CALIFORNIA STATE FIRE MARSHAL (SFM) PIPELINE SAFETY DIVISION NOTIFICATION OF PROPOSED HYDROSTATIC TEST CPSA

Date:	10/5/90

	_			
	· · · · · · · · · · · · · · · · · · ·	TEST	ID:	90-241
1.	Operator:Shell Oll CompanyAddress:2459 Redondo AvenueCity:Long Beach, CA 9080Person calling:John Mocain	6		
2.	Specific location of pipeline to be Wilmington Refinery to Dominguez Re	teste fine:	ed: •y	
3,	Information on pipeline to be tested Line Number: IR-21 Pipe Diameter: 8.625 OD Length of line: 15211 feet Test pressure: 1080 lbs.	:		
4.	Location of test equipment: Wilmingto	on Re	rin	ary
5.	Date and time test is to conducted: :	10/12	2/90	@ 0900 hrs.
б.	Test Medium: Water If other than the been granted?:		s, ha	as a waiver
•7.	Name and telephone number of independ person responsible for certification Metco Equipment Inc. (213) 532-023	of t	test	ting firm or results:
****	*****	****	***	****
8.				426 4125
9.	Assigned to: Date	and	time	e
10.	Date test results received:			
TES	T ID: GD - 241		• • •	-
1				

This number should be given to person calling for use as a verification number.

.

HYDROSTATIC TEST RESULTS

PIPELINE DATA S.F.M. #90-241	Test Date 10-12-90
Pipeline Operator . SHELL PIPELINE CO.	Company conducting test if other than operator
Kind of Test New () Replacement () Annus	al [] 3 Year [X] 5 Year [] Other
Pipeline Identification (line number, name LINE #21	, etc)
Pipeline Location (mile post, street, stat From: WILMINGTON REFINERY	lon, etc)
To: DOMINGUEZ REFINERY	
Normal Product Transported D.E.A. LEAN	Normal Operating Pressure P.S.I. at (location) 400
Maximum Operating pressure P.S.I. at (location) 550	TEST PRESSURE 1080

PIPE DATA

Pipe O.D.	Wall Thickness	Specification & Grade (SMYS)	Longth of Pipe Being Tested	Volume (Barrels)
8"	.312	is B n	14.567'	933
			·	

TEST DATÀ

Test Medium	[X] Water [] Petroloum		r been granted ?
Location of	Pressure Recording Equipment		Elevation
Other Elevations	PipelineHigh Point -0-	Pipelin	eLow Point
Test	Make 6 Model of	Serial #	Date Last Calibrated
Equipment	Deadweight Tester CHANDLER	22681	
	Make & Model of Chart Recorder FOXBORO	Serial # 1175571	Date Last Calibrated
	Make & Model of Temperature .	Serial #	Date Last Calibrated
	Recorder REYNOLDS	1249 JM	8-28-90

METCO EQUIPMENT INC.

P. D. BOX 4700 INISI SOUTH MAIN STIFFT CAREON, CALILOBINIA (1074)

STATE FIRE MARSHAL Pipeline Safety Division 7171 Bowling Dr., Suite 600 Sacramento, CA 95823

Gentlemen:

S.F.M. #90-241

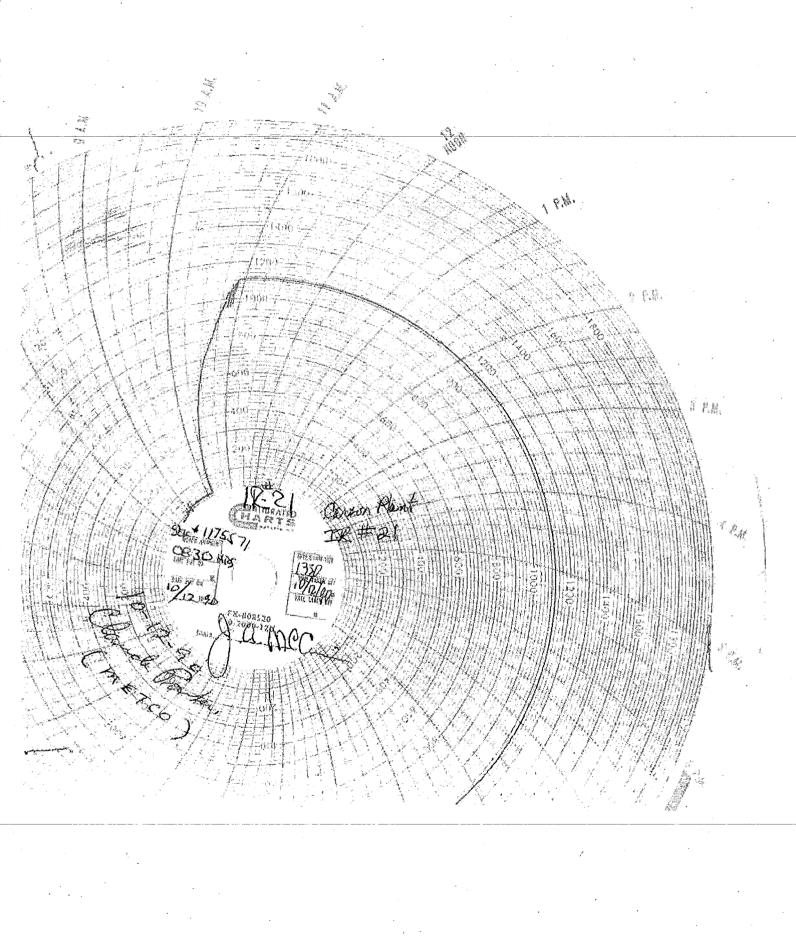
Attached for your further handling is a copy of a pipeline hydrotest report, as per California State Fire Marshal's Office.

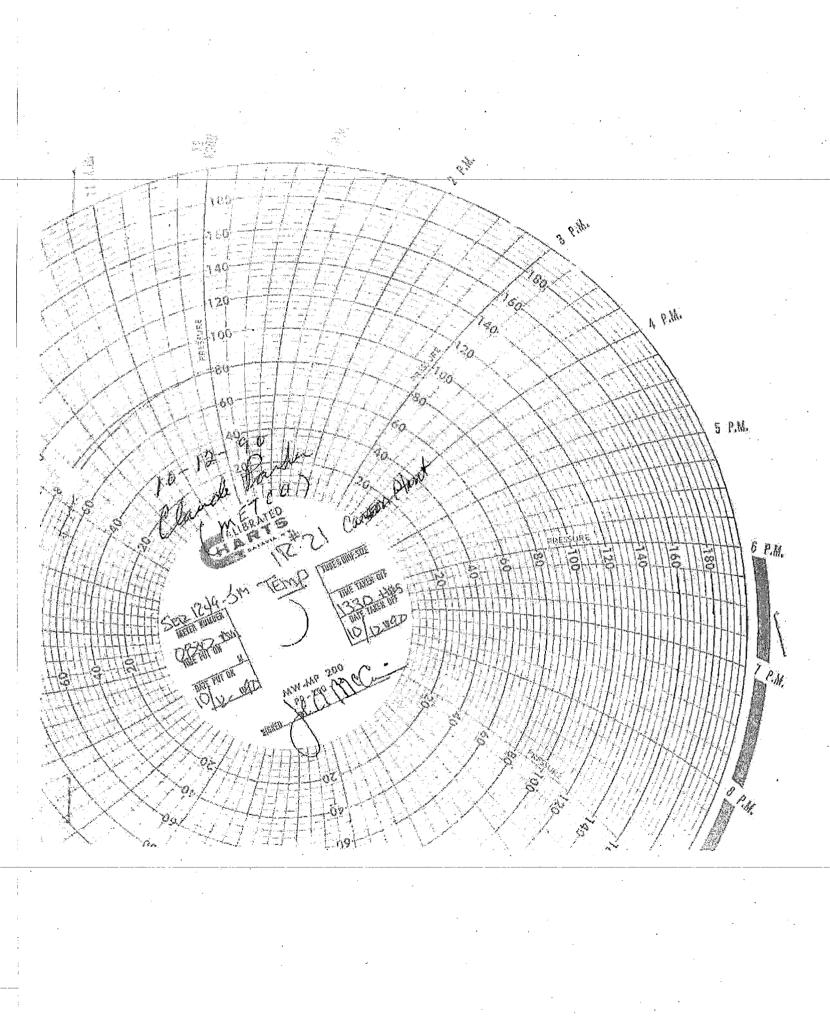
PIPELINE OWNER: SHELL OIL W.C.P.L. PIPELINE TESTED: IR-21 DATE TESTED: 10-12-90 CONDUCTED BY: SHELL W.C.P.L. WITNESSED BY: CLAUDE PARKER (METCO)

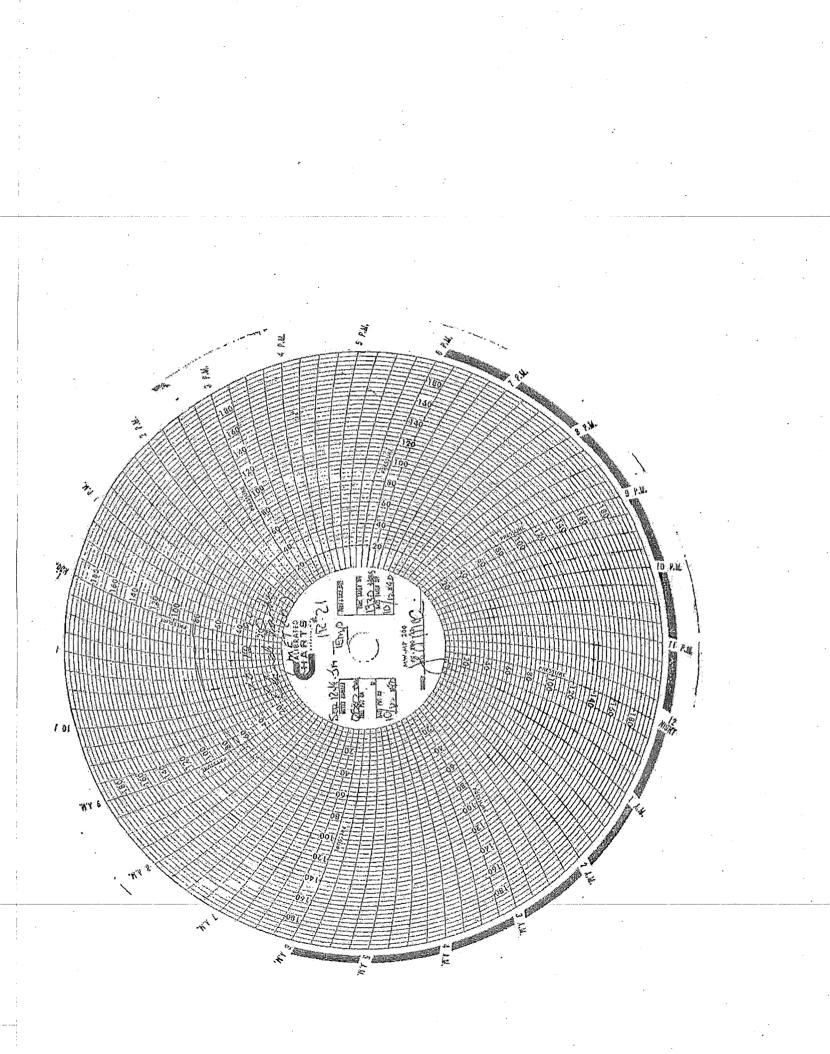
Should you need any further information, please contact the undersigned at (213) 532-0210.

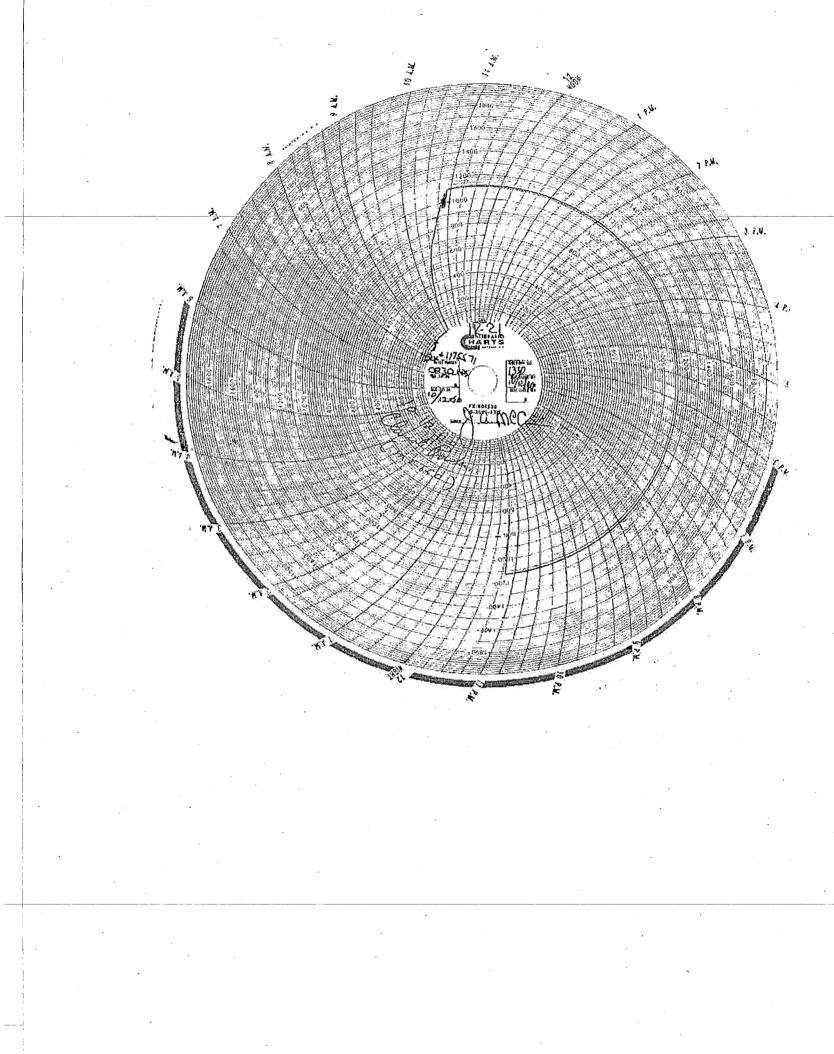
Sincerely,

METCO EQUIPMENT INC.


DUSTY HILYAR, Vice President


/slc Actachments


			• • •	, in , with	· · ·	ng c
1			STATIC TES	T RECORD	. ·	
	: <u>10-12-90</u>		: Initer Ke		********	······································
	PRESSURL: /OM		RECURINER	CALCE	SEAD AFTER	C INMAU N F
1411	AND LENT TLAMERATORE	TEMPERAIME	PRESSIRE	GAUGE PRESSURE	DEAD WEIGHT TESTER	COMMENTS
20	680	740	110	1100	1090	
1:35	. 16.90	-76°	1110 -	1100	1091	
7:50	690	-100	110	1100	1091	•
2:05	690	Tla	112O	1100	1093	•
2+20	720	760	1120	1100	1095	
2.35	730-	760	120	1100	1098	····
2:50		770	1120	1100	402	2
1:05	74 °	75.0	1115	1095	1090	-Bleero
1:20	750		1115	1095	1094	
1.35	76°	790	4115	1095	1097	
10	5770	- 80°	1120	1100	1103	
7:05	770	8:20	1115	1095	1089	F Bled of 3gaile
2:20	-78°	810	1120	10.95	1093	
2:25	780	8 08 190-	1120	1100	1098	. <u> </u>
2:50	750	800	1120	1105	1102	
1:05	-190	-790	1120	1100	1096	F Bled o Zgallo
1:20	<u>19°</u> .	80°	1120	1105	1102	END TEST
		575			,	
					•. •	······································
	×.	-			······································	· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·		•	
		. June washing galanti a wangan ta		······································		
						-
	A			·		
· · ·	· · · · · · · · · · · · · · · · · · ·		-			
			• • • • • • • • • • • • • • • • • • •		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	


JRW/ND/9/19/85-MTCE ·

ķ.

EXHIBIT F

PIPE SEGMENT INFORMATION

TESORO

State:

<u>California</u>

Pipeline System Name:

Southern California LAR TO Shell Carson Pipelines

Length Inspected:

Segment Name	Pipe Length (ft) per ILI Tool *	Pipe Length (mi) per ILI Tool *	HCA Length (ft) per JLI Tool *	HCA Length (mi) per ILI Tool *
Wilmington 21 Line	16,406	3.1	16,406	3.1
TOTAL	16,408	3.1	16,406	3.1

* This may be different from the BAP lootage/mileage

Date of successful ILI Run:

July 7, 2010

SUMMARY

The Wilmington 8" 21 Line Jet pipeline from the Alameda Sepulvada Manifold to the Shell Carson Terminal was internally inspected by means of an NDT (Tuboscope) high resolution Geometry/IMU/MFL Combo ILI tool as part of Tesoro's integrity Management Plan. The pipeline was evaluated to Tesoro Refining & Marketing Company's ILI specifications.

The results from the Initial ILI report dated 8-18-2010 showed no immediate. (1) - 60 day repair and no 180-day required repairs. Confirmation digs were completed to validate tool accuracy. All digs were completed by January 2011. The dig information is as follows.

Categorization of Anomaly	Anomalies excavated based on initial report	# Conditions Identified after excavation and NDE	# Anomalies Repaired by steel or composite siseve	# Ariomaliës Mitigated re-taped	# Conditions for which No Repair Required
Immediate (HCA, IMP-Required)	0	0	0	0	0
60 Day - (HCA, IMP-Required)	1	0	1	0	0
180 Day - (HCA, IMP-Required)	0	0	0	0	0
Misc-Not IMP Required	5	0	5	0	0

ILI Results from Report

Dig #1 was a 45% corrosion anomaly with other multiple metal loss anomalies with an eight lnch span. A Type B sleeve was installed. Digs #2, the only DOT required dig, was a dent over 3% found on the bottom of the pipe that was repaired with a Type B sleeve. A small scrap was found in the dent but was underneath good coating. This was probably done during the manufacturing/coating process. Dig #3 was a 42% metal loss with four other pits in close proximity that was repaired with a Type B sleeve. Dig #5 was only a 47% metal loss anomaly with three other pits in close proximity that was repaired with a Type B sleeve. Dig #6 was a 42% metal loss with slx other pits in close proximity that was repaired with a Type B sleeve. Dig #6 was a 42% metal loss with slx other pits in close proximity that was repaired with a Type B sleeve. Dig #6 was a 42% metal loss with slx other pits in close proximity that was repaired with a Type B sleeve.

The results of the confirmation dig are follows:

INITIAL ILI ITEM or LOCATION	DIG #	TYPE OF ANOMALY	ILI INITIAL REPORT - % DEPTH	FIELD NDE - % DEPTH	REPAIR	COMMENTS
3181.183	1	MLOS	45	35	Type B Sleeve	
4764,642	2	Dent	3.25	2,99	Type B Steeve	<u> </u>
4773.975	3	MLOS	42	42	Type B Sieeve	
4773.975	3	MLOS	41	40	Type B Sleeve	
7377.992	4	MLOS	49	32	Type B Sleeve	
9160.392	5	MLOS	47	59	Type B Sleave	
13845,508	6	MLOS	42	30	Type B Sleeve	

ILI Dig Results from Final Report:

After reviewing the seven results from the six digs, four out of seven field-measured anomaly depths were within tool tolerance. Of the three that were over the tool tolerance, two anomalies were only two percent over and the third was seven percent. All the anomalies were overcalls with the exception of one. The results of the B31G Modified remaining burst pressure at all dig locations were well above the MOP of the pipeline.

Mistras performed a visual inspection and Ultrasonic Testing as well as all anomaly measurements at the anomaly locations. Mistras also performed Black on White Contrast Magnetic Particle Testing (external) at all locations. No indications of SCC were found at any of the anomaly locations.

Based on the results above from the 2010 ILI digs and with the tool tolerance overages minimal, the overall findings were satisfactory.

Titles and Signatures of Individuals involved in this Closure Report:

Pipeline Integrity Engineer: Rick Parkinson

Integrity Management Program Director: Bernie Frieh, Manager of Environmental Compliance & Training

Contract Engineer: Kelth Edwards

FEATURES : INTIMO REPOR	8" Witmington 21 Jone Let. Alameda Sepulve Bur Casar Trice 1	N NUMBER SPECIES	Calculated CADP Burst 0.85dl	154							1				1			i kinning		1		eux 1420			·····	- 				to provide			11	1		1
FEATURES	Tester Lington 21 June Jen Alom Run Davis	K Ninth S	ulated urst				Į	Ļļ		Ĺ							L						ļ			~	-			u us				1000	2 6 -	
Ë	ingten 21 J	2 22	285 295	i											A little stress																	5 20 20 20 20 20 20 20 20 20 20 20 20 20				
	3	n 10%	Orientisition อังกับจะห		And a second				Strict Concerns	in the second		31/1-02/24			- 90007			Ch d				N ROD 21			11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		3: 8/0.9							80		
	8" Wil		Width									0		1				2			22.2	2					in.							3		
· .		VLEN IS	Length									215		-+-				a			82.0	ar 10					Wit:					-				
	- · · · · · · · · · · · · · · · · · · ·		Wali Mali Inickness (neminal) Inches							-		1120						222.0	8	entitisi - 	11 282	0 282					0.281							0.2781		
		2	Depth (r Inches		+			$\left \right $				- 		_				0.255	1936	an a	are.	HID					1221-0			+				8(8)	_	
			Dapth C								2	-	$\left \right $			-				Ť	41.84	40.4	-				 ¥¥¥		$\left \right $	-				K.		ĺ
			Ruplure Prossure Ratio D		1821	1 13	- -			1,23	1.88		1 14	121	11		11.1	<u>.</u>	1.2.1	<u> 11</u>	4.46	0.55		41	(Internet	114	e na		×*.		1.15	1 26	101	101		
		÷	CACP P		are.	182				012	- Mar	22	L III		7.20	╢	720		720	720		7201				100	8		2 2 2		1221		723	Ŗ		
		WITH TOOL FOLERAN	Calculated C Burst 0		36236	2163			1692	2130	191	EZ.	35/10	1252			1890 T		3172			2488		720		9352	CA17						2365			
		1.10	Midh Widh		5 1	27	27		3	22	e s	98-35) 72(4)2	274 74	-	6.1 8 1		22		57. 200	2 4		50 10.9		19. 19.			20			2.7	27		22	3		
,		ETAL LOSS	Longhh Inches		T.	a.			4 O E	46) F			Z Z	82		1		14	20		96				1	3 8 8			24	1.1	2.80 3.8	2.4			
•		N	Depth Inches		211 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	8			2 2 2 2 0	0.12	il i	С. С.			C.3.2			2	0 233	6 C 6 S		0.128		3210					n 078	0	0.102	102 102 102 102	0.115	E M		
			Depth									sir.					jî.	83.	Į.			6		, A		41							r.	1		
			Ruptura Pressure Ratio					-	17			22			1.25		129		1.27	1.22	110	0.00 1.05		1.23		1 24	3.0						1/16			
			CAOP 0.85df	×	ntr.	110	022	720	120	720	135	1987	222		22		720		7.20	1	1.1	729		R		e,			- Res	022	2,	730		172		
		8	Calculated Burst psi		Ex 82	5387	69756 61	3332	9120 1120	200 191	Will	Incu:x	2428		3282		1261		2330	3196		2745		3285		2794			VENC.	08%	2799	2002	1928			
		HETAL LOSS - PREDICTED	Ortentation		626	2.2	6.23 8.20	00.7	6.50	560	avu	CU CA	1884	1.35			7.03	197 B	3:25	2 10	2.00	4:35		1017		7.18 6.10		-	12:12	1:22	1.601	nc.z	202			
		HETALL	Wicton O		8		Ĩ				WE.	13	0.1	0.3	71		9.6	a n	10	2	80	an Bu				8.1			7	11	r~ ; ∽ ;	- 40	ie -			
			ungth Andres		0%		<u> </u>	30	ŝ	13		945 YF	121	0.51	0,0	interior	e e	88	82	28	2			6			2 12		100	61		104				
			Depth		5.064	0.055	5	0.005	0.074	C.06E	6.001	0.05		190 D	<u>200</u> 0	Signature and	1 037		0.071	0.100	e (S)	0 1323 D D97		0.050	X	0.089							ideo			
			Depth %		36	1	818	21	3	21		27 0 057	31	12	2		Ê		33	1	i.	1	ſſ.	3		32	1			2.6	<u>ह्य</u> ा	a se	<u>ar</u>	X		
		- 	Long Seam Octentation D'slock Long Seam Type	ANS.	NU3 BRW	ERN	NY JI NY JI	ERV	ERW	ERW	C av	es E	Sec.	ERSE	NH3	EK V		1913) 1913		ERW 50 A		NC 2	ERW		ALL A	SIVES	SALE	SMLS	SINE	SMLS	SNLS	SMLS	E INS		ENV	
			MA0P Beg	120	202	8	22	720	720	R R	R		2,2	720	87	202		720	302	20		22	002	88	12/2	220	8	8 <u>8</u>	829	2	22		81	de No	82	- CADIN
			Pipa Grade		a 2	:0	œîœ	6 2	i a	en la		ma		n 00	œ.	2	ar po	33 ș	am	a a		wko	a a	øe	:leije	u jan ja	a	=	æ	œ	a a		=	zļa	3	
			Wall Thiokness (nominal) inches	3000		1221			0 NZ	1322 1	D 132			0 322	CEED	222	880	6.222	d uzza	0.322		×3	777.11				uru 1		2220	6250	220	entre antre	1110	C277	0.332[
		NO	Distance Io Next Feature A	1.017	0.205	1221			0,259	111.0	695 V	0220		0.167	1.178	2,026				0.502	<u>uw</u> n	199 W	242 242	10710	50 24		23.760	27.20%	2.00	1.001		area.	1221		na sa	
•		EVENT DESCRIPTION	J Isodaliw	000	200	88			3.600	102	1 600	1600		1800	11001	1601	S.S.	1001		205		100	0161	034	84			222	228		100	UN NU	2.633	EM3		
		EVENT	Odometer M	000		73 123	24,021	16 762			1 01712			83.175 C	31.54.7	0 212 68	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	64,642 1	1 240 22	13675 0		e e e	1 425 F	1 202	1 200 10		1.222.0			3115	42 0751 2	1020	1 212 H	X5 (2071) 2	05 5551 3,	
			 2⊒.0			1	- 1	č. Lulu	- 8 - 8		FI L2		in.		3	5 5	ĞС Ш									an a	11		UCI I	100	138		2112 1121	116		

.

1 06.2

		Rula	ļ									Ţ]		-				1				ļ	Ī			ļ		Ţ		l	ľ		ļ				Ĩ			ľ				T
-		Comments	Launch MP () () Alasters Sepulyeds				_								[xri 1 Emere Nermi														7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				-	lata Biztatia Nation	1996. A forum constants a start from the forum of the constant of the constant of the start of the constant of the			2. and 3. 7. a . 5. a			141				**************************************		Are E Stewn House		A CONTRACTOR OF
		Elevation ff	31.629	49.370	*0 804	(5%) (T	237	40.511	552 57	182.03	28.255	40,236	47	11 11	40.127	11 IV	49.104	£3 094	89.68	520,62	44 (BG	c 8.944	31 255 IE					L SIE 1 S	22.272		31.30 F			Se constantes de la con	N BU	17 203	17 22		5	10.075	I.S.	10.213	f0.2G3	ž Š	10 200			10.220	in the second se
CO ORONATES		Lenglude E	1 10 23584361	1 10.23345933	1118 28346781	T. to leave	118 2010	-118.23347536	1 10 23240255	110213437710	118 23347878	138 23346 25	-118 23346255	1382324033	23767777481-3	ATTACK OF C.	-1 10 Z.1348/254	-118,23345315	33.81535056 118.233500701	1 18.23350204	110,23351707	-118.23352181		110 2322 123	A DARAGE DA	110.24571262		118 232 338	1 MC MCC DI L	CLIECTER NO			110 22 60 20	-118.241Ka54	110 241621:55	-110.24982736	-158,245024201	24674697 411-	.118.25573879	118 24565353	116.256235231	113 7-5255146	110.254234770	110 252 2004	115,25035950	1 1R 25540 %21	110-22-011	118.25556425	
		əbülitə	33,8,0723425	33.616.65	33, 81535354	33.816353781-116.	33,81555220	33, 815, 343,5	33 8152.454	30.81636577	5.94	35.9352-45	33.81b35562	23.915 Helto	1004271 2 22	100500	8	33.8152000	33.81536060	33.81535097	33.81526421		3.1.2				31,5150013	33,81505224	12 1 1 2 2 4 10	WWW II CT		33.0100 1121		05/33223.55	IN NUMBER	23,675,573	33.62544671		V1 R75.44Kr	35.82544720	LANXER CE	33 623311301	33.833.6503.65	33.8333 [14]	33,83332204	20.000 august	22 12 22 22 10	33.93312750	
CIH5	ð	Length A	0.000		1.525	1.525	1.525	1.525	1.629	1.526	53	1525	1.525		2221				1,525		37,420		Z304Z			23,443	242.42	21212				EXE NO.		23.228	22822	B17.12	B)/ T			40.158	32325	42.8.75	43.675		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.54		42 192	
JORT LENGIHS		Leogth R		16.230	1H D33		18 BK	10.02			8.8	2.41	IR OSS	15 033				16.023		16,033	1,525		24,27.0				224422	27443	23.46		254 F.7		22.467	22.407	23,530		E Salar		2. S	41.817	10.0555	10,426	102901	100311	1050 21	Incu of	10 100	43 675	A THE R AND A THE R
	Upstream	Length R	0%0	\$2.7X	23/22	22.22	22.7.23		121.12			12.022	25.123	23,732	21.77	CC 12		22.728	102.2.2.2.	21.733			101/12				34.320	34:220	12. A.S.		22.22	57.755	22.723	21/22	37.467	18/1/3			29.692	27,7131	1,220	1500	1.50		1000	1 058		16.550	
WEDS	428	Weld R	1.017	83 A	15.317	11, 100	55.CR	54 (182)	1289 St.	12.20		11,250	2424	2659X	100M	03		27	200	4.7.17			24.720			1342	25.422	23.754	21400			27.460		3555	125 TE					41.515	DILE	2.100		1000	22122	001	210	43 675	
WE	Uistance to Nearcet Upstream	Wald fi	00	1273	2719	2222	2325	2.823		67/2			10.258	33.375					12.2.2	212-21	18.033	1721	115.12			ST.	34235	0.682	288		100	20118	2022	23:42	1940	18:438	16573		35.525	31, 108	GSE (100 Y 10			14.020	1022.28	27 S	16.650	
	-	at Feature		1		3 181, 150	275		D16.2312	1 3:04:010	3164.291	3365,016	1 3168 441	2169.600		3 222 6 10	37.0.130				0070/12	327 9212	11.30. 201			6, 53 ° 0	4/50.251	4751.693			DOL YOLY	7347.258	7366 223	in ser	1359.72	0.12.0	9140 100		5:82 600	92303.008	17522,517	134384055	136.20.55	13641.020	250.55.051	13833	15358256	12135.217	- I wanted a second a second
AGM	Distance. from AGM	lo Pealure R	1 86.44	4110.002	43 14 050	#121 B42	100 E3 E3	112217	410220		+110.705	100 W	4 108.439	4 100 2 22		100 21	4 105,550	110		4153,400	1007	2012 2012 2012 2012 2012 2012 2012 2012	1 12 10 10 10 10 10 10 10 10 10 10 10 10 10			2210 622	2514 CM	145 81 22	HOTIS		100 ECT		2545.201	240,200	7272 XY	LEG CLA	100/201		202	691.492	711.083	708.975	706,442	105.3/2	000000	103 233	24 121	701,703	The second se
NEAREST DOWHSTREAM AGM	Slebon Number of Downstream	AGM	502	3236	1275	1275	1333	2330	922			7276	1773	7275	22.22	100	1928		72/2	0/2/		12/2	12121	236	No.	1275	5222	22/22	202	7270	200	2140	22.22	212	202		2142		9912	5312	20071	28503				14537			ľ
NEARES		. Dtescription	A4V MP 138	KON MP 1 38	10k 24-1.28	N312 MP 1 38	ACLA NP 1.36	451 Mp 1 38	86 L d/s 757	100 NP 1 28	AGH NP-126	1 AGM NP 1.38	KCR MP 128	KGW NP 135			NGK NP 139	10W WF 1.20	HGW NP 1.30	AGN 101 1.38	31/0.070 MGA MF 1.38	AGW WE 1.30	1/1/1 /// 1/10		21.01 NIN 1.38	TTA ND 128	2CN NP 1.36	8131 BP 1.18				TON NO TON MIC	SEV NP 1 M LEE	VIN NP 125 LIE	YEN NP 153 LAR	ACM MP 1.50 1405		CONTRACTOR AND	V.W. WP 1.62 1405	4GN NP 1 93 1-405	AGW NP 2.79 211 51	10% ND 2 20 247 31	9 AUV WP 279 233 50		VCR. NP 5 70 313 SI	24 ACK MP 2 78 213 51	4. 1. 2. 77 2. 13 M	CV NP 2.79 213 St	
		ol featura	C (0) D	1912	3182. W22	31831025	3102 2015	216.1.9.13	THE SEC		IN MIC	3164 766	3 1331 24	3168.952					01/0204	21/1-200	0100/12	110 1110	010.00.00		1007 TO 1	472.531.631.	4720.75	EEY 1027	Er der		CHI THEF		TNA ENS	1356 (89)	12000	101 A.	04 - 24 C	07 071 8	01-2310	32.19, 80	3835.67	12457 18			13832.66	13632 52	E HEIREI	13634 37	A DESCRIPTION OF
		2	0000	- 1	102.720	102/200	162 223	103.533	10:5:00	165,765	166.041	101 103	110.241	176,358	18. BU			112 433	172 400	1/13.3001			11.00.010		24 W. L	1755 6 2	1252.34	1763 43					15 W 5.1	1014	103			12/2 102	1323, 103	1944,809	2312,075		1912 I I I	DAC REIN	397.0 554	2320.625	11. COX	3922.375	0000
TREAM AGIA	Station Number of Upstream	AGM	Ō	2908	2599	2998	9902	500		No.	1992	2998	850	2898			R		0001	19637	110000		10000			22.22	82 84 71 71	NGSC .	œ.	0000	384.4	202	12721	244	1976	1355	7775	922	7275	12751	6912	2.60	9. 9. 1	50 K					100001

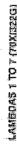
3 10 2

EXHIBIT G

LEAK RATE (BPH) - 70XI321A

ATMOS LEAK DETECTION - LINE 21/7 AVJET 5232011 6:35:00 AM 353.71

LEAK ALARM - 70XI321



LEGEND FOR SYSTEM ALARM 70X332

0 = No System Alarm

70XI326: 1 = RUNNING 2 = STOPPED 3 = SHUT IN

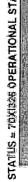
70XB28: 0 = NORMAL 1 = SMALL CHANGE 2 = LARCE CHANGE

0 = NO COMMAND 2 = RESTART 4 = SLEEP

3 = RETURNE

1 = INITIALIZE





1 or 2 = Leak Alarm

0 - No Leak

INLET FLOW = 7051100A OUTLET FLOW = 705121A

¢.

INLET PRESSURE = 70PH30 OUTLET PRESSURE = 70P121

220 = Outlet Pressure Stuck (70P15306) 320 = Outlet Flow Zero (70FI21A) 300 = Intet Flow Zero (70F1300A)

200 = Inlet Pressure Stuck (70P1101)

120 = Oultat Flow Stuck (70FI21A) 100 = Inlet Flow Stuck (70F1100A)

ATMOS CONNAND = 70X1320

PROJECT US-1436-TESORO Rev 1.J Completed

Atmos International

PROJECT US-1436-TESORO

Tesoro LAR Line 7/21 and Line 28/32

SITE ACCEPTANCE TEST Document

ATMOS International Inc 1665 S Brookhurst St, Suite A1, Anaheim, CA 92804, USA

> *Tel:* +01-714- 520 5325 *Fax:* +01-714- 520 5326

Email: atmos@atmosi.com

August 2008

Prepared For Tesoro Los Angeles Refinery

US-1436-TESORO-SAT-001 Rev. 1.1; Completed

PROJECT US-1436-TESORO Rev 1.1 Completed

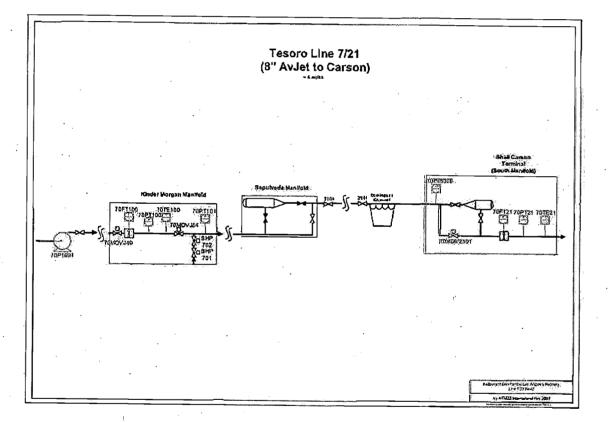
Atmos International

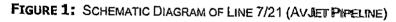
Contents

I INTRODUCTION
1.2 Leak Detection System Description
1.3 Scope of Site Acceptance Tests
1.4 Leak Detection System Performance Criteria
1.4.1 Leak Detection Performance Estimates for Line 7/21
1.4.2 Leak Detection Performance Estimates for Line 28/32
2 SAT SCHEDULE
2.1 Overview
2.2 Preparation actions for SAT
2.3 Methodology for Performing Leak Tests
2.3.1 Leak Test method Line 7/21 (AvJet)
2.3.2 Leak Test method Line 28/32 (Gasoline/Diesel)
APPENDIX – SITE ACCEPTANCE TEST FORMS 11
PROJECT DETAILS
Test Results
PERFORMANCE RESULTS
LINE 7/21
LINE 28/32

*PLEASE NOTE THE ADDITIONAL ASTERISKED TEST IS THE FIRST TEST WITH A CORRECTED START TIME. THIS TIME IS TAKEN BY BACK EXTRAPOLATING LAMBDA-1 TO WHEN IT CROSSES THE AXIS CREATED BY -7. THIS IS DONE TO GIVE AN ACCURATE LEAK TIME SINCE TESORO OPENED AND CLOSED THE TEST VALVE TO VARYING DEGREES AT THE BEGINNING OF THE TEST. ALSO, PLEASE BE AWARE, EVEN WITHOUT THE REMOVAL OF THE "EXTRA" TIME IT TOOK TO SET-UP FOR THE LEAK TEST; ATMOSTMPIPE DETECTED THE LEAK WELL UNDER THE LEAK PERFORMANCE ESTIMATE. 14

Test Conclusions	
Further Comments & Actions	


Atmos International


1 INTRODUCTION

1.1 OVERVIEW

ATMOS International (ATMOSi) is to implement the statistical Leak Detection System (LDS) software on Tesoro's Los Angeles Refinery (LAR) Avjet and Gasoline/Dicsel pipelines referred to as Line 7/21 and Line 28/32, respectively. They originate at the Tesoro RP&S; Line 28/32 has its initial metering at the Refinery while Line 7/21 has its initial metering at the Kinder Morgan manifold, with outlet metering at the Shell Carson Terminal. Neither pipeline has intermediate available instrumentation. Both pipelines are approximately 6 miles in length, Line 7/21 has an outside diameter (OD) of 8" and Line 28/32 has an OD of 12".

An overview of the pipelines is shown in Figures 1 & 2.

PROJECT US-1436-TESORO Rev 1.1 Completed

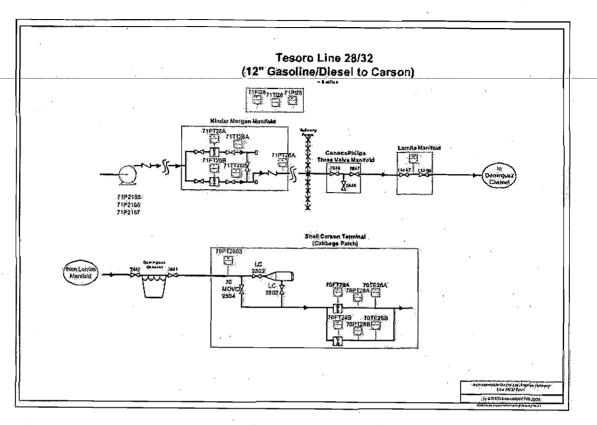
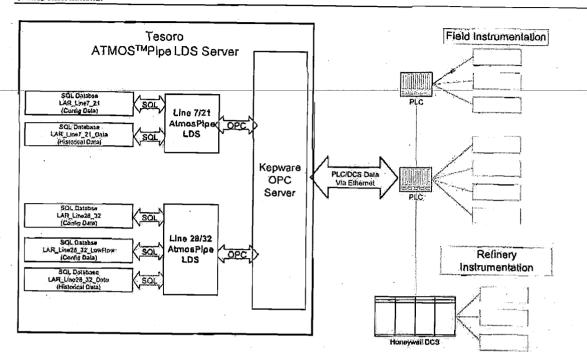


FIGURE 2: SCHEMATIC DIAGRAM OF LINE 28/32 (GASOLINE/DIESEL PIPELINE)


This document specifies the Site Acceptance Tests (SAT) to be carried out to prove the functionality of the leak detection software for Tesoro. It is not intended to test all possible situations that the leak detection system would be expected to perform, but aims to demonstrate how ATMOST/Pipe will operate under a leak test under running conditions from the Refinery to Sand Island. Two leak sizes of approximately 1% and 2% of the agreed nominal flow rate will be tested during the SAT while flowing from the Tesoro RP&S to Shell Carson for the both pipelines and a third test of 10% will be performed on the 7/21 line in order to test the leak location.

1.2 LEAK DETECTION SYSTEM DESCRIPTION

The ATMOSTMPipe leak detection software for the pipeline will be situated on the dedicated LDS Server within Tesoro's Central Control Room. The instrument measurements will come from the field PLCs to the ControlLogix (CLX) PLC. Measurements from the CLX PLC are visible on a KEPware OPC server which makes the PLC data available as OPC objects for ATMOSTMPipe to read. Output data from ATMOSTMPipe will be passed back through the OPC Server and back to the CLX PLC as displayed in Figure 3.

Atmos International

FIGURE 3: PROJECT OVERVIEW SCHEMATIC

The ATMOSTMPipe application will provide output data including pipeline status information and alarms which will be passed through the KEPWare OPC Server and back to the ControlLogix PLC to be read by the DCS.

Atmos International

1.3 SCOPE OF SITE ACCEPTANCE TESTS

The system SAT will be carried out at Tesoro's Refinery in Wilmington (Los Angeles), California.

The tests will cover the operator interface and the operation of the leak detection software.

Three dynamic leak tests will be performed at approximately 1%, 2% and 10% of the agreed nominal flow rate (1600bph) for the AvJet Line.

Two dynamic leak tests will be performed at approximately 1% and 2% of the agreed nominal flow rate (6000bph) for the Gasoline/Diesel Line. Please note the nominal flow rate is based upon the operating scenario solely dictated by the actual pipeline flow rate.

The ATMOSTMPipe Server has been installed on site since May 2008 and began data collection early-June 2008. This data was then transferred to ATMOSi offices in California via email. This site data was then passed through an offline ATMOSTMPipe system to allow the application to be configured and tuned.

During this data collection and luning period, communications issues were identified. Therefore the leak test for the SAT cannot be performed until ATMOSi determines that all necessary data points show the correct state so that ATMOS^{IMP}ipe may determine that the line is running.

Atmos International

1.4 LEAK DETECTION SYSTEM PERFORMANCE CRITERIA

The following table shows target performance criteria for the Tesoro Los Angeles Refinery leak detection system based upon the data seen from site to date. The pass criteria for the leak test sections of the SAT are that system leak detection performance is demonstrated in accordance with these performance targets.

Leak size estimates are expected to have an accuracy of ±5% of real leak size or bener.

Leak location accuracy: As a general rule, the location error decreases exponentially as the leak size increases.

Leak detection takes advantage of the ATMOSTMPipe system's ability to learn about the instrumentation system and compensate for errors and it is therefore the repeatability of the instrument measurements, which has the dominant effect rather than their absolute accuracy. However, leak location estimation depends on the accuracy of the measurements. For large leaks (greater than 10% of flow) an accuracy of ±5% of total pipeline length is achievable.

1.4.1 Leak Detection Performance Estimates for Line 7/21

The following tables show the desirable leak sizes and respective detection times based upon the data seen from site at this point.

Leak Rate	Leak Rate (barrels/hr)	Detection Time (min)
1%	16	60
2%	32	40
5%	80	30
10%	160	20
20%	320	12
30%	480	4
40%	640	2

Table 1.1: Line 7/21 (AvJet) Estimated Leak Detection Time and Sizes under Normal Running Conditions The leak sizes above are based upon the originally agreed nominal flow rate of 1600 barrels/hr

1.4.2 Leak Detection Performance Estimates for Line 28/32

Leak Rate	Leak Rate (barrels/hr)	Detection Time (min)
1%	60	60
2%	120	40
5%	300	30
10%	600	20
20%	1200	12
30%	1800	4
40%	2400	2

Table 1.2: Line 28/32 (Gasoline/Diesel) Estimated Leak Detection Time and Sizes under Normal Running Conditions

The leak sizes above are based upon the originally agreed nominal flow rate of 6000 burrels/hr

Atmos International

2 SAT SCHEDULE

2.1 OVERVIEW

The dynamic leak test for Line 28/32 will be done by Tesoro during a transfer from the RP&S at the Los Angeles Refinery to the Shell Carson Terminal. Two leak tests will be performed, one of approximately 1% and one of approximately 2% of the agreed nominal flow rate. At these low flow rates the accuracy of the leak location algorithm cannot be verified.

The dynamic leak test for Line 28/32 will be done by Tesoro during a transfer from the RP&S at the Los Angeles Refinery to the Shell Carson Terminal. Two leak tests will be performed, one of approximately 1% and one of approximately 2% of the agreed nominal flow rate. At these low flow rates the accuracy of the leak location algorithm cannot be verified. A third test of approximately 10% will be performed on Line 7/21 in order to test the leak location algorithm.

As each test section is completed, results should be recorded in the Site Acceptance Test Form, which is attached as Appendix I to this specification.

Any software snags or non compliances should be noted in the appendix section for investigation and corrective action by ATMOSi, and both parties should sign accordingly.

2.2 PREPARATION ACTIONS FOR SAT

Prior to arriving on site for the SAT, Tesoro will have prepared the correct leak testing equipment and personnel.

ATMOSi should confirm that ATMOS^{TMP} pipe is running normally and ready for leak test. A leak shall be established at a nominal flow rate by the Tesoro team in the field. Results of the leak test shall be documented in the attached SAT results form.

08/03/08 [ssue 0]

Atmos International

2.3 METHODOLOGY FOR PERFORMING LEAK TESTS

2.3.1 Leak Test method Line 7/21 (AvJet)

The following procedure for simulating leaks on pipelines for ATMOSi leak detection testing is provided by Tesoro.

"Wet test" pipeline 7 (Avjet line)

- Product removed from the pipeline while the system is transferring product.
- P&T to be present at all times at leak test location while tests are being performed. Vacuum truck to have high pressure hose and carbon canister.
- RP&S control room: 310-522-6061 or 310-522-6017. Radio channel A-6.
- Four tests will be performed in the following manner.

When all parties have confirmed that they are aware that leak detection testing will be taking place:

- 1. Remove 2" drain valve cap at location designated by P&T representative.
- Connect vacuum truck to 2" nozzle. Camlock is to be tied in proper manner to prevent it from disconnecting.
- 3. When all parties are ready, slowly open 2" drain valve, allowing product into the vacuum truck at a 1% leak rate. Note time below when valve is first opened.
- Field personnel to contact RP&S control room and verify decrease in flow at Shell Houston.
- 5. When ATMOS leak detection alarms, close 2" drain valve.
- 6. Calculate approximate bbls discharged into the vacuum truck.

7. Record all required information below.

Test 7W-1.

At Kinder Morgan an amount of 19bbl/hr of product is transferred into the vacuum truck. The leak is 1% of the regular flow ~1900bbl/hr and should be detected and alarmed by the leak detection system (ATMOS) in less than 60 minutes.

Test 21W-1.

At Shell Carson South Products an amount of 19bbl/hr of product is transferred into the vacuum truck. The leak is 1% of the regular flow ~1900bbl/hr and should be detected and alarmed by the leak detection system (ATMOS) in less than 60 minutes.

Atmos International

2.3.2 Leak Test method Line 28/32 (Gasoline/Diesel)

The following procedure for simulating leaks on pipelines for ATMOSi leak detection testing is provided by Tesoro.

"Wet test" pipeline 32 (Diesel/Gasoline line)

- Product removed from the pipeline while the system is transferring product.
- P&T to be present at all times at leak test location while tests are being performed. Vacuum truck to have high pressure hose and carbon canister.
- RP&S control room: 310-522-6061 or 310-522-6017. Radio channel A-6.
- Four tests will be performed in the following manner.

When all parties have confirmed that they are aware that leak detection testing will be taking place:

- 8. Remove 2" drain valve cap at location designated by P&T representative.
- Connect vacuum truck to 2" nozzle. Camlock is to be tied in proper manner to prevent it from disconnecting.
- 10. When all parties are ready, slowly open 2" drain valve, allowing product into the vacuum truck at a 1% leak rate. Note time below when valve is first opened.
- 11. Field personnel to contact RP&S control room and verify decrease in flow at Shell Houston.
- 12. When ATMOS leak detection alarms, close 2" drain valve.
- 13. Calculate approximate bbls discharged into the vacuum truck.

14. Record all required information below.

Test 32W-1.

At Twin meters LARC Tesoro LAR an amount of 50bbl/hr of product is transferred into the vacuum truck. The leak is 1% of the regular flow ~5000bbl/hr (for a gasoline shipment) and should be detected and alarmed by the leak detection system (ATMOS) in less than 60 minutes.

Test 28W-1.

At Shell Carson Cabbage Patch an amount of 50bbl/hr of product is transferred into the vacuum truck. The leak is 1% of the regular flow ~5000bbl/hr (for a gasoline shipment) and should be detected and alarmed by the leak detection system (ATMOS) in less than 60 minutes.

08/03/08 Issue 01

SAT .DOC Page 10 of 15

PROJECT US-1436-TESORO Rev 1.1 Completed

Atmos International

APPENDIX – SITE ACCEPTANCE TEST FORMS

PROJECT US-1436-TESORO Rev 1.1 Completed

Atmos International

PROJECT DETAILS

CLIENT:	Tesoro Pipelines, Terminals & Trucking Inc.					
PROJECT No.:	U01-79/01					
PROJECT TITLE:	Fesoro Los Angeles Refinery Line 7/21 and Line 28/32					
SOFTWARE VERSION	3.2.1					
TEST PROCEDURE REF:	US-1436-TESORO-SAT-001 Rev 1.0					
SCOPE OF TEST:	Site Acceptance					
LOCATION:	Tesoro Los Angeles Refinery, Wilmington, CA, USA					
DATE:	August 5 & 18, 2008					

PROJECT US-4436-ITSORO Rev 1.1 Completed

Atuses International

TEST RESULTS

Paragraph	Description	Result	Comments
2,3.1	Line 28/32 1% Leuk (in 18 6)	(Pass) Fail	
2.3.1	1. inc 28/32 2% Lenk (ou llet) (A.L) 190	Passy Fail	
2.3.2	Line 7/21 26 Leak (1.590(AL)	Pass', Fail	
2.3.2	Line 7/21 2% Leak 0.690 (A.L)	Pass)Fail	an a
,2.3.2		Pass Patt	did not test

iceation Hisport SAST BOC Fage 13 mills

Atmos International

PERFORMANCE RESULTS

Line 7/21

Test No	-Pipeline- Status	—Leak Size— bph -%	Leak Location (Actual)	-Leak-Started- at (PC time)		-Atmos- Detection Time		Atmos-Leuk Size Estimate	Leak Size	Atmos Location Estimate (feet)
1	Running	-1,5		10:14:33	10:21:49	7 min 15 sec	50 min	27 bph	~25 bpb	0
2	Running	-0.6	31680	13:29:02	13:49:33	17 min 15 sec	100 min	10.7 bph	~10 bph	26000
3	Running	10	Did not periorm	Did not perform	Did not perform	Did not perform	20 min	Did not perform	~160 bpb	Did not perform

Line 28/32

Test No	Pipeline Status	Lesk Size bph -%	Leak Location (Actual)	Leak Started at (PC time)	Leak Detected at	Atmos Detection Time	Expected Detection Time	Atmos Leak Size Estimate	Leak Size	Atmos Location Estimate (feet)
t	Running	I	0	10:40:43	11:23:05	42 min 20 see	60 min	56,85 bph	-58 bph	11531
)*	Running	1	0	10:53:23*	11;23;05	29 min 40 sec*	60 min	56.85 bph	~58 bph	11531
2	Running	2	31680	13:53:47	14:06:19	12 min 25 sec	40 min	126.7 bph	~125 bph	12420

*Please note the additional asterisked test is the first test with a corrected start time. This time is taken by back extrapolating Lambda-1 to when it crosses the axis created by -7. This is done to give an accurate leak time since Tesoro opened and closed the test valve to varying degrees at the beginning of the test. Also, please be aware, even without the removal of the "extra" time it took to setup for the leak test; ATMOSTMPipe detected the leak well under the leak performance estimate.

08/03/08 Issue 01

PROJECT US-1436-TESORO Rev 1.3 Completed

SAT DOC

Page Star 2

Atoms Instructional

TEST CONCLUSIONS

Test Accepted By CRISTING BORKOWCH Creating Borkonice lesoro Refinery: Name in Print Signature Lest Rejected By: Nome in Print Signature Date Ind rew Sim 118, 8 08 fest Witnessed By: Name in Print Dale ignition FURTHER COMMENTS & ACTIONS LAR/MA. norma whether better a volation will > Per Ting I amended showid read 1.5.1 E- 421 3 1.A.P. A series her J. Courses ÚD. æ 28 SA eren y

EXHIBIT H

May 23, 2011

Mr. Marc Greenberg Keesal, Young & Logan 400 Oceangate Long Beach, CA 90801

Subject: Review of US Coast Guard Forensic Chemistry Analysis, Dominguez Channel Petroleum Samples

Dear Mr. Greenberg,

It is my understanding that several fugitive petroleum samples were collected in environs of the Dominguez Channel in Los Angeles, CA on February 10 and 14, 2011 by contractors for US Environmental Protection Agency (EPA) Region 9 Emergency Response Section. Those samples were submitted to the US Coast Guard Marine Safety Laboratory (MSL) for product identification. The results of those analyses were summarized in a US Coast Guard MSL Oil Sample Analysis Report.¹ Furthermore, it is my understanding that your client, Tesoro Corporation, operates one of several petroleum pipelines in the vicinity where the fugitive petroleum was discovered. Based on our conversations, it is my understanding that the only product shipped through Tesoro Corporation's pipeline has been commercial Jet Fuel (Jet A, or equivalent). You requested that I review the USCG February 23, 2011 MSL Oil Sample Analysis Report, and ascertain if the USCG data shows whether or not the samples collected from the Dominguez Channel contained Jet Fuel.

NEWFIELDS

Samples Analyzed by US Coast Guard Marine Safety Laboratory

Three samples of fugitive petroleum were collected by US EPA, and submitted to the USCG MSL for forensic chemical analysis:

Sample ID	Collection Date
CS-02 (Spill)	2-10-11
CAH-MW-1 (Source)	2-10-11
CP-MW-2 (Source)	2-14-11

Findings

The USCG MSL is a laboratory that specializes in the forensic chemical analysis of petroleum. The types of analytical data generated by this laboratory go far beyond standard contract laboratory analyses, and utilize analytical methods specifically tailored for the detailed analysis of petroleum. The data produced by the USCG MSL can be used to ascertain, among other things, the type(s) of petroleum product(s) that compose fugitive petroleum. The cornerstone for forensic identification of petroleum is gas chromatography. A gas chromatogram is the graphical output from a gas chromatography analysis. The chromatogram, or "fingerprint", depicts the

¹ US Coast Guard, Marine Safety Laboratory. Oil Sample Analysis Report. (for) US EPA Region IX. Case No. 11-125. February 23, 2011. presence and concentrations of hydrocarbons across a broad boiling hydrocarbon point range, progressing from more to less volatile compounds (left to right). Peaks in the "fingerprint" represent particular compounds, the height of which is proportional to the abundance of those compounds in the petroleum. Every petroleum product has its own unique distribution of peaks (individual hydrocarbons) and thus chromatographic signature. It is this fundamental gas chromatographic feature—the gas chromatographic "fingerprint"—that allows the forensic chemist to identify and distinguish one petroleum product from another.²

Gas Chromatograms of Reference Petroleum Products

Figure 1 presents gas chromatograms of reference petroleum products germane to this case. Specifically, gas chromatograms for an automotive gasoline, Jet A, kerosene, and lubricating oil are shown. These chromatograms were developed by NewFields, following forensic chemical methods of analysis very similar to those followed by the USCG MSL.³ These chromatograms, like those presented by USCG MSL, span the C₉ to C₃₅ carbon range, which brackets most petroleum products and crude oils.

Qualitatively, the chromatographic differences among the reference petroleum product are readily evident.

- The 'fingerprint' of *Gasoline* is composed principally of hydrocarbons of carbon number less than C_{12} ; the preponderance of the peaks in this chromatogram are those of C_2 - C_5 monoaromatics that compose automotive motor fuel.⁴
- The chromatogram for Jet A is distinguished by hydrocarbons in about the C₉-C₁₇ range, characterized by a distinct unresolved complex mixture ("hump"), superimposed by a regular series of n-alkane hydrocarbon compounds.
- The chromatogram for *Diesel Fuel* is distinguished by hydrocarbons in about the C₁₂-C₂₅ range, characterized by a distinct unresolved complex mixture ("hump"), superimposed by a regular series of n-alkane hydrocarbon compounds.
- The chromatogram for *Lubricating Oil* is distinguished by hydrocarbons in about the C₂₀-C₁₅ range, characterized by a large, unresolved unresolved complex mixture ("hump") and few, if any, significant individual chromatographic peaks.

These qualitative chromatographic distinctions among different petroleum products form the basis for chemical fingerprinting, i.e., identification of petroleum in environmental samples.^{5,6,7}

⁵ASTM. 2000. Standard Test methods for Comparison of Waterborne Petroleum Oils by Gas Chromatography. ASTM D-3328-00. American Society for Testing and Materials International, W. Conshohocken, PA. 7 p. ⁶ Stout, S.A., Uhler, A.D., McCarthy, K.J. and Emsbo-Mattingly, S.D. 2002. Chemical Fingerprinting of Hydrocarbons. In: Introduction to Environmental Forensics. (B. Murphy and R. Morrison, Eds.), Academic Press, New York, P. 135-260.

²Morrison, R.D. 2000. Environmental Forensics. Principles and applications. CRC Press. New York, NY. ³ Douglas, G.D., Emsbo-Mattingly, S.D., Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2007) Chemical fingerprinting methods. In: Introduction to Environmental Forensics, 2nd Ed., B. Murphy and R. Morrison, Eds., Academic Press, New York, pp. 312-454.

Stout, S.A., Douglas, G.S., and Uhler, A.D. (2006) Automotive gasoline. In: B. Murphy and R. Morrison, Eds., Environmental Forensics: A Contaminant Specific Approach. Elsevier Publishing Co., San Francisco, CA. pp. 466-531.

Interpretation of USCG MSL Analytical Data

The USCG analysis of the three Dominguez Channel samples yielded three distinctive gas chromatograms (Figures 2-4). In the figures depicting the USCG MSL chromatograms, I have annotated the approximate carbon ranges for ease of interpretation by the reader. In my analysis of the USCG MSL chromatograms, I find:

- Sample CS-02 (Spill) is composed almost exclusively of automotive gasoline, with traces of higher boiling ($\sim C_{12}-C_{20}$) hydrocarbons (Figure 2). The presence of gasoline in this sample is readily identified by the predominance of $< C_{12}$ hydrocarbons typical of motor fuel. The traces of higher boiling $C_{12}-C_{20}$ hydrocarbons in the sample are too low in concentration to afford the opportunity to identify what, if any, particular petroleum product gives rise to these low level hydrocarbons. There is no evidence for Jet A product in this sample.
- Sample CAH-MW-1 (Source) is composed principally of a mixture of higher boiling, lubricating range petroleum and gasoline (Figure 3). The presence of lubricating range oils is evidenced by the large unresolved complex mixture appearing between about the C₂₀-C₃₅ hydrocarbon range. The presence of gasoline in this sample is readily identified by the predominance of <C₁₂ hydrocarbons typical of motor fuel. There is no evidence for Jet A product in this sample.
- Sample CP-MW-2 (Source) is composed almost exclusively of automotive gasoline, with traces of higher boiling (~C₂₅-C₂₈) hydrocarbons (Figure 4). The presence of gasoline in this sample is readily identified by the predominance of <C₁₂ hydrocarbons typical of motor fuel. The low levels of higher boiling hydrocarbons in the ~C₂₅-C₂₈ range are not readily recognized as a petroleum product; it is likely that these are hydrocarbons of some non-petroleum origin. There is no evidence for Jet A product in this sample.

My interpretation of the petroleum product composition of the three Dominguez Channel samples offered above is consistent with those given by USCG MSL scientists in their report of the analyses of these samples.¹

Commentary on Supplemental Conventional Laboratory Analyses of Dominguez Channel Samples

In addition to the USCG MSL forensic chemistry analysis of the Dominguez Channel samples, there was a supplementary analysis of a fugitive petroleum product (presumably taken from the same location as the USCG MSL samples) carried out and reported by a routine contract laboratory, Sierra Analytical.⁸ According to chain-of-custody records, a sample identified DC-1 was collected by the Los Angeles County Department of Public Works on February 11, 2011, and submitted to Sierra Analytical for routine chemical analysis. The data produced by this laboratory included measurements of individual volatile organic compounds (VOC), gasoline range hydrocarbons (GRO), diesel range bydrocarbons (GRO), a related set of carbon range compositional measurements, and semi-volatile organic compounds (SVOC). No gas

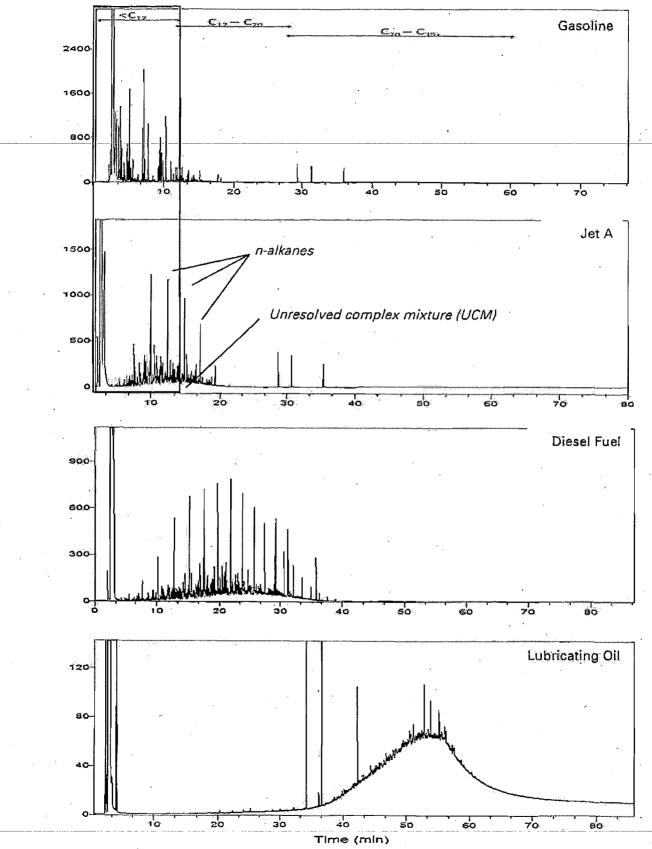
⁷ Daling, P.S., Faksness, L.G., Hansen, A.B., Stout, S.A. 2002. Improved and standardized methodology for oil spill fingerprinting. Environ. Forensics 3(3/4): 263-278.

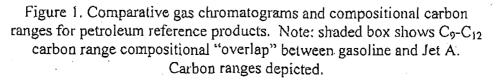
⁸Sierra Analytical. February 11, 2011. Dominguez Channel. Work Order 1102183.

chromatograms or other meaningful forensic chemical measurements were provided in the Sierra Analytical laboratory report. No petroleum product identification for sample DC-1 was reported by Sierra Analytical.

In a May 13, 2011 PowerPoint briefing, the Los Angeles Region of the California Water Board highlighted results from the Sierra Analytical laboratory report, and suggested that the product found in the Dominguez Channel was composed "primarily [of] gasoline and jet fuel range hydrocarbons" (Figure 5). This conclusion appears to have been based solely upon interpretation of carbon fraction range compositional data without consideration of critical gas chromatographic data that is the cornerstone of petroleum product identification. The Board's conclusion that the Dominguez Channel sample contained Jet Fuel is flawed.

It has been long recognized that petroleum product identification cannot be deduced solely from carbon fraction range data, because almost all petroleum products naturally have overlapping carbon range composition.⁹ Germane to this matter is the fact that the hydrocarbons found in the C_9-C_{12} compositional "trailing tail" of gasoline overlaps with the C_9-C_{12} "leading edge" of Jet A (or kerosene) (See Figure 1). Furthermore, the USCG MSL data reveals that there are low levels of $C_{10}-C_{20}$ hydrocarbons present in the samples (albeit of unknown petroleum type). Thus, without supporting gas chromatogram data, there is no reliable way to deduce the nature of the petroleum product(s) (including Jet A) found in the C_9-C_{14} range of the fugitive sample DC-1 from carbon range data alone. In fact, the forensic quality analytical data for the same fugitive product that was produced by the USCG Marine Safety Laboratory clarifies the question of product composition in the Dominguez Channel samples: the USCG MSL data clearly demonstrates that the product source of these C_9-C_{14} low molecular weight hydrocarbons is, in fact, overwhelmingly of gasoline origin. There is no forensic evidence for the presence of Jet A in the Dominguez Channel samples.


Please do not hesitate to contact me if you have any questions concerning this correspondence.


Sincerely,

PROUM

Allen D. Uhler, Ph.D. Senior Consultant

⁹Total Petroleum Hydrocarbon Working Group Series. 1998. Volumes 1: Petroleum Hydrocarbon Analysis in Soil and Water, Wade Weisman, Association for Environmental Health and Sciences.

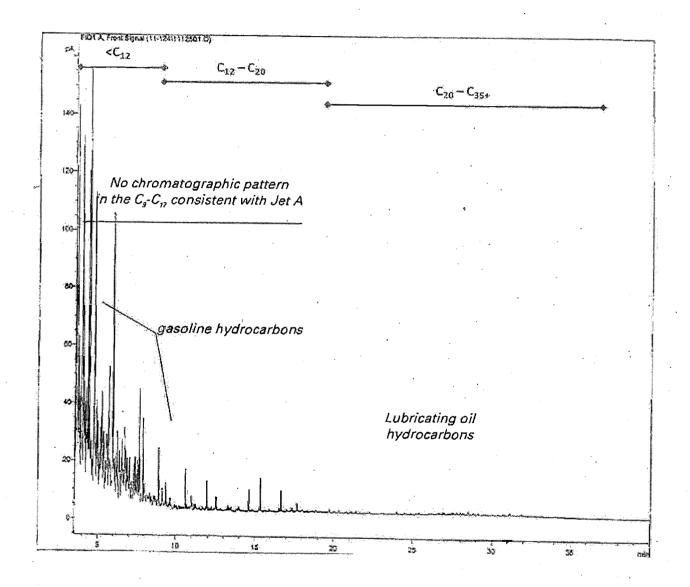


Figure 3. USCG Marine Safety Laboratory gas chromatogram of sample "CAH-MW-1 (Source)". Preponderance of chromatographic signal is in the C₂₀-C₃₅₊ range (consistent in character with complex mixture of lubricating oil), and C₉-C₁₂ hydrocarbons consistent with automotive gasoline. There is no chromatographic evidence for the presence of Jet A. -

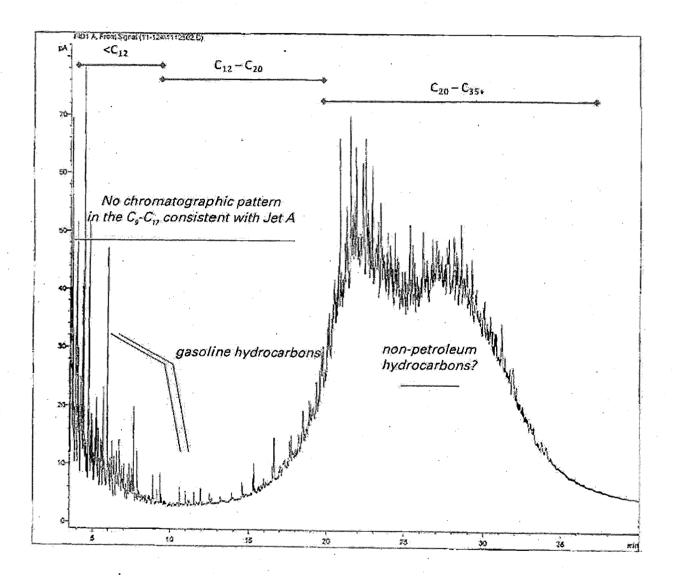


Figure 4. USCG Marine Safety Laboratory gas chromatogram of sample "CP-MW-2 (Source)". Preponderance of chromatographic signal is in the C₉-C₁₂ range, and consistent in character with automotive gasoline. Small cluster of chromatographic peaks in the ~C25~C28 range are not readily recognized as a petroleum product; it is likely that these are hydrocarbons of some non-petroleum origin. There is no chromatographic evidence for the

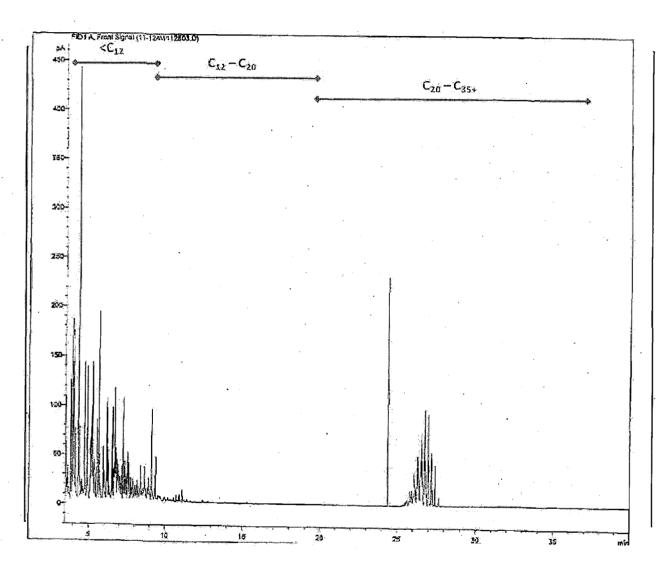


Figure 5. Slide from May 13, 2011 PowerPoint briefing by the Los Angeles Region of the California Water Board which highlighted results from the Sierra Analytical laboratory report. Based on hydrocarbon range data alone (and no further forensic chemistry evidence), the Board concluded that the product found in the Dominguez Channel was composed "primarily [of] gasoline and jet fuel range hydrocarbons".

. .

Cite	es P	odu	ict C	hara	cteristic	s)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
Interference of the set of					Hydrocarb	on Ranges	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	900 S. Fremon Ave.	Yonius	Froject Hurber, P	CA:15%60278	Gasoline	C ₄ -C ₁₂	
DC-1 (1992180-00) Japaki / Sampleki (2/10/11 12:39 Price (1/2 10/11 12:39 Primarily gasoline- IIC - C19 6489 400	Laurana and a second and a second s	Petroleum II:	drocarbons Cor	boa Range Analy	Jet Fuel	C ₇ -C ₁₆	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Lionas Vents		Diesel	C ₁₃ -C ₂₅	
$\begin{array}{ccccc} cs \leftarrow Hc < cs & 6469 & 600$		02/11/11 12:39	unania internationalise	\$ 20			
$\begin{array}{cccccc} \hline c_{23} \leftarrow nc < c_{10} & c_{11} & a_{10} & a_$			and a second sec	ado pipedos.	22/14/11 02/14/11 17/17 EPA/00120		
CIDJIC-CII CIICII NTO 400 							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 11 Ker 4				
Cite < 11C < Cite	C11 <= #C * C12			l snootle	the Barris and States and	·	
Cite < 11C < Cite	C12 11C - C14			i Prima	riiv gasoline	÷ 1	
CB>- IIC - CI4 ND 480 hydrocarbons in CH - IIC - CI3 ND 480 hydrocarbons in CH - IIC - CI3 ND 480 channel sample IIC - CI3 ND 480 channel sample IIC - CI4 ND 2260 DC-1.	Circ-neccis	124					
CB>- IIC - CI4 ND 480 hydrocarbons in CH - IIC - CI3 ND 480 hydrocarbons in CH - IIC - CI3 ND 480 channel sample IIC - CI3 ND 480 channel sample IIC - CI4 ND 2260 DC-1.	C16 - HC - C18	ND	400 .	I and ie	t tuel-range	Sec. 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Ihvdro	carhons in		
ac ctu NTD 400 · Channel sample Total Petraleum Mydrooxhom 2250 · DC-1.		-,		Lukaro		1	
$\frac{1}{(CT_{clas})} \frac{1}{DC-1}$				Lichann	alcompla	1	
Styrnagateres Terpésiel 94 60	EC CM Tetal Petroleum Mydrocarbony (C7-C36)			A state of the	iei sampie		
and the second	Surragatera Terplerat	·····	94 SC				-
					and the second		

Figure 5. Slide from May 13, 2011 PowerPoint briefing by the Los Angeles Region of the California Water Board which highlighted results from the Sierra Analytical laboratory report. Based on hydrocarbon range data alone (and no further forensic chemistry evidence), the Board concluded that the product found in the Dominguez Chaunel was composed "primarily [of] gasoline and jet fuel range hydrocarbons".

EXHIBIT I

ALLEN D. UHLER, Ph.D. Senior Consultant Environmental Forensics Practice

EXPERIENCE

Dr. Uhler has over 25 years experience in the field of environmental chemistry, with a specialization in environmental forensics—the integration of advanced chemical analyses, chemical fate and behavior, source identification techniques, and operational practices—to determine the nature, sources, and fate of industrial chemicals in the environment.

Dr. Uhler has developed and applied advanced analytical methods for the study of the environmental chemistry of petroleum-, coal-derived and anthropogenic hydrocarbons, PCBs, persistent pesticides, dioxins and furans, metals and organometallic compounds in waters, soils, sediments, and soil- and air-borne vapors. He has used numerical and geospatial data analysis techniques to reveal chemical relationships among samples and suspected sources, to differentiate chemical signatures in complex source settings, to evaluate weathering characteristics of organic chemicals, and to track the fate of these chemicals in complex, contaminated environments. He has conducted numerous assessments of the occurrence, sources, and fate of fugitive petroleum at refineries, offshore oil and gas production platforms, bulk petroleum storage facilities, along petroleum pipelines, at retail gasoline stations, at varied industrial facilities, and in sedimentary environments. He has studied the occurrence, behavior, and fate of coal-derived wastes at former manufactured gas plants, wood-treating facilities, and in sedimentary environments. He has studied the behavior and environmental chemistry of manmade industrial chemicals in industrial, residential, and sedimentary settings.

Prior to joining NewFields Dr. Uhler was a senior consulting chemist at Battelle Memorial Institute for over 17 years.

APPOINTMENTS AND PROFESSIONAL AFFILIATIONS

- Invited Chairperson, Environmental Forensics, Sixth International Conference on Remediation of Contaminated Sediments. New Orleans, LA. February, 2011.
- Member ASTM Committee E50.06, Forensic Environmental Investigations.
- Invited speaker, EPA 17th Annual UST/LUST National Conference. Seattle WA. March, 2005.
- Editorial Board, Journal of Environmental Forensics. Amherst Press. 1999 Present.
- Invited Speaker, International Society of Environmental Forensics. Santa Fe, NM. September, 2002.
- Invited Chairperson, International Business Communication's 3rd Executive Forum on Environmental Forensics. Washington, D.C. June, 2000

ALLEN D. UHLER

NEWFIELDS

- Invited Chairperson, International Business Communication's 2nd Executive Forum on Environmental Forensics. Washington, D.C. June, 1999.
- Founding Co- Editor-in-Chief, International Journal of Environmental Forensics. Amherst Press. 1998-1999.
- Feature Editor, "Environmental Forensics", in Soil, Sediment, Groundwater. 1998-2003.
- Invited Speaker, National Environmental Forensics Conference: Chlorinated Solvents and Petroleum Hydrocarbons. August 27-28, 1998, Tucson, AZ.
- Editorial Advisory Board, Soil, Sediment, Groundwater. 1997-present.
- Technical Advisory Committee, Association for Environmental Health and Sciences, 1996-2005.
- Moderator, Chemical Analysis, 12th Annual Conference on Contaminated Soils, Amherst, MA.
- Staff Fellow, US Food and Drug Administration, Division of Environmental and Elemental Contaminants Branch, Methods Development Group, Washington, DC. 1985-1987.
- Associate Referee, Association of Official Analytical Chemists, (AOAC) 1985-1995.
- Faculty Research Associate, University of Maryland, 1983-1985.

EDUCATION AND TRAINING

Ph.D. Chemistry, University of Maryland – 1983 M.S. Chemistry, University of Maryland – 1981 B.A. Chemistry, SUNY, Plattsburgh – 1978

PUBLICATIONS

- Uhler, A.D., McCarthy, K.J., Emsbo-Mattingly, S.D., Stout, S.A. and Douglas, G.S. (2010). Predicting chemical 'fingerprints' of vadose zone soil gas and indoor air from non-aqueous phase liquid composition. Environ. Forensics 11: 342-354.
- [2] Stout, S.A., Douglas, G.S. and Uhler, A.D. (2010). Assessing temporal and spatial variations of gasoline-impacted groundwater using relative mole fractions and PIANO fingerprinting. Environ. Forensics 11:328-341.
- [3] Uhler, A.D., Stout, S.A., Emsbo-Mattingly, S.D., and Rouhani, S. (2010). Chemical fingerprinting: streamlining site assessment during the sustainable redevelopment process. In: Sustainable land development and restoration. Decision consequence analysis. Brown, K., Hall, W.L., Snook, M. and Garvin, K. (eds). Butterworth-Heinemann, Burlington MA, pp. 325-344.

- [4] Plantz, G. McCarthy, K.J., Emsbo-Mattingly, S.D., Uhler, A.D., and Stout, S.A. (2008) Evaluating The Vapor Intrusion Pathway - Challenges and Source Identification. Environ. Claims J., 20(1): 71-86.
- [5] Douglas, G.D., Emsbo-Mattingly, S.D., Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2007) Chemical fingerprinting methods. In: Introduction to Environmental Forensics, 2nd Ed., B.
 Murphy and R. Morrison, Eds., Academic Press, New York, pp. 312-454.
- [6] Uhler, A.D., Stout, S.A., and Douglas, G.S.. (2006) Chemical heterogeneity in modern marine residual fuel oils In: Oil Spill Environmental Forensics: Fingerprinting and Source Identification, Z. Wang and S.A. Stout, Eds., Elsevier Publishing Co., Boston, MA, pp. 327-348.
- [7] Douglas, G.S., Stout, S.A., Uhler, A.D., McCarthy, K.J., and Emsbo-Mattingly, S.D. (2006) Advantages of quantitative chemical fingerprinting in oil spill source identification. In: Oil Spill Environmental Forensics: Fingerprinting and Source Identification, Z. Wang and S.A. Stout, Eds., Elsevier Publishing Co., Boston, MA, pp. 257-292.
- [8] Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2006) Chemical characterization and sources of distillate fuels in the subsurface, Mandan, North Dakota. Environ. Forensics, 7(3): 267-282.
- [9] Stout, S.A. and Uhler, A.D. (2006) Causation for variable n-alkylcyclohexane distributions in distillate NAPLs from Mandan, North Dakota. Environ. Forensics, 7(3): 283-287.
- [10] Uhler, A.D. and Emsbo-Mattingly, S.D. (2006). Environmental Stability of PAH source indices in Pyrogenic Tars. Bull. Env. Cont. Tox. 76: 689 – 696.
- [11] Emsbo-Mattingly, S.D., Uhler, A.D., Stout, S.A., Douglas, G.S., McCarthy, K.J., and Coleman, A. (2006) Determining the source of PAHs in sediment. Land Contamination & Reclamation 14 (2): 403-411.
- [12] Stout, S.A., Douglas, G.S., and Uhler, A.D. (2006) Automotive gasoline. In: B. Murphy and R. Morrison, Eds., *Environmental Forensics: A Contaminant Specific Approach*. Elsevier Publishing Co., San Francisco, CA. pp. 466-531.
- [13] Stout, S.A., Douglas, G.S. Uhler, A.D. (2005) Monitoring the natural recovery of hydrocarboncontaminated sediments with chemical fingerprinting. *Env. Claims J.* **7(3-4)**: 287-314.
- [14] Uhler, A.D., Emsbo-Mattingly, S.J., Liu, B., Hall, L.W., and Burton, D.T. 2005. An Integrated Case Study for Evaluating the Impacts of an Oil Refinery Effluent on Aquatic Biota in the Delaware River: Advanced Chemical Fingerprinting of PAHs. *Human Eco. Risk Ass.* 11: 771 – 836.

- [15] Hall, L. W., Dauer, D.M., Alden, R.W., Uhler, A.D., DiLorenzo, J., Burton, D.T., and Anderson, R.D. 2005. An Integrated Case Study for Evaluating the Impacts of an Oil Refinery Effluent on Aquatic Biota in the Delaware River: Sediment Quality Triad Studies. *Human Eco. Risk Ass.* 11: 657 – 770.
- [16] Stout, S.A., Douglas, G.S. Uhler, A.D., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2005) Identifying the Source of Mystery Waterborne Oil Spills – A Case for Quantitative Chemical Fingerprinting. *Env. Claims J.* 17(2): 71-88.
- [17] Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2005) Middle distillate fuel fingerprinting using drimane-based bicyclic sesquiterpanes. *Environ. Forensics* 6(3): 241-252.
- [18] Stout, S.A., Uhler, A.D., and Douglas, G.S. (2005) Chemical fingerprinting of gasoline and diesel fuel at LUST sites. U.S. EPA L.U.S.T. Line, Bulletin 49, p. 1-5.
- [19] Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2004) Characterizing the source of fugitive middle distillate fuels – A case study involving railroad diesel fuel, Mandan, North Dakota. *Environ. Claims J.*, 16(2): 157-172.
- [20] Stout, S.A., Uhler, A.D., and Emsbo-Mattingly, S.D. (2004) Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from nine urban waterways. *Environ. Sci. Technol.*, 38(11): 2987-2994.
- [21] Emsbo-Mattingly, S.D., Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2003) Identifying manufactured gas plant tar in the environment using chemical fingerprinting. *Environ. Claims* J., 15(4): 477-490.
- [22] Stout, S.A., Uhler, A.D., Emsbo-Mattingly, S.D. (2003) Urban background Characterization of ambient anthropogenic PAH in urban sediments. V. Magar and M. Kelley, Eds., *Proceed. 7th Int'l. Symp. on In Situ and On-Site Bioremediation*, Orlando, FL, ISBN 1-57477-139-6, Battelle Press, Columbus, OH, Paper No. I-06, 8 pp.
- [23] Stout, S.A., Uhler, A.D., Emsbo-Mattingly, S.J. (2003) Characterization of "urban background" PAH in sediments. *Contaminated Soil, Sediment & Water*, Sept. Issue, pp. 16-18.
- [24] Stout, S.A., Uhler, A.D., Uhler, R.M., Healey, E.M., McCarthy K.J. (2003) Detailed chemical fingerprinting of gasoline for environmental forensic investigations. Part 3: Application to gasoline source studies. *Contaminated Soil, Sediment & Water*, Mar/April Issue, pp. 16-18.
- [25] Uhler, R.M., Healey, E.M., McCarthy, K.J., Uhler, A.D., and Stout, S.A. (2003) Detailed chemical fingerprinting of gasoline for environmental forensic investigations. Part 2: Analytical method performance. *Contaminated Soil, Sediment & Water*, Jan/Feb Issue. 12-17.

- [26] Stout, S.A., Uhler, A., Emsbo-Mattingly, S.J. (2003) Characterization of PAH sources in sediments of the Thea Foss/Wheeler Osgood Waterways, Tacoma, Washington. Soil and Sediment Contamination. 12(6): 815-834.
- [27] Stout, S.A. and Uhler, A.D. (2003) Distinguishing "background" hydrocarbons from contamination using chemical fingerprinting. *Environ. Claims. J.*, **15**(2): 241-259.
- [28] Uhler, R.M., Healey, E.M., McCarthy, K.J., Uhler, A.D. and Stout, S.A. (2003) Molecular fingerprinting of gasoline by a modified EPA 8260 gas chromatography/mass spectrometry method. *Int. J. Environ. Anal. Chem.* 83(1): 1-20.
- [29] Beall, P.W., Stout, S.A., Douglas, G.S. and Uhler, A.D. (2002) On the role of process forensics in the characterization of fugitive gasoline. *Environ. Claims J.* **14(4)**: 487-505.
- [30] Stout, S.A., Uhler, A.D., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2002) Invited commentary on the Christensen and Larsen Technique. *Environ. Forensics* **3**(2): 9-11.
- [31] Stout, S.A., Uhler, A.D., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2002) Chemical Fingerprinting of Hydrocarbons. In: *Introduction to Environmental Forensics*, (B. Murphy and R. Morrison, Eds.), Academic Press, New York, p. 135-260.
- [32] Uhler, R.M., Healey, E.M., McCarthy, K.J. Uhler, A.D., and Stout, S.A. (2002) Detailed chemical fingerprinting of gasoline for environmental forensic investigations. Part 1: Selection of appropriate target compounds. *Contaminated Soil, Sediment & Water*, Nov/Dec. Issue, pp. 20-24.
- [33] Emsbo-Mattingly, S.J., Stout, S.A., Uhler, A.D., and McCarthy, K.J. (2002) Chemical signatures of former manufactured gas plants: Town gas residues. *Contaminated Soil, Sediment & Water*, Sept/Oct. Issue, pp. 23-26.
- [34] Stout, S.A., Uhler, A.D., Magar, V.S., McCarthy, K.J., Emsbo-Mattingly, S.J. and Crecelius, E.A. (2002) Sediment geochronology reveals temporal changes in contaminant sources. *Contaminated Soil, Sediment & Water*, July/Aug. Issue, pp. 104-106.
- [35] Stout, S.A., Emsbo-Mattingly, S.J., Uhler, A.D. and McCarthy, K.J. (2002) Particulate coal in soils and sediments Recognition and potential influences on hydrocarbon fingerprinting and concentration. *Contaminated Soil, Sediment & Water*, June Issue, pp. 12-15.
- [36] Uhler, A.D., Stout, S.A., McCarthy, K.J., Emsbo-Mattingly, S.D., Douglas G.S. and Beall, P.W. (2002). The influences of refining on petroleum fingerprinting – Part 4. Residual fuels. *Contaminated Soil, Sediment & Water*, April/May Issue, pp. 20-22.
- [37] Stout, S.A., Uhler, A.D., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2002). The influences of refining on petroleum fingerprinting – Part 3. Distillate fuel production Practices. *Contaminated Soil, Sediment & Water*, Jan/Feb Issue, pp. 6-11.

- [38] Stout, S.A. and Uhler, A.D. (2002) Evaluating sources of pyrogenic PAH in urban sediments, Thea Foss Waterway, Tacoma, Washington. Proceed. 224th Nat'l. Mtg., Am. Chem. Soc., Div. Environ. Chem., Boston, MA, Vol. 42(2): 241-248.
- [39] Stout, S.A., Douglas, G.S. and Uhler, A.D. (2002) Managing future liability at petroleum impacted sites through proactive strategic environmental baselining. *Environ. Claims J.* 14(2): 201-221.
- [40] Stout, S.A., and Uhler, A.D. (2002) Environmental forensics. The Military Engineer, 94: 37-38.
- [41] Emsbo-Mattingly, S.D., Uhler, A.D., Stout, S.A., McCarthy, K.J., Douglas, G., Brown, J.S., Boehm, P.D. (2002) Polycyclic aromatic hydrocarbon (PAH) chemistry of MGP tar and source identification in sediment. In *Sediments Guidance Compendium* (A. Coleman, Ed). Electric Power Research Institute, Technical Report 1005216, pp. 1-41.
- [42] Stout, S.A., Uhler, A.D. and Boehm, P.D. (2001) Recognition of and allocation among Sources of PAH in urban sediments. *Environ. Claims J.* **13(4)**: 141-158.
- [43] Uhler, A.D., Stout, S.A., Uhler, R.M., Emsbo-Mattingly, S.D. and McCarthy, K.J. (2001) Accurate chemical analysis of MTBE in environmental media. *Env. Forensics* 2: 17-20.
- [44] Stout, S.A., Uhler, A.D., McCarthy, K.J. (2001) A Strategy and Methodology for Defensibly Correlating Spilled Oil to Source Candidates. *Environ. Forensics* 2: 87-98.
- [45] Stout, S.A., Uhler, A.D., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2001). The influences of refining on petroleum fingerprinting – Part 2. Gasoline blending practices. *Contaminated Soil, Sediment & Water*, Nov/Dec. Issue, pp. 42-44.
- [46] Uhler, A.D., Stout, S.A., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2001). The influences of refining on petroleum fingerprinting –Part 1. The refining process. *Contaminated Soil, Sediment & Water*, Oct. Issue, pp. 16-18.
- [47] Stout, S.A., Uhler, A.D., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2001). A methodology for the correlating spilled oil to its source. *Contaminated Soil, Sediment & Water*, Aug. Issue, pp. 63-66.
- [48] Emsbo-Mattingly, S.D., McCarthy, K.J., Uhler, A.D., Stout, S.A., Boehm, P.D. and Douglas, G.S. (2001). Identifying and differentiating high and low temperature tars at contaminated sites. *Contaminated Soil, Sediment & Water*, June/July Issue, pp. 59-60.
- [49] Uhler, A.D., Stout, S.A., Hicks, J.E., McCarthy, K.J., Emsbo-Mattingly, S.D., Boehm, P.D. (2001). Advanced 3-D data analysis: Tools for visualization and allocation. *Contaminated Soil, Sediment & Water*, April/May Issue, pp. 49-52.

- [50] Emsbo-Mattingly, S.D., McCarthy, K.J., Uhler, A.D., Stout, S.A. and Boehm, P.D. (2001). Sources of wood, coal and petroleum tars. *Contaminated Soil, Sediment & Water*, Special Spring Issue. pp. 12-15.
- [51] Emsbo-Mattingly, S.D., Uhler, A.D., Stout, S.A. and McCarthy, K.J. (2001). Identifying creosote at contaminated sites: An environmental forensics overview. *Contaminated Soil, Sediment & Water*, Feb/March.
- [52] Stout, S.A., Naples, W.P., Uhler, A.D., McCarthy, K.J., Roberts, L.G. and Uhler, R.M. (2000) Use of quantitative biomarker analysis in the differentiation and characterization of spilled oil. Soc. Petrol. Engineers Int'l. Conf. on Health, Safety, and the Environment in Oil and Gas Exploration and Production, SPE Paper No. 61460, 15 p.
- [53] McCarthy, K.J., Emsbo-Mattingly, S.D., Stout, S.A. and Uhler, A.D. (2000). Identifying manufactured gas plant residues in industrial sediments. *Contaminated Soil, Sediment & Water* Oct./Nov. Issue.
- [54] Uhler, A.D., Stout, S.A., McCarthy, K.J. and Emsbo-Mattingly, S.D. (2000). Tributyltin: A unique sediment contaminant. *Contaminated Soil, Sediment & Water*, June/July.
- [55] Uhler, A.D., Stout, S.A., Uhler, R.M. and McCarthy, K.J. (2000). Considerations for the accurate chemical analysis of MTBE and other gasoline oxygenates. *Contaminated Soil & Ground Water*, April/May.
- [56] Stout, S.A., Uhler, A.D. and McCarthy, K.J. (2000). Recognizing the confounding influences of 'background' contamination in 'fingerprinting' investigations. *Contaminated Soil & Ground Water*, February/March.
- [57] Uhler, A.D., Stout, S.A. and McCarthy, K.J. (2000). Manufactured gas plant process wastes and by-products: Part 2. *Contaminated Soil & Ground Water*, Dec./Jan.
- [58] Uhler, A.D., Stout, S.A., McCarthy, K.J., Seavey, J.A. and Uhler, R.M. (1999) Identification and differentiation of light- and middle-distillate petroleum for NRDA using chemical forensics. *Proc. International Oil Spill Conference*, Seattle, WA.
- [59] Uhler, A.D., Stout, S.A. and McCarthy, K.J. (1999). Understanding historic manufactured gas plant process wastes and by-products: Part 1. *Contaminated Soil & Ground Water*, Oct./Nov.
- [60] Stout, S.A., Uhler, A.D. McCarthy, K.J. (1999). Biomarkers Underutilized components in the forensic toolkit. *Contaminated Soil & Ground Water*, June/July.
- [61] Uhler, A.D., Stout, S.A. and McCarthy, K.J. (1999). Improving petroleum remediation monitoring with forensic chemistry. *Contaminated Soil & Ground Water*, April/May

- [62] Stout, S.A., Davidson, J.M. McCarthy, K.J. and Uhler, A.D. (1999). Gasoline additives: usage of lead and MTBE. *Contaminated Soil & Ground Water*, February/March.
- [63] Stout, S.A., Uhler, A.D. and McCarthy, K.J. (1999). "Fingerprinting" of gasolines. *Contaminated Soil & Ground Water*, Jan.
- [64] Uhler, A.D. and Neff, J.M. (1998). Survey of Monitoring Approaches for the Detection of Oil Contamination in Synthetic-Based Drilling Muds. Prepared for the American Petroleum Institute, with cover letter from Robert Moran, National Ocean Industries Association, to Joseph Daly, U.S. EPA, October 21, 1998.
- [65] Uhler, A.D., J.A. Seavey, J.A., and Durell, G.S. (1998). Laboratory Evaluation of Static Sheen Replacements: RPE Method, Prepared for the American Petroleum Institute, with cover letter from Robert Moran, National Ocean Industries Association, to Joseph Daly, U.S. EPA, November 16, 1998.
- [66] Uhler, A.D., Seavey, J.A., and Durell, G.S. (1998). Laboratory Evaluation of Static Sheen Replacements: GC/MS Method, Prepared for the American Petroleum Institute, with cover letter from Robert Moran, National Ocean Industries Association, to Joseph Daly, U.S. EPA, November 19, 1998.
- [67] Stout, S.A., Uhler, A.D. and McCarthy, K.J. (1998) Advanced chemical fingerprinting of subsurface contamination – Unraveling the complexities of decades of contamination at a refinery. *Proceed. 1998 Nat'l. Petrochem. & Refiners Assoc. Envrion. Conf.*, Corpus Christi, TX. ENV-98-181, 10 pp.
- [68] Stout, S.A., Uhler, R.M., Philp, R.P., Allen, J. and Uhler, A.D. (1998) Source differentiation of individual chlorinated solvents dissolved in groundwater using compound specific carbon isotopic analysis. Proceed. 216th Nat'l. Mtg., Am. Chem. Soc., Div. Environ. Chem., Boston, MA, Vol. 38(2):2-5.
- [69] Stout, S.A., Uhler, A.D., Naymik, T.J. and McCarthy, K.J. (1998) Environmental forensics Unraveling site liability. *Environ.*. Sci. Tech. 32(11): 260A-264A.
- [70] Uhler, A.D., Stout, S.A. and McCarthy, K.J. (1998) Increase success of assessments at petroleum sites in 5 steps. *Soil and Groundwater Cleanup*. December/January, 1998.
- [71] Stout, S.A., Uhler, A.D. and McCarthy, K.J. (1998). PAH can provide a unique forensic fingerprint for hydrocarbon products. *Contaminated Soil & Ground Water*, Oct.
- [72] McCarthy, K.J., Uhler, A.D. and Stout, S.A. (1998). Weathering affects petroleum identification. *Contaminated Soil & Ground Water*, Aug/Sept.
- [73] Uhler, A.D., McCarthy, K.J. and Stout, S.A. (1998). Get to know your petroleum types. *Contaminated Soil & Ground Water*, July.

- [74] Naymik, T.G., Uhler, A.D., Stout, S.A., McCarthy, K.J. (1998). Fate and transport analysis is critical component in investigations. *Contaminated Soil & Ground Water*, June.
- [75] McCarthy, K.J., Uhler, A.D. and Stout, S.A. (1998). Focused investigations can uncover true nature of contamination. *Contaminated Soil & Ground Water*, May.
- [76] Uhler, A.D., Stout, S.A. and McCarthy, K.J. (1998). Site investigations must evolve. Contaminated Soil & Ground Water, Feb/Mar.
- [77] Kelly, J.R., R.K. Kropp, A.D. Uhler, M.B. Zielinski, and Tawatchai S. 1998. Environmental response and recovery at drilling platforms in the Gulf of Thailand. Proceedings 1998 Society of Petroleum Engineers International Conference on Health, Safety, and Environment, Caracas, Venezuala. Paper No. 46478.
- [78] Peven, C.S. and A.D. Uhler. 1998. Trace organic analytical procedures. In Sampling and Analytical Methods of the National Status and Trends Program Mussel Watch Project: 1993-1996 Update. NOAA Technical Memorandum NOS/ORCA/CMBAD 130. National Oceanic and Atmospheric Administration, Silver Spring, MD.
- [79] Uhler, A.D. G.S. Durell, and M.S. Brancato. 1997. Determination of Butyltin Compounds in Seawater at the 1-Part-Per-Trillion Level. 1997. In Proceedings of the EPA 20th Annual Conference on Analysis of Pollutants in the Environment.
- [80] Uhler A, D. 1997. Petroleum fingerprinting: Effective identification of petroleum products at contaminated sites. *Environmental Solutions*. July/August, 1997.
- [81] Uhler, A.D. 1997. Identifying petroleum products by studying their "fingerprints". Waste Dynamics Northeast. 8: 1.
- [82] Uhler, A.D., T.C. Sauer, and D.L. Connors. 1996. Using petroleum fingerprinting to identify contamination sources. *Mass. Law. Weekly.* 25 MLW 709:B9.
- [83] Peven, C.S., A.D. Uhler, and F.J. Querzoli. 1996. Caged mussels and semipermeable membrane devices as indicators of organic contaminant uptake in Dorchester and Duxbury Bays, Massachusetts. *Environ. Tox. Chem.* 15:144-149.
- [84] Hunt, C.D., P. Dragos, K. King, C. Albro, D. West, A. Uhler, L. Ginsburg, D. Pabst, and D. Redford. 1996. The Fate of Sewage Sludge Dumped at the 106-Mile Site Sediment Trap Study Results. J. Marine of Envir. Eng. 2:285-323.
- [85] Ostazeski, S.A., Uhler, A.D., Durell, G.S. and Macomber, S. 1995. Characterization and weathering properties of the Morris J. Berman cargo oil. Proceedings Eighteenth Arctic and Marine Oil Spill Conference. Environment Canada, Edmonton, Alberta.

- [86] Durell, G.S., A.D. Uhler, S.A. Ostazeski, and A. B. Nordvik. 1995. An integrated approach to determining physico-chemical and molecular chemical characteristics of petroleum as a function of weathering. *Proceedings Eighteenth Arctic and Marine Oil Spill Conference*. Environment Canada, Edmonton, Alberta.
- [87] Uhler, A.D. and S.A. Ostazeski. 1995. Weathering and behavior of the *Morris J. Berman* cargo oil. Invited Paper, International Maritime Organization, London, England.
- [88] Sauer, T.C. and A.D. Uhler. 1994. Pollutant source identification and allocation: Advances in hydrocarbon fingerprinting. *Remediation* 4(4):431-452.
- [89] Durell, G.S., S.A., A.D. Uhler, I.K. Almas, P.S. Daling, T. Strom-Kristiansen, and A. B. Nordvik. 1994. Evaluation of the transfer of crude oil weathering technology: interlaboratory comparison of physico-chemical characteristics of weathered crude oils and emulsions. Proceedings Seventeenth Arctic and Marine Oil Spill Conference. Environment Canada, Vancouver, BC.
- [90] Peven, C.S., A.D. Uhler, and R.E. Hillman. 1994. Concentrations of organic contaminants in *Mytilus edulis* from the Hudson-Raritan estuary and Long Island Sound. *Sci. Total Environ.*: 179, Issues 1-3, 26 January 1996, Pages 135-147.
- [91] Uhler, A.D., G.S. Durell, W.G. Steinhauer, and A.M. Spellacy. 1993. Tributyltin levels in bivalve mollusks from the East and West coasts of the United States: Results from the 1988-1990 National Status and Trends Mussel Watch Project. *Env. Tox. Chem.* 12:139-154.
- [92] Douglas, G.S. and A.D. Uhler. 1993. Optimizing EPA Methods for Petroleum-Contaminated Site Assessments. Environ. Test. Anal. 2:46-53.
- [93] Peven, C.S. and A.D. Uhler. 1993. Analytical procedures for trace and major element analysis. In Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Project. Volume III. NOAA Technical Memorandum NOS ORCA 71. National Oceanic and Atmospheric Administration, Silver Spring, MD.
- [94] Peven, C.S. and A.D. Uhler. 1993. Analytical procedures to quantify organic contaminants. In Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Project. Volume IV. NOAA Technical Memorandum NOS ORCA 71. National Oceanic and Atmospheric Administration, Silver Spring, MD.
- [95] Uhler, A.D., G.S. Durell, and A.M. Spellacy. 1991. Extraction procedure for the measurement of butyltin compounds in biological tissues using toluene, HBr, and tropolone. *Bull. Env. Contam. Toxicol.* 47:217-221.
- [96] Uhler, AD. and G.S. Durell. 1989. Analytical methods for the analysis of butyltin compounds: An overview. Pp. 508-511 in Oceans '89, The Global Ocean. Institute of Electrical and Electronics Engineers, New York, NY.

- [97] Uhler, A.D., T.H. Coogan, K.S. Davis, G.S. Durell, W.G. Steinhauer, S.Y. Freitas and P.D. Boehm. 1989. Findings of tributyltin, dibutyltin, and monobutyltin in bivalves from selected U.S. coastal waters. *Env. Tox. Chem.* 8:971-979.
- [98] Hyland, J., J. Kennedy, J. Campbell, S. Williams, P. Boehm, and A. Uhler. 1989. Environmental effects of the *Pac Baroness* oil and copper spill. In Proceedings of the 1989 Oil Spill Conference, San Antonio, TX. Sponsored by American Petroleum Institute, Environmental Protection Agency, and United States Coast Guard.
- [99] Uhler, A.D. and L.J. Miller. 1988. Multiple headspace extraction gas chromatography for the analysis of volatile halocarbon compounds in butter. J. Agric. Food Chem. 36:772-775.
- [100] Miller, L.J. and A.D. Uhler. 1988. Volatile halocarbons in butter: Elevated tetrachloroethylene levels in samples obtained in close proximity to dry-cleaning establishments. *Bull. Env. Contam. Toxicol.* 41:469-474.
- [101] Sullivan, J.J., J.D. Torkelson, M.W. Wekell, T.A. Hollingworth, W.L. Saxton, G.W. Miller, K.W. Panaro, and A.D. Uhler. Determination of tri-n-butyltin and di-n-butyltin in fish as hydride derivatives by reaction gas chromatography. 1988. *Anal. Chem.* 60:626-630.
- [102] Uhler, A.D. and G.W. Diachencko. 1987. Volatile halocarbon compounds in process water and processed foods. *Bull. Env. Contam. Toxicol.* 39:601-607.
- [103] Helz, G.R., A.D. Uhler, and R. Sugam. 1985. Dechlorination and trihalomethane yields. *Bull. Env. Contam. Toxicol.* 34:497-503.
- [104] Uhler, A.D. and J.C. Means. 1985. Reaction of dissolved chlorine with surficial sediment: Oxidant demand and trihalomethane yields. *Env. Sci. Technol.* 19:340-344.
- [105] Daniels, C.B., S.M. Baksi, A.D. Uhler, and J.C. Means. 1984. Effects of chlorination upon the levels of mutagens in contaminated sediments. In "Water Chlorination: Environmental Impact and Health Effects", Volume 5.
- [106] Uhler, A.D. and G.R. Helz. 1984. Solubility product of galena at 298 K; A possible explanation of apparent supersaturation in nature. *Geochim. Cosmochim. Acta.* 48:1155-1160.
- [107] Uhler, A.D. and G.R. Helz. 1984. Precipitation of PbS from solutions containing EDTA. J. Crystal Growth 66:401-411.
- [108] Rheingold, A.L., A.D. Uhler and A.L. Landers. 1983. The synthesis, crystal structure, and molecular geometry of the ferrocenium salt of the hexadecabromotetrabismuthate counterion. *Inorg. Chem.* 22:3255-3258.
- [109] Helz, G.R. and A.D. Uhler. 1982. Organic inhibition kinetics of sulfide precipitation. *Estudios Geol.* 38:273-277.

CONFERENCE PRESENTATIONS

- [1] Uhler, A.D., McCarthy, K.J., Emsbo-Mattingly, S.D., Stout, S.A. and Douglas, G.S. (2011). Predicting Chemical 'Fingerprints' of Vadose Zone Soil Gas and Indoor Air from Non-Aqueous Phase Liquid Composition. Groundwater Resources Association of California, 6th Symposium in the Tools and Technology Series, Environmental Forensics in an Era of Emerging Diagnostic Methods. Irvine, CA.
- [2] Douglas, G.S., Emsbo-Mattingly, S.D, Stout, S.A., Uhler, A.D., McCarthy, K.J. (2010). Factors to consider when constraining the time of release of gasoline LNAPL based on total lead concentration. 26th Annual International Conference on Soils, Sediments, Water and Energy, University of Massachusetts, Amherst, MA. October 20, 2010.
- [3] Uhler, A.D., McCarthy, K.J., Emsbo-Mattingly, S.D., Stout, S.A. and. Douglas, G.S. (2008). Predicting Chemical 'Fingerprints' of Vadose Zone Soil Gas from NAPL Composition. Society of Environmental Toxicology and Chemistry North America, 29th Annual Meeting, Tampa, Florida.
- [4] Emsbo-Mattingly, S.M., Uhler, A.D., Stout, S.A., Douglas, G.S., and McCarthy, K.J. (2008). Identifying Roadway Pavement in Proximal Soils and Sediments. The 24th Annual International Conference on Soils, Sediments and Water. Amherst, MA. Thursday, October 23, 2008.
- [5] Verstuyft. A., Rhodes, I.A., Uhler, A., Douglas, G., Stout, S. (2007). Not All Gasolines Are Created Equal: Demystifying Environmental Forensic Correlations. The Seventeenth Annual AEHS Meeting and West Coast Conference on Soils, Sediments, and Water, San Diego, CA.
- [6] Uhler, A.D., Emsbo-Mattingly, S.D., Stout, S.A. Douglas, G.S., McCarthy, K.J. and Rouhani, S. (2007). Chemical Fingerprinting. Applications in Environmental Forensics Investigations. Pp. 59-80 in: Defense Research Institute Toxic Torts and Environmental Law Seminar. New Orleans, LA.
- [7] Plantz, G.S. and A.D. Uhler. (2007). Vapor Intrusion. Understanding the Challenges and Potential Implications. Pp 45-58 in: Defense Research Institute Toxic Torts and Environmental Law Seminar. New Orleans, LA.
- [8] Emsbo-Mattingly, S. and Uhler, A.D. (2007) Non-MGP Sources of Pyrogenic PAHs: The Confounding Effects of Roadway Pavement, Soot, Rail Yard Wastes, and Construction Materials." EPRI MGP 2007 Symposium: Advancements in Manufactured Gas Plant Site Remediation. Atlanta, GA January 8-11, 2007.
- [9] Alexander, C.R., Uhler, A.D., Lee, R. and Windom, H. (2006). The Application Of Naturally
 Occurring Radionuclides To Environmental Forensics. Society of Environmental Contamination and Toxicology SETAC 27th Annual Meeting, Montreal CA.

- [10] Plantz, Gina M., A. D. Uhler, K. J. McCarthy, and S. D. Emsbo-Mattingly. (2006). Analytical techniques for vapor intrusion pathway assessments: An environmental forensic approach. Presented at A&WMA Specialty Conference: Vapor Intrusion: The Next Great Environmental Challenge—An Update, Los Angeles, CA.
- [11] Uhler, A.D., Emsbo-Mattingly, S.D. and Liu, B. (2006). Environmental Stability of PAH source indices in Pyrogenic Tars. 22nd Int'l. Conf. Contaminated Soils, Sediments and Water, Amherst, MA.
- [12] McCarthy, K.J., Mattingly, S.D., Uhler, A.D., Rezendes, A., Stout, S.A., and Douglas, G.S. (2006). Forensic Characterization of Subsurface and Indoor Air for Evidence of Vapor Intrusion at Contaminated Sites. 16th Annual AEHS Meeting & West Coast Conference on Soils, Sediments and Water, San Diego, CA.
- [13] Emsbo-Mattingly, S.D., Uhler, A.D., Stout, S.A., Douglas, G.S., McCarthy, K.J., and Coleman. A. (2006). Determining the Source of PAHs in Sediment. The International Symposium & Exhibition on the Redevelopment of Manufactured Gas Plant Sites (MGP 2006) Reading, UK.
- [14] Emsbo-Mattingly, S.D., Uhler, A.D. Hall, L., Burton, D., Alexander, C. and Liu, B. (2005). Delaware River Refinery Effects Differentiated in Tissue, Sediment, and Dated Core Investigation. Society of Environmental Contamination and Toxicology SETAC 26th Annual Meeting, Baltimore, MD.
- [15] Stout, S.A., Uhler, A.D., Douglas, G.S. (Oct. 2005) Chemical heterogeneity among marine bunker fuels. Int'l. Conf. Contaminated Soils, Sediments and Water, 21st Annual Mtg., Amherst, MA.
- [16] Emsbo-Mattingly, S.D., McCarthy, K.J., Uhler, A.D., Stout, S.A., and Douglas, D.S. 2005. Environmental Forensic Methods for Soil Gas and Vapor Intrusion. 2005. In Int'l. Conf. Contaminated Soils, Sediments and Water, Amherst, MA.
- [17] Uhler, A.D., S.A. Stout, G.S. Douglas. 2005. Detailed analysis of gasoline using modified EPA 8260 GC/MS. 17th Annual UST/LUST National Conference. Cosponsored by EPA's Office of Underground Storage Tanks. Seattle WA. March, 2005.
- [18] Emsbo-Mattingly, S.D., Stout, S.A. and Uhler, A.D. 2004. Background characterization of ambient anthropogenic PAHs in urban sediments. *Midwestern States Risk Assessment Symposium*, Indiana University, Indianapolis, IN.
- [19] Emsbo-Mattingly, S.D., Uhler, A.D, Stout, S.A., and McCarthy, K.J. 2003. Identifying ashderived PAH in soil and sediments. Int'l. Conf. Contaminated Soils, Sediments and Water, 19th Annual Mtg., Amherst, MA.

- [20] Emsbo-Mattingly, S.D., S.A. Stout, and A.D. Uhler. 2003. Identifying and dating creosote releases in the environment. 19th Annual International Conference on Soils, Sediments and Water, Amherst, MA October 20-23, 2003.
- [21] Stout, S.A., A.D. Uhler, and S.D. Emsbo-Mattingly. 2003. Comparative evaluation of background hydrocarbons in sediments from multiple urban waterways. 19th Annual International Conference on Soils, Sediments and Water, Amherst, MA October 20-23, 2003
- [22] Emsbo-Mattingly, S.D., Stout, S.A., Uhler, A.D., and McCarthy, K.J. (April 2003). Identifying creosote releases in the environment. American Wood Preservers Association, 99th Annual Mtg., Boston, MA.
- [23] Stout, S.A., Uhler, A.D., Emsbo-Mattingly, S.D. (June 2003) Urban background Characterization of ambient anthropogenic PAH in urban sediments. In Situ and On-Site Bioremediation, 7th Int'l. Symp., Orlando, FL.
- [24] Emsbo-Mattingly, S.D., Boehm, P.D., Stout, S.A., Uhler, A.D, and McCarthy, K.J. June 2003. Sourcing PAH in sediments with innovative methodologies. In Situ and On-Site Bioremediation, 7th Int'l. Symp., Orlando, FL.
- [25] Uhler, A.D. and I.A. Rhodes. 2003. Forensic Environmental Chemistry Workshop. Thirteenth Annual West Coast Conference on Contaminated Soil, Sediment and Water. San Diego, CA.
- [26] Healey, E., S.A. Smith, K.J. McCarthy, S.A. Stout, R.M. Uhler, A.D. Uhler and G.S. Douglas. 2003. Fingerprinting Organic Lead Species in Automotive Gasolines and Free Products Using Direct Injection GC/MS. Thirteenth Annual West Coast Conference on Contaminated Soils, Sediments, and Water. San Diego, CA, March 17-30, 2003.
- [27] Smith, S.A., E. Healey, K.J. McCarthy, S.A. Stout, A.D. Uhler, S. Emsbo-Mattingly, and G.S. Douglas. 2003. Allocation of Commingled Hydrocarbons Derived from Manufactured Gas Plant versus Petroleum Handling Operations. Thirteenth Annual West Coast Conference on Contaminated Soils, Sediments, and Water. San Diego, CA, March 17-30, 2003.
- [28] Uhler, A.D., Stout, S.A. and McCarthy, K.J. 2002. Advanced Chemical Measurements in Environmental Forensics Investigations. Environmental Forensics: Advanced Techniques. International Society of Environmental Forensics Workshop. September 23-24, 2002. Santa Fe, New Mexico.
- [29] Emsbo-Mattingly, S.D., S.A. Stout, A.D. Uhler, and K.J. McCarthy. Sourcing Hydrocarbons at Fire Training Areas: A Molecular Characterization of the Combusted and Evaporated Residues of Distillate Fuels. Annual Conference on Contaminated Soils, Sediments and Water, , Amherst, MA October 22-24, 2002.

ALLEN D. UHLER

- NEWFIELDS
- [30] Emsbo-Mattingly, S.D., A. Coleman, A. Chin, P.D. Boehm, S.A. Stout, A.D. Uhler, and K.J. McCarthy. Sourcing PAH in Sediments with Innovative Methodologies. Annual Conference on Contaminated Soils, Sediments and Water, Amherst, MA October 22-24, 2002.
- [31] McCarthy, K.J., S. Andrew Smith, E. Healey, S.A. Stout, A.D. Uhler, and S. Emsbo-Mattingly. 2002. Allocation of Commingled Hydrocarbon Contamination Using Dual Column GC/FID/MS Int'l. Conf. Contaminated Soils, Sediments and Water, 12th Annual Mtg., San Diego, CA.
- [32] Stout, S.A., McCarthy, K.J., and Uhler, A.D. 2002. Bicyclic sesquiterpane biomarkers Useful hydrocarbons in the chemical fingerprinting of Class 4 and Class 5 petroleum distillates. Proceed. Am. Acad. Forensic Sci., pp. 104-105, National Meeting, Atlanta, GA.
- [33] Uhler, R.M., Healey, E.M., Smith, A.S., Stout, S.A., McCarthy, K.J., and Uhler, A.D. 2001. Optimizing purge-and-trap GC/MS analysis of gasoline range compounds for environmental forensic investigations. Int'l. Conf. Contaminated Soils, Sediments and Water, 17th Annual Mtg., Amherst, MA
- [34] Emsbo-Mattingly, Stephen, Uhler, A.D., McCarthy, K.J. and Stout, S.A.. 2000. Identifying the Source of PAH Contamination 16th Annual International Conference on Contaminated Soils, Sediments, and Water October 16-19, 2000. University of Massachusetts at Amherst.
- [35] Uhler, A.D., Stout, S.A., McCarthy, K.J., S. Emsbo-Mattingly, and T.G. Naymik. 2000. The Evolving state of environmental forensics. International Business Communication's 3rd Executive Forum on Environmental Forensics. Washington, D.C.
- [36] Emsbo-Mattingly, Stephen, K.J. McCarthy, A.D. Uhler, and S.A. Stout. 2000. Using hydrocarbon analysis for risk assessments and forensics investigations. International Business Communication's 3rd Executive Forum on Environmental Forensics. Washington, D.C
- [37] McCarthy, K.J., Emsbo-Mattingly, S., Stout, S.A. and A.D. Uhler. Differentiation of coal and oil tars in sediments. International Business Communication's 3rd Executive Forum on Environmental Forensics. Washington, D.C
- [38] Uhler, A.D., K.J. McCarthy, J.M. Neff and E.M. Healey. 2000. Determination of petroleum hydrocarbons by fractionation and GC/MS to support risk assessment. 23rd EPA Conference on Analysis of Pollutants in the Environment. Pittsburgh, PA.
- [39] Uhler, A.D. and S.A. Stout. 2000. Environmental Forensics. 24th Annual Symposium, "Forensic Geology". Association of Engineering Geologists, Boston, MA.
- [40] Stout, S.A. and Uhler, Allen D. 2000. Chemical "fingerprinting" of highly weathered petroleum products. Annual Meeting of the American Academy of Forensic Sciences, February 2000, Reno, Nevada.

- [41] McCarthy, K.J., A.D. Uhler, S.A. Stout, D. Gunster, J.M. Neff and E.M. Healey. 1999. Evaluating remediation needs and options: A fraction-specific approach to soil and groundwater TPH Analysis. National Petrochemical & Refiners Association Environmental Conference, Dallas, TX.
- [42] Uhler, A.D., Stout, S.A., McCarthy, K.J. and T.G. Naymik. 1999. Current state of environmental forensics. International Business Communication's 2nd Executive Forum on Environmental Forensics. Washington, D.C.
- [43] Stout, S.A., A.D. Uhler, and K.J. McCarthy. 1999. Use of biomarkers in assessing liability for fugitive petroleum products and crude oil. International Business Communication's 2nd Executive Forum on Environmental Forensics. Washington, D.C.
- [44] Stout, S.A., A.D. Uhler, R.M. Uhler, and K.J. McCarthy. 1999. Identification and differentiation of light- and middle-distillate petroleum for an NRDA using chemical forensics. 1999 International Oil Spill Conference, Seattle WA.
- [45] Scott A. Stout, Kevin J. McCarthy, Julie A. Seavey and Allen D. Uhler. 1999. Application of Low Boiling Biomarkers in Assessing Liability for Fugitive Middle Distillate Petroleum Products. 9th Annual West Coast Conference on Contamianted Soils and Waters, Oxnard, CA.
- [46] S.A. Stout, A.D. Uhler, and K.J. McCarthy. 1998. Advanced chemical fingerprinting of subsurface contamination—unraveling decades of contamination at a refinery. National Petrochemical & Refiners Association Environmental Conference, November, 1998, Corpus Christi, TX.
- [47] Uhler, R., Uhler, A.D., K.J. McCarthy, and S.A. Stout. 1998. Advances in measurement and differentiation of light distillate petroleum products using chemical forensic techniques. 14th Annual Conference on Contaminated Soils, Amherst, MA.
- [48] Stout, S.A., A.D. Uhler, and K.J. McCarthy. 1998. The evolving state of environmental forensics. 14th Annual Conference on Contaminated Soils, Amherst, MA.
- [49] Uhler, A.D. 1998. Fingerprinting of light refined products—gasolines. Invited speaker, National Environmental Forensics Conference: Chlorinated Solvents and Petroleum Hydrocarbons. August, 2-28, Tuscon, AZ.
- [50] Stout, S.A., R.M. Uhler, R.P. Phelp, J. Allen, and A.D. Uhler. 1998. Source differentiation of individual chlorinated solvents dissolved in groundwater using compound-specific carbon isotope analysis. American Chemical Society, Division of Environmental Chemistry, National Meeting, Boston, MA.

- [51] Kelly, J.R., R.K. Kropp, A.D. Uhler, M.B. Zielinski, and Tawatchai S. 1998. Environmental response and recovery at drilling platforms in the Gulf of Thailand. Proceedings 1998 Society of Petroleum Engineers International Conference on Heatlh, Safety, and Environment, Caracas, Venezuala. Paper No. 46478.
- [52] Uhler, A.D., Durell, G.S. and Brancato, M. 1997. Determination of butyltin compounds in seawater at the 1 part-per-trillion level. 20th Annual EPA Conference on Analysis of Pollutants in the Environment. Norfolk, VA.
- [53] Durell, G., J. Seavey, A. Uhler, and A. Ceric. Monitoring sediments in Northeast Florida water bodies: Status of chemical contamination levels. 1997 National Meeting for the Society of Environmental Toxicology and Chemistry, San Francisco, CA.
- [54] Ostazeski, S.A., A.D. Uhler, and K. Bitting. 1997. Behavior of Orimulsion® in Seawater and Freshwater. 1997 International Oil Spill Conference, Ft. Lauderdale, FL.
- [55] Uhler, A.D. and K.J. McCarthy. 1997. Consideration for measurement of light distillate fuel products. 7th West Coast Conference on Contaminated Soils and Groundwater. Oxnard, CA.
- [56] McCarthy, K.J., A.D. Uhler, and R.M. Uhler. 1996. Identification, differentiation, and allocation of light distillate fuel products. 11th Annual East Coast Conference on Contaminated Soils and Groundwater. Amherst, MA.
- [57] Twatchai S., P. Menseveda, A. Uhler, and T. Grieb. 1996. Mercury Releases in the Central Gulf of Thailand. Second International Conference on Environmental and Industrial Technology. Bangkok, Thailand.
- [58] Sauer, T.C., K.J. McCarthy, and A. Uhler. 1995. Natural and bioremediated selective degradation of polycyclic aromatic and alkyl isomers in oil-contaminated soils. 1995 National Meeting for the Society of Environmental Toxicology and Chemistry, Denver, CO.
- [59] Dahlen, D.T., A.D. Uhler, T.C. Sauer, and K.J. McCarthy. 1995. Petroleum-specific analytical and interpretative techniques for product identification and source allocation. 1995 National Meeting for the Society of Environmental Toxicology and Chemistry, Denver, CO.
- [60] Hunt, C., D. West, A. Uhler, and C. Peven. Low level contaminant detection: Implications to loading estimates and management of coastal discharges. 1995 National Meeting for the Society of Environmental Toxicology and Chemistry, Denver, CO.
- [61] Uhler, A.D. and S.A. Ostazeski. 1995. Weathering and behavior of the Morris J. Berman cargo oil. Invited Paper, International Maritime Organization, London, England.

- [62] Uhler, A.D., G.S. Durell, S.A. Ostazeski. 1994. Evaluation of the transfer of crude oil weathering technology: interlaboratory comparison of physico-chemical characteristics of weathered crude oils and emulsions. Seventeenth Arctic and Marine Oil Spill Conference, Vancouver, BC, June 8-10, 1994.
- [63] Uhler, A.D., West, D.E., Peven, C.S. and Hunt, C.D. 1994. Trace Metal and Organic Contaminants in Deer Island Treatment Plant Effluent: June - November, 1993. Ninth Annual Boston Harbor Symposium, Boston, MA March 24-25, 1994.
- [64] Dahlen, D.T., A.D. Uhler, and P.J. White. 1994. Ultratrace Analysis of Organic Contaminants in Sediments, Water, and Tissues from a Marine Superfund Site. Abstract Book, 15th Annual Meeting, Society of Environmental Toxicology and Chemistry, Pensacola, Florida.
- [65] Peven, C.S., A.D. Uhler, R.H. Hillman, W.G. Steinhauer. Organic contaminants in Mytilus edulis from the Hudson-Raritan Estuary and Long Island Sound. American Geophysical Union Spring Meeting, 1992.
- [66] Hillman, R.E., R.A. Lordo, R.G. Menton, C.S. Peven, A.D. Uhler, E. Crecelius, and W.G. Steinhauer. 1992. Relationship of environmental contaminants to occurence of neoplasia in mussels (Mytilus edulis) from East and West coast Mussel Watch sites. Marine Technology Society Fall Meeting.
- [67] Peven, C., Uhler, A., Hillman, R. 1992. Organic contaminants in Mytilus Edulis from the Hudson-Raritan Estuary and Long Island Sound. 1992 National Meeting for the Society of Environmental Toxicology and Chemistry, Cincinnati, OH.
- [68] Uhler, A.D., G.S. Durell, and A.M. Spellacy. 1991. Spatial distribution and temporal trends in tributyltin levels in bivalve mollusks from the U.S. East and West Coasts. 1991 National Meeting for the Society of Environmental Toxicology and Chemistry, Seattle, WA.
- [69] Uhler, A.D., T.H. Coogan and G.S. Durell. Analysis of tributyltin, dibutyltin and monobutyltin in biological tissues by gas chromatography with flame photometric detection and gas chromatrography with mass spectrometry. 1989 Pittsburgh Conference on Analytical Chemistry/Applied Spectroscopy, Atlanta, GA.
- [70] Uhler, A.D. Analysis of butyltin compounds in environmental matrices: Method selection criteria, method performance and laboratory implementation in support of US Environmental Protection Agency TBT Data Call-In. US EPA/OECD Symposium on TBT Monitoring in Coastal Waters. Paris, France, November 29 - December 1, 1988.
- [71] Uhler, A.D. and M.C. Clower. 1988. Analysis for tributyltin in fish and shellfish. 102nd Annual meeting of the Association of Official Analytical Chemists.

- [72] Miller, L.J. and A. D. Uhler. 1986. Findings of volatile halocarbon compounds in butter: Elevated levels of PCE in samples obtained in close proximity to dry cleaning establishments. 100th Annual meeting of the Association of Official Analytical Chemists.
- [73] Uhler, A.D. Volatile halocarbon compounds in processed foods. U.S. Food and Drug Administration Pesticide and Industrial Chemical Workshop. September, 1985.
- [74] Fendinger, N.J., A.D. Uhler, J.C. Means, J.H. Tuttle, and J.C. Radway. Chemical characterization of coal lechate. American Chemical Society National Meeting. Spring, 1985.
- [75] Uhler, A.D. and J.C. Means. Reaction of dissolved chlorine with surficial sediment: Oxidant demand and trihalomethane yields. American Chemical Society National Meeting. Spring, 1985.