in shallow soil (<10 feet bgs) are present directly along the CHT facility boundary with Jalk Fee.
 - o The PCE in soil gas is also highest at the CHT property boundary with Jalk Fee.
 - The surface covering of the two sites (CHT paved and Jalk Fee unpaved) affected the migration and distribution of PCE released by CHT.
 - The stratigraphy of the upper vadose zone soil, with a northward dipping low permeable silt layer at 15 to 25 feet bgs, overlain by higher permeable sand and silty sand, provided a localized preferential pathway for migration of subsurface PCE northward on the Jalk Fee property.
- CHT's process flow diagram shows that the mineral and waste oils used and generated in CHT's operations would commingle with PCE.
- The forensics demonstrate that used quench oil/quench oil sludge, a mineral oil unique to the heat treating process, is co-located with PCE in shallow soil on the Jalk Fee property, along the boundary with CHT. Further:
 - CHT's heat treating process required large quantities of quench oil.
 - Oil field operations do not use quench oil.
 - CHT generated wastes containing both PCE and quench oil.
 - o CHT spilled oils as demonstrated by agency citations.

There is only one obvious source of PCE contamination on the Jalk Fee and CHT properties and this source resulted from CHT operations, including its waste disposal practices. The use history, distribution of PCE and forensics clearly demonstrate that CHT is the source of chlorinated solvents on the Jalk Fee property.

LIMITATIONS

For documents cited that were not generated by Cardno, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

For questions concerning this report, please contact Mr. James Anderson at 805 644 4157, extension 181805.

Sincerely,

James Anderson

Senior Program Manager

for Cardno

Direct Line 805 644 4157, ext. 181805

Email: james.anderson@cardno.com

Andy Nelson

Senior Geologist

R.G. 8360

for Cardno

Direct Line 805 644 4157, ext. 181809

Email: andy.nelson@cardno.com

August 25, 2017

Cardno 08115504.R27 Former ExxonMobil Jalk Fee Property, Santa Fe Springs, California

Enclosures:

References

Acronym List

Plate 1	Generalized Site Plan
Plate 2	Generalized Site Plan – Eastern Half
Plate 3	PCE Concentrations in Shallow Soil (= 10 Feet bgs)</td
Plate 4	Cross Section A – A'

Table 1 Summary of CHT Manifests from File Reviews

Appendix A NewFields' Response to report by Waterstone Environmental, Inc. entitled "Cardno's Report of Additional Evidence in Support to Name Continental Heat Treating as Discharger for the ExxonMobil Jalk Fee Property" dated February 9, 2017, dated August 21, 2017.

Appendix B Aero-Data Corporation LLC's Interpretation of Additional Aerial Photographs Covering the Jalk Fee Site in Santa Fe Springs, California, dated August 24, 2017

Appendix C Trucking Logs from TRC's *Site Closure Report and Risk Assessment Report*, dated November 28, 2000

Appendix D Keantan Laboratories report from TRC's *Site Closure Report and Risk Assessment Report*, dated November 28, 2000

Appendix E Figure 4 from Waterstone Environmental, Inc.'s Response to Cardno's Report of Additional Evidence in Support to Name Continental Heat Treating as Discharger for the ExxonMobil Jalk Fee Property dated February 9, 2017, dated April 27, 2017

REFERENCES

Aero-Data Corporation LLC (Aero-Data). August 25, 2017. Interpretation of Additional Aerial Photographs Covering the Jalk Fee Site in Santa Fe Springs, California.

Alton Geoscience (Alton). October 10, 1997. Site Assessment Report and Remedial Action Plan. Mobil Jalk Fee Property.

Alton Geoscience (Alton). October 14, 1998. Remedial Excavation / Site Closure Report. Mobil Jalk Fee Property.

Environmental Protection Agency (EPA). May 17, 1999. Preliminary Assessment. Jalk Fee/Mobil Lease Property.

Cardno ERI. March 25, 2015. Request to Name Continental Heat Treating as Discharger, Former ExxonMobil Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.

Cardno. February 8, 2017. Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger, Former ExxonMobil Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.

County of Los Angeles (County). May 19, 1989. Survey Report.

County of Los Angeles Fire Department (LAFD). October 6, 1994. Order to Comply.

DDSF, Del Guercio, Springer & Francis, LLP (DDSF). May 22, 2015. *ExxonMobil is the Discharger of Waste at Former ExxonMobil Jalk Fee Property*, 10607 Norwalk Boulevard, Santa Fe Springs, CA.

DDSF, Del Guercio, Springer & Francis, LLP (DDSF). January 31, 2017a. *Continental Heat Treating,* 10607 Norwalk Boulevard, Santa Fe Springs, CA.

DDSF, Del Guercio, Springer & Francis, LLP (DDSF). May 23, 2017b. *Continental Heat Treating,* 10607 Norwalk Boulevard, Santa Fe Springs, CA.

DDSF, Del Guercio, Springer & Francis, LLP (DDSF). June 1, 2017c. *Continental Heat Treating,* 10607 Norwalk Boulevard, Santa Fe Springs, CA.

Department of Toxic Substances Control (DTSC). 2017. DTSC Envirostor Database. Accessed online June 19, 2017.

Levine-Fricke. December 6, 1991. Revised DRAFT of Subsurface Soil Investigation, Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.

Los Angeles County, Department of Health Services (LADHS). March 16, 1985. Notice of Violation.

Los Angeles County, Department of Health Services (LADHS). 1989. Notice of Violation.

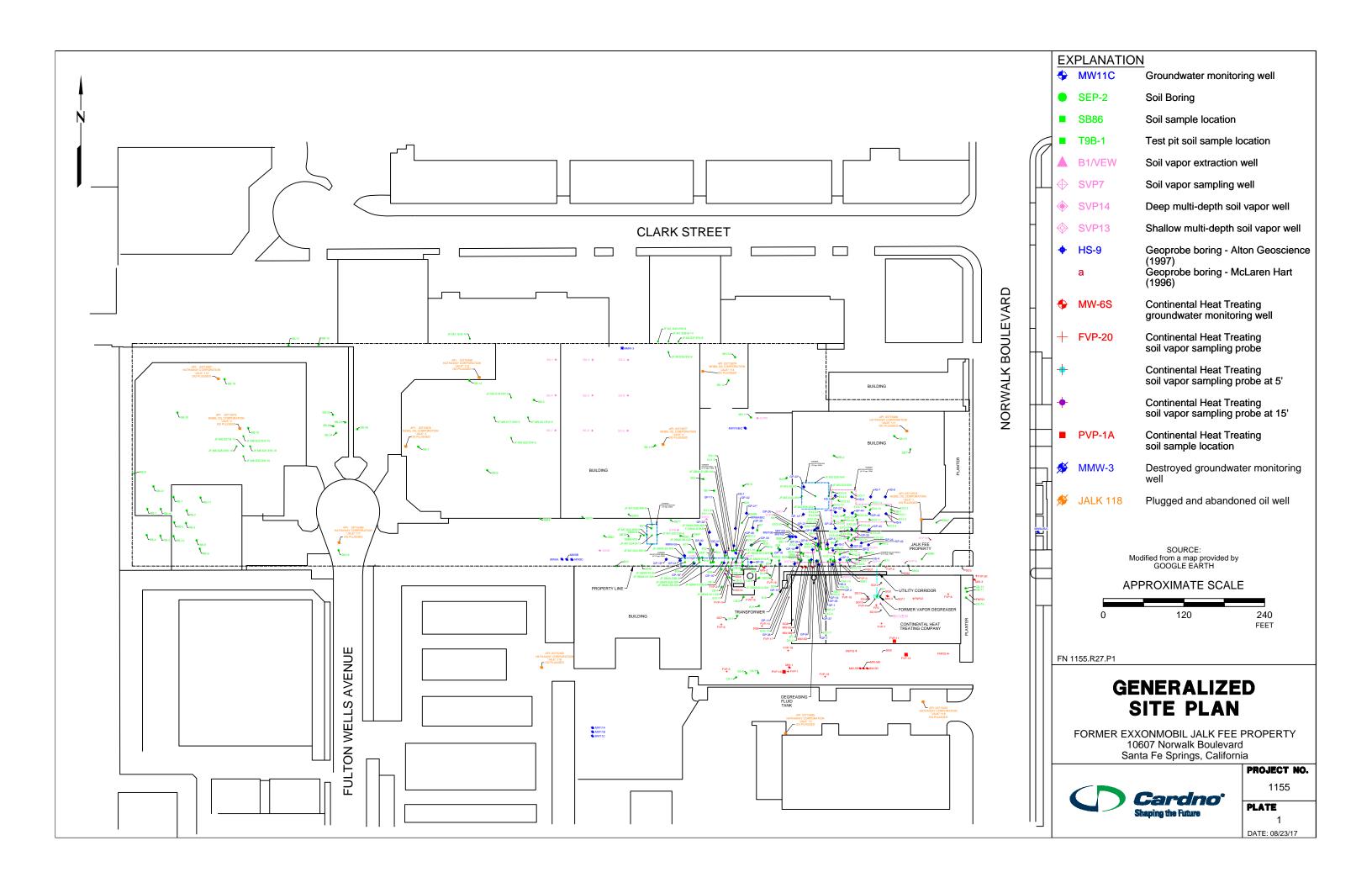
McLaren Hart. December 21, 1993. Soil Remedial Action Plan for the Jalk Fee, Baker/Humble, and DeWenter/Jordan/Green Properties, Mobil-Operated Santa Fe Springs Oil Field, Santa Fe Springs, California.

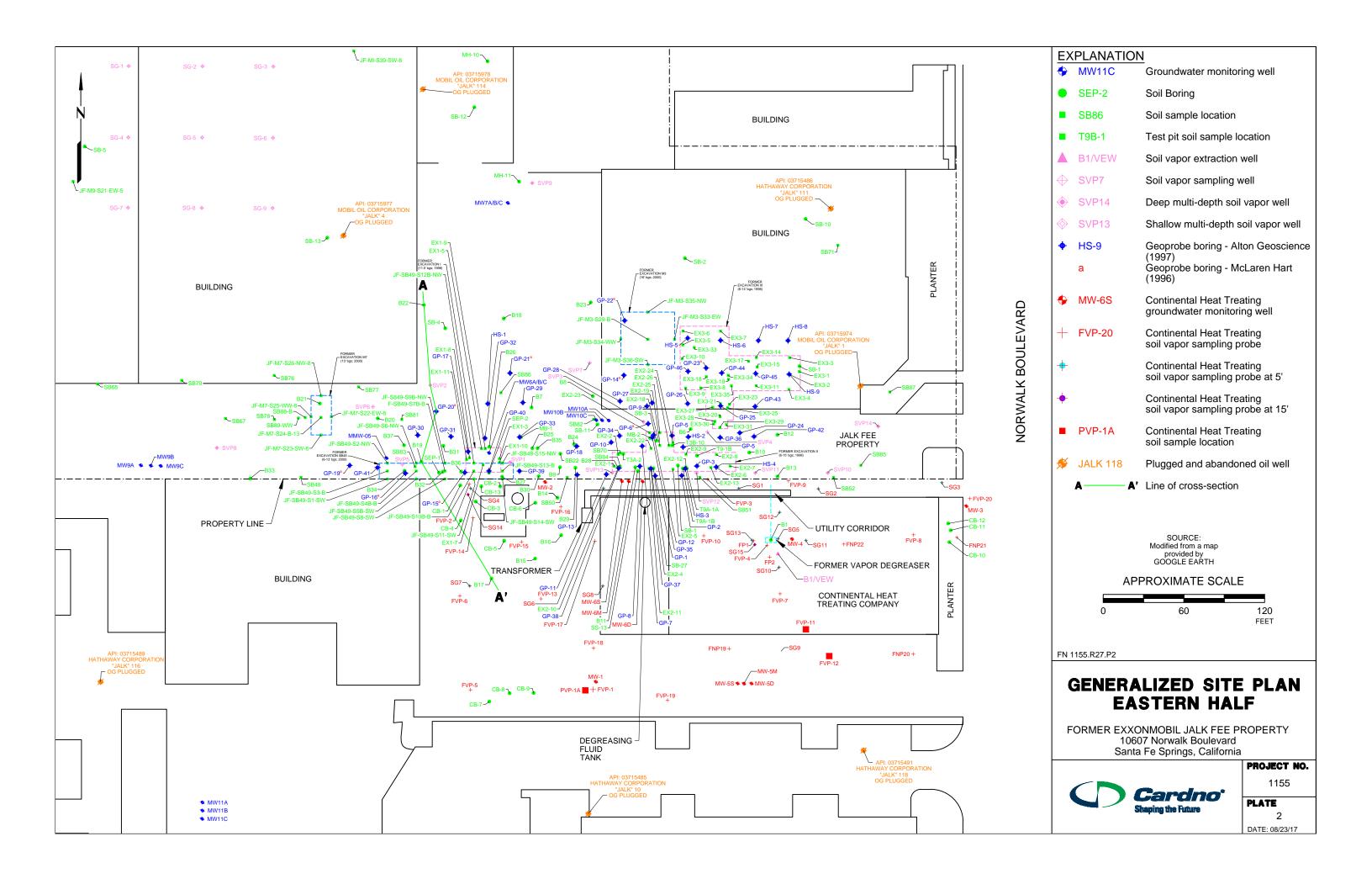
McLaren Hart. April 15, 1994. First Quarter 1994 (January – March) Monitoring Report For Land Treatment at Mobil Jalk Fee, Santa Fe Springs, California.

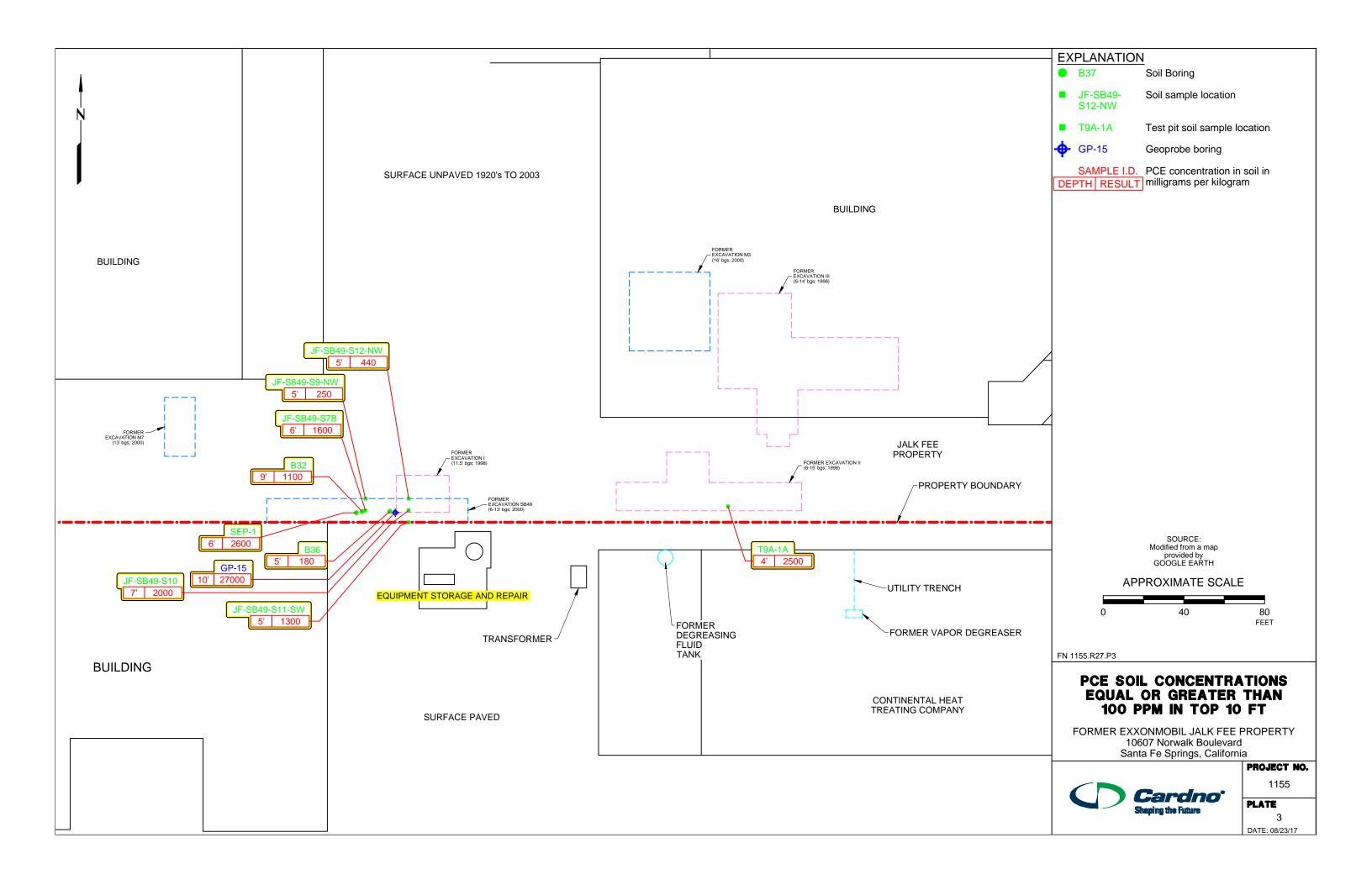
McLaren Hart. February 2, 1996. *Draft Additional Soil Sampling at Mobil Jalk Fee Property*, 10607 Norwalk Boulevard, Santa Fe Springs, California.

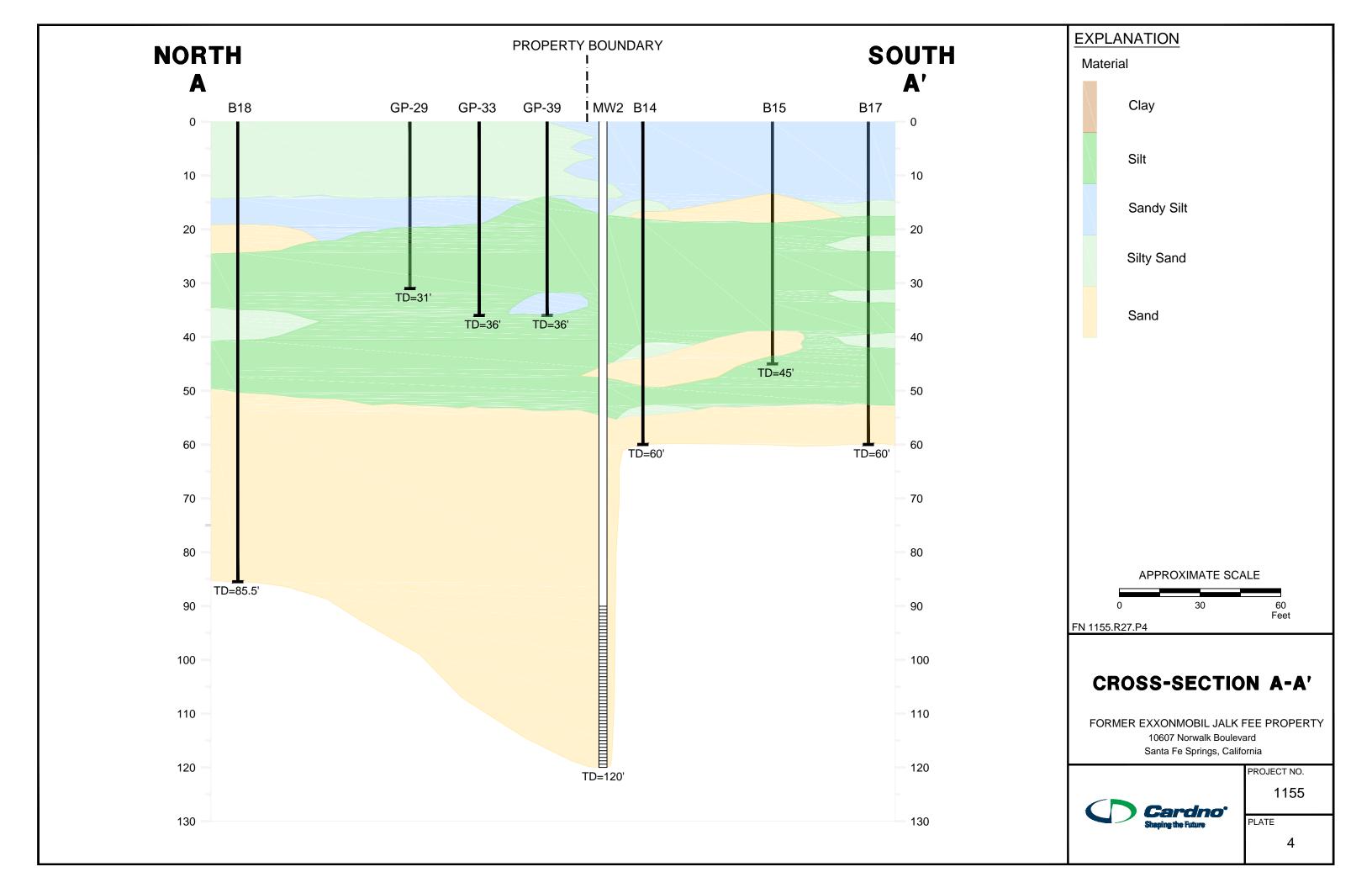
NewFields. February 7, 2017a. Forensic Signature of Hydrocarbons in Soil at the Former Jalk Fee Facility.

NewFields. August 21, 2017b. Response to report by Waterstone Environmental, Inc. entitled "Cardno's Report of Additional Evidence in Support to Name Continental Heat Treating as Discharger for the ExxonMobil Jalk Fee Property" dated February 9, 2017.


TRC Alton Geoscience (TRC Alton). November 28, 2000. Site Closure Report and Risk Assessment, Mobil Jalk Fee Property, 10607 Norwalk Boulevard, Santa Fe Springs, California.


Waterstone Environmental, Inc. April 15, 2005. Summary of Environmental Information and Report of Waterstone Soil and Groundwater Investigation Activities for the Beaumon Trust Property, 12525 Park Avenue, Santa Fe Springs, CA.


Waterstone Environmental, Inc (Waterstone). April 27, 2017. Response to Cardno's Report of Additional Evidence in Support to Name Continental Heat Treating as Discharger for the ExxonMobil Jalk Fee Property dated February 9, 2017, Subject Property, Continental Heat Treating, 10643 Norwalk Boulevard, Santa Fe Springs, California 90670.


ACRONYM LIST

μg/L	Micrograms per liter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	·	TOC	
LUFT	Liquid-ring pump	TOG	Top of well casing elevation; datum is msl Total oil and grease
LUST	Leaking underground fuel tank Leaking underground storage tank	TPHd	Total oil and grease Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level		
MDL		TPHg TPHmo	Total petroleum hydrocarbons as gasoline
	Method detection limit	TPHI	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TRPH	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	UCL	Total recoverable petroleum hydrocarbons
mg/m³	Milligrams per cubic meter		Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		

TABLE 1 SUMMARY OF CHT MANIFESTS FROM FILE REVIEWS FORMER EXXONMOBIL JALK FEE PROPERTY 10607 NORWALK BOULEVARD SANTA FE SPRINGS, CALIFORNIA

CHT Manifests						
Manifest #	Generation Date	Quantity	Unit	Containers	Disposal Facility	Waste
83678173	9/7/1984	275	Gallons	5 drums	Acto Kleen	Waste-Perchlorethylene-ORM-A
83678192	10/19/1984	150	Gallons	3 drums	Acto Kleen	Waste-Perchlorethylene-ORM-A
84281562	3/14/1985	440	Gallons	8 drums	Acto Kleen	Waste EA-Perchlorethylene-ORM-A
87746409	10/10/1988	605	Gallons	11 drums	AAD Disposal	RA Waste Perchlorethylenea ORM- A UN1897
87746417	3/21/1989	400	Gallons	10 drums	AAD Disposal	Waste Perchlorethylene-ORM-A UN1897
87746425	6/8/1989	200	Gallons	4 drums	AAD Disposal	RQ Waste Perchlorethylene-Liquid-ORM-A UN1897
89511415	10/17/1989	150	Gallons	4 drums	AAD Disposal	Waste Liquid Perchlorethylene-ORM-A UN1897
89511429	2/15/1990	440	Gallons	11 drums	Omega Recovery	Waste Liquid Perchlorethylene-ORM-A UN1897
89511442	8/5/1990	500	Gallons	12 drums	Omega Recovery	Waste Liquid Perchlorethylene-UN1897
89511496	10/22/1990	450	Gallons	11 drums	Omega Recovery	Waste Perchlorethylene-UN1897
89511484	3/12/1991	370	Gallons	8 drums	AAD Disposal	Waste Liquid Perchlorethylene UN1897 ORM-A
91016340	11/15/1991	350	Gallons	8 drums	Omega Recovery	Waste Liquid Perchlorethylene UN1897 ORM-A

TOTAL 4,330

APPENDIX A

NEWFIELDS' RESPONSE TO REPORT BY WATERSTONE ENVIRONMENTAL, INC.
ENTITLED

"CARDNO'S REPORT OF ADDITIONAL EVIDENCE IN SUPPORT TO NAME
CONTINENTAL HEAT TREATING AS DISCHARGER FOR THE EXXONMOBIL JALK
FEE PROPERTY" DATED FEBRUARY 9, 2017,
DATED AUGUST 21, 2107

August 21, 2017

James Anderson Cardno 4572 Telephone Road, #916 Ventura, CA 93003

RE: Response to report by Waterstone Environmental, Inc. entitled "Response to Cardno's Report of Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger for the ExxonMobil Jalk Fee Property" dated February 9, 2017

Dear Mr. Anderson,

NewFields Environmental Forensics Practice, LLC (NewFields) was retained by ExxonMobil Corporation (ExxonMobil) to evaluate the nature of contamination, particularly perchloroethlyene (PCE) and hydrocarbons found at the former Jalk Fee facility (the Site). NewFields is a leader in environmental forensics, specializing in helping our clients source and delineate hydrocarbon, PCB, chlorinated solvent, and other forms of environmental contamination. For more than 30 years NewFields scientists have developed modifications to existing standard methods allowing for the collection of environmental forensic data, and have published hundreds of peer-reviewed journal articles, book chapters, and technical reports describing the analytical methodologies and interpretation of environmental data.

Our opinions pertaining to the nature and source of PCE and hydrocarbon contamination found at the Site are detailed in a report, entitled "Forensic Signature of Hydrocarbons in Soil at the Former Jalk Fee Facility" dated February 7, 2017. In their report entitled "Response to Cardno's Report of Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger for the ExxonMobil Jalk Fee Property dated February 9, 2017", Waterstone Environmental, Inc. (Waterstone) challenged some of the conclusions in our report.

The purpose of this letter is to point out and rebut erroneous statements in the Waterstone report, particularly those challenging our conclusions regarding the chemical character and source of contamination in soils from the Site presented in our February 7th report. We have identified three major errors that we discuss in the following sections, *viz*.:

- 1) Waterstone's assessment of our and their laboratories' chromatograms ignored inter-laboratory analytical differences, which when considered clearly show quench oils historically used at the CHT site (analyzed by Waterstone) are virtually identical to the quench oil reference material from the heat treatment facility used in the NewFields forensic study, which in turn closely resembles the quench oil sludges present in Jalk Fee soil near the CHT property boundary.
- 2) Waterstone's assessment of the low total PAH concentrations in quench oils and oil-water separator waste oil samples provided by CHT from its operations (CHT samples), versus the higher total PAH concentrations in the oils within Jalk Fee (Site) soils near the CHT property boundary, ignored the fact that different numbers of PAH analytes were measured. When the exact same number of PAH analytes are compared, there is no disparity in total PAH concentration between CHT samples and quench oil sludges found in Site soils near the CHT property boundary.

3) Waterstone's assessment of the nickel and vanadium ratios in the Site soils led to an erroneous conclusion the petroleum in these soils was southern California crude oil – not quench oil sludge and other mineral oil wastes. To the contrary, the metals' concentrations and ratios in the Site soil samples actually support our conclusion that the soils do not contain crude oil.

Following our discussions of these three major errors, we present an enumerated inventory of 24 additional responses to other inaccurate or irrelevant statements contained in the Waterstone report.

After considering the new data presented in the Waterstone report (and described herein), we re-affirm the conclusions originally offered in our February report: that the shallow soil on the Jalk Fee Site directly north of the CHT equipment storage and repair areas contains used quench oil sludge and varying types/mixtures of mineral oil sludges, consistent with the waste that was generated by CHT's operations during the years when it was also using PCE in its degreasing operations.

Major Rebuttal Points

(1) Waterstone's assessment of our and their laboratories' chromatograms ignored interlaboratory analytical differences, which led to Waterstone's erroneous conclusions regarding disparity between prospective source samples collected from the CHT facility and Site soils.

Waterstone collected and had analyzed six samples from the CHT facility and presented these data in their report. These samples were analyzed by a commercial laboratory (Jones Environmental, Inc., Santa Fe Springs) where numerous routine environment tests were conducted. Among these tests was "TPH Extended carbon range (C8-C43) by EPA Method 8015M by GC/FID" that provided a chromatogram of each sample, which are reproduced and described in the Waterstone report (p. 23-26).

Waterstone's presentation of these chromatograms concluded with the claim that "it is clear that the CHT oil samples are uniquely distinct, with only QOS-1 and QOS-2 even vaguely resembling" (page 26, paragraph 2) the new and used quench oil samples analyzed by NewFields. Although not explicitly stated by Waterstone, because we had shown and concluded the S-9-B32 and S-14-B27 soils, and likely the S-5-B36 soil, each contained used quench oil sludge, the Waterstone claim quoted above would also imply these soils are "uniquely distinct" from used quench oil. The figure shown on page 27 of the Waterstone report, although it is not described by Waterstone, leaves the impression the six CHT samples are very different from the quench oils and Site soils analyzed by NewFields. However, rather than different, they are actually very similar to each other and Waterstone's "uniquely distinct" and "vaguely resembling" claims are wrong and may reflect inexperience interpreting chromatograms.

The "uniquely distinct" character of the CHT quench oils and NewFields quench oils chromatograms easily are eliminated if the chromatograms from the two laboratories are scaled comparably. To make this point clear we have re-scaled the chromatogram of the fresh and used quench oils we had analyzed and included in our report to match the scale of the chromatogram of the fresh and used quench oils from CHT from Waterstone's report (QOS-1 and QOS-2). Figure 1 shows that the fresh quench oils from CHT (Fig. 1A) and from NewFields study (Fig. 1B) are, in fact, highly comparable to one another (and not "uniquely distinct"). Both fresh quench oils have an unresolved complex mixture (UCM) hump that spans from ~C14 to C28 and reaches a maximum at ~C22. The resolved peaks atop the UCM from the quench oil from the NewFields study appear higher, but this is largely a function of the low resolution of the CHT sample's chromatogram that produced broader, shorter peaks. In other words, the analytical method utilized in the analysis of the NewFields samples was optimized for forensic analyses of hydrocarbons, and included a slow GC oven heating rate and long elution time leading to better resolution of peaks in the GC chromatogram, whereas the method utilized in the analysis of the CHT sample included a faster GC oven heating rate and short elution time leading to poorer peak resolution. These characteristics, particularly the UCM maximum at ~C22 is atypical of petroleum fuels and other products, but as evidenced here, is typical of quench oils.

The chromatograms for the used quench oils from CHT (Fig. 1C) and NewFields (Fig. 1D) also demonstrate the UCMs' maxima both occur at ~C22. Despite their shared maximum at ~C22 some differences between these two used quench samples are acknowledged; e.g., the used quench oil

analyzed by NewFields is broader boiling than CHT's used quench oil. This difference, however, is easily explained by the degree to which these different oils had been used (at the time of sampling), wherein greater use causes greater broadening of the UCM hump (see Other Rebuttal Point 13 below). As previously demonstrated in our report, and as demonstrated herein again in Figure 2 (but presented at the same scale as the CHT chromatograms), the S-9-B32 soil is highly comparable to the used quench oil, exhibiting the same UCM maximum ~C22. Minor differences in the shape of the UCM are attributable to variation due to weathering (affecting the lower boiling components) and oxidation during use (affecting the higher boiling components; see Other Rebuttal Point 13 below).

The alleged disparity identified by Waterstone between the CHT quench oils and NewFields quench oils – and the implied dissimilarity between CHT quench oils and the quench oil sludges in the S-9-B32 and S-14-B27 soils, and likely the S-5-B36 soil – are eliminated when the samples' chromatograms are compared at the same scales (Figs. 1-2). In conclusion, quench oil sludges are present in S-9-B32 and S-14-B27, and likely the S-5-B36 soil sample. This is confirmed by their comparison to quench oils and used quench oils as originally presented in the NewFields study and by their comparison herein to the CHT quench oils and used quench oils from the Waterstone Report.



Figure 1: Comparably scaled GC/FID chromatograms of (A) fresh quench oil from CHT (QOS-1), (B) fresh quench oil analyzed by NewFields, (C) used quench oil from CHT (QOS-2), and (D) used quench oil analyzed by NewFields. All four samples exhibit the UCM maximum at ~C22 typical of quench oil and atypical of petroleum fuels.

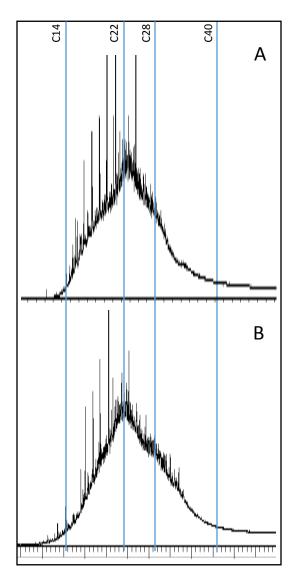


Figure 2: Comparably scaled GC/FID chromatograms of (A) used quench oil analyzed by NewFields and (B) Jalk Fee soil sample S-9-B32 analyzed by NewFields shown at the same scale as the CHT chromatograms.

(2) Waterstone's assessment of the low total PAH concentrations in CHT quench oils and oil-water separator waste oil samples — versus the higher total PAH concentrations in the oils within Site soils near the CHT property boundary — ignored the fact that different numbers of PAH analytes were measured and led to the erroneous conclusion the Site soils did not contain used quench oil wastes.

As noted above, Waterstone collected and had analyzed six samples from the CHT facility and presented these data in their report. The analyses included measuring the concentration of 17 priority pollutant PAHs via EPA Method 8270C. The concentrations of total PAHs detected in the six samples ranged from "non-detect" in the fresh quench oil (QOS-1) to 72.19 mg/kg in the used quench oil (QOS-4).

Waterstone compared the maximum total PAH concentration in the six CHT samples (72.19 mg/kg) to the total PAH concentrations in the oils within Site soils (normalized for TPH) as reported by NewFields. The soils' total PAH concentrations were higher (520 to 6,400 mg/kg). Waterstone claimed this disparity showed "the petroleum identified by NewFields in all ten of the soil samples they analyzed is not quench oil, vacuum quench oil, or waste oil generated by CHT" and alleged this "quantitative comparison analysis is also a more reliable approach" than chromatographic fingerprinting.

Waterstone is comparing "apples" to "oranges." Waterstone's lab measured only 17 individual PAH analytes in their samples whereas NewFields (Alpha) measured 50 PAHs, so naturally the concentration of "total" PAHs is lower in the CHT samples analyzed by Waterstone's lab. In fact, when the NewFields total PAH concentrations are recalculated to include only the same 17 priority pollutant PAHs measured and totaled by Waterstone's lab (Table 2), the CHT used quench oil's PAH concentration (72.19 mg/kg) is directly comparable to the sum of the 17 PAHs in the three soil samples NewFields concluded to contain used quench oil sludge (S-9-B32, S-14-B27, and likely S-5-B36), whose total PAH concentrations for the 17 priority pollutant PAHs ranged from 28 to 80 mg/kg (Table 2). By contrast, the three soil samples analyzed by NewFields in 2012 that contain crude oil (S-15-B10, S-80-B10, and S-80-B11) contained 350 to 2,400 mg/kg "total" 17 PAHs; i.e., much higher concentrations (Table 2).

In conclusion, Waterstone's claim is wrong. When the same list of PAH analytes are compared there is no disparity in PAH concentration between the CHT-supplied quench oil samples and the oils within the Site soils near the CHT property boundary (Table 2). These results further confirm our conclusion that quench oil sludge is present in Site soils near the CHT property boundary (S-9-B32, S-14-B27, and likely S-5-B36).

Table 2: Concentrations of PAHs in the Jalk Fee Site soils and used quench oils reported as the total of 50 analytes (as originally reported by NewFields) and as the total of 17 analytes (as per the CHT sample data reported by Waterstone). Asterisk indicates soils NewFields concluded contained quench oil sludges. nc=not calculable because TPH was not detected; these samples were concluded to be "clean".

			_
	mg _{тран} / kg _{трн} (50 analytes)	mg _{трАН} /kg _{трН} (17 analytes)	
S-9-B32*	940	80	Soil samples
S-14-B27*	820	28	NewFields
S-5-B36*	520	74	concluded to
S-9-B34	4,200	310	contain quench oil
S-5-B34	2,200	320	sludge contain
S-6-B28	6,400	3,800	comparably low PAHs to the used
S-8-B24	3,600	1,400	quench oils,
S-3-B35	2,700	200	including used
S-16-B26	nc	nc	quench oil from
S-16-B30	nc	nc	CHT.
Used Quench oil	Na	72	
(Waterstone/CHT)	ING	72	
Used Quench Oil	450	42	
(NewFields)	450	42	

(3) Waterstone's assessment of the nickel and vanadium ratios in the Site soils led to an erroneous conclusion that the petroleum in these soils was southern California crude oil – not quench oil sludge and other mineral oil wastes.

In an attempt to demonstrate the petroleum in Site soils along the property boundary is not attributable to quench oil sludge and other mineral oil wastes, Waterstone claimed the ratios of nickel (Ni) and vanadium (V) in the Jalk Fee soils analyzed by NewFields had a V/Ni ratio of ~2 "indicating typical of vanadium to nickel rations (sic) present in crude oil" from southern California (page 29, paragraph 1).

This claim has no relevance for the following reasons:

- a) There is no relationship between the concentrations of Ni or V and TPH (oil) in any of the Site soils (Fig. 3B-C); Ni and V concentrations do not increase with the amount of oil (TPH) as should occur if these two metals actually were coming from the petroleum in the soils. For example, the S-16-B30 soil contained no detectable TPH (nd < 2.57 mg/kg) yet contained 19.8 and 35.2 mg/kg of Ni and V, respectively. The most highly impacted soil, S-3-B35, contained 1,760 mg/kg TPH but only 14.2 and 36.2 mg/kg of Ni and V. Thus, the "cleanest" Jalk Fee soil contained lower and comparable concentrations of Ni and V (respectively) as the soil containing the most petroleum. In fact, the concentrations of V and Ni in the Jalk Fee soils narrowly ranged from 15-50 and 10-31 mg/kg, respectively, whereas the TPH concentrations varied over 4 orders of magnitude (nd to 1,760 mg/kg; Fig. 3B-C).
- b) The actual V/Ni ratios for the soils studied ranged from a minimum of 1.2 to maximum of 2.6, which were respectively obtained from on the two Site soil samples that contained the two highest concentrations of TPH (S-3-B35 and S-5-B32; see Table 1). These data are plotted in Figure 3A. Thus, if the V/Ni ratios in these two most highly-impacted soils were due to the presence of southern California crude oil in the soils (as claimed by Waterstone), they should have ratios of ~2 (or very similar), not a difference of more than 100%;
- c) Finally, the average concentrations of V and Ni in 50 California soils are 112 and 57 mg/kg, respectively. These average concentrations are higher than were measured in any of the Jalk Fee Site soils. Thus, Ni and V in the Jalk Fee soils are readily attributable to background, not petroleum.

¹ Kearney Foundation (1996) Background concentrations of trace and major elements in California soils. Kearney Foundation of Soil Science, Div. of Agriculture and Natural Resources, Univ. of California. https://envisci.ucr.edu/downloads/chang/kearney_special_report_1996.pdf, last accessed July 12, 2017.

In conclusion, Waterstone's attempt to show the presence of crude oil in the Site soils using Ni and V ratios is flawed. They alleged the quantitative V/Ni ratio is "more reliable than eyeballing chromatograms". This clearly is not the case, as the concentrations of V and Ni (and the V/Ni ratio) in site soils are consistent with background concentrations and have no correlation with the concentration of hydrocarbons found in these soils.

Table 1: TPH and Vanadium and Nickel Concentrations and Ratio in the soils analyzed by NewFields (nd = not detected).

Sample Name	TPH (mg/kg)	Vanadium (mg/kg)	Nickel (mg/kg)	V/Ni Ratio
S-16-B30	nd	35.2	19.8	1.8
S-16-B26	nd	27.8	20.0	1.4
S-5-B36	117	39.3	15.9	2.5
S-8-B24	191	49.4	22.5	2.2
S-5-B34	433	34.7	14.2	2.4
S-14-B27	850	15.2	9.56	1.6
S-6-B28	1,150	38.2	31.3	1.2
S-9-B32	1,330	33.4	15.0	2.2
S-3-B35	1,760	36.4	14.2	2.6



Figure 3: Plots relating the concentration of oil (as TPH) in Jalk Fee site soils to (A) V/Ni ratio, (B) vanadium concentration, and (C) nickel concentration in the soils analyzed by NewFields. The lack of any correlation between the metals and TPH demonstrates the metals are not attributable to the oil (as alleged to be southern California crude oil by Waterstone). All data from Table 1.

Additional Enumerated Rebuttal Points

- 1) Waterstone states that PCE and quench oil-containing waste should not co-occur, and to do so would be "purely coincidental" (page 2, paragraph 5). PCE and quench oil wastes did co-occur in post-quench solvent degreasing prior to 1995 (see Waterstone Fig. 5, reproduced and discussed further below). Regardless, intermittent discharges ("onto ground and asphalt top at rear yard") at the same location(s) over time would commingle PCE and petroleum wastes, and therefore is not "purely coincidental". Intermittent discharges to ground would also explain heterogeneity in character of petroleum and proportions of PCE/petroleum; i.e., there is no expectation of a relationship between concentration of PCE and petroleum when mixed and diverse wastes are being disposed of.
- 2) Waterstone states PCE and quench oil would never occur together therefore ExxonMobil's assumption they did (may have) is "patently erroneous" (page 11, paragraph 4). This claim contrasts with subsequent statements by Waterstone (page 22); "Smaller parts...were cleaned of oil using the vapor degreaser" and "residual oil was...cleaned again before shipment using either the former vapor degreaser or parts washer". The "oil" referenced in these subsequent sentences is quench oil residues left on the parts after quenching. The "patently erroneous" claim also conflicts with flowchart on and annotated herein as Figure 4) that shows the "degreaser" was used on small parts from Beaver-Matic Heat Treaters and "All Parts" from the Hayes Vacuum Heat Treaters (as highlighted with red circles on the figure below). So, as the Waterstone report illustrates, the solvent (PCE) in the vapor degreaser would clearly have become contaminated with quench oil prior to 1995 when the vapor degreaser operation ceased.

Additionally, Fig. 4 shows that other forms of petroleum (mineral oils) used in metal part production by the original manufacturers that arrived at CHT (not only quench oil) also came into contact with PCE. Specifically, Fig. 4 shows the PCE degreaser generated an oil sludge (highlighted with a blue circle), which would have been comprised of mixtures of metalworking oil residues present on arriving parts, and which required disposal. This mixed sludge would also have likely contained PCE residue.

In summary, the flow diagram of pre-1995 CHT operations provided by Waterstone (Fig. 4 herein) shows multiple waste streams that could, when occasionally discharged "onto ground and asphalt top at rear yard" contain PCE and/or various petroleum wastes. These include:

- a) arriving parts were PCE-degreased yielding a sludge (blue circle; Fig. 4). The sludge would have included a mixture of any metal working (cutting and machining) oil residues on arriving parts plus residual PCE;
- b) post-quench degreasing with PCE would have generated a mixture of variably used/aged quench oils and residual PCE (red circles; Fig. 4); and
- c) oil and sludge from the oil-water separator would have contained variably used/aged quench oil from any post-quench aqueous wash of any "large parts".

According to Fig. 4 all of these wastes were "disposed immediately or stored in drums at the site's HW storage area". However, agency NOVs issued to CHT document that disposal or releases also occurred "onto ground and asphalt top at rear yard".

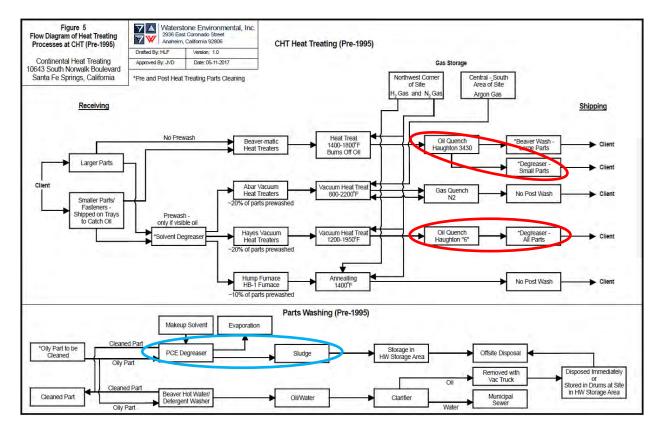


Figure 4: Reproduction of Figure 5 from the Waterstone report with red and blue annotations added. See text for description.

- 3) Waterstone states that Alpha Analytical is not a CA certified laboratory (page 12, paragraph 1). Alpha is NELAC certified for EPA methods (including Methods 8015 and 8270, utilized herein), QA, data handling, etc.. There is no certification for modifications to these methods for forensic purposes. Additionally, Alpha's forensic methods are used by both California Dept. of Fish & Wildlife and Federal agencies.
- 4) Waterstone states "Newfields entire forensic investigation hinges on the false premise that quench oil on the CHT property contains elevated levels of PCE..." (page 12, paragraph 2). This statement is untrue and not a premise to our investigation or of our conclusions. We demonstrated that oil consistent with used quench oil (i.e., a dearomatized oil spanning a very distinct and atypical boiling range) co-occurred in soils along the property boundary with varying amounts and types of mixed oils/sludges/wastes (also mostly dearomatized). This could reasonably represent the types of mixed metalworking oils and sludges CHT would have generated when washing arriving parts (see Fig. 4; blue circle). CHT also handled PCE, which it used to clean parts before and after quenching. When the chemistry is interpreted in view of CHT's record of poor waste management practices along with

notices of violation, there is a convincing explanation for the source of petroleum and PCE in the area's soils. In summary, Waterstone (particularly the flow diagram shown in Fig. 4 herein) has confirmed that before 1995 CHT generated the types of wastes that could explain the observed chemistry of the soils. Thus, there is no "false premise" included the NewFields data interpretation.

- 5) Waterstone states the co-location of quench oil and PCE is "merely coincidental" (page 12, paragraph 2). The co-location of these materials is not coincidental, because (1) post-quench sludge/waste containing both petroleum and PCE may have been disposed or released in the same location, and/or (2) different sludges/wastes may have been disposed or released in the same location, (3) only CHT used quench oil and PCE in its operations thereby generating waste streams containing quench oil sludge and/or PCE.
- 6) Waterstone states "hydrocarbons located on Jalk Fee property are not quench oil" (page 12, paragraph 2). This statement is based on Waterstone's erroneous assessment of the chromatograms, which we have addressed above in our first major rebuttal point. Nonetheless, it is worth stating that the petroleum in *all* the soils is not *pure* quench oil, but a mixture of quench oil, quench oil sludge, and/or mineral oil sludges (i.e., the type of waste stream that are generated during metalworking operations).
- 7) Waterstone states "thermally desorbed" soils were used to backfill at the Site (page 14, paragraph 2). In our experience, thermal desorption/remediation of soil normally targets only VOCs, which would not alter the soils' DRO- and RRO-dominated hydrocarbon signatures. Furthermore, soil samples that contained DRO show retention of pristane and phytane (and an absence of similarly volatile n-alkanes, n-C₁₇ and n-C₁₈) indicating their alteration had been via biodegradation and not thermal treatment.
- 8) Waterstone states that soil sample S-9-B32 was collected in back-fill soil (most likely from thermally treated offsite soils) and not native soil (page 15, paragraph 2). There is a chemical response to this claim. Specifically, the S-9-B32 soil is the clearest example of quench oil sludge-bearing soil studied. Its unusual UCM shape (e.g., max at ~C22) is atypical of all common petroleums. Furthermore, the petroleum in this soil is a dearomatized oil. These features make it the clearest case for the presence of used quench oil sludge in the soils studied. In addition, this sample exhibits the highest PCE concentration, suggesting these materials may have been discharged together as a post-quench solvent sludge pre-1995 (e.g., see red circles in Fig. 4 above). In any case, there is clear evidence this soil's petroleum is not thermally treated crude oil or other petroleum (as suggested by Waterstone). Evidence against Waterstone's claim includes the fact that the "front end" of this soil's petroleum is biodegraded but not thermally altered, as evidenced by the retention of pristane and phytane (and absence of similarly volatile n-alkanes, n-C₁₇ and n-C₁₈).
- 9) Waterstone states sample S-14-B27 soil appears to be the only soil sample collected by Cardno from the SB49 excavation area that was collected in native soils (not back-filled soil; page 15, paragraph 3). There is a chemical response to this claim. Specifically, the oil in the

S-14-B27 soil (acknowledged as native by Waterstone) is nearly identical to the oil in the S-9-B32 soil (alleged to be fill by Waterstone). This comparability is true with respect to their TPH fingerprints, low PAH concentrations, PAH patterns, and biomarkers. How can both a native soil and a fill soil contain the same type of unique petroleum? Given both of these soils contain the clearest examples of used quench oil sludge-laden soils (and both contain PCE), their chemical comparability supports the case both of these soils (S-9-B32 and S-14-B27) are native soils impacted with CHT-derived wastes.

- 10) Waterstone states sample S-3-B35 was collected in fill below the asphalt surface (page 16, paragraph 1). Although not explicitly stated, we believe Waterstone is implying that the S-3-B35 soil sample may contain asphalt. If so, we disagree. While the character of the TPH (chromatogram) in this sample is consistent with mineral oil/sludge or with asphalt, our conclusion is based on the fact that the PAH content is only consistent with that of mineral oil/sludge. The relatively low TPAH/PAH content of this sample (2,700 mg/kg) is much lower than new or used asphalt (~10,000 to 50,000 mg/kg; e.g., Emsbo-Mattingly and Litman, 2016²); see additional comment # 14 below). Thus, the low TPAH/TPH content of the petroleum in the S-3-B35 soil sample indicates that it does not contain asphalt particles, but rather a mineral oil/sludge.
- 11) Waterstone states that Cardno overstated NewFields' conclusion (page 19, paragraph 1). We concluded that only samples S-9-B32, S-14-B27 and likely S-5-B36 contained used quench oil sludge. The other soils studied contained varying types/mixtures of mineral oil sludges/wastes, such as are commonly used in metalworking (cutting/machining/forming) that would have been generated by CHT in washing arriving metal parts. However, it is important to note that the three soils samples that contained used quench oil sludge were each collected closest to the property boundary and all next to each other. Therefore, there is a "hot-spot" of used quench oil sludge contamination at the property boundary. Notably, these three soil samples also contained the three highest concentrations of PCE among the soils we studied.
- 12) Waterstone states that NewFields' used quench oil reference sample has no COC and the sample came from another heat treating facility with no effort to correlate to CHT operations (page 19, paragraph 1). Given the unavailability of quench oil used by CHT, we originally presented the data available to us to demonstrate the character of used quench oil analyzed from another facility. Waterstone's criticism of this comparison is now moot since Waterstone provided data for new and used CHT quench oils that as was demonstrated in our first Major Rebuttal are comparable to the new and used quench oil samples from another facility we originally provided (see above). Thus, comparison of the Site soils to the CHT quench oil (instead of our used quench oil from another facility) leads us to the same conclusions we'd originally reached.

² Emsbo-Mattingly, S.D. and Litman, E. (2016) Polycyclic aromatic hydrocarbon homolog and isomer fingerprinting. In: S.A. Stout and Z. Wang, Eds., Standard Handbook Oil Spill Environmental Forensics, Fingerprinting and Source Identification, Academic Press, Boston, p. 255-312.

13) Waterstone states sample S-9-B32 only "vaguely" resembles (page 18, paragraph 1) the used quench oil analyzed by NewFields as the soil "has both a broader light end and much broader heavy end range than either of the quench oil sample comparison" and these differences are "very noticeable" and therefore are not a "definitive match" to the quench oil standards analyzed" (page 20, paragraph 1). As mentioned above, the C22 max, UCM shape, and low aromatic content of the S-9-B32 (as well as S-14-B27 and S-5-B36), is highly diagnostic for used quench oils, as evidenced by comparison to the used quench oils in our original report and in the Waterstone report.

Regarding Waterstone's specific statements quoted above, comparison of the soil samples to the fresh quench oil is largely irrelevant since fresh quench oil was not likely ever disposed of into soils. Comparison to the used quench oil, however, is relevant, although differences among used quench oils (whether they are from another facility or CHT) are expected, and therefore some differences between a small number of used quench oil references and the Site's soils are also expected. Firstly, used quench oils are not the same as used quench oil sludge. Specifically, the former will slowly crack, oxidize and polymerize/condense over time/use but is still capable of continued use in quenching, whereas the latter is a very highly-oxidized material that accumulates in quench tanks and on filters and heat exchangers. Quench oil sludge is no longer adequate for continued use in quenching, and thus requires removal and disposal.³ As such, fresh quench oil, used quench oil, and used quench oil sludge represent a continuum of materials – not three specific materials. Thus, the chemical fingerprints of these materials will vary over time/use as the degree of oxidation/polymerization/condensation changes and as mixing with other waste oils (e.g., tramp oils) can occur.

We provided an example of how fresh quench oil's boiling range (chromatogram) will change upon use in our comparison of fresh and used quench oil from another heat treating facility that showed there is a clear broadening of the chromatogram in the used quench oil. This broadening is consistent with thermal cracking and oxidation/polymerization/condensation of the oil upon use whereupon both lower boiling and higher boiling compounds (including some PAHs) are formed (respectively) during use. After continued use the higher boiling compounds become increasingly abundant, and the viscosity of the used quench oil increases to the point that its useful life ends, i.e., as quench oil sludge.

Waterstone has provided another example showing how used quench oil becomes enriched in heavy end range (i.e., oxidized and polymerized) compounds, wherein the chromatogram for the used vacuum quench oil (QOS-4) is highly⁴ enriched in heavy end range (oxidized/polymerized/condensed) compounds compared to the fresh vacuum quench oil (QOS-3).

³ MacKenzie, D.S. and Lazerev, I. (undated) Care and maintenance of quench oils, Houghton International, Inc., Valley Forge, PA. https://www.houghtonintl.com/sites/default/files/resources/article - <a href="https://www.houghtonintl.com/sites/default/files/resources/article - <a href="https://www.houghtonintl

⁴ We disagree with Waterstone's claim the increase in heavy end compounds in the used vacuum quench oil is only "slight"; page 24.

These examples serve to demonstrate the continuum described above. If NewFields or Waterstone had a quench oil *sludge* (ready for disposal) available for study our expectation would be that it would be even higher boiling than the used quench oils analyzed by both NewFields and Waterstone.

With specific regard to Waterstone's statements regarding the S-9-B32 sample (quoted above), the S-9-B32 soil's chromatogram does not contain a broader light end than the used quench oil (as Waterstone states). Instead the front ends are highly comparable with the S-9-B32 soil actually containing a slightly reduced light end consistent with minor environmental weathering (see Fig. 5 in our Feb. 2017 report). We agree that the S-9-B32 soil's chromatogram does contain a broader heavy end than the used quench oil reference sample, but (as noted in the previous two paragraphs) this difference is easily explained by the fact that the soil's used quench oil sludge is simply more highly oxidized/polymerized/ condensed than the used quench oil reference sample. This allegedly "very noticeable" difference is minor when interpreted in light of the continuum, since it only reflects the specific character of the used quench oil at the time it was sampled. In other words, a more oxidized/polymerized/condensed used quench oil sludge (if one had been available for study) would have a broader heavy end (and somewhat higher PAH concentration) than the used quench oil reference sample we analyzed. Alternatively, the presence of other metalworking oil residues within the quench oil sludge (such as are abundant in Waterstone's oil-water separator sample from CHT) could easily increase the proportion of heavy end (higher boiling) components in the Site's soils. Thus, the "vague" resemblance, "very noticeable" differences, and lack of "definitive match" claims by Waterstone regarding the S-9-B32 soil and used quench oil simply do not account for the continuum of quench oilused quench oil-quench oil sludge. The greater proportion of heavy end in the S-9-B32 soil does not change the fact that the S-9-B32 soil contains quench oil sludge, it simply contains more sludge than the used quench oil reference sample.

The S-14-B27 and S-5-B36 soils also contain quench oil sludges (note C22 max) that contain even more heavy ends, which we attribute to their containing a greater proportion of heavy (oxidized/polymerized) sludge than the S-9-B32 soil. Such differences are absolutely expected for multiple discharges of variably used (oxidized/polymerized) quench oil sludges and should not be used to preclude a "definitive match" as Waterstone claims.

14) Waterstone states that NewFields intentionally left out results of numerous metalworking oils we had analyzed (page 21, paragraph 12). As stated on p. 2 of our report, the relevance of these samples to CHT operations was unknown. We had hypothesized CHT may have received metal parts with various metalworking oil residues, but were uncertain what these may have been. However, when we compared GC chromatograms of the Site soil samples from the property boundary with CHT to those of the metalworking oils, it became clear that 1) the used quench oil signature was more clearly realized in three of the soils samples, and 2) the heavier fractions in other soils likely represented mixtures by mineral oil sludges, not any one specific metalworking oil. Therefore, we proceeded to focus our report on the comparison of the used quench oil signature to the soil samples. All of the metalworking

oils, compositions, however, confirm our contention that these types of oil had a low PAH content due to dearomatization of their base stocks during refining; each contained 0.2 to 1,400 mg $_{\text{TPAH}}/\text{kg}_{\text{TPH}}$ (avg: 390 mg $_{\text{TPAH}}/\text{kg}_{\text{TPH}}$); i.e., much lower than crude oil and other non-dearomatized petroleums. Thus, if such oils found their way into parts washing sludges (such as likely occurred at CHT), these sludges would also be relatively low in PAH concentration (such as in the Site soils).

- 15) Waterstone states that the heterogeneity in PCE isotopes and petroleum mixes in soils could not possibly have come from CHT: it was "not physically possible" and "sources of PCE and quench oil used have not varied" (page 21, paragraph 4). This is not true and reflects Waterstone's misunderstanding of what causes variability in isotopic signatures. Multiple discharges of PCE, spent quench oil, and other wastes (sludges) over time would result in such heterogeneity, even if PCE came from the same supplier over an extended time period.
- 16) Waterstone acknowledges that CHT's vapor degreaser was used to clean small parts after quenching until 1995 (page 21, paragraph 1; see also red circle in Figure 4 above). Thus, prior to 1995, quench oil and PCE did co-occur in waste. This contradicts Waterstone's earlier claim that quench oil and PCE do not co-occur in waste.
- 17) Waterstone states "Large volumes of waste quench oil are rarely generated" (page 22, paragraph 4). This is not true for sludges or other wastes containing quench oil. Quench oil sludge disposal is an industry-wide issue for the heat treating industry. Additionally, this claim does not include waste quench oil that ends up in the post-quench washes, and ultimately the oil-water separator. In fact, the POWS-1 sample Waterstone collected and analyzed in Feb. 2017 is predominantly (est. > 50% by mass) comprised of quench oil (see Fig. on pg. 26 of Waterstone report). Therefore, waste containing quench oil is (still) generated in large volumes at CHT. (Notably, the oil-water separator oil also contains RROrange petroleum that is suggested by Waterstone to be a mixture of metalworking oils. This is the type of mixed RRO-range petroleums found in the soils.)
- 18) Waterstone states that a "small" increase in RRO is evident in the used vacuum quench oil (page 24, paragraph 1). Comparison of the new and used vacuum quench oil clearly shows a large increase in RRO due to oxidation upon use. As discussed above (Other Rebuttal Point #13) this serves to illustrate how/why sludges form (as oxidation progresses and viscosity increases) in quench tanks, filters and heat exchangers.
- 19) Waterstone states that there is a great variability of quench oil used in the industry (page 25, paragraph 1). Only the new quench oil that CHT "just started using" is markedly different in composition and is irrelevant with respect to historic practices at CHT. Comparison of the regular and vacuum quench oils used by CHT "historically" are, on the other hand, highly similar to one another in that both contain a prominent DRO component

⁵ Liscic, B. et al. (2003) Non-lubricating process fluids: Steel quenching technology. In: Fuels and Lubricants Handbook, G.E. Totten, Ed. ASTM Manual Series, MNL37WCD, p. 587-634.

with paraffins and UCM max at C22 – and are highly similar to the quench oils from the heat treating facility presented in the NewFields study. Thus, though limited to the samples analyzed by NewFields and Waterstone, the variability among historically used quench oils is not significant.

- 20) Waterstone states that the oil water separator sample (PWOS-1) is a mix of quench oils and other metalworking oils (page 26, paragraph 1). We agree. The oil-water separator oil is exactly the type of waste mix that was found in the Jalk Fee site soils. The only difference in this particular oil water separator sample is the very high prominence of quench oil (i.e. the C14-C28 fraction is estimated to represent more than 50% of the TPH mass). If the quench oil component were reduced or eliminated, then the heavier fraction would dominate the chromatogram. An oil-water separator sample dominated by heavier material could explain the range of fingerprints observed in the Jalk Fee Site soils.
- 21) Waterstone states that chromatograms from CHT quench oil samples are "uniquely distinct" and include a more pronounced peak at C21-C23. As discussed further in our Major Rebuttal Point #1, Waterstone is demonstrating inexperience reviewing and interpreting chromatograms owing to the different gas chromatography heating rates used in the collection of these data, which was much higher at Jones Environmental Lab than at Alpha Analytical, and the disparate horizontal and vertical scaling of chromatograms. This is why the chromatograms of the CHT samples look different (to an untrained eye). Also, their claim that 70% of the mass is in the "C21-C23 carbon range" is clearly inaccurate; they likely mean 70% is within the C15-C28 DRO range, which is exactly comparable to the S-9-B32 soil sample (73% DRO).
- 22) Waterstone states that PCE was not detected in the CHT samples collected in Feb. 2017 (page 29, paragraph 1). This is irrelevant if PCE has not been used at the facility since 1995 (~22 years before the samples they analyzed were collected).
- 23) Waterstone states that the FTIR analysis of other oils are comparable to quench oils and therefore suggests that there are many possible sources for the petroleum found in soils (page 32, paragraph 1). FTIR lacks specificity in distinguishing oils, which is why it is not a forensic tool. FTIR measures functional group bond types and abundance and does not demonstrate that the configurations of these bonds are the same in "matching" samples (only that they exist in comparable proportions). This is obvious in the fact that the FTIR spectra for a "naphthene-paraffin-based oil" (Shell Apiezon Oil J) matches that for a "surfactant" (Miller-Stephenson MS-15-EN-Rust). The FTIR peaks at 2850-2950 n are typical of alkyl C-H bonds, ~1450 n are likely methylene groups, and ~1375 n are likely methyl groups. The absence of peaks < 1000 n and between ~1500 and 1700 n indicates these oils contain low levels of aromatics (i.e., they are dearomatized petroleum products, as recognized by NewFields).

After considering the new data presented in the Waterstone report (and described herein), we re-affirm the conclusions originally offered in our February report: that the shallow soil on the Jalk Fee Site

directly north of the CHT equipment storage and repair areas contains used quench oil sludge and varying types/mixtures of mineral oil sludges, consistent with the waste that was generated by CHT's operations during the years when it was also using PCE in degreasing operations, and inconsistent with ExxonMobil's operations.

Thank you for the opportunity to respond to the Waterstone report. Please let us know if you have any questions concerning the content of this letter.

Sincerely,

Mark J. Benotti, Ph.D.

Sr. Environmental Chemist

Scott A. Stout, Ph.D., P.G.

Sr. Geochemist

APPENDIX B

AERO-DATA CORPORATION LLC'S

INTERPRETATION OF ADDITIONAL AERIAL PHOTOGRAPHS COVERING THE

JALK FEE SITE IN SANTA FE SPRINGS, CALIFORNIA,

DATED AUGUST 24, 2017

Interpretation of Additional Aerial Photographs Covering the Jalk Fee Site in Santa Fe Springs, California

Randall Grip

Aero-Data Corporation LLC

August 25, 2017

Introduction

Aero-Data Corporation was originally engaged to perform an historical aerial photographic study for the Jalk Fee site, a former oil field as well as the adjacent Continental Heat Treating (CHT) property to the south of Jalk Fee. Specifically, I was asked to obtain aerial photographs from the 1968 through 2000 and produce imagery for viewing and analysis.

For the purposes of this report, I was provided Demetriou, Del Guercio, Spring & Francis LLP's letter dated January 31, 2017 for the Continental Heat Treating and ExxonMobil Jalk Fee Property which contained additional aerial photographs and interpretations of those photographs by CHT's representative. I was subsequently provided the scans of the original photos acquired by CHT's representative. This report includes my commentary on those interpretations as well as additional observations I have made.

Statement of Qualifications

My name is Randall W. Grip. I have a Bachelor of Science Degree in Geography from Louisiana State University. I am vice-president of Aero-Data Corporation. Aero-Data specializes in aerial mapping and environmental studies using aerial photography and historical maps. Over the past 19 years, I have provided expert photo-interpretation and photogrammetry services for environmental assessment purposes. During this work, I have participated in studies and obtained and interpreted aerial photographs of sites throughout the United States as well as in other foreign nations.

My expertise is in review and analysis of readily available aerial photography. The processes I use include include research and acquisition of stereoscopic photography, high resolution photogrammetric scanning, geo-registration of stereo images, and digital orthophoto production. I have been qualified as an expert witness in the fields of photo-interpretation and photogrammetry.

Aero-Data's client list includes many major corporations as well as government agencies such as the US Department of Justice, the Louisiana Department of Natural Resources, and the Louisiana Department of Environmental Quality.

Information Considered in Forming Opinions

My opinions are based upon aerial photography and maps of the Site as well as my experience and training.

Attachment A is a listing of the additional aerial photographs that I have relied upon for this report.

Production of Geo-Registered Images and Maps

I have produced digital stereo plotter based geo-registered imagery of the different dates of aerial photography obtained for this expert report. The imagery, as well as the geo-referenced maps, are included in Attachment B.

Aero-Data Commentary on CHT's Interpretations by Exhibit

Following is a brief commentary of my observations on and disagreements with CHT's interpretations. I have georeferenced CHT's exhibits to the UTM coordinate system so that north is to the top of the exhibits. They are scaled and cropped to the same area and are included in Attachment B.

Although CHT acquired stereoscopic coverage of the site, it does not appear that CHT utilized stereo viewing techniques during its photo interpretation effort. Nor does it appear that CHT utilized georeferencing of the photos during its efforts. For many of the features that CHT incorrectly identified as sumps, including those along the Jalk Fee/CHT property boundary; these features, when viewed stereoscopically, are obviously trees, shadows of trees, sheds, roofs of sheds, and shadows of sheds or small features.

My specific disagreements with CHT's interpretations are numbered in red text and superimposed over CHT's original exhibit, which is labeled with yellow text.

Exhibit 4 – 1928 Aerial Photo of Subject Area

Shadows on this date are long and pointing to the northwest. Three features are identified as sumps by CHT on the eastern side of the property. These features are not sumps and are described as follows:

Point #1 - a tree, more clearly seen in the 1938 imagery in the same location.

Point #2 - a vegetated yard also more clearly seen in 1938 and persisting several years.

Point #3 - pipe rack or similar square structure.

Several sump locations are visible but are not identified on CHT's Exhibit 4.

Exhibit 6 - 1938 Aerial Photo of Subject Area

This is a much higher resolution photo date than the 1928 photo.

Point #1 - filled former sump, first seen on the 1928 photos, but not identified by CHT as backfilled.

Exhibit 7 - 1945 Aerial Photo of Subject Area

Shadows on this date are long and pointing to the northeast. Numerous features were incorrectly identified by CHT as sumps. The correct interpretations are:

Point #1 - shadow of a shed.

Point #2 - dark roof of a shed.

Point #3 - low area (likely puddled water) in the parking lot.

Point #4 - shadow of a shed.

Point #5 - shadow of a vertical structure.

Point #6 - small square features could also be associated with an underground pipeline.

Point #7 - small square features could also be associated with an underground pipeline which is observed trending east-west along the same line.

Exhibit 8 – Blow-up of the 1945 Aerial Photo

This exhibit is an enlargement of the eastern side of Exhibit 7. Shadows on this date are long and pointing to the northeast. Numerous features were incorrectly identified by CHT as sumps. The correct interpretations are:

Point #1 - low area puddled area in the parking lot.

Point #2 - shadow of a shed.

Point #3 - roof of a shed.

Point #4 - shadow of a shed.

Point #5 - shadow of a vertical structure.

Point #6 - small square features could also be associated with an underground pipeline.

Exhibit 9 – 1952 Aerial Photo of Subject Area

Numerous features were incorrectly identified by CHT as sumps. The correct interpretations are:

- Point #1 dark signature is visible but it is more likely oiling of the surface than soil deposition.
- Point #2 low level brush/vegetation.
- Point #3 shadow of an elevated feature.
- Point #4 small square features could also be associated with an underground pipeline.
- Point #5 shadows of elevated features.

Exhibit 10 - Blow-up of the 1952 Aerial Photo

This exhibit is an enlargement of the eastern side of Exhibit 9 and further confirms features that were incorrectly identified.

- Point #1 low level brush/vegetation.
- Point #2 small square features could also be associated with an underground pipeline.
- Point #3, #4, and #5 shadows of elevated features.

Exhibit 11 - 1963 Aerial Photo of Subject Area

Numerous features were incorrectly identified as sumps. Also, actions of a dump truck were misinterpreted.

- Point #1 debris and the remnants of a former drilling rig.
- Point #2 shadow of a structure.
- Point #3 moving dump truck originating from road work across the street. (See also Aero-Data's Exhibit on the Dump Truck activities 6/24/1963)
- Point #4 structure similar in appearance to a ladder.
- Point #5 shadow of brush.
- Point #6 low level vegetation or brush.
- Point #7 small square features could also be associated with an underground pipeline

Exhibit 12 - 1963 - Stereo Pair Aerial Photos of Subject Area

Several features were incorrectly identified.

- Point #1 low puddled areas in the parking lot.
- Point #2 moving dump truck originating from road work across the street. (See also Aero-Data's Exhibit on the Dump Truck activities 6/24/1963)

Exhibit 13 – 1966 Aerial Photo of Subject Area

Several features were incorrectly identified as sumps.

- Point #1 shadow of a structure.
- Point #2 artifact on the film (dust from the duplication process). It is only visible on one frame but is not on the sequential photo of the same date.
- Point #3 structure casting a shadow.
- Point #4 small square features could also be associated with an underground pipeline.

Exhibit 15 - 1983 Aerial Photo of Subject Area

Point #1 - CHT identified all of the semi-trailers as tankers. The resolution of this photo date is too low to identify the semi-trailers as tankers. In review of the frames stereoscopically, I have concluded that all of them are more likely box trailers.

Aero-Data Exhibit A - 6/24/1963 Dump Truck Activities

Activities consistent with road construction, including excavation, equipment, workers and traffic cones, are visible on the eastern side of Norwalk Boulevard. In reviewing the two sequential frames of photography, the dump truck visible on the Site appears to have originated from these activities and is using the site as a turn-around to re-enter Norwalk Boulevard traffic.

On frame 55, a worker (probable flag man) is visible in the road stopping traffic to allow a filled dump truck to cross the flow of traffic to the Site. On frame 56, the worker is no longer in the road and the dump truck is visible on the Site.

A second, empty dump truck and earth moving equipment (front end loader) adjacent to it is visible on the shoulder in both frames. It appears the dump truck will be filled by soil excavated from the eastern side of the road by the equipment in motion adjacent to it.

Aero-Data Exhibits B to G - Structure on Southwest corner of CHT Property

I was informed that CHT claims its hazardous waste has always been stored in the southwest corner of the CHT property. I was requested to review the photos to determine when a storage area was present and the year in which it was first identified.

The southwest corner of the CHT property shows a new covered structure constructed sometime between 1/9/1987 and 1/27/1989. Drums are visible on a slab adjacent to the covered structure on 1/4/1990.

Prior to the installation of this covered structure, a large mounded pile was visible in the location on 1975, 1976, and 1978 photos. There was no evidence of drum storage in the southwest area prior to 1/9/1987.

Methods and Materials

Aerial research and acquisition

The historical aerial photography study of the Site began with research for available photo coverage from public vendors. The photo coverage was then obtained in the form of frames consisting of vertical stereoscopic photography in a 9"x9" format and/or orthophotos.

Initial review and date verification

The frame or scan for each photomission (date of photography) was reviewed and examined for proper geographic coverage of the Site and filed into separate folders for each photomission.

Setting up the stereomodels

Two or more raster images for each stereo date of photography were then imported into a digital stereoplotter capable of providing stereoscopic viewing of the images at magnification levels ranging from 1x to 128x. The digital stereoplotter also allows precise mapping of significant environmental features, which are interpreted, in the 3-D imagery.

Ground control (UTM Zone 11N NAD83 Meters) for the initial stereomodel, 2/10/1985, was derived from the USGS Digital Quarter Quads (DOQQs) and quadrangle sheets (1:24,000 scale) of the area. Distant mapped features, hundreds of feet off the Site but which were also visible in the aerial photography, were measured (coordinates derived) from the USGS DOQQs and used as ground control points.

The coordinates of each selected visible ground control point were then entered into a control point file in the digital stereoplotter. The floating dot (measuring point) of the stereoplotter was carefully positioned by the operator with the hand controller, one point at a time, onto each of the visible control points and the coordinates of that point (from the ground control point file) were assigned to the image. When sufficient control points had been visited, accepted and the model checked for residual errors, the stereo model was

then confirmed to be level, scaled and locked into the coordinate system. Thus, accurate measurements of heights and distances could now be made within the stereo model area by using the digital stereoplotter.

Other stereo models for the remaining dates of photography were then set up using ground control points derived from the initial stereo model. Thus, the stereo models for all dates accurately register one to another allowing the photo interpreter to detect and map changed areas.

Digital Ortho Production

Next, using the stereomodels and digital stereoplotter, a digital orthophoto was produced for each date of photography. A digital orthophoto is a two-dimensional raster image produced from one or more frames of vertical aerial photography such that most of the distortion caused by terrain displacement and tip and tilt in the mapping camera has been removed, and the resulting raster image is accurately registered to a chosen coordinate system. Thus, each digital orthophoto accurately depicts the roads, building bases and other significant features located within the Site in their true geographic position. However, distortion caused by the height of buildings was not removed. Thus, the bases of these structures are displayed in their true position, while their tops may be displaced.

Digital orthophotos are widely accepted today by both government and industry as an improvement over the base maps and photomosaics previously used to show the locations of features within a geographic area. Digital orthophotos have the accuracy of a stereoplotter or land survey produced map with the resolution of a photograph.

Photointerpretation

Photointerpretation of the Site was conducted primarily on the digital stereoplotter using the same digital stereo models used to produce the digital orthophotos. The digital stereoplotter allows me to view the Site in 3-D on a stereo computer monitor or large computer projection screen, normally at magnification factors ranging from 8X to 32X while identifying and mapping the outlines of features.

When necessary to map very small features, I could zoom to magnification factors as high as 128X. Zoom settings greater than 32X generally do not yield more detail, but they do help in carefully mapping small features.

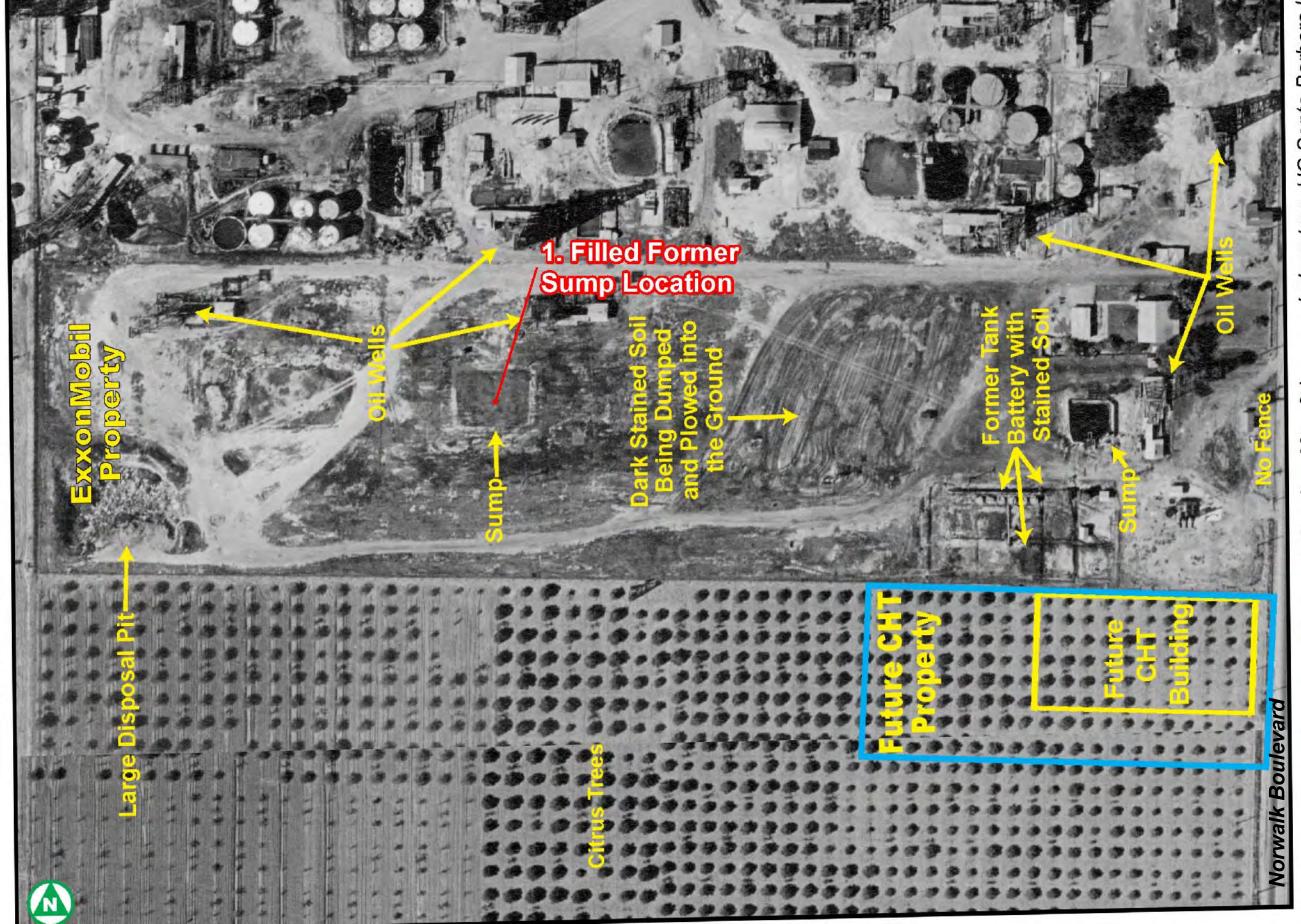
The interpretation done with the digital stereoplotter captured all features in their true position. Stereo models for different dates were viewed and rapidly toggled back and forth on the stereo display to facilitate the detection of changes that occurred to the Site over time. Each class of significant features mapped was recorded on a separate layer and color-coded. The vector files and images were then exported from the digital stereo plotter to a computer for further use. The digital stereoplotter (soft copy) when used in this manner is an extremely powerful photointerpretation tool. I understand that soft copy was originally developed for the military for photointerpretation purposes. Current development of the technology is ongoing. The cost of development is supported by various military and intelligence gathering organizations, NASA and conventional mapping companies like my own.

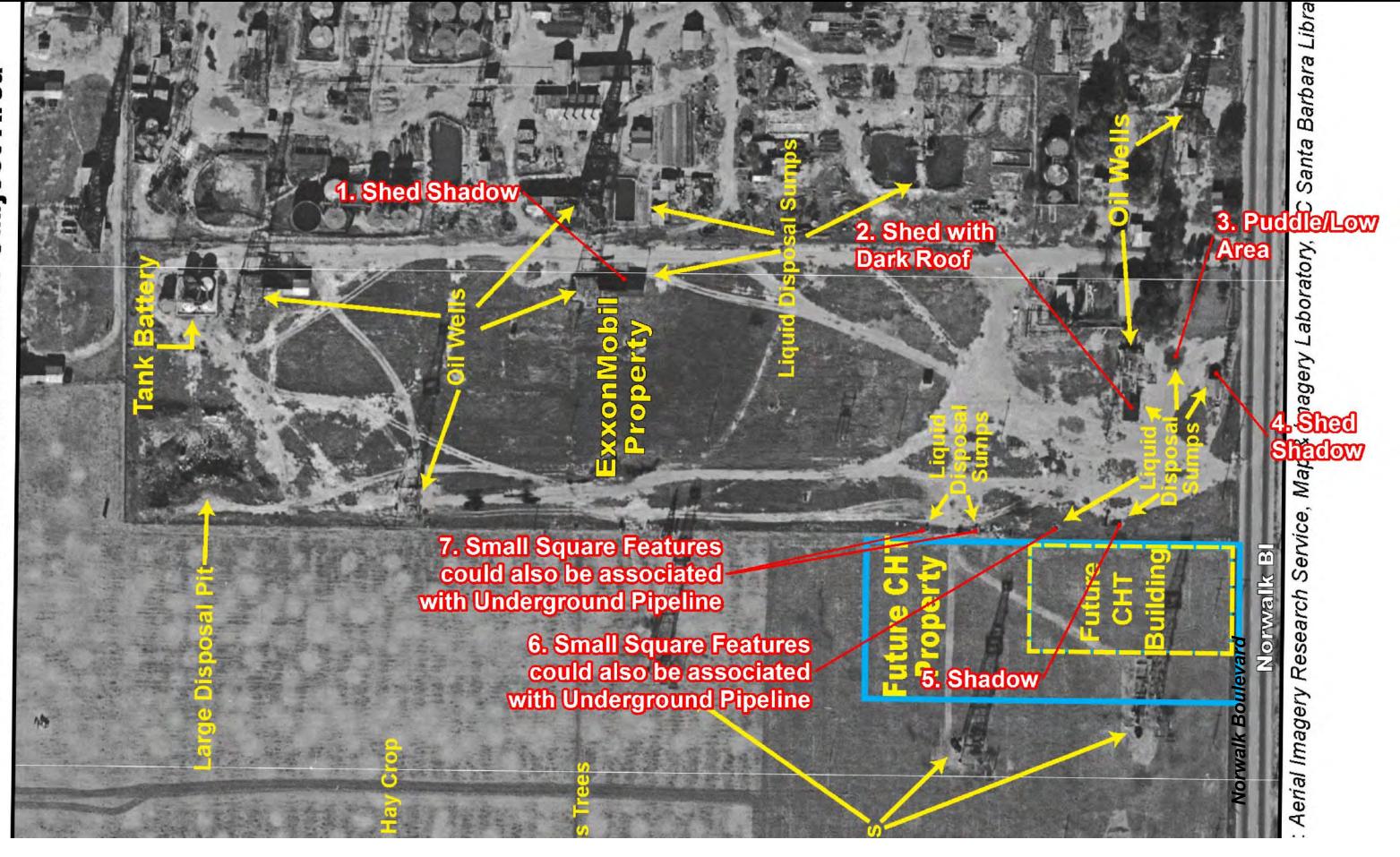
GIS

The digital orthophotos with the interpretation overlays were next imported into ArcGIS. ArcGIS is a very popular geographic information system (GIS) produced by ESRI and sold throughout the world. For the purposes of this report, the interpreted images will be referred to as "mapped images".

The interpreted images and registered maps located in the interpretations section of this report contain specific information and opinions which must be viewed by the reader to fully understand this report. These opinions supplement the textual opinions identified in my report. The mapped images (Attachment B) constitute the primary source of information in this report. They were prepared so that they may be displayed using computer generated prints or a computer projection system. The GIS provides a wide range of capabilities such as zooming, turning themes (layers) on and off and measuring distances.

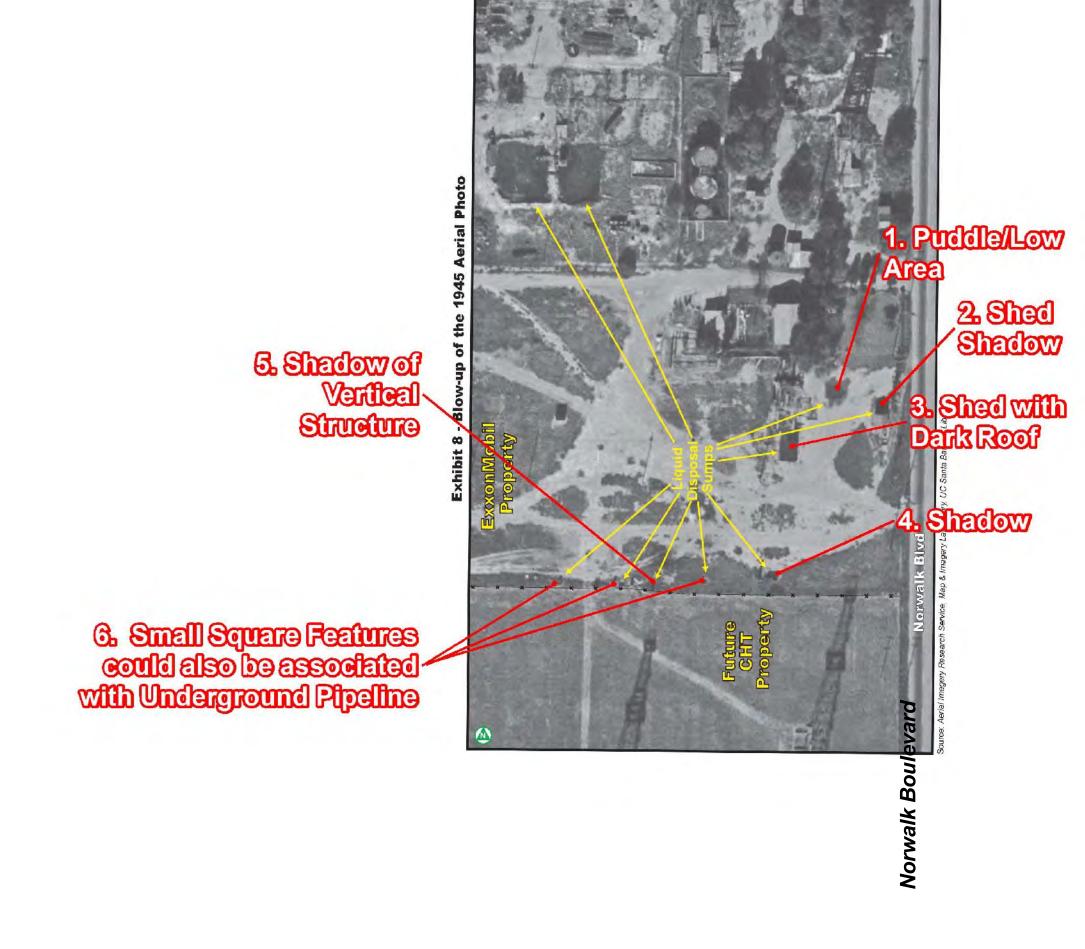
Date	Source	Flight/Roll Number	Frame	Ratio
1928	UCSB	c-300	k-352 & k-353	1:18,000
4/28/1938	UCSB	c-5147	6 & 7	1:3,600
1/1/1945	UCSB	c-9250	97 & 98	1:9,600
11/4/1952	UCSB	c-18060	1-1 & 1-2	1:7,200
6/15/1959	UCSB	c-23575	Jan-34	1:4,800
6/24/1963	UCSB	pai-sfs-63	216v-55 & 216v-56	1:4,800
7/25/1966	UCSB	tg-2189	11 & 12	1:6,000
1/1/1976	UCSB	tg-3617	5-3 & 5-4	1:7,200
8/24/1980	USDA	usda-firescope	780-66 & 780- 67	1:40,000
4/14/1983	UCSB	ami-la-83	11658 & 11659	1:36,000
5/31/1994	NAPP	napp-2c	6858-105 & 6858-106	1:40,000
3/11/1998		eag-la-98	706	1:42,000
2/2/2000		eag-la-00	707	1:42,000

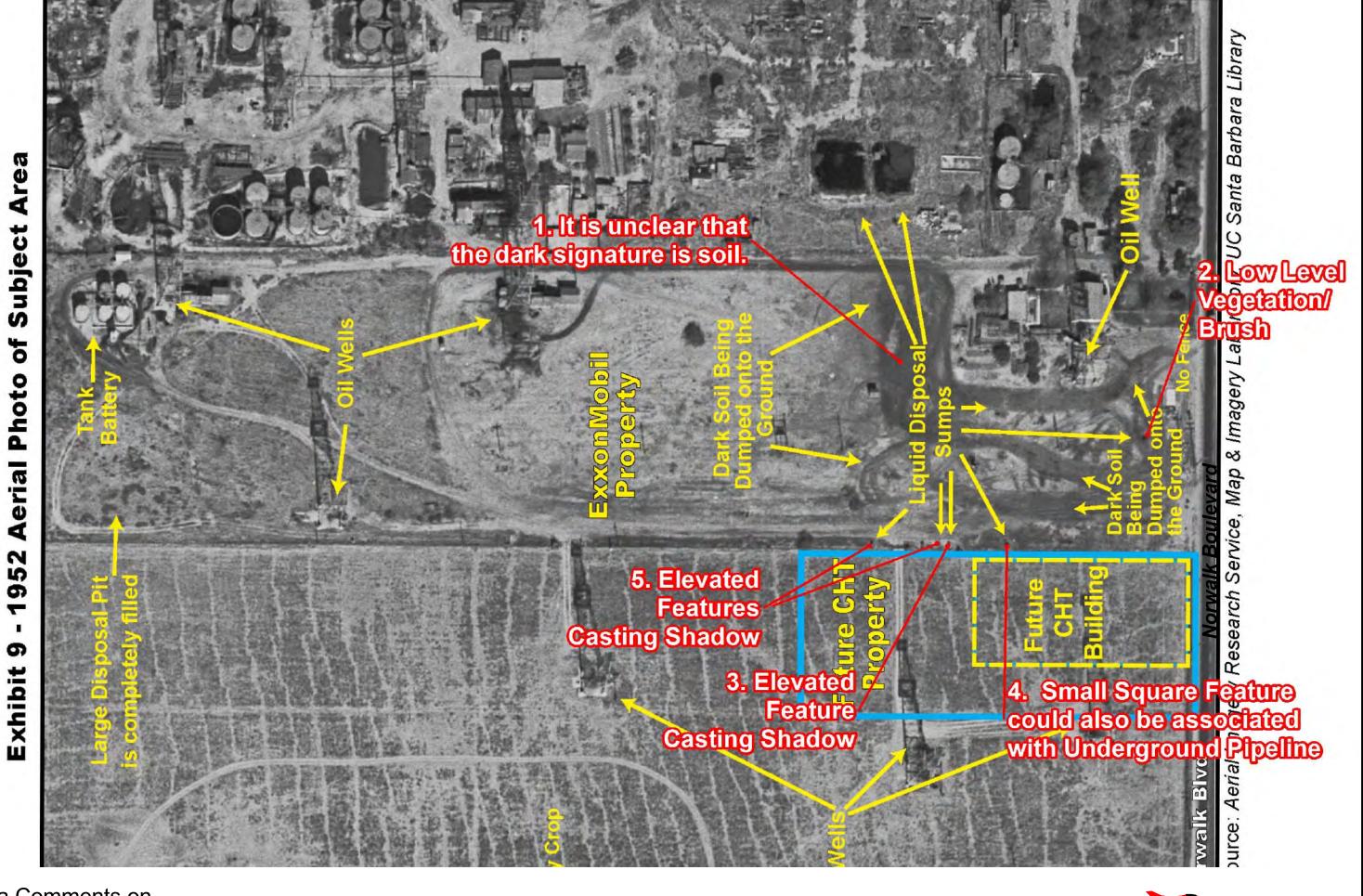

Aero-Data Commentary on CHT's Interpretations by Exhibit



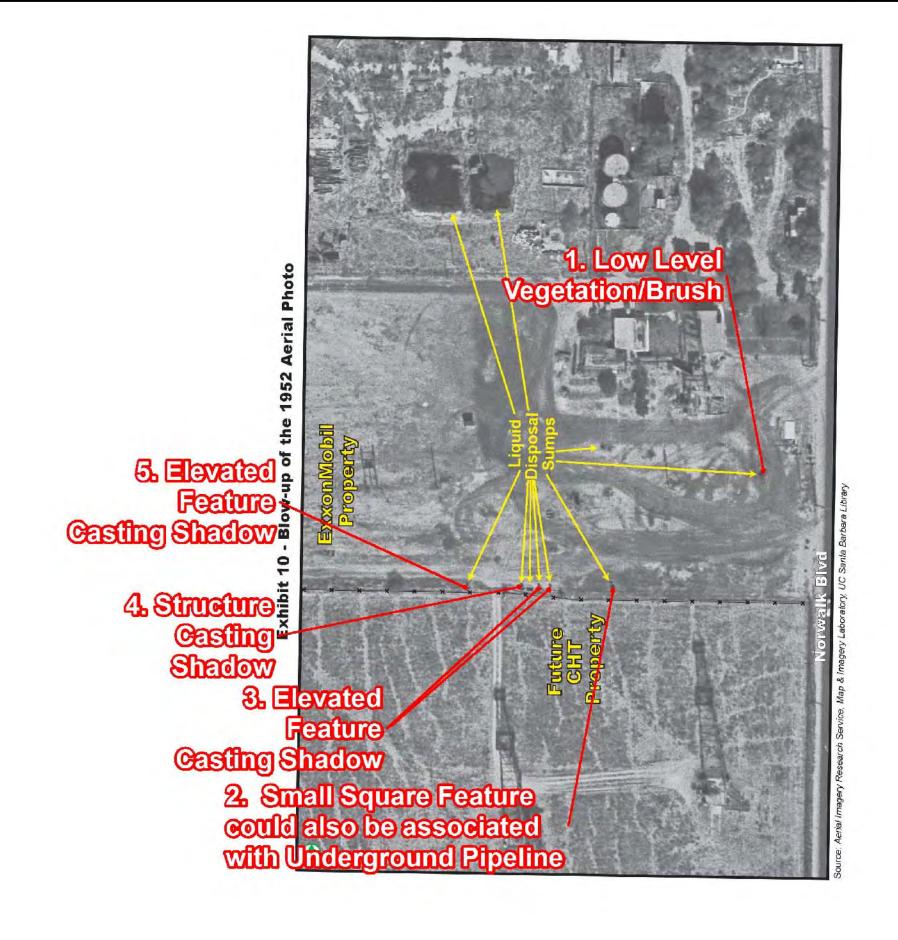
1938 Aerial Photo of Subject Area **Exhibit**

Source: Aerial Imagery Research Service, Map & Imagery Laboratory, UC





Aero-Data Comments on Exhibit 8 Blow-up of the 1945 Aerial Photo

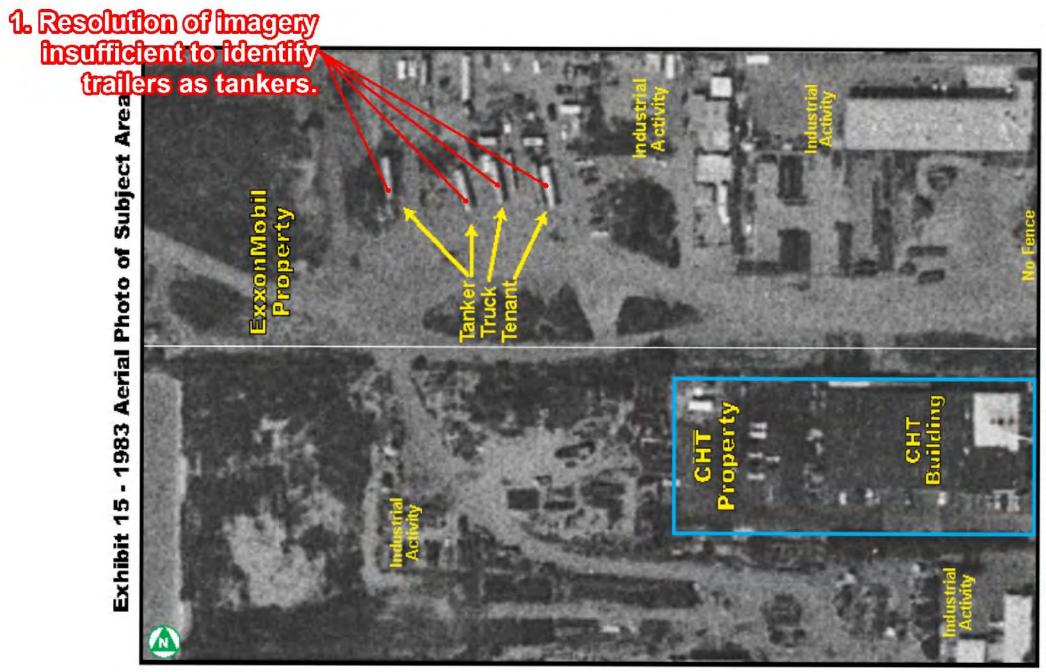


Aero-Data Comments on Exhibit 9 1952 Aerial Photo of Subject Area

100 Feet

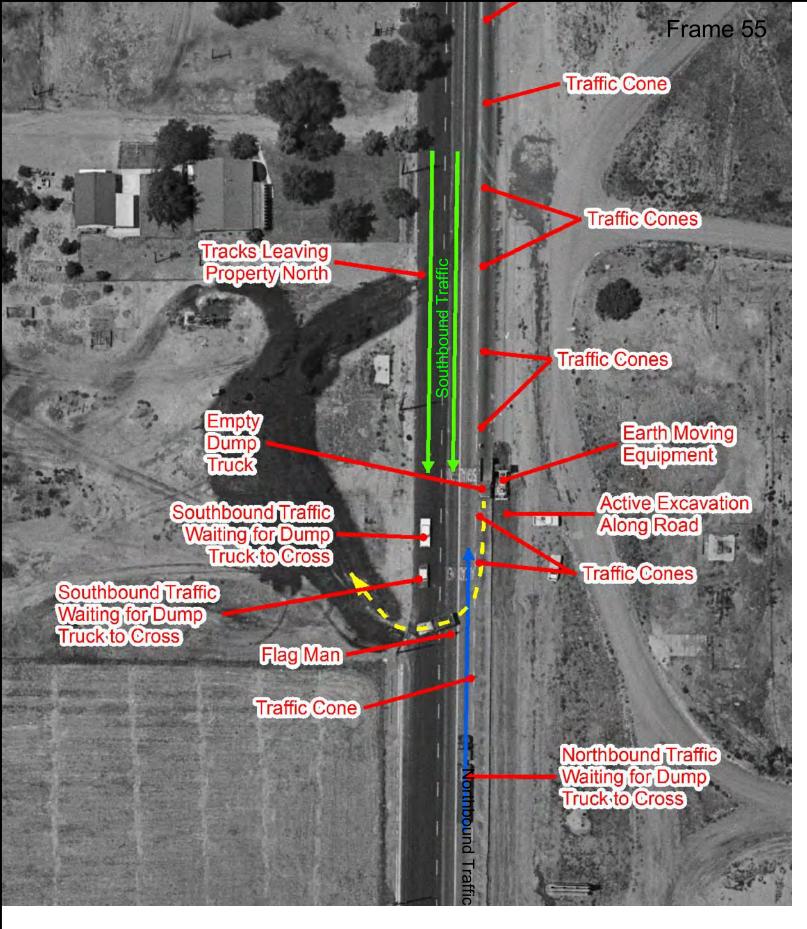
Norwalk Boulevard

1. Shadow of Structure Exhibit 13 - 1966 Aerial Photo of Subject Area 2. Duston
Frame 11
Structure 4. Small Square Features could also be associated Casting Shadow with Underground Pipeline


Aero-Data Comments on Exhibit 13 1966 Aerial Photo of Subject Area

Aero-Data Comments in Red Numbered Text

Source: Aerial Imagery Research Service, Map & Imagery Laboratory, UC Santa Barbara Library



Source: Aerial Imageny Research Service, Map & Imageny Laboratony, UC Santa Barbara Librany Norwalk Boulevard

100 0 100 Feet

6/24/1963 Dump Truck Activities

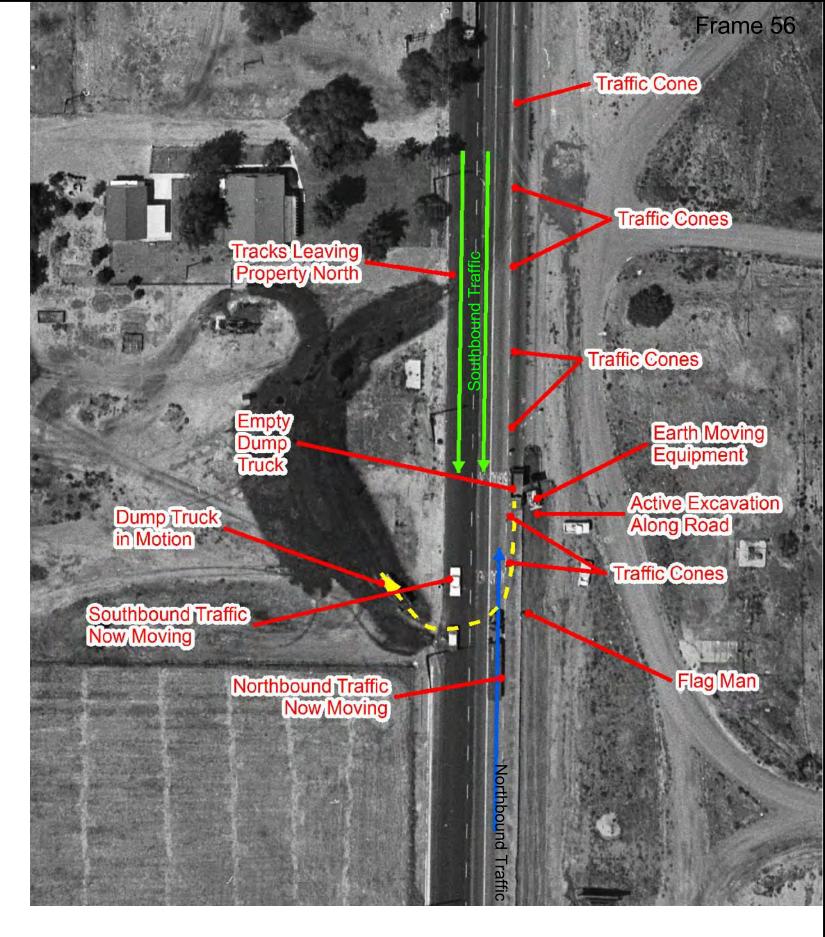


EXHIBIT A
Aero-Data Interpretations on
6/24/1963 Stereo Pair of Subject Area
Showing Path of Dumptruck

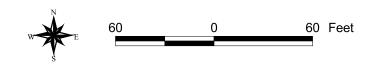


Exhibit B - 2/17/1975 CHT Property Observations Photo Source: Continental

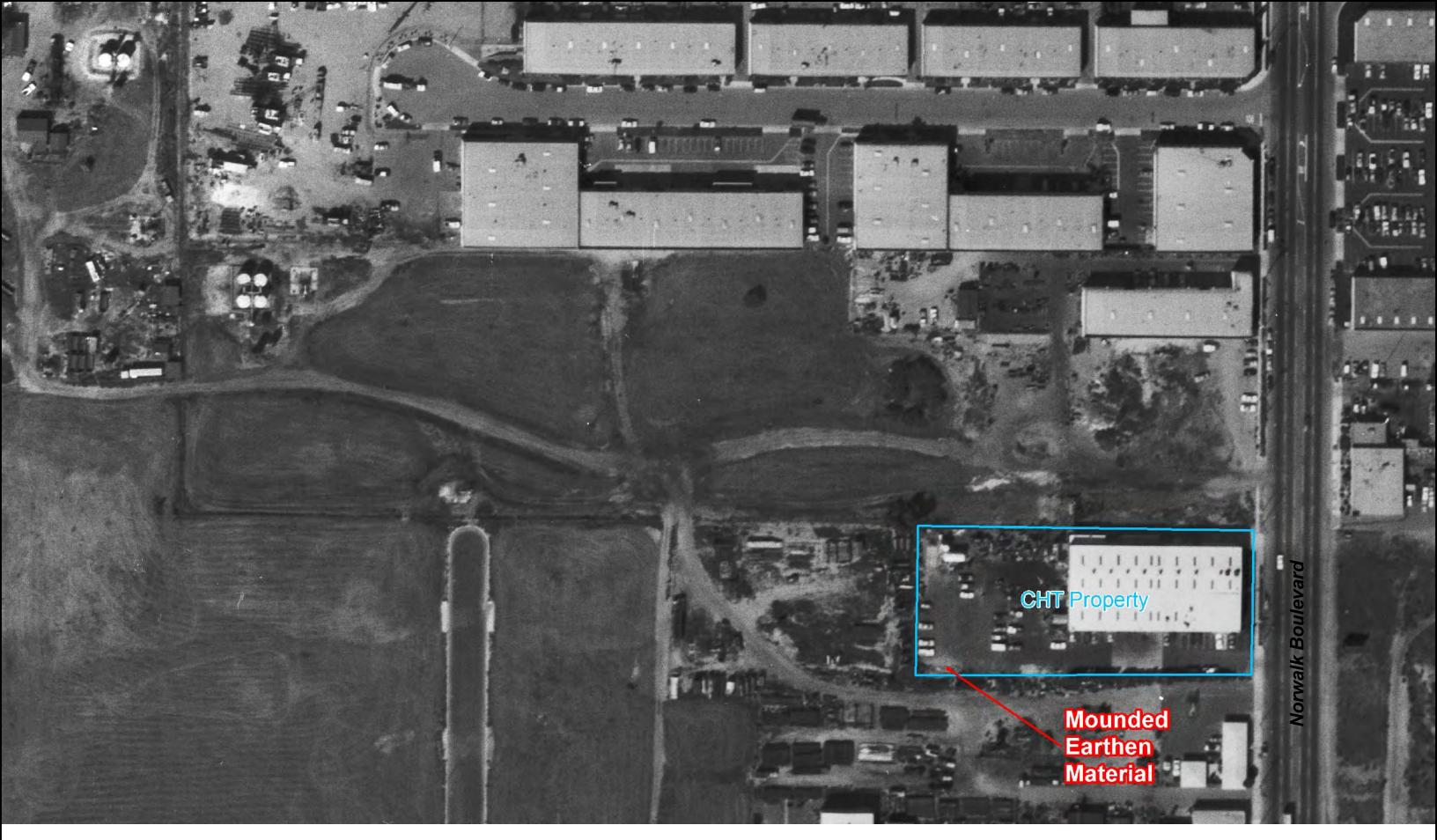


Exhibit C - 1976 CHT Property Observations Photo Source: UCSB

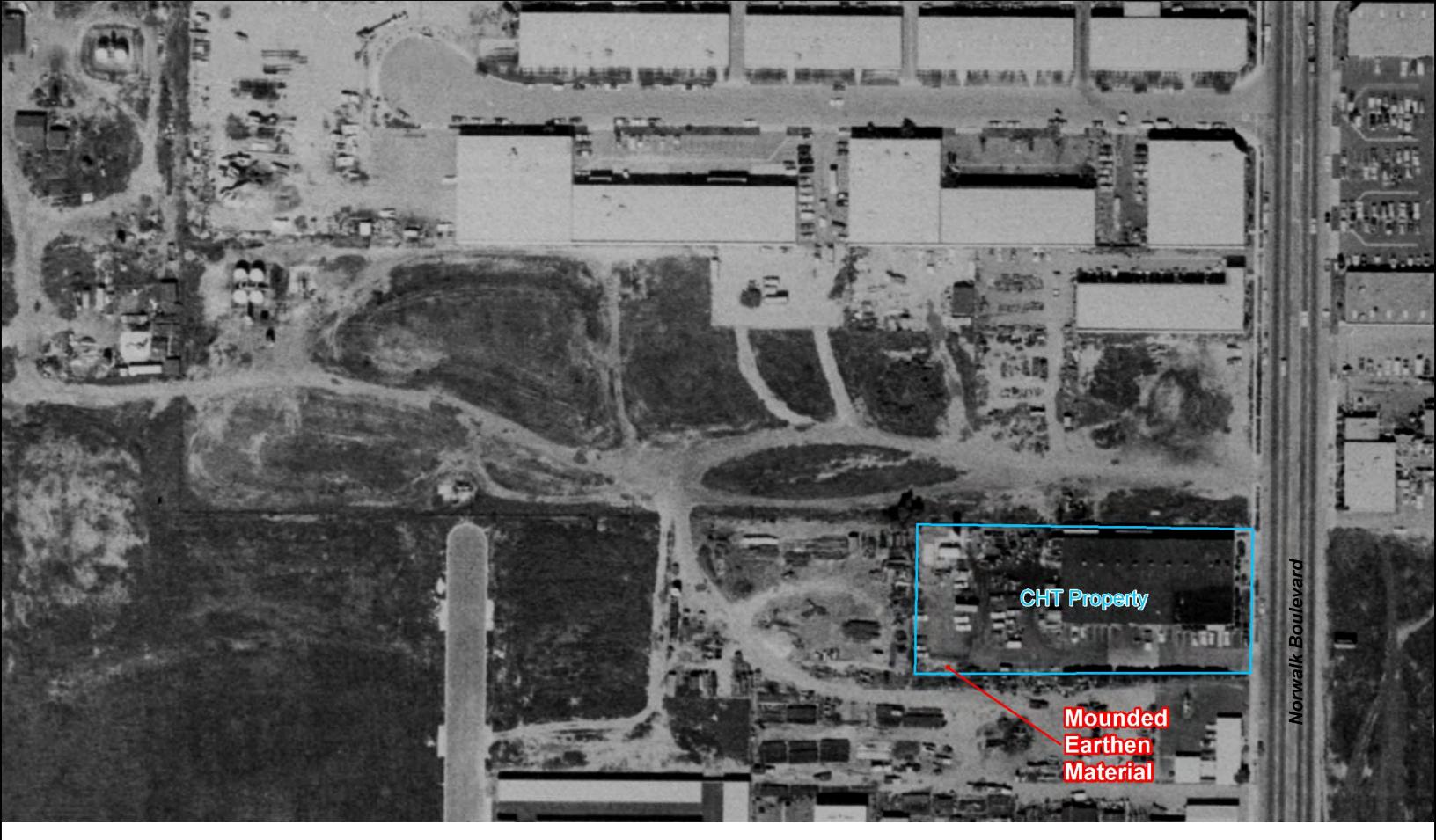


Exhibit D - 3/16/1978 CHT Property Observations

Photo Source: Continental

Exhibit E - 1/9/1987 CHT Property Observations

Photo Source: Continental

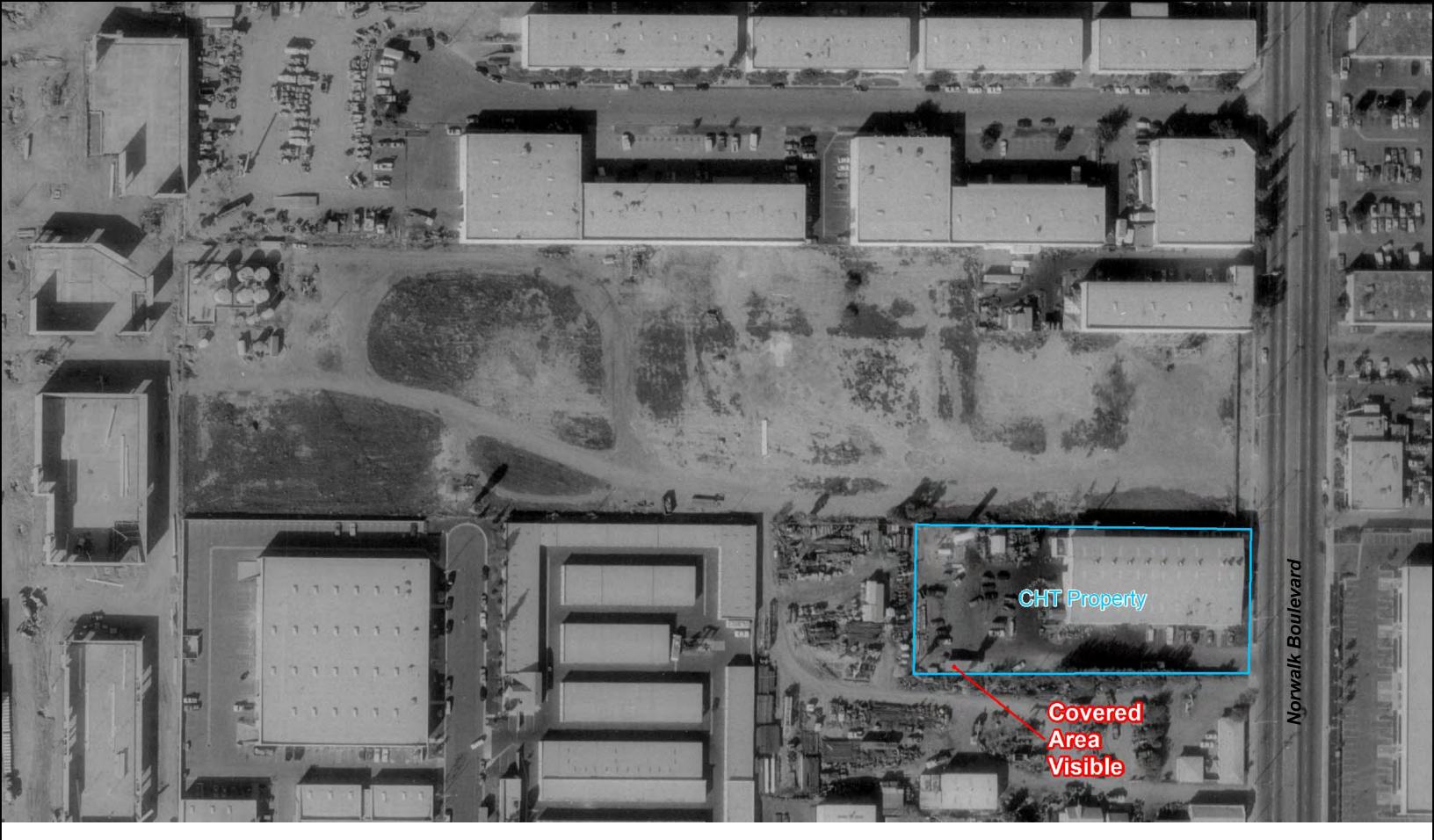


Exhibit F - 1/27/1989 CHT Property Observations

Photo Source: Continental

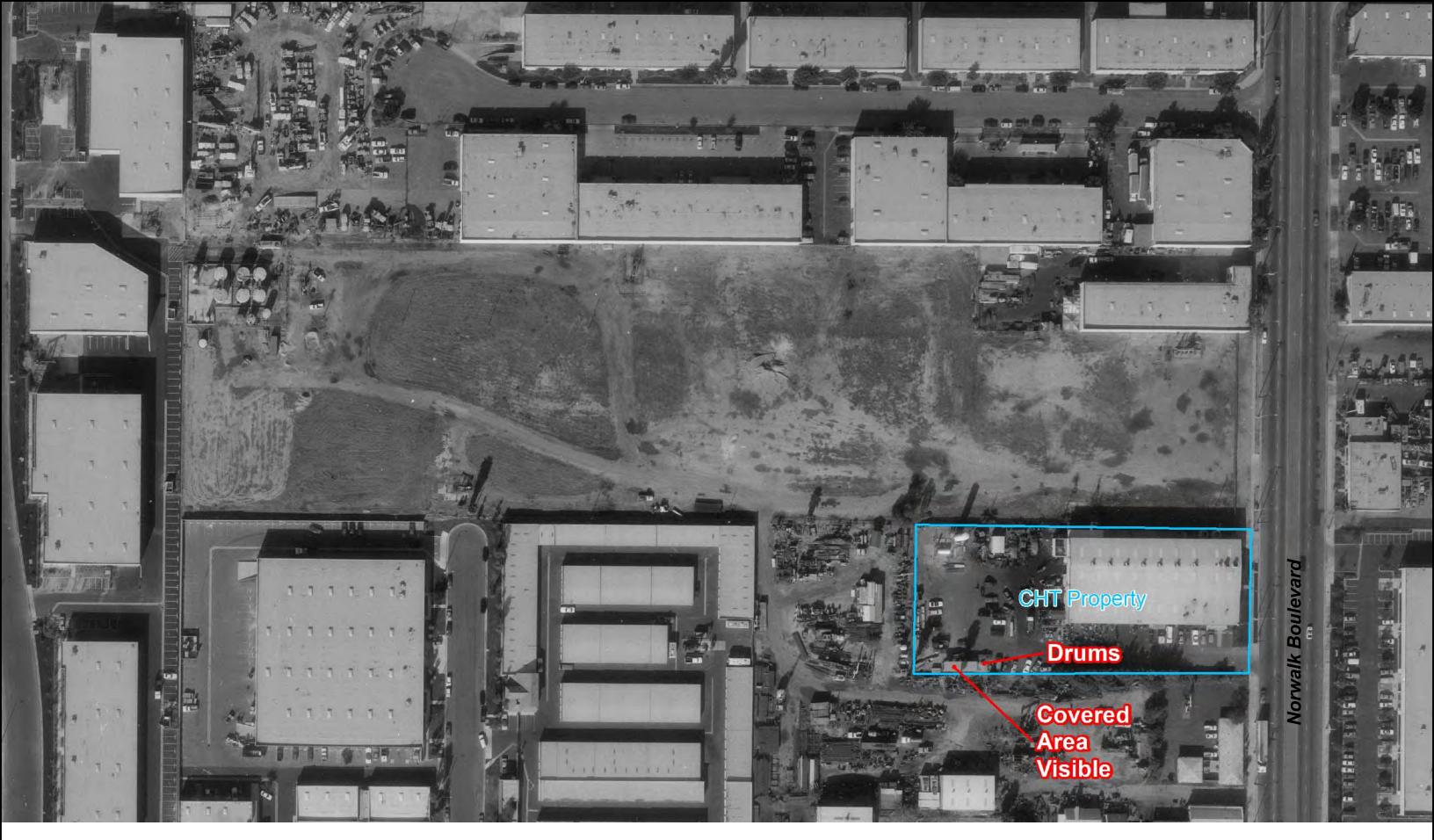


Exhibit G - 1/4/1990 CHT Property Observations

W E

APPENDIX C

TRUCKING LOGS FROM TRC'S

SITE CLOSURE REPORT AND RISK ASSESSMENT REPORT,

DATED NOVEMBER 28, 2000

JALK FEE TRUCKING RECORD

00-265

TRC FIELD REP: CLAIG MITCHELL

PAGE	OF <u>2</u>		Personal Review Page 11 Japanese 11 Co.	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2			
DATE	TIME IN	IMPORT	TRUCK NUMBER	TRAILER NUMBER	SOIL SOURCE	MANIFEST NUMBER	TIME OUT
11-10-00	0700	Y (N)	247世1	1074156	SP.49/M4/M3	04003	0807
11-10-00	0000	Y 🔊	JT #6	IWR1834	SP49/M4/M3	00002	0806
11-10-00	०३००	Y (N)	242a2	IMB 2189	m3/5P49	00004	0809
11-10-00	0700	$Y ext{ (N)}$	JFR988	IWB 2157	949/m3	80005 T	08 H
11-10-00	0860	Y (V)	JT# LA003	1UN 4505	sp-49/M3	20000	0825
11-10-00	0920	Y 🔕	37#6	1 WR 1834	SP-49/ M3	00007	0932
1[-10-00	0920	Y 🕥	JFR#988	162189	59-49/M3	0∞08	0938
11-10-00	0934	Y Ø	24113	INB 2189	SP-49/m3	00009	0949
11-10-00		Y Ø	スタエギー	1094156	SP-49/M3	00010	#100 i
11-10-00	0949	Y	JT \$ LA003	IUN 4505	SP-49 /M3/157	00011	1013
11-10-00	1035	Y 👿	24工438	1009424	Sp.49/25/53/514	00012	104
11-10-00	1054	Y	3T#6	1WE 1834	\$49 S5/57/514	00013	1106
11-10-00	1056	Y	5FR-988	1WB 2157	5049 55157 514		1117
11-10-00		Y	242#3	IMB 2189	SP49 / M3	00015	1134
11-10-00		Y	レルは生	109 4156	5049/m1	00016	1143
11-10-00		Y	TTH CAOOB	LUA 4505	\$49/M1	00017	1152
11-10-00	1157	Y	Z-4Z#88	PEPP HUI	5P49 / M7	00018	1706
11-10-00		Y	JT#16	1 we 1834	5849/M7	00019	1229

JALK FEE TRUCKING RECORD

00-265

TRC FIELD REP: CRAIG MITCHEL

PAGE 🚨 (OF <u>a</u>							
DATE	TIMETN	IMP	ORT	TRUCK NUMBER	TRAILER NUMBER	SOIL SOURCE	MANIFEST NUMBER	TIME OUT
10-10-00	13-3-2	Y	0	JFR#988	IWB3157	spya /m=	00030	1238
11-10-00	1230	Y	0		1WB 4189	SP49 /M7/515	00021	1303
11-10-66	1241	Y	<u> </u>	ユイエポ/	1004156	5049 KIS \$13/	800033	1315
11-10-60	1313	Y	0	ZT# LACOS	1044505	5849/ng	00023	1339
11-10-60		Y	0	J4I#88	104 9424	SPUQ/M8	०००३५	1349
11-10-00	1350	Y	0	37#6	JWR 1836	SP49/M8	00005	1402
11-10-00	1354	Y	(M)	7E5#488	1 WB 2157	5949 / M8/SIZ	8000a6	<u>1453</u>
11-10-00	1402	Y	0	工4工学3	1WB 2189	5849/512/5A	∞053±	1455
11-10-00	1422	Y	Ø	241年1	1094156	5849/512/519	0009&	1455
		Y	N					hhill amm
		Y	N					
		Y	N					
		Y	N					
		Y	N					
		Y	N					
		Y	N					
		Y	N					
		Y	N					

JALK FEE TRUCKING RECORD

TRC FIELD REP: CROIG MICHE!

PAGE ___ OF

PAGE 1 (to the second second				I Service Serv		
DATE	TIMEIN	IMPORT	TOTAL AND A STATE OF A DAY A STATE OF A DAY	TRAILER NUMBER	SOIL SOURCE	MANIFEST NUMBER	TIME OUT
11-13-00	<u> ۵۵۵۵</u>	YN	R+R #60	IVZ 5756	58-49/512/519	000 29	0715
11-13-00	0630	Y (V)	ORTYII	WR9067	59-49/312/519	00030	0731
11-13-00	0630	Y (N)	MUNOS # 40	1UF2200	59-49/512/519	00031	0744
11-13-00	0640	Y (N)	AFC #145802	102 6307	50-49/513/549	00032	0755
11-13-06	0903	Y O	R4R#60	WZ 5756	50-49/512/549	00033	0919
11-13-00	0911	Y 🔇	OR#411		SP-49/M9	00034	0933
11-13-00	0927	Y (D)	AFL#145802	102 6303	SP-49/M9	00035	0947
11-13-00	०१५३	Ø N	MUNOZ #40	1052300	SP-49/M9	00030	0959
11-13-0	7045	Ø N	R4 2#(00	VZ 5756	58-49 /M9	00037	11 11
11-13-00	1930	<u> </u>	0R#411	WR9067	50-49/M9	∞ ◦38	1145
11-13-00	1153	Ø N	AFL# 145802	102 6307	58-49/mg	00039	1300
1/-13-00	1158	Ø N	MUHOZTHO	10F 3300	50-49/m9	00040	1207-
11.12-00	1305	Ø N	B18#60	NZ5756	SP-49/M9	00041	1320
11-13-69	1319	Ø N	or styll	WR9067	5849/MQ	64000	1330
11-13-a	1330	Ø N	AFL#145802	107 6307	sryg/mg	00043	1340
11-13-00	1340	<u> </u>	MUN02#40	IUFALOD	SP-49/M9	00044	1400
		Y N			***************************************	***************************************	
		Y N					

	· · · · · · · · · · · · · · · · · · ·			JALK F	EE TRUCKING	RECORD	00-265	
TRC FIELD I	REP: C.	4 ITCH	'ell					
PAGE 1 C)F							
DATE	TIMEIN	ΪMΡ	ORT.	TRUCK NUMBER	TRAILER NUMBER	SOIL SOURCE	MANIFESTNUMBER	TIMEOUT
11-14-00	0642	Y	0	LAUWA #14	1 W€ 7742	SP-49/M9	00045	0715
11-14-00	0655	Y	0	AT#31	IVG 3580	SP.49/M9	00046	0721
11-14-00	0655	Y	0	GE#47	IVG 7735	SP-19/M-9	00047	0734
11-14-00	0853	0	N	LEIVATIL	1W67742	SP-49/M-9	00048	0915
11-14-00	0859	0	N	47#31	1463580	SA49/M-9	00049	0926
11-14-00	0913	0	N	6747	IVG 773	\$249/M-9	000 50	0932
11-14-00	101)	Y		LEWA#14	14 774a	SP-49/M9	00051	1015
11-14-00	1030	Y	<u> (1)</u>	AT#31	NG 3580	50-49 /m9	00027	1040
11-14-00	1100	Y		GEM#47	WG 7735	SP-49/M-9	00053	1113
11-14-00	130	Y	0	LEINY IN	1WE7742	50-49/m-9	0005Y	1123
11-14-00	1150	Y	<u> </u>	AT#31	1443580	5049/M9	0002 <u>7</u>	1205
11-14-00	1215	Y	<u>M</u>	GEM#47	IVG 7735	3P-49/M-9	00026	1932
11-14-00	1250	Y	\bigcirc	LEIVA# 14	IWE7746	SP-49/M-9	6005¥	(3 00
11-14-00	1300	Y	0	NT#31	IVG 3580	Sp-49/m-9	600S8	1330
11-34-00		Y	(N)	Gen#47	WG 7735	SP-49/m-9	000 6059	1350
11-14-00		Y	-	LEWA # IL	IWE 7742	SR49/M-9	09090	पिरुठ
11-14-0	نسا	Y		GEN#47	1VG 7735	SP-49 /M-9	00061	
-		Y	N					

***************************************				JALK F	EE TRUCKING	RECORD		× · · · · · · · · · · · · · · · · · · ·
TRC FIELD	REP: C.	MIT	CHel					
PAGE 1	OF							
DATE	TIMEIN	EMF	ORT	TRUCK NUMBER	TRAILER NUMBE	R SOIL SOURCE	MANIFEST NUMBER	TIMEOUT
11-15-00	0630	Y	0	3T #3	IUB 2189	5P-49/M9		0729
11-15-00	0605	Y	0	2740	1WR1834	50-49 IM9	00062	0719
11-15-00	0901	Y	Ø	57#6	1 WR 1834	58-49/M9	00064	09/2
11-15-00	0906	Y	0	7T#3	IWB2189	SP-49/M.9	00065	०१३३
11-15-00	1018	Y	0	3T#6	IWR 1834	5P-49/M-9	00066	1030
11-15-00	PEOL	Y		2±#3	1WB2189	Sp-49/M-9	00067	1046
4-15-00	ලිදුර	Y	N	71#3	1482189	SP-49/M-9	୭୯୦୭ର୍ଷ	1216
	**************************************	Y	N	***************************************				***************************************
1		Y	N					the second secon
		Y	N					
		Y	N				***************************************	
		Y	N					-
		Y	N					
		Y	N			<u></u>		
		Y	N					
		Y	N					
	AAAA	Y	N		,			
	40000	Y	N					

APPENDIX D IMPORT AND COMPACTION RECORDS

ART Outbound Soil Log

Date 11-13-00
Page # 1

	_ 		<u></u>		· · · · · · · · · · · · · · · · · · ·			
	TRUCK ID	COMPANY	LICENSE #	TIME IN	TIME OUT	JOB#	TONS	DISPOSITION
	400	MUNOS	909607	9:17	9:20	20001698	22	Tant 2 Coring
2	60	RER	963608	10:08	10210	~	7	"
ا د.	411	RER	4/332///	11.01	11-03	'/	11	
	R-700	R#R	9866037	11:18	11-21	<u>′</u>	"/	"
_5	<u>00</u> 9	MANO?	4(0460)	11:30	11:33	11	"	"
-6 -	60	<u>R#R</u>	4836608	12:22	1224	2.000 1698	22_	
7	477	PBR	4B36111	12:42	1245	1/	7	4
3	700	R& R	4866032	12:52	- 	"	"	<u> </u>
9	400	MUNOS	9009607	1:04	13207	"	11	7
10					/			
11	•							
12								
13								
14	-		ļ					
15			ļ					
16			1					
17					•			
18								
10								
,	<u> </u>							
21								
22						_		
23			j		_	<u>;</u>		
24					-		-	
25							-	
26				_			1	
27								
28								
29								
j30	<u> </u>						<u> </u>	
	- 						l l	
31			l					
33								
34					_			
	-							
3:				_				
3	-						<u> </u>	
3	<u>-</u>				_			
	-							
	<u> </u>							
4	<u> </u>					•		

Name:

Acordo 6.

198 tons

ART Outbound Soil Log

Date 11-14-00

1	TRUCK ID	COMPANY	LICENSE #	TIME IN	TIME OUT		TONS	DISPOSITI
1	14	LEWA	19868272	8:14 8:24	8-17	20-01776	22	10602 Norvait &
1 2 3	<u>3 L</u>	AMEZCUA	19860404		8-27	20001278	يندر	4,
3	<u> </u>	GEM	<u> 9826572</u>	8:39	842	20001728		"
4								
5								
6			THE THE PART OF THE]	
7								***************************************
8								
9								
.10								
11	-					The state of the s		
12				A. C. C.	AT THE TAY AND THE TAY			
13							And a Continue of the Continue	
14							ļ	
15								***************************************
16	· }						***************************************	
17			_		•			
18					4			
15								
20	~ <u> </u>							•
							l l	
2 2 2	2							
12	3						i i	***************************************
2	4				X:			
2	5							***************************************
2	6							
2 2 2	8							
12	9							
} i 3	io l					***************************************	i	
} ~~~	31							
"	12							
	33							
r	34	•				***************************************		WINDOWS
}								
	3.5 7.6							
	36	<u> </u>		Test and the second				
	37							
1	38							
~	39							
L	40					<u>l</u>		

Name:

GU TOPS

APPENDIX D

KEANTAN LABORATORIES REPORT FROM TRC'S

SITE CLOSURE REPPORT AND RISK ASSESSMENT REPORT,

DATED NOVEMBER 28, 2000

www.keantanlabs.com email: keantanlab@aol.com

November 3, 2000

TRC Environmental Solutions, Inc. 21 Technology Drive Irvine, CA 92718

Attention:

Mr. Jeff Hensel

Subject:

Report/Laboratory Test Results

Project Name: Jalk Fee Project No.: 00-0265

KTL Project No.: 00-056-003

Dear Mr. Hensel:

Enclosed are results of the laboratory testing program conducted on samples from the above referenced project. The testing performed for this program was conducted in general accordance with testing procedures as follows:

TYPE OF TEST

TEST PROCEDURE

Modified Proctor

ASTM D 1557

Attached herewith are Modified Compaction Test Results(2).

We appreciate the opportunity to provide testing services to TRC Environmental Solutions, Inc. If you have any questions regarding the test results, please contact us.

Very truly yours, Keantan Laboratories

Kean Tan, PE Principal

Encls.

www.keantanlabs.com email: keantanlab@aol.com

S.G. = 2.6

S.G. = 2.7

Modified Compaction Test Results ASTM D 1557

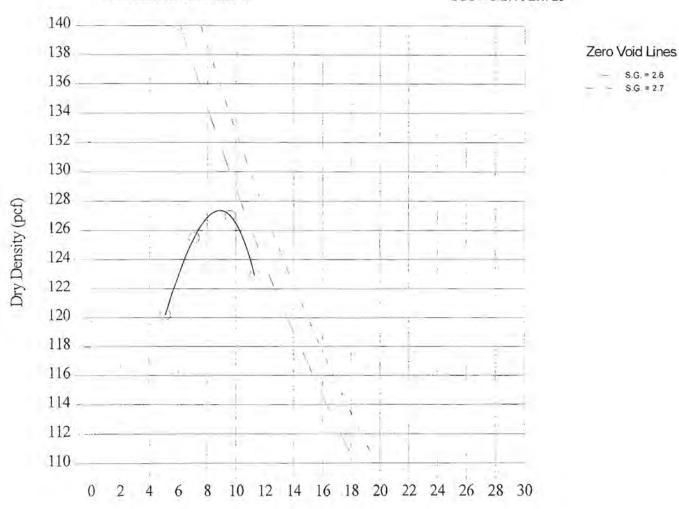
PROJECT NAME: JALK FEE

PROJECT NO.: 00-265

DATE: Nov. 2000 BORING NO .: N/A SAMPLE NO.: M7/M8

METHOD: A

DROP: 18 INCHES


NUMBER OF LAYERS: 5

KTL NO.: 00-056-003

CLIENT: TRC ENV. SOLNS.

DEPTH (ft): N.A. USCS CLASS .: SC

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Moisture Content (percent)

Optimum Moisture Content, %

Maximum Dry Density, pcf

9

127

FIGURE NO.

www.keantanlabs.com email: keantanlab@aol.com

Zero Void Lines

- S.G. = 2.7

S.G. = 2.6

Modified Compaction Test Results ASTM D 1557

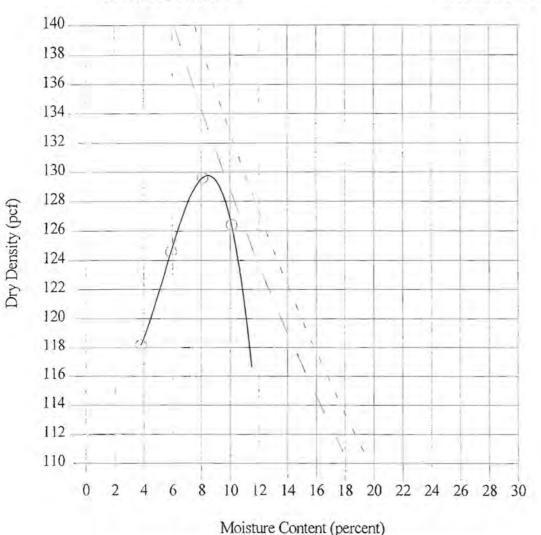
PROJECT NAME: JALK FEE

PROJECT NO.: 00-265 DATE: Nov. 2000

BORING NO.: N/A SAMPLE NO.: M-3

METHOD: A

DROP: 18 INCHES


NUMBER OF LAYERS: 5

KTL NO.: 00-056-003

CLIENT: TRC ENV. SOLNS.

DEPTH (ft): N/A USCS CLASS.: SC

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Optimum Moisture Content, %

Maximum Dry Density, pcf

8

130

FIGURE NO.

PROJECTIV		JALK FEE	TESTE		Cur		GAUGEN		M8905884		STD. DENSITY COUNT	16089
PROJECTIV		00-265	DATE		11-17	-00			ASTM D30	17 / D2922	Xi RATIO	. 92
PROJECT L	OCATION	SANTA PESONINGS	CHECK	ED BY	1		REQUIRE		900	3 _	STD. MOISTURE COUNT	11067
EST MATE	ERIAL	GEN BACKEIL INDET				_	COMPAC				XI RATIO	1.04
NO,		TEST LOCATION	NO.	PROBE DEPTH (In.)	WET DENSITY (pcf)	RATEM THETHOO (%)	DRY DENSITY (pcf)	OPTIMUM, MOISTURE (%)	MAXIMUM DRY DENSITY (pcf)	RELATIVE COMPACTION (%)	сом	NEWT
FI		M-9	17	8	134.2			7.0		96.29		
18		M-9	18	8	131.3	7.30	122.4	7.0	0.181	93.40		
19		M-9	19	8	127.6	6.77	114.5	7.0	131-0	91.25		
20	X	M-9	20	8	132.1	5.W	135.1	7.0	131.0	95.49		Ź
											14	
			1				6		- J#:-		li —	

	FIELD DETERMINATION	V OF	DE	NSITY	AN	р мо	STUF	E CON	TENT E	BY NUCLEAR METHOD
PROJECT		TESTE		Cw		GAUGE N		M8905884		STD. DENSITY COUNT 16/97
PROJECT	NO. 100-265	DATE		11-16-		TEST ST/	ANDARD	ASTM D301	17 / D2922	
PROJECT	LOCATION SWITH FE SPICINGS		ŒD BY			REQUIRE			- ch	STD. MOISTURE COUNT 11128
TEST MA		DATE				COMPAC)%o	XI PATIO 1.43
TEST	TEST	1	PROBE	WET	WATER	DRY	CPTIMUM,	MAXIMUM	RELATIVE	
NÇ.	LOCATION	NO.	DEPTH	DENSITY	CONTENT		MOISTURE	DRY DENSITY	11	COMMENT
			(in.)	(pct)	(%)	(pcf)	(%)	(pcf)	(%)	Ţ
11	M-3	11	8	136.8	514	120.6	7.5	1282	93.87	,
اعدا	m-3	12	8	136.8	8.31	1263	75	128.5	98.29	3,
13	M-3	13	8	1243	6.99	116.2	7.5	138.5	90.41	
14	· M-3	14	8	134.7	5.4	7127.5	7.0	131-0	97.33	÷
										, and the second
1	M8		8	129.7	9.39	118.6	7.5	128.5	9227	IMPOGTIZ
3 _	M-8	2	8							IMPORT#1
3	M-8	3	8	135.0	8.97	114.7	10.0	125.0	91.75	
4	M-8	4	8					1252	92.08	
5	M-8	2	8	} -	1	•	11	130.0	90.45	
15	M9	15	X	131 (1	9~	130 %	20	130.0	92.68	
مرا_	M-9	16	8			128.0		131.0	97.68	
					7.07					
	The second secon			Handida Wanan	White					
1										
				<u> </u>				L		

	FIEL	D DETERMINATIO	N OF	DE	NSIT	/ AN	D MO	STUF	RE CON	TENT E	BY NUCLEAR METHOD
PROJECT	NAME	JACK FEE	TEST	ED BY	Cun		GAUGEN	IO.	M8905884	8	STD. DENSITY COUNT 16336
PROJECT		00-265	DATE		11-15-0	90	TEST STA	ANDARD .	ASTM D30		XI RATIO 1.02
PROJECT	LOCATION	SANTAFESALING		KED BY			REQUIRE		0.00	_	STD. MOISTURE COUNT 11125
TEST MAT	rerial	GEN BACKEN IMPORTAT					COMPAC		90%		XI RATIO 1.05
TEST		TEST		PROSE	WET	WATER	DRY	OPTIMUM,	MAXIMUM	RELATIVE	
NO.		LOCATION	NO,	DEPTH	DENSITY	CONTENT		MOISTURE		I	COMMENT
				(in.)	(pcl)	(%)	(pct)	(%)	(pcf)	(%)	3
		<u>M-3</u>		, -	35.6	962	133.7	<u>ව.ට</u>	125.0	98.99	IMPORT #
<u>a</u>		M-3	3	8	129.7	9.54	118.4	ري.ور	125.0	94.75	
3	A selection development	M-3	3_	8	124.9	10.4	113.1	(0,0	125.0	9051	
4	3	M-3	4	8	129.5	10.06	117.7	10.0	125.0	94.15	·
5		M-3	5	8	128.3	11.73	114.8	0.0	125.0	91.85	
م)	,	M-3	6	8	1	1	123.6	fi.	125.0	98.85	
7		M-3	7	8	177.8	452	1223	7.5	7.5 128.5 95.16 NOU IMPORT	NOU IMPORT #2	
8		M-3	8	8	33.8	5.4	136.7	7.5	B85	48.58	
9		M-3	9	8	1	1 .	122.6		128.5	95.41	
מו		M-3	10	8	130.7	5.69	1336	7.5	128.5	96.21	
											<u></u>
									,		
	***************************************		,								
		. An and and and an									
			İ				<u> </u>				
							ļ				
	·			1	1	<u> </u>	-	9	1	15.	<u> </u>

											BY NUCLEAR METHOD		
PROJECT		JACK FEE	TESTE	D BY	مین		GAUGEN		M8905884		STD. DENSITY COUNT	16226	
PROJECT		00-265	DATE		11-15	<u> </u>			ASTM D30	17 / D2922		L.03	
PROJECT	LOCATION	SANTA FE SHUMGS, CA	CHEC	ŒD BY			REQUIRE			α.	STD. MOISTURE COUNT		
TEST MA	TERIAL	GON BACKFILL	DATE				COMPAC	TION	90	10	XI FATIO	1.05	
TEST		TEST	LIFT	PROBE	WET	MATER	DRY	OPTIMUM,	MAXIMUM	RELATIVE			
NO.	-	LOCATION	NO.	DEPTH	DENSITY	CONTENT					COM	NEVT	
	<u> </u>			(in.)	(pcf)	(%)	(pcl)	(%)	(pcl)	(%)			
14		M-9	14	8	127.3	YK.??	115.9	9.0	100	91.26	**************************************	р.	
		, '											
	(-	.*				,						>	
								MANAGEMENT AND					
			over the market through										
									THE PARTY OF THE P				

											-		
_													

	FIELD DETERMINATION OF D				NSIT	/ ANI	D MOI	STUF	E CON	TENT E	BY NUCLEAR I	METHOD
PROJECT	NAME	JACK FOR	TESTE	D BY	Cus		GAUGEN		M8905884		STD. DENSITY COUNT	16148
PROJECT	NO.	ma-265	DATE		11-14-	0 0	TEST STA	NDARD -	ASTM D30	17 / D2922		.97
PROJECT	LOCATION	SMITH FOR SPRINGS	CHECH	ŒD BY			REQUIRE		. <u> </u>		STD. MOISTURE COUNT	11119
TEST MA	TERIAL	GEN BACKELL	DATE				COMPAC	NON '	90	12	XI RATIO	1.03
TEST		TEST	LIFT	PROBE	WET	WATER	DRY	OPTIMUM,	MAXIMUM	RELATIVE		
NO.		LOCATION	NO.	DEPTH	DENSITY	CONTENT		MOISTURE		li	COM	AENT
				(in.)	(pcl)	(%)	(pct)	(%)	(pcf)	(%)		
7		M-9	17	3	<u>131.4</u>	9.09	120.5	8.0	130.0	92.66		,
ક		M-9	8	Š	1342	9.93	ا ، ددا		130,0	93.90	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	*
વ	·	M-9	9	8	1329	4.12	0.14	8.0	130.0	93.08		
10	3	M-9	10	8	133.8	931	122.4	8-0	130.0	94.17		*
"		M-q	_11	8	134.4	10.67	101.5	8.0	0.00ر	93.43		
12		m-9	ر.	8	129.2	6.87	117.6	8.0	130.0	90.49		
13		и-9	13	8	131-1	9.47	119.7	8.0	130.0	93.10		
							The state of the s					
			***************************************				****					

		Hittischen wir der der der der der der der der der de										
				1								
	V 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**************************************										
									-			v v v v v v v v v v v v v v v v v v v
		7-7-7-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4		†								
<i></i>	I					t	1	13		"		

	FIEL	D DETERMINATION	ON OF	DE	NSIT	AN	D MO	ISTUF	RE CON	TENT E	BY NUCLEAR	METHOD
PROJECT		JAK REE	TESTE	D BY	Cu		GAUGE N	lO.	M8905884	8	STD. DENSITY COUNT	6121
PROJECT	NO.	SANTA PE SENUGS	DATE		11-13-	<i>O</i>			ASTM D30	17 / D2922		.97
PROJECT	LOCATION	SANTA FE SPRINGS		ŒD BY			REQUIRE		- CA		STD, MOISTURE COUNT	
TEST MA	rerial	GON BACKFILL	DATE				COMPAC		909	- TO RECEIPT OF THE	XI RATIO	1.02
TEST		TEST	1 :	PHOSE	WET	WATER	CRY	OPTIMUM,	MAXIMUM	RELATIVE		
NO.		LOGATION	NO.	DEPTH	DENSITY	CONTENT		ii 4 i		COMPACTION	COM	MENT
				(In.)	(pcf)	(%)	(pc1)	(%)	(pct)	(%)		
		<u> M-2</u>		8	134.6	10.16	۱ . دور	10.0	130.6	93.96		
a		M-2	<u>a</u>	8	64.3				130-05	93.80		*
3		M-2	3	8	130.8	9.87	115.4	9.0	127.0	90.90		
	,	,*				>						
1		M-9		δ	136.9			9.0	127.0	92.99		
2		M-9	<u> </u>	8	1283	8.74	118.0	9.0	147.0	92.88		***************************************
3		M-9	3	8	129.60	8.16	19.9	9.0	0. ﴿ إِذَا	9439		
4		M-9	4	8	131.1	9.06	190.7	8.0	130.0	92.45		
5	nderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanders	M-9	5	8	129.1	7.57	1,00.1	8.0	130.0	4255		
6_	_	M-9	6	8	131.0	7.65	131.3	80	130.0	93.63		
						<u> </u>						
						ļ						
		and the short shor							×			
	-					<u> </u>						
		<u>_</u>										

	FIELI	DETERMINATION	ON OF	DE								METHOD
PRQUECT		JALIK FEE	TESTE	DBY	C.P		GAUGE N		M8905884		STD, DENSITY COUNT	1631
PROJECT	····	<u> </u>	DATE		11-10				ASTM D301	17 / D2922	XI RATIO	1.06
		SANTA FE SPUNGS	CHECK	ŒD BY			REQUIRE		90	يت	STD. MOISTURE COUNT	10008
TEST MAT	TERIAL	GEN BOOKEN	DATE		· · · · · · · · · · · · · · · · · · ·	,	COMPAC	_ ***** :****			XI RATIO	, 99 -
TEST		TEST	LIFT		WET	WATER	DRY	OPTIMAM,	MAXIMUM	RELATIVE		
NO.		LOCATION	Na.	DEPTH		CONTENT	1 1	WOISTURE	1 1	COMPACTION	MCC)	AENT
				(ln.)	(pcf)	(%)	(pcf)	(%)	(pcf)	(%)	**************************************	de ade ade ade ade ade ade a
3	M		3_	8	133.4	9.74	121.5	8.0	1300	93.5		T
4	M.		4	8	130.4	9.47	119.6	8.0	150.0	92.0		
Ś	M		5	8	130.7	9.69	4.911	6.0	ලාව	91.7		
6	<u>, N</u>	- \	6	8	136.60	1106	123.0	8.0	130.0	94.60		-
7	<u> </u>		7	_8	P.KI	9.34	130.6	8.0	0.00	92.78		
8	<u> </u>		8	8	135.3	11.23	131.6	8.0	130.0	9352		
٩	^	4-1	9	8.	33.3	10.65	49.4	8.0	130.0	91.89		

									W			
							1					

	FIEL	D DETERMINATION	N OF	DE	NSIT	YAN	D MO	STUF	RE CON	TENT	BY NUCLEAR METHOD
PROJECT		JALK FEE	TESTE	D BY	1.and	wh	GAUGE N		M8905884		STD. DENSITY COUNT 16197
PROJECT		00.265	DATE		11/9/0	0	TEST STA		ASTM D30	17 / D2922	
	LOCATION	Santa Fe Springs CA	CHECH	ŒD BY	``		REQUIRE		90		STD, MOISTURE COUNT 10282
TEST MA	TERIAL	Onsite	DATE				COMPAC			т	XI RATIO 0.95
TEST		TEST	1	PROBE	WET	WATER	DRY	OPTIMUM,	MAXMUM	RELATIVE	Annual de Karre Par
NO.		FOCYLION	NO.	DEPTH (in.)	(pcl)	CONTENT (%)	DENSITY (pcf)	MOISTURE (%)	DRY DENSITY (pcf)	COMPACTION (%)	COMMENT
13	SBY9	Trench (westend)		8	134.5	8.55	123,9	8	\30	95.33	Pass (7' Below Stade).
214			2	, ,	128.3	7,85	118.9			91.50	Pass (6.51)
15	Saltanian de la company		3		133,4	695	1247			95.56	Pass (5.5')
416	3	*	Н		132.8	7.79	123.2			94.75	Pess (4.5')
817			<u> </u>		134.3	8.01	124,4		The state of the s	95.67	Pass (4'
818	1	<u> </u>	6	<u>ا</u>	134,6	7.92	124.7	<u> </u>	Ŀ	95.53	Pass (3' 1)
			3								
	<u>m-7</u>	· · · · · · · · · · · · · · · · · · ·		8	130.0	8.87	119.5	8	130	91.89	Pass (9' below grade)
			2		129.8	8.40	(19.7			92.11	Pass (8')
3			3		130.6	7.81	121.1			93.16	Pass (6.5)
4	, , , , , ,		4]		30.9	8.67	150%			92.75	Pass (5.5)
5		also also at la tradicio del 1914 (1914) (1914) (1914) (1914) (1914) (1914) (1914) (1914) (1914) (1914) (1914)	5		131.9	7.90	122,3			94,06	Pess (4.5)
6			<u></u>		130.6	6.24	127,9			94.56	Pass (3.5)
7	<u> </u>		7	V.	31.7	6.67	123,4	U.	<u> </u>	94,94	Pass (2.5)
			 								0 (0) 11
<u> </u>	<u>m-1</u>			8	132.1	11.95		8	130	10.76	Pass (9' below goods)
۲.			<u> Z</u>		132.6	11.33	117.1			91,59	Res (8')
									3.3		
	· · · · · · · · · · · · · · · · · · ·										
			 								
			1	l	<u> </u>	1	<u> </u>	<u> </u>		1	

	FIELD	DETERMINATION					O MO	STUF	E CON	TENT	BY NUCLEAR METHOD
PROJECT		JALK FEE	TESTE	D BY	H.Ong	unker	GAUGE N		M8905884		STD. DENSITY COUNT /4/23
PRQUECT		00.5%2	DATE		11/8/	00			ASTM D30	7 / D2922	
	LOCATION	Santafe Springs CA		ŒD 8Y			REQUIRE		9(7	STD. MOISTURE COUNT 10993
TEST MA	TERIAL	Onsite	DATE				COMPAC	Paraya Managaran da Paraya Man			XI PATIO 1.01
TEST NO.		TEST LOCATION	1	PROBE DEPTH	Wet Density	WATER CONTENT	DRY DENSITY	OPTIMUM, MOISTURE	MAXIMUM DRY DENSITY	RELATIVE COMPACTION	COMMENT
NO.		FOCKLON	144.	(in.)	(pcl)	(%)	(pcf)	(%)	(pcf)	(%)	COMMUNICATI
<u> </u>	SB-49 T	iench (eastend)	1	8	119.0	8.96	105.8	9	127	86,45	Failed (7' Below grade
18	,	· .	1		133.3	11.0	120.1			94.56	Pass (7' Below grade)
2.			1		125.3	9.01	114.9			90.48	Pass (9'
3_	>	*	2		133.8	473,	155.5			96.48	Pass (6)
4			2		125.8	9.63	114,4			90.44	Pass (8)
_5					1269		116.9			92.05	lass (S
(a			<u> </u>		128.4	8.96	117.9			92.80	Pais (H)
7			<u> </u>	***************************************	125.2	9.10	1148	<u> </u>	<u> </u>	90.35	Pass (6.5)
र			5		با.521	7.8	123.0	8	130	9465	Pass (3)
928			5	!	150.8	9,63	110.2			84.75	Fa:1 (5)
98			5		131.2	8.04	<u> 121.5</u>			93,43	Pass (5)
10					1343	8.85	123.3			94.89	Pass (2:5)
<u> </u>			<u> </u>		125.5	7.38	116.9			89.94	Pass (m)
12		V	7		132.5	10.04	120.4	U	<u></u>	9264	Pess (3)
ļ				ļ <u>.</u>							
				<u> </u>		<u> </u>					
						<u> </u>					
			- American	-		<u> </u>	<u> </u>				

APPENDIX E

FIGURE 4 FROM WATERSTONE ENVIRONMENTAL INC.'S

RESPONSE TO CARDNO'S REPORT OF ADDITIONAL EVIDENCE IN SUPPORT TO

NAME CONTINENTAL HEAT TREATING AS DISCHARGER FOR THE

EXXONMOBIL JALK FEE PROPERTY DATED FEBRUARY 9, 2017,

DATED APRIL 27, 2017

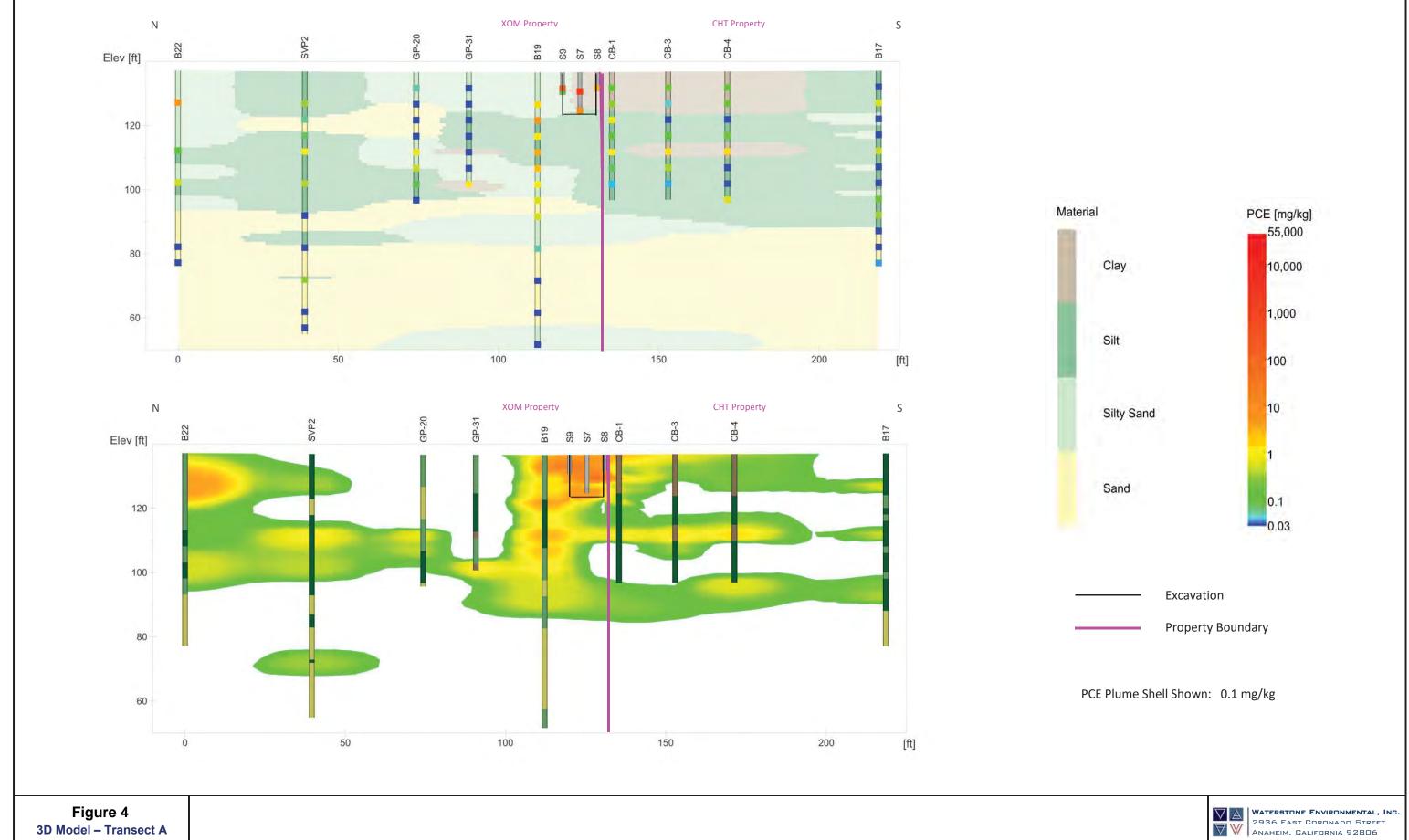


Figure 4
3D Model – Transect A
Lithology and PCE in Soil

Continental Heat Treating
Santa Fe Springs, CA 90670

Drafted by: LPJ Project No.: 15-136

Approved by: Date: 12/12/16

8941 Atlanta Avenue, #384 Huntington Beach, California 92646 714 964 4935 Telephone 832 544 3413 Cellular marla.d.madden@exxonmobil.com

December 5, 2017

Mr. Sam Unger California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, California 90013

SUBJECT Request for Response to Reports Providing Conclusive Evidence that CHT is Sole Discharger of PCE

Former ExxonMobil Jalk Fee Property 10607 Norwalk Boulevard Santa Fe Springs, California CRWQCB-LAR Case No. 0203; Site I.D. No. 1848000

Mr. Unger:

ExxonMobil Environmental Services Company (EMES) appreciated the opportunity to meet with representatives of the California Regional Water Quality Control Board – Los Angeles Region (CRWQCB-LAR) on November 15, 2017. In this meeting EMES presented conclusive evidence that Continental Heat Treating (CHT) is the sole source of the chlorinated solvents in soil on the Jalk Fee site, and rebutted the allegations and inaccurate assertions made in Waterstone Environmental, Inc.'s (Waterstone) April 27, 2017 Response to Cardno's Report of Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger for the ExxonMobil Jalk Fee Property (Report), dated February 9, 2017. A copy of the presentation reviewed during the meeting is attached.

As discussed during the meeting, rather than refute evidence provided in previous EMES technical reports*, the Waterstone Report provides further evidence that CHT was the discharger of chlorinated solvents into soil on the Jalk Fee Property, including:

- (1) A CHT pre-1995 process flow diagram that shows that CHT generated large quantities of wastes that contained both used quench oil sludges and PCE.
- (2) Chromatograms of quench oils that were used by CHT on site closely match the reference quench oils used in the NewFields forensic study and the quench oils found in soil at the boundary between CHT and Jalk Fee (just north of CHT's equipment storage/repair area), where PCE was also found in soil.
- (3) PAH data that confirmed a close match between the aromatic content of CHT quench oils and the aromatic content of quench oils found in soil samples on the Jalk Fee property.

^{*} Cardno reports submitted on March 25, 2015 and February 9, 2017

Further, nothing has been provided by the State, CHT, or its agents which refute these basic facts:

- (1) Between 1969 and 1995, CHT used, stored, and disposed of large quantities of PCE and quench oils wastes. The manifests only account for a small percentage of waste generated.
- (2) CHT had a poor housekeeping record, including releases of oil to the ground, as documented by public agency Notices of Violations (NOVs).
- (3) PCE was not used in Jalk Fee oil field operations or in other oil field operations. Based on a review of oil field sites in California on GeoTracker and discussions with Santa Barbara County and CRWQCB Central Valley Region case managers, no oil field sites with releases of chlorinated solvents could be identified.
- (4) There is no evidence supporting CHT's claim that dumping of chlorinated solvents occurred directly onto the Jalk Fee property. CHT's claims of such dumping were based on its review of aerial photos, which were convincingly refuted by an expert aerial photo analysis.
- (5) Quench oils and PCE are heavily used in the heat treating process, but neither is used nor produced in oil field operations. Therefore, the discovery and identification, by an expert firm in forensics analysis (NewFields) of quench oils on Jalk Fee property, co-located with PCE, is definitive evidence of a discharge from CHT onto the Jalk Fee property.
- (6) Investigations conducted on behalf of ExxonMobil across the Jalk Fee site (450 soil samples) from 1990 to present determined that the vast amount of PCE is present along the Jalk Fee/CHT property boundary, with high concentration in surface soil (top 10 feet), ranging from hundreds to tens of thousands of parts per million (ppm), which is indicative of a surface release from CHT.
- (7) The soil gas distribution also confirms the source along the CHT/Jalk Fee property boundary and refutes any postulated secondary source in the central or northern part of the site.
- (8) As consistently put forward in Cardno's conceptual site model, the distribution of PCE and quench oils along the CHT/Jalk Fee property boundary is explained by the CHT property being paved and the Jalk Fee property being unpaved, with releases from CHT being deposited on the Jalk Fee property.

Finally, for the CRWQCB-LAR to focus on the 5 to 6 milligrams per kilogram of PCE isolated in a thin soil layer at 10 feet below ground surface around soil boring B22, in effect suggesting the presence of a secondary source, despite the thousands to tens of thousands of milligrams per kilogram of PCE found in the soil column along the property boundary with CHT, ignores the compelling evidence presented above and in Cardno's reports. As previously noted, soil and soil gas sampling across the site clearly identifies the only overwhelming source of PCE is along the CHT/Jalk Fee property boundary.

As an outcome of the meeting, it is EMES's understanding that the CRWQCB-LAR is committed, in an expeditious manner, to review and respond to Cardno's previously submitted Additional Evidence in Support of Request to Name Continental Heat Treating as Discharger, dated February 9, 2017, and Response to Continental Heat Treating's Allegations dated August 25, 2017 (Reports).

EMES respectfully requests that the CRWQCB-LAR provide a date by which it will review and issue a response to the above-referenced Reports.

Please call the undersigned at (832) 544-3413 with any questions regarding this letter.

Sincerely,

Marla D. Madden Lead Project Manager

Marla D'Madden

Attachment: Meeting Presentation, November 15, 2017

Ms. Paula Rasmussen, CRWQCB-LAR CC:

> Mr. Art Heath, CRWQCB-LAR Ms. Su Han, CRWQCB-LAR

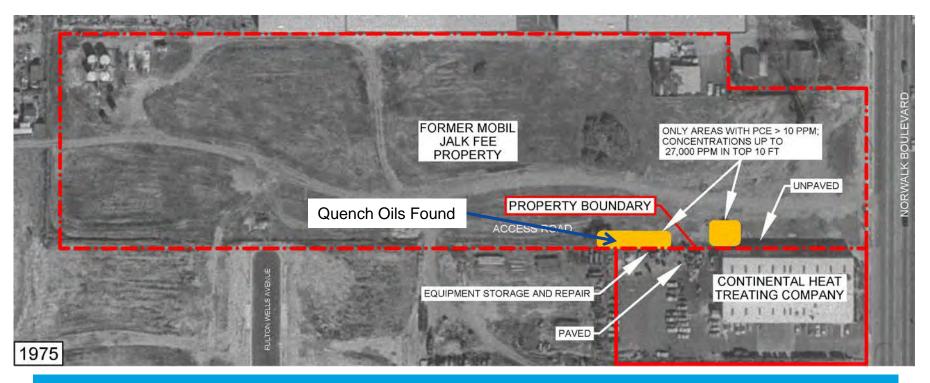
Mr. Luis Changkuon, CRWQCB-LAR Mr. David Young, CRWQCB-LAR Mr. David Coupe, CRWQCB-LAR

Ms. Elizabeth Weaver, Norton Rose Fulbright US LLP

Mr. Trent Key, EMES Mr. Len Racioppi, EMES Mr. James Anderson, Cardno

November 15, 2017

Rebuttal to CHT Allegations and Inaccuracies

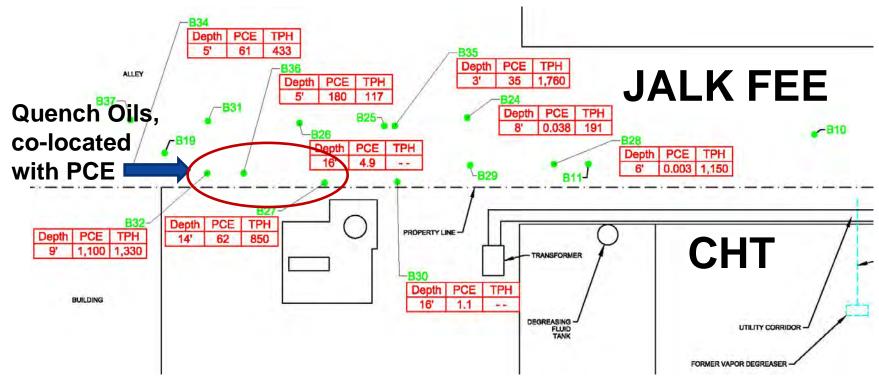

Jalk Fee

Energy lives here

Overview

- Rebuttal of Waterstone Report / CHT Inaccuracies (EM)
 - New to ExxonMobil
 - Forensics of Quench oil in Soil
 - Aerial Photo Review / No Evidence of Uncontrolled Dumping
- Feedback on Technical Reports (Water Board)
- Next Steps

PCE and Quench Oils Co-located in Soil Confirms CHT is Source

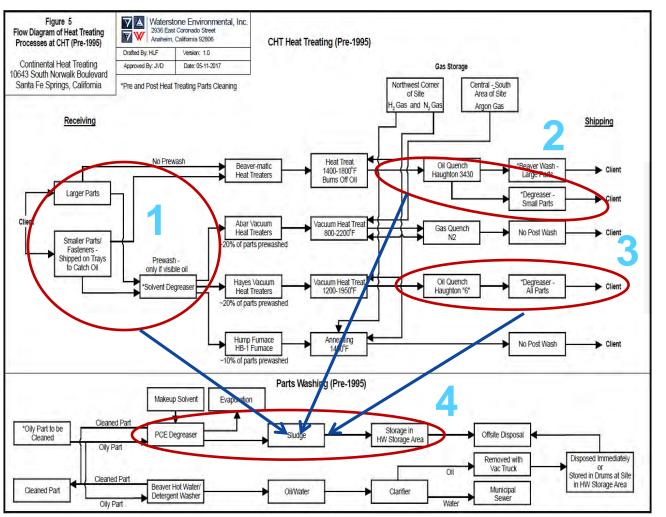


- Areas on Jalk Fee site with PCE concentrations >10 ppm in soils are along site boundary with CHT, co-located with quench oils
- PCE and Quench Oils used in large quantities by CHT and found in mixed CHT waste
- PCE and Quench Oil not used in oil field operations
- Co-location of PCE and quench oils confirms CHT is the source

Forensic Assessment Found Used Quench Oil in Soil

- NewFields Environmental Forensics Practice, LLC was retained by ExxonMobil
 - Leader in environmental forensics. Published hundreds of peer-reviewed journal articles, book chapters, and technical reports
 - Concluded: used quench oil sludge and varying types/mixture of mineral oil sludges colocated with PCE on Jalk Fee property north of CHT equipment storage and repair

All units mg/kg


Waterstone Report Confirms NewFields' Findings

- CHT's consultant (Waterstone Environmental, Inc.†) attempted to challenge some of the findings of the NewFields report*
 - CHT did not generate waste that would contain both PCE and quench oil
 - Waterstone chromatograms of CHT quench oils did not match used quench oil reference materials in NewFields' study or soil sample chromatograms said to contain quench oils
 - CHT quench oils had much lower PAH content than soil samples said to contain quench oils
- Waterstone's Report provided
 - Pre-1995 process flow diagram
 - Gas chromatograms of quench oils used by CHT
 - PAH data

CHT Process Diagram Establishes that CHT Waste Contained both Quench Oil and PCE and / or Sludge

- 1: oily parts are sent to solvent degreaser = PCE / mineral oil waste
- 2: post quench oil parts sent to solvent degreaser = PCE / quench oil waste
- 3: post quench oil parts sent to solvent degreaser = PCE / quench oil waste
- 4: oily parts washing highlights use of PCE degreaser and sludge accumulation
 - = PCE / oil waste & sludge

Pre-1995 process diagram (Figure 5, Waterstone April 27, 2017) confirms that CHT generated a variety of wastes that contain varying mixtures of PCE, quench oil sludges and mineral oil sludges

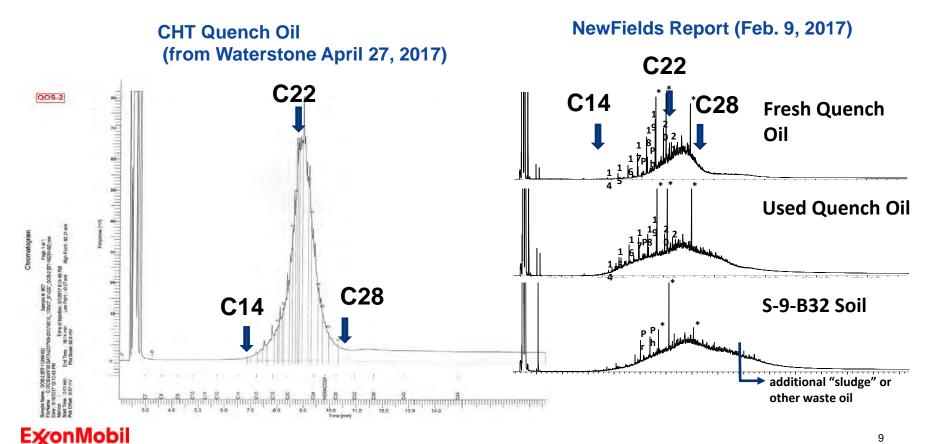
CHT Waste Contained both Quench Oils and PCE

- CHT used, stored, and disposed/released used quench oil
 - Stored 500 gallons of quench oil in tank (CHT LA County Fire Department Haz Material Contingency Plan)
 - Disposed of 300 gallons of waste quench oil in drums (Id.)
- Contrary to Waterstone/CHT assertions PCE and quench oil were found together in wastes
- Wastes generated by CHT completely consistent with wastes found on Jalk Fee property

GENERATOR, (GENERATOR MUST COMPLETE) 2 Name CONTIGNITAL HEAT TREATING EPA - C IA ID IO IS 1318, IS 1812 1916 Address 10643 - Notwalk BUD Phone 944-880 City, State, Zip SANIA, FE SKINGS CALLE 90470	3 Designated TSD approved state p	Facility (Aurogram or fee	deral program.) <u>POSAL</u> 6 7 7 8	
5 U.S. DOT PROPER SHIPPING NAME	U.S. DOT HAZARD CLASS	UN/NA ID NO.	WEIGHT OR VOLUME	UNI
WASTE PERCHIOROETHYLENE	ORM-A	1897	500	GAC,
LIST COMPONENTS: CONCENTE	Vaste Permit No. AV	/ -	CHT Mami	8 Genera
B. Dil 60	50	D% □ppm Dy □ppm	. E	

CHT Manifests only Account for Small Percentage of Generated PCE Waste

- No disposal records between 1969 '80
- However, in 1982 South Coast Air Quality Management District application, CHT states-
 - + 575 gallon PCE AST had "26 refills per yr", indicating CHT used up to 14,950 gallons of PCE per year
- Generally <1000 gallons per year manifested between 1981 and 1989
- Manifests only account for small percentage of PCE waste generated
- Large amount of waste unaccounted for


	_	•
Disposal Year	# of Manifests	Quantity (gallons)
1981	1	500
1982	3	1350
1983	1	600
1984	3	755
1985	1	440
1986	0	0
1987	1	550
1988	2	905
1989	3	750
1990	3	1390
1991	5	2106
1992	5	1724
1993	9	2822
1994	8	2539
1995	10	3212
1996	1	108
	56	19751

^{*}Some manifests include both PCE and oil

CHT Quench Oils Match NewFields' Findings

- Comparison of NewFields study quench oils, oil in soil sample, and CHT quench oil from Waterstone Report
 - Excellent match (visual difference artifact of GC run conditions)
 - Quench oil sludges in Jalk Fee soil samples along property boundary

Quench Oils on Jalk Fee Property

- Quench oil matches oil in Jalk Fee soil samples co-located with PCE:
 - + Reaches maximum peak at ~C22 typical of quench oils
 - + Unresolved complex mixture
 - Oxidation of used quench oil leads to broader boiling range
- Definitive evidence that CHT wastes migrated onto Jalk Fee Property

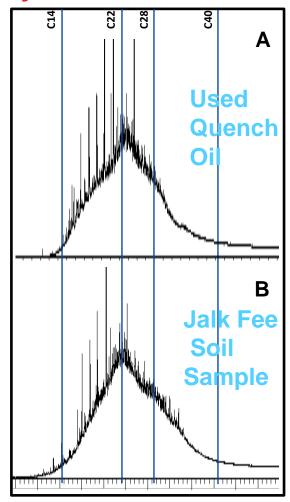
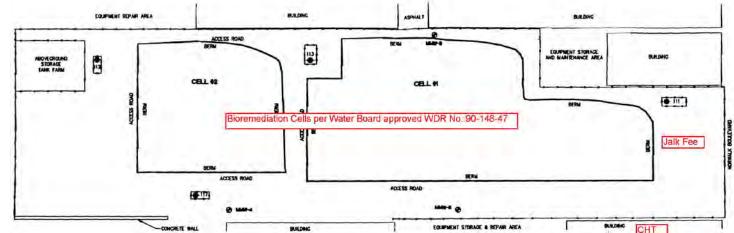


Figure 2:

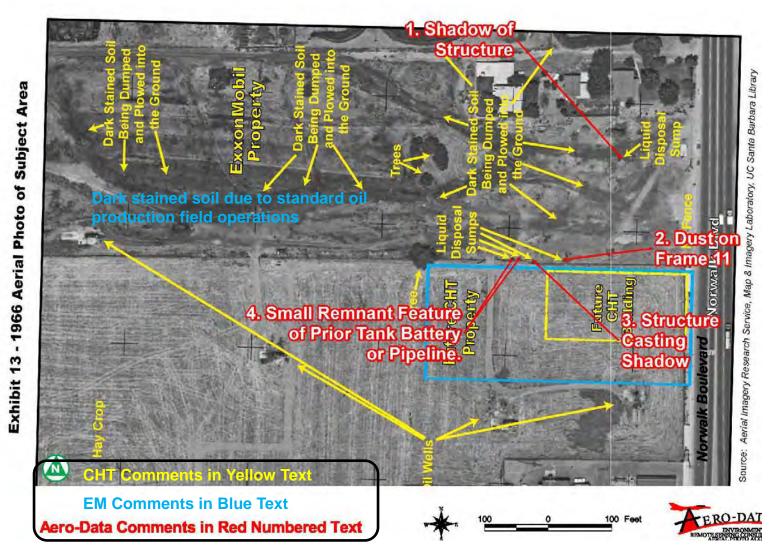
Comparably scaled GC/FID chromatograms of (A) used quench oil analyzed by NewFields and (B) Jalk Fee soil sample S-9-B32 analyzed by NewFields shown at the same scale as the CHT chromatograms.

Waterstone Report Incorrectly Concludes:

CHT's quench oil samples had lower aromatic concentration vs contamination on Jalk Fee


- Waterstone totals based on quantifying typical 17 PAHs
- NewFields soil samples forensic analysis more comprehensive 50 PAHs (typical of forensic studies)
- If sample analysis compared for typical (same) 17 PAHs totals almost identical
- For example (Waterstone quench oil (QOS-4) vs Jalk Fee soil sample S-9-B32)
 - Waterstone Quench Oil: 72 mg/kg PAHs
 - Newfields S-9-B32: 80 mg/kg PAHs
- By contrast 3 soil samples containing crude had much higher total PAH concentration ranges - i.e. 350 to 2,500 mg/kg based on 17 PAHs

Waterstone Misinterprets Aerial Photos


- Dark stained soils & trucks observed in aerials
 - Associated with movement, roadspreading and bioremediation of petroleumcontaining soil. . . typical / accepted practice at the time for remediating oil fields
 - + Bioremediation cells in mid-1990s were under Water Board WDR permit
 - + Standard oil field practice
 - + Not evidence of uncontrolled dumping or source of PCE and quench oils

Sumps

- Many items interpreted as sumps by CHT in historical aerials were actually buildings, shadows, or dust on the original aerial photo film
 - + Sumps are standard part of oil field operations
 - + Used to hold petroleum-based fluids, and
 - + Not indicators of uncontrolled dumping or PCE source

Correct Interpretation of "Sumps" Misidentified by CHT in Aerial Photo

Conclusions

- CHT used, stored, and disposed of large quantities of PCE & Quench oils
- PCE & Quench oil is not used / produced in oil field operations
 - No evidence of EM dumping
 - No evidence EM allowed / aware of CHT illegal releases
 - Evidence in CHT record shows discharge / waste violations
- Most PCE present along Jalk Fee / CHT property boundary
- Quench oil co-located with PCE in soil is conclusive indicator that CHT is the source
- CHT's data (from Waterstone report) supports the analysis
- Water Board should name CHT as the sole responsible party

Water Board Feedback

Los Angeles Regional Water Quality Control Board

July 22, 2016

Ms. Marla Madden ExxonMobil Environmental Services Co. 18685 Main Street, Suite 101, PMB 601 Huntington Beach, CA 92648

RETURN MAIL RETURN RECEIPT REQUESTED CLAIM NO. 7015 0640 0006 6057 5019

SUBJECT: RESPONSE TO "REQUEST TO NAME CONTINENTAL HEAT TREATING AS

DISCHARGER", PURSUANT TO CALIFORNIA WATER CODE SECTION

13267 ORDER DATED AUGUST 24, 2010

SITE: FORMER EXXONMOBIL JALK FEE PROPERTY, 10607 NORWALK

BOULEVARD, SANTA FE SPRINGS, CA (SCP NO. 0203, SITE ID NO. 1848000)

Dear Ms. Madden:

The Los Angeles Regional Water Quality Control Board (Regional Board) reviewed the March 25, 2015, Request to Name Continental Heat Treating as Discharger (Report), prepared and submitted by Cardno ERI on your behalf, for the referenced site. In the Report, ExxonMobil Environmental Services Company (ExxonMobil) requests the Regional Board to rescind the California Water Code (CWC) section 13267 order dated August 24, 2010 (Order) issued to ExxonMobil, based on its conclusions that the Continental Heat Treating (CHT) site is a source of the chlorinated solvents in soil and groundwater at and near the Former ExxonMobil Jalk Fee Property (Site). The Regional Board agrees that the CHT site is a source of chlorinated solvents and issued a CWC section 13267 order dated May 5, 2010 to CHT to investigate and delineate the extent of contamination in soil, soil-gas, and groundwater from releases at the CHT facility. The Regional Board, however, disagrees with ExxonMobil's conclusion that CHT is the sole source of chlorinated solvents because soil, soil vapor, and groundwater data collected at the Site indicates on-site discharges. Below are ExxonMobil's comments (italicized) provided in the Report, followed by the Regional Board's detailed responses:

1. The evidence presented by EMES is consistent with the same conclusions the CRWQCB-LAR has already reached, as demonstrated by the CRWQCB-LAR's letter dated June 23, 2010 to CHT (Appendix A). The CRWQCB-LAR stated that significant quantities of PCE were stored and used by CHT, that primary sources of PCE contamination (degreaser, storage area, etc.) have been identified at the CHT property, that releases of chlorinated solvents at CHT have impacted the subsurface, that the pipe trench leading from the degreaser to the north end of the building may have created a potential preferential pathway for the migration of PCE, and that no primary sources of PCE contamination have been identified on the Jalk Fee property.

The CHT site is located to the south and adjacent to the Site (Figure 1, enclosed), and under oversight by the Regional Board, as a separate case. The Regional Board issued CHT a CWC section 13267 order dated May 5, 2010 to investigate soil, soil gas, and groundwater contamination as a result of their own releases. On May 19, 2010, CHT provided comments to the May 5, 2010 order, indicating that the Regional Board cited numerous erroneous allegations.

On June 23, 2010, the Regional Board provided responses to CHT's May 19, 2010 letter and presented the sources of information for the citations made, and stated that no primary source(s) of tetrachloroethene (PCE) contamination have been identified at the Site. However, investigations conducted at the Site in 2011 encountered PCE in soil and groundwater at concentrations up to 6,600 micrograms per kilogram ($\mu g/kg$), and 1,800 micrograms per liter ($\mu g/L$), respectively. Based on these analytical results, the Regional Board determined that volatile organic compounds (VOCs) detected in soil have threatened groundwater quality, and required ExxonMobil to further investigate soil matrix, soil vapor, and groundwater at the Site.

2. From the 1920s until its redevelopment in 2003, the Jalk Fee property had a dirt surface and was unpaved, as can be observed in the historical aerial photos, which would allow rainwater and spills/releases from the adjacent paved CHT property to run off onto and infiltrate into the upper vadose zone of the Jalk Fee property (see Plate 1 and Appendix B for the historical aerial photos).

ExxonMobil's rationale cannot explain that PCE was detected in a soil sample collected at 10 feet below ground surface (bgs) at a concentration of 5,460 μ g/kg in soil boring B22 at the Site. This boring is located approximately 140 feet north of the property boundary with the CHT site. This data indicates an on-site release or discharge at the Site.

3. ExxonMobil has had internal discussions with its personnel who managed oil field operations at various locations, who confirmed that chlorinated solvents were not standard chemicals used in its oil field production operations. This is reinforced by the CRWQCB-LAR's letter dated June 23, 2010 to CHT, which stated that the "Jalk Fee property was used for oil production operations and no primary sources(s) of PCE contamination have been identified [on the property]" (Appendix A). Additionally, file reviews conducted with the City of Santa Fe Springs and the County of Los Angeles did not identify agency records or NOVs, indicating that chlorinated solvents were stored, used, or released onto the Jalk Fee property (Appendix C).

Please see Regional Board's response to Item No. 1 regarding the Regional Board letter dated June 23, 2010 that stated that the "Jalk Fee property was used for oil production operations and no primary sources(s) of PCE contamination have been identified [on the property]".

Appendix C is incomplete, and does not provide all the documents to support ExxonMobil's file review process.

4. In 2014, Cardno ERI conducted a review of the State Water Resources Control Board's online GeoTracker information database of various oil field sites across the State of California that had current or closed environmental cases, and was unable to identify any

Ms. Marla Madden ExxonMobil Environmental Services Co. SCP No. 0203

> oil field site that had chlorinated solvents as a contaminant of concern. Additionally, Cardno ERI spoke with representatives of the County of Santa Barbara Environmental Health Services and the California Regional Water Quality Control Board - Central Valley Region, which are agencies that have extensive oil field operations and clean-up projects in their areas of responsibility, and the representatives from both agencies were not aware of any oil field sites within their jurisdictions that had chlorinated solvent contamination.

-3-

Data collected at the Site indicates on-site discharge or release of chlorinated solvents at the Site (See Regional Board's responses to Items No. 1, 2, and 9).

5. Levine-Fricke's report dated December 6, 1991 claims that a tenant of Mobil who rented the Jalk Fee property may have used chlorinated solvents on the eastern portion of the property (Levine-Fricke, 1991). The report does not cite any source evidence for this statement, and ExxonMobil is unaware of any information that supports this claim. Furthermore, ExxonMobil has conducted extensive reviews of its lease files and has no record that any company or person rented the property during its period of operation or ownership, other than Hathaway.

As stated previously, Hathaway was an oil production company, and oil field operators did not use solvents as standard chemicals. Thus, there is no evidence that ExxonMobil, a tenant, or the subsequent property owners and their tenants ever used chlorinated solvents on the property. Therefore, there is no primary source of chlorinated solvents from historical operations on the Jalk Fee property, and the chlorinated solvents in soil must be from an off-site source.

A figure on the May 13, 1997, "Work Plan for Site Characterization Activities and Proposed Environmental Fate Modeling and Health Risk Assessment", displays an area at the Site identified as "approximate location of former trucking operations area" (Figure 2, enclosed). PCE was detected at a concentration of 5,460 µg/kg in a sandy soil sample collected at 10 feet bgs from soil boring B22. Boring B22 is located within the "approximate location of former trucking operations area" at the Site.

In addition, the October 2002, "Exemption of Oil and Gas Exploration and Production Wastes from Federal Hazardous Waste Regulations", published by the United States Environmental Protection Agency (USEPA), lists waste generated during oil exploration activities, among them waste solvents.

6. History of CHT Property

The building that is currently present at the CHT property was constructed in 1969, at which time the majority of the property would also have been paved for parking, as is apparent in aerial photographs of the site (Appendix B). Based on information provided by CHT, since commencing operations at the site, the CHT business has cleaned metal parts and processed them with heat. This process requires the cleaning of the metal parts to remove cutting oil and debris, which was performed by placing the metal parts in a solvent-based vapor degreaser. Thus, CHT conducted degreasing operations and used chlorinated solvents from approximately 1969 to 1995, as supported by the following documentation [Appendix D through Appendix N].

Regional Board staff has reviewed the information included in Appendices D through N. In summary, the appendices indicated the following:

- CHT used PCE in its degreasing operations.
- Discharges of PCE from degreasing operations at the CHT site impacted soil at CHT. PCE was detected in soil samples collected at approximately 10 feet below ground surface (bgs) in the immediate vicinity of a degreaser, at a concentration of 7,514 µg/kg.
- CHT stored waste solvents in drums at their site and drums were transported to an off-site facility.

This information does not demonstrate that chlorinated solvent contamination at the Site soley originates from CHT. The Regional Board acknowledges that on-site discharges or releases of chlorinated solvents occurred at the CHT site as a result of their operations. The Regional Board issued a California Water Code section 13267 order dated May 5, 2010 to CHT to investigate the extent of impacted soil, soil gas, and groundwater.

7. As shown in these building records, CHT performed vapor degreasing at the property from approximately 1969 through 1995, which necessitated the storage of hundreds of gallons of chlorinated solvents at any time on the property and the generation of significant quantities of waste solvent, such as 2,200 gallons per year in the 1989 record. Over this 26-year operational period, the records show that CHT had one degreaser in the eastern portion on the building (Detrex #19); a second degreaser in the central portion of the building (Item #81), which is the location that is the most consistent with depictions in the reports submitted by CHT to the CRWQCB-LAR; a third degreaser along the western end of the building; and possibly a fourth degreaser at an unidentified location along the northern edge of the building.

This information supports the presence of on-site source(s) of chlorinated solvents at the CHT facility/site that impacted soil, soil vapor, and groundwater beneath the CHT site. This information does not support the claim that there is no source of PCE contamination identified on the Site.

8. In addition to the degreasing operations inside the building and the storage of waste PCE in the southwestern area of the property, it also appears that CHT utilized the northwestern portion of the property as an equipment storage and repair area based on review of the historical aerial photos and several reports (Appendices B and 0). Given that storage and repair of equipment occurred in this area of the site, it is likely that the cleaning of parts also occurred here, which is directly adjacent to the area of the Jalk Fee property where the highest PCE concentrations have been observed (Plate 1).

In addition to the equipment storage and repair area located in the northwestern portion of CHT's property, a trucking operations area was located at the Site. (See Regional Board response to Item No. 5).

9. Regulatory oversight and inspections started to become more common in the late 1970s and early 1980s. These regulatory inspections demonstrate CHT's practices resulted in numerous documented releases and spills to the ground throughout at the property. The various inspections, investigation reports and violations are summarized below and documented in

Appendices G, I, N and P through AC.

Regional Board staff has reviewed the information included in the referenced appendices. In summary, the appendices indicated the following:

- Wastewater was discharged from the cooling tower located on the northeast section of the CHT property to Norwalk Boulevard.
- Soil impacted with oil was encountered at the CHT property.
- · Oil was encountered in a clarifier.
- Degreaser fires were reported.
- Soil in the immediate vicinity of the degreaser (inside the CHT building) is impacted with PCE at a concentration of 7,514 µg/kg.

This information does not change the Regional Board's conclusion that on-site sources of chlorinated solvents are located at the Site. The conclusion is based on soil data from B-11 and B-22 obtained from the Site, the "approximate location of former trucking operations area" at the Site, and the 2002 USEPA publication referenced in our response to Item No. 5.

10. First, the 1968 blueprints Therefore, these trenches would provide a preferential pathway directly from the degreasers to the northern edge of the CHT building and the southern boundary of the Jalk Fee property, allowing the migration of chlorinated solvent vapors (Appendix D). The CRWQCB-LAR reached much the same conclusion in its letter dated June 23, 2010 (Appendix A).

Soil, soil vapor, and groundwater data collected at the CHT site indicates the presence of at least one on-site source beneath the existing building.

Likewise, data collected at the Site indicates the presence of at least two on-site sources, one at the southern side close to the property boundary with CHT, and another one at the central portion of the Site.

11. Second, extensive assessment has been conducted in the southeastern portion of the Jalk Fee property and the northwestern portion of the CHT property, which has allowed for a thorough understanding of the near surface vadose zone lithology between the two properties. Two crosssections were generated for the area to the west of the CHT building and surrounding Jalk Fee well MW6, where the maximum PCE concentrations have been detected on the Jalk Fee property (Appendix Z, Figures 5.1.1 and 5.1.2). In addition, plan view figures of the distribution of low (clay/silt) and high permeability soils (sand) at 6, 10 and 16 feet bgs of the CHT and Jalk Fee property boundary area show that a laterally continuous, shallow, low permeability silt/clay layer is present under much of the CHT property (Appendix AA, Figures 5.2.1, 5.2.2 and 5.2.3). This silt/clay layer starts to dip along the northern part of the CHT property and continues to dip northward onto the Jalk Fee property to a depth of 15 to 16 feet bgs. Soil above the silt/clay layer on the northern CHT property and on the Jalk Fee property is generally characterized as sand. It should be remembered that the Jalk Fee property was unpaved and essentially an open field until 2003. Therefore, chlorinated solvents released by CHT along the northern portion of the CHT property or directly released onto the Jalk Fee property would infiltrate downward through the higher

permeability surface sand until reaching the low permeability unit and then would migrate along the northward dipping contact between the high and low permeability units onto the Jalk Fee property.

ExxonMobil's explanation of the migration of chlorinated solvents from the CHT site to the Site is not adequately supported. For example, in a cross section generated by Regional Board staff, including SVP-1 (southern part of the Site) and MW-2 (northern CHT), a silty layer dips from the southern part of the Site to the northern part of the CHT property. This silty layer would serve as a pathway for contaminants to migrate from the Site to CHT (Figure 3, enclosed).

The Report (Figure 5.1.2, enclosed) assumed that a silty layer on B14, extends laterally for approximately 55 feet towards MW6 (distance between B14 and MW6, both on CHT). Then, the silty layer would continue laterally from MW6 towards B11 (Site). This silty layer would serve as a migration pathway for VOCs to migrate from CHT (B14 and MW6) to the Site (B11). The silty layer that serves as a migration pathway extends vertically on B11 from approximately 24 to 39 feet bgs.

However, ExxonMobil's model cannot explain the vertical distribution of PCE on B11. PCE was detected in soil samples collected at 10 and 15 feet bgs at concentration of 5,360 micrograms per kilogram (μ g/kg) and 11,000 μ g/kg, respectively. However, in a soil sample collected at 35 feet bgs, PCE was detected at 937 μ g/kg (Figure 4, enclosed).

12. Specifically, chlorinated solvents were measured in soil at concentrations from south to north of 2,517 mg/kg at 4 feet bgs at location T9A-1A (a trench excavation sample located 10 feet north of the property boundary), 350.8 mg/kg at 15 feet bgs at location EX2-26 (an excavation verification sample collected 30 feet north from the property line), and 59,800 mg/kg at 15 feet bgs at location GP-6 (a geophone sample located 45 feet north of the property boundary) (Appendix AC). These samples all occurred in sand, and the two samples collected at a depth of 15 feet bgs are located at the contact between the sand and clay/silt units. Specifically, sample EX2-26 is located along a sand-clay/silt basal contact, and the GP-6 sample from 15 feet bgs is located at a sand-clay/silt lateral contact. The relationship between the stratigraphic contacts and the distribution of elevated chlorinated solvent concentrations suggests that the solvent-containing soil in this area is derived from a lateral transport mechanism. This is further supported by the soil samples collected in the vicinity of location GP-6, which are significantly lower in total chlorinated solvent concentrations. Specifically, the two samples collected from location GP-6 at shallower depths (5 and 10 feet bgs) had total chlorinated solvent concentrations of 0.33 mg/kg and 0.021 mg/kg, respectively, and the soil sample collected above sample EX2-26 at 6 feet bgs [sample EX2-26(A)] had a total chlorinated solvent concentration of 0.715 mg/kg (Appendix AC). This distribution pattern indicates that surface releases of chlorinated solvents were not occurring in these areas, as surface releases would have resulted in similar to higher concentrations of chlorinated solvents with residual saturation in the shallower soil sample.

Not all existing data collected to date supports ExxonMobil's explanation on the lateral migration of chlorinated solvents from the CHT site to the Site. For example, the soil type for boring SB-1, located at approximately 5 feet of T9A-1A was described as silt from ground surface to approximately 25 feet bgs. The soil type for soil boring SB-3, located at approximately 15

feet of GP-6 was described as silt from ground surface to approximately 39 feet bgs. The soil type description of SB-1 and SB-3 does not support ExxonMobil's assumption of the presence of a sand-silt contact at approximately 15 feet bgs, that serves as a pathway for VOCs to migrate from CHT to the Site.

13. Furthermore, the presence of the elevated shallow detections abutting the CHT-ExxonMobil property line supports that chlorinated solvent release(s) occurred in the vicinity of the property line and transport occurred to the north onto the Jalk Fee property. This transport was likely facilitated by runoff from the CHT property (including roof runoff from the CHT building), which caused the movement of chlorinated solvents away from the property line onto the Jalk Fee property.

Soil data indicate that there are silty/clay layers dipping from the Site to the CHT site (see Regional Board responses to Items No. 11 and 12). Therefore, roof runoff from the CHT building would not facilitate all contaminant migration from the CHT site to the Site.

14. Elevated concentrations of total petroleum hydrocarbons and chlorinated hydrocarbons, however, are generally not co-located across the majority of the Jalk Fee (Appendix AD, Figure 4.6). For example, the TPH concentrations in the northern excavation areas do not contain chlorinated solvents, whereas several of the near surface soil samples collected in the vicinity of the property line contain both elevated TPH and chlorinated solvents. Although the soil samples in the vicinity of the property line contain both chlorinated solvents and TPH, the respective concentrations are generally both low, or with either PCE or TPH significantly higher in concentration than the other constituent. These results reinforce the site conceptual model in which chlorinated solvents from CHT released along the northern portion of the CHT property or directly onto the Jalk Fee property infiltrated downward through the higher permeability surface sand, until reaching the low permeability unit, and then migrated along the northward dipping contact between the high and low permeability units onto the Jalk Fee property.

The existing soil and analytical data do not support ExxonMobil's site conceptual model. (See Regional Board responses to Items No. 11 and 12.) For example, PCE was detected at a concentration of 5,460 μ g/kg (B22 at 10 feet bgs), and a concentration of 1,120 μ g/kg (SVP7 at 5 feet bgs). B22 and SVP7 are located northwest of the excavation area, at approximately 140 and 90 feet north of the property boundary, respectively. These PCE concentrations at shallow depths indicate the presence of on-site release or discharge at the Site and cannot be explained with ExxonMobil's site conceptual model.

15. Based on the evidence provided, it has been demonstrated that CHT is the source of the chlorinated solvents observed in soil beneath the CHT, Jalk Fee and 10711 Norwalk Blvd properties. Therefore, EMES, on behalf of ExxonMobil, requests that the CRWQCB-LAR identify CHT as the discharger and responsible party for the chlorinated solvents identified on the CHT, Jalk Fee and 10711 Norwalk Boulevard properties; rescind its Order dated August 24, 2010 requiring ExxonMobil to assess and monitor the extent of chlorinated solvents; and formally remove ExxonMobil as the named discharger and responsible party for the chlorinated solvent.

The Regional Board acknowledges that CHT is a source of chlorinated solvents found at the CHT site, and contaminant plumes in groundwater found at both properties (CHT, and the Site) may have commingled. However, data collected and submitted to date (including, but not limited to, the contaminant fate and transport, and configuration of the plumes in soil matrix, soil vapor, and groundwater) have not indicated that the sources of chlorinated solvents in soil and groundwater found beneath the Site and suspected beneath the 10711 Norwalk Boulevard property properties, solely originated at or from the CHT site. To the contrary, the data demonstrates that there is an on-site discharge/release of chlorinated solvents that is independent of the chlorinated solvents on the CHT site.

In summary, based on existing soil matrix and soil vapor data collected at the Site and in the immediate vicinity including the northern portion of the CHT property, the Regional Board continues to hold that ExxonMobil has discharged, discharges, or is suspected of having discharged waste that could affect the quality of waters of the state. Therefore, the Regional Board is not rescinding its Order dated August 24, 2010, and the December 21, 2011 amendment to the Order, requiring ExxonMobil Environmental Services to adequately define the vertical and lateral extent of VOCs in soil matrix, soil vapor, and groundwater, originating from or encountered at the Site. Pursuant to the Order, you are required to continue soil matrix, soil gas and groundwater investigations to define the vertical and lateral extent of contamination originating from the Site.

If you have any questions, please contact Mr. Luis Changkuon, Project Manager, at (213) 576-6667 or luis.changkuon@waterboards.ca.gov.

Sincerely,

Samuel Unger, P.E.

Executive Officer

Enclosures:

Figure 1: Site Map

Figure 2: Map of the Former Jalk Fee site Figure 3: Cross section SVP1 – MW2

Figure 5.1.2

Figure 4: Soil concentrations on cross section 5.1.2

cc: Mr. James Anderson, Cardno ERI

Mr. John Maple

Ms. Michelle F. Smith

Mr. Thomas Clark, Coast Aluminum and Architectural, Inc.

Mr. William Macnider, CSI Electric Contractors

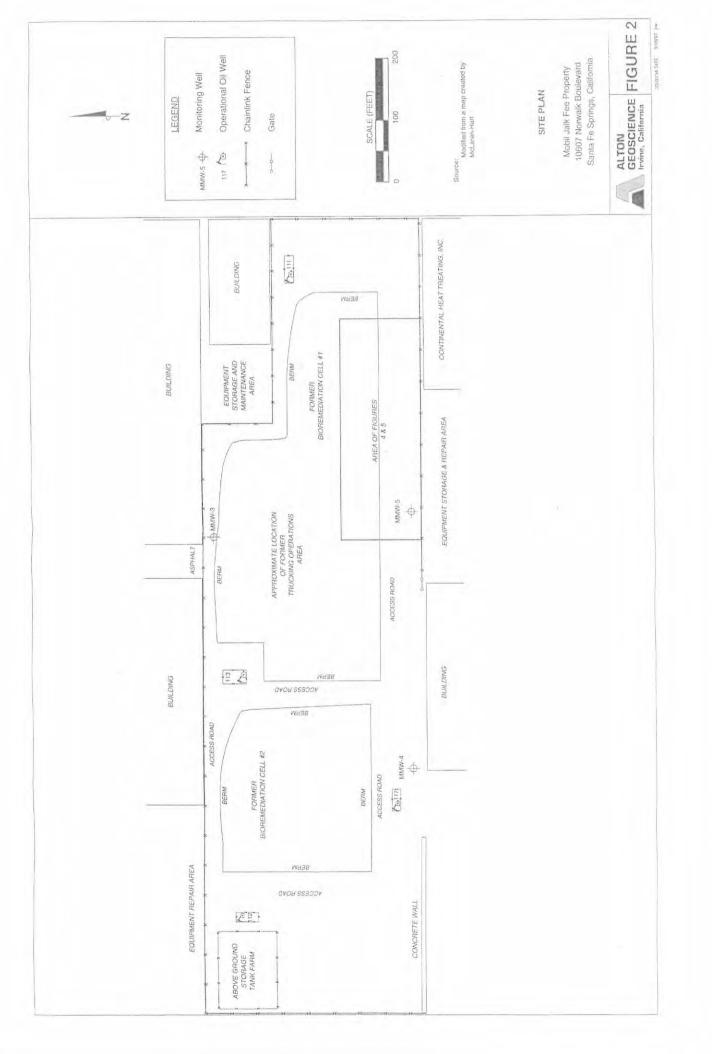
Mr. James Stull, Continental Heat Treating

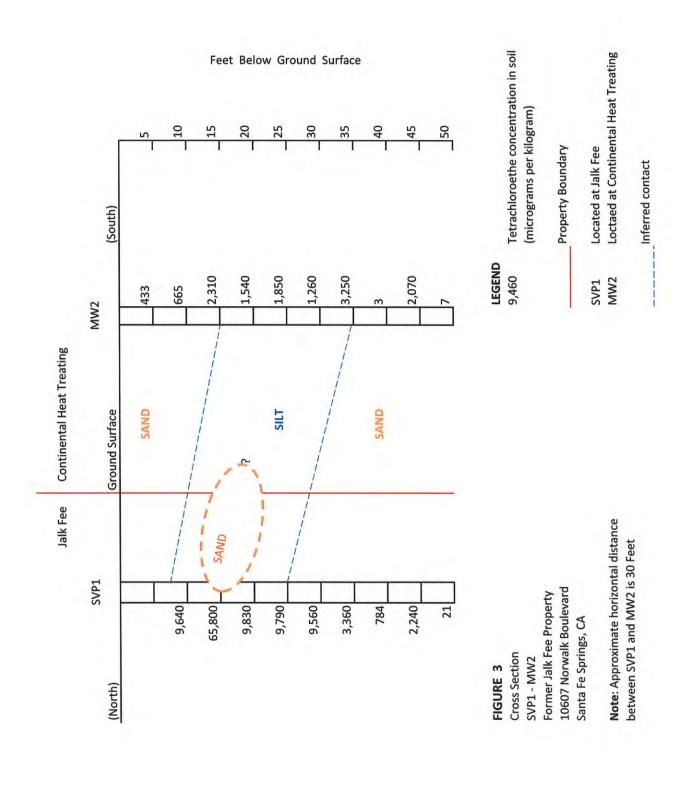
Mr. Michael Francis, Demetriou, Del Guercio, Springer & Francis, LLP

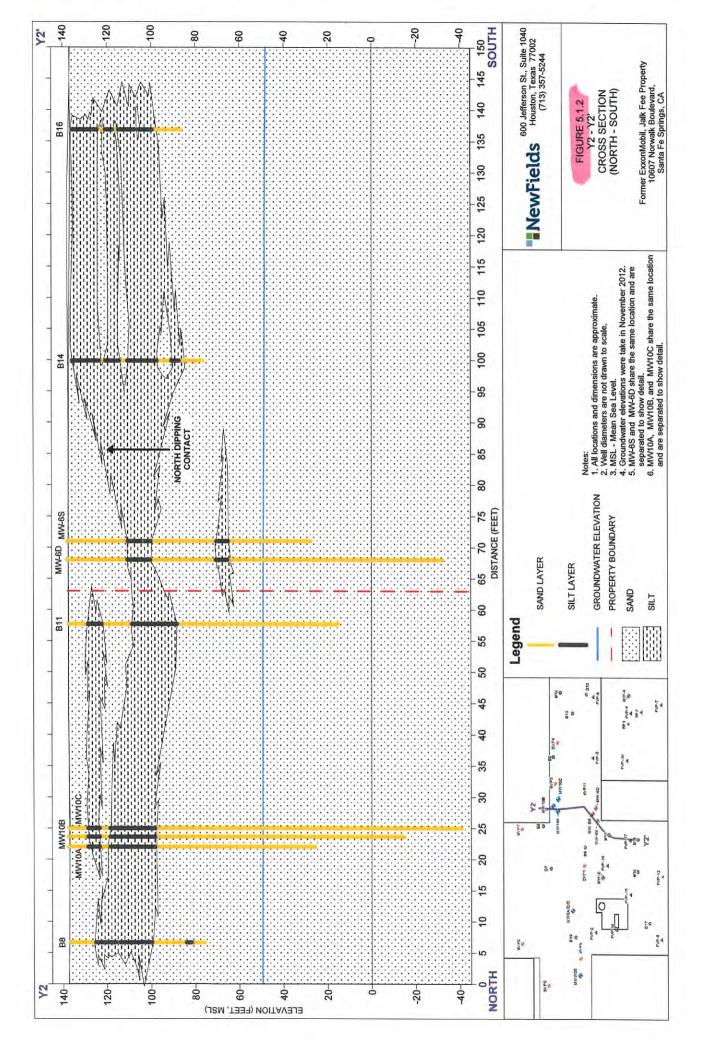
Ms. Ashley Arthur/Mr. Howard Schwimmer, Rexford Industrial Realty, LP

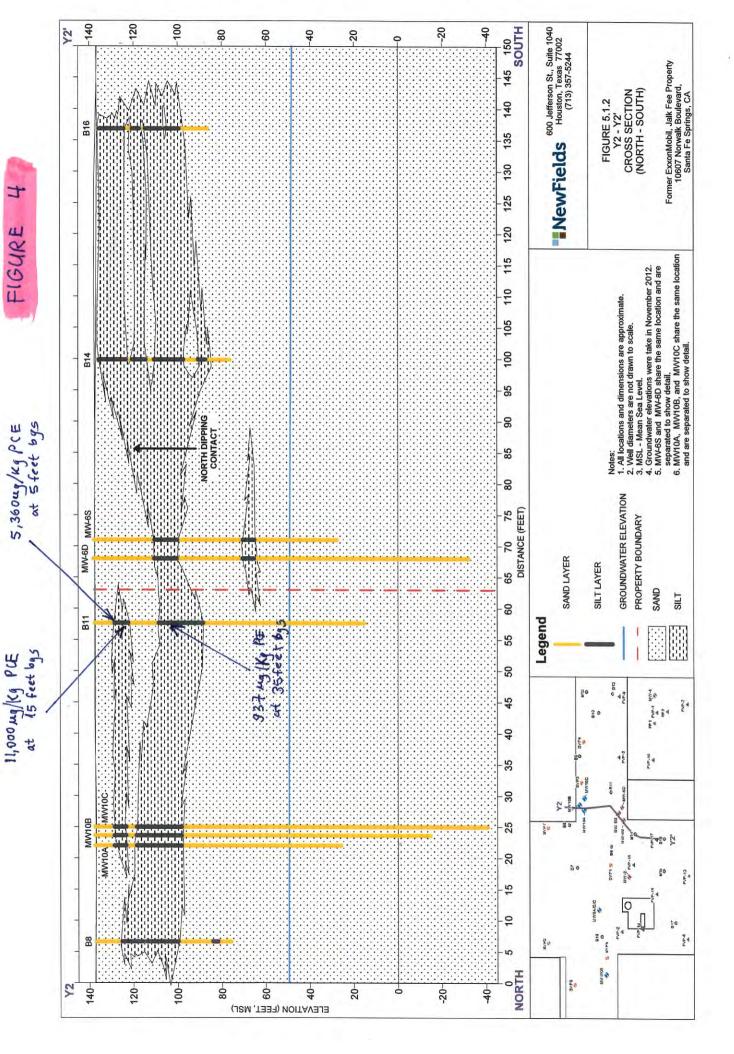
Mr. Jeremy Jungreis, Rutan & Tucker, LLP

Mr. Rick Fero, Fero Environmental Engineering, Inc.


Mr. Wayne Praskins, United States Environmental Protection Agency


Mr. Gene Lucero, Omega Chemical Site Potentially Responsible Parties Organized Group





1	NORTON ROSE FULBRIGHT US LLP	
2	ELIZABETH M. WEAVER LAUREN A. SHOOR (BAR NO. 280788)	
3	555 South Flower Street Forty-First Floor	
4	Los Angeles, California 90071 Telephone: (213) 892-9200	
5	Facsimile: (213) 892-9494 elizabeth.weaver@nortonrosefulbright.com	
6	lauren.shoor@nortonrosefulbright.com	
7	Attorneys for Respondent EXXONMOBIL OIL CORPORATION	
8	BEFORE THE STAT	TE OF CALIFORNIA
9	STATE WATER RESOUR	RCES CONTROL BOARD
10		
11	IN THE MATTER OF THE PETITION OF	Case No
12	FORMER EXXONMOBIL JALK FEE	DECLARATION OF LEN RACIOPPI IN SUPPORT OF PETITION FOR REVIEW
13	PROPERTY	AND REQUEST FOR HEARING AND STAY
14		
15	California Regional Water Quality Control Board, Los Angeles Region	[Concurrently filed with Petition for Review and Request for Stay]
16		(Cal. Water Code § 13320; Cal. Code Regs. tit. 23 § 2050 et seq.)
17		11. 23 § 2030 et seq.)
18		J
19	I, Len Racioppi, declare:	
20	1. I am the Project Development M	Manager for ExxonMobil Environmental Services
21	Company, which is an affiliated company prov	iding environmental services to ExxonMobil Oil
22	Corporation, Petitioner ("ExxonMobil"). The fo	ollowing facts are within my personal knowledge
23	and, if called to testify to the matters stated herei	in, I could and would competently do so.
24	2. There will be substantial harm to	ExxonMobil if a stay is not granted. Since the
25	State Board Water Resources Control Board ("St	tate Board") has up to 90 days to review an action
26	upon a petition, ExxonMobil will suffer substant	ial harm by having to expend resources to develop
27	work plans and implement work for which it ha	as no liability. Specifically, ExxonMobil will be
28	required to (1) prepare a work plan for additional	al off-site groundwater investigation to adequately

delineate the VOCs plume upgradient, downgradient, crossgradient/west and crossgradient/east by April 9, 2018, and (2) prepare an additional soil and soil vapor investigation work plan by March 30, 2018. Each of these would need to be completed and submitted before the State Board is required to act on ExxonMobil's petition. A preliminary estimate by ExxonMobil's environmental consultant, Cardno, indicates that completing the work plans in the Requirements and implementing such work could cost up to \$284,000.

- 3. There will be no substantial harm to other interested persons or to the public if the requested stay is granted. The length of time that has passed between each of the Regional Board's efforts with regard to the Jalk Fee property demonstrates that the Regional Board does not view this site as presenting near-term risks. For example, ExxonMobil submitted a report to the Regional Board in March 2015 requesting that it be relieved of responsibility under the Regional Board's California Water Code section 13267 order and that Continental Heat Treating be made the discharger of record for the Jalk Fee property. The Regional Board responded to that report in July 2016. ExxonMobil acknowledges that the issues of identifying the appropriate discharger for Jalk Fee have been in dispute during this time period and that the Regional Board and ExxonMobil have both been working in good faith to resolve the relevant question of responsibility for chlorinated solvents during the time in question and not seeking delay. ExxonMobil believes that by granting a stay and undertaking review of its petition, the process will result in only a short delay that will not harm interested persons or the public, but will allow the fair resolution of the question of which party is the appropriate discharger who should be asked to address chlorinated solvents at the Jalk Fee property and offsite properties.
- 4. ExxonMobil submitted an amended work plan for indoor air assessment on November 14, 2014. The Regional Board did not formally approve this work plan until its November 18, 2016 Requirement for Submittal of Technical Reports. ExxonMobil submitted a site assessment report on October 20, 2014. The Regional Board did not formally respond to this

- 2 -

¹ See Cardno's Request to Name Continent Heat Treating as Discharger, Former ExxonMobil Jalk Fee Property (March 25, 2015).

² See Letter to Ms. Marla Madden from LA-RWQCB, Response to "Request to Name Continental Heat Treating as Discharger" (July 22, 2016).

1	site assessment report until its November 18, 2016 Requirement for Submittal of Technical Reports.
2	ExxonMobil submitted a revised public participation plan on November 14, 2014. The Regional
3	Board did not formally respond to this plan until its November 18, 2016 Requirement for Submittal
4	of Technical Reports. Then, in January 2018, the Regional Board issued the Requirements which
5	are the subject of this Petition.
6	5. As detailed in the Petition for Review and Request for Hearing and Stay, filed
7	concurrently with this declaration, there are substantial questions of law and fact regarding the
8	Regional Board's issuance of the Requirement for Submittal of Technical Reports to ExxonMobil
9	(dated January 12 and 19, 2018) that justify the issuance of a stay.
10	I declare under penalty of perjury under the laws of the State of California that the foregoing
11	is true and correct.
12	Executed this 12th day of February, 2018 in Houston, Texas
13	
14	
15	LEN RACIOPPI
16	LEN RACIOPPI
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

36985953.2 - 3 -

PROOF OF SERVICE

I, Monica Tapia, declare:

I am a citizen of the United States and employed in Los Angeles County, California. I am over the age of eighteen years and not a party to the within-entitled action. My business address is 555 South Flower Street, Forty-First Floor, Los Angeles, California 90071. On February 12, 2018, I served a copy of the within document(s):

DECLARATION OF LEN RACIOPPI IN SUPPORT OF PETITION FOR REVIEW AND REQUEST FOR HEARING AND STAY

by transmitting via facsimile the document(s) listed above to the fax number(s) set
 forth below on this date before 5:00 p.m.

by placing the document(s) listed above in a sealed envelope with postage thereon fully prepaid, in the United States mail at Los Angeles, California addressed as set
forth below.

 by placing the document(s) listed above in a sealed Federal Express envelope and affixing a pre-paid air bill, and causing the envelope to be delivered to a Federal
Express agent for delivery.

by personally delivering the document(s) listed above to the person(s) at the
 address(es) set forth below.

by transmitting via e-mail or other electronic transmission the document(s) listed above to the person(s) at the e-mail address(es) set forth below.

By Email

State Water Resources Control Board waterqualitypetitions@waterboards.ca.gov

By Email and U.S. Mail

Samuel Unger, Executive Officer
Los Angeles Regional Water Quality Control Board
320 W. 4th Street, Suite 200
Los Angeles, CA 90013
Samuel.Unger@waterboards.ca.gov

I am readily familiar with the firm's practice of collection and processing correspondence for mailing. Under that practice it would be deposited with the U.S. Postal Service on that same day with postage thereon fully prepaid in the ordinary course of business. I am aware that on motion of the party served, service is presumed invalid if postal cancellation date or postage meter date is more than one day after date of deposit for mailing in affidavit.

I declare under penalty of perjury under the laws of the State of California that the above is true and correct.

- 1 -

Executed on February 12, 2018, at Los Angeles, California.

- 2 PROOF OF SERVICE