TSS, BOD, perchlorate, total coliform oil and grease, total residual chlorine, and nitrate as nitrogen. The BPJ analysis resulted in reasonable potential for total dissolved solids, chloride, sulfate, fluoride, nitrate + nitrite as nitrogen, and barium. Effluent limitations for these constituents were included in Order R4-2006-0008.

R4-2006-0036

Discharges from Outfalls 001, 002, 011 and 018 flow to Bell Creek a tributary of the LA River. The TMDL for metals in the Los Angeles River assigned WLAs to all point source discharges to LA River and all upstream reaches and tributaries to (including Bell Creek and tributaries to Bell Creek). Effluent limitations for cadmium, copper, lead, zinc, and selenium at the aforementioned outfalls were based on WLAs established by the TMDL or existing effluent limitations, whichever were more protective. The LA River Nutrient TMDL requires WLAs for ammonia-N, nitrate-N, and nitrite-N, which are included for these outfalls.

Outfalls 003 through 010 are storm water only outfalls. Outfall 008 is the only storm water only compliance point that discharges to Dayton Canyon Creek which flows to Bell Creek, a tributary of the Los Angeles River. The storm water only discharges do not have statistical reasonable potential for zinc. However, discharges from Outfall 008 flow to the LA River, which has a TMDL that provides a WLA for zinc. That WLA will also be incorporated as an effluent limitation at Outfall 008 only. The LA River Nutrient TMDL requires WLAs for ammonia-N, nitrate-N, and nitrite-N, which are also included for this outfall.

Discharges from Outfalls 012 through 014 (rocket engine test stands) exit the site via tributaries to Bell Creek. The metals that have TMDL WLAs that do not have reasonable potential at these outfalls are cadmium, selenium and zinc. Effluent limitations for these constituents are included based on the TMDL. The Los Angeles River Nutrient TMDL developed WLAs for ammonia-N, nitrate-N, and nitrite-N. Daily maximum effluent limitations for these locations. The LA River Nutrient TMDL requires WLAs for ammonia-N, nitrate-N, and nitrite-N.

Discharges from Outfalls 015 through 017 exited the site via tributaries to Bell Creek. The Metals TMDL resulted in new WLAs for lead and selenium and a wet weather discharge WLA for cadmium. The LA River Nutrient TMDL requires WLAs for ammonia-N, nitrate-N, and nitrite-N. TMDL based effluent limitations were included in the order for the noted metals and nutrients.

R4-2007-0055

On February 21, 2007, the discharger submitted a new ROWD that requested that outfalls 012, 013, and 014 be removed from the permit. Since discharges from the rocket engine test stands have terminated, wastewater will no longer be discharged. However, years of using the rocket engine test stands have resulted in contamination in the immediate vicinity of the test stands. RCRA investigations have resulted in the delineation of areas surrounding the test stands as RCRA Facility Investigation (RFI) sites. Chemicals of concern identified at these sites include TPH-gasoline, TPH-diesel, TPH-kerosene, oil and grease, trichloroethene and 1,2-dichloroethene. Since

these contaminants are documented as present in these locations the discharger will be required to monitor during storm events for chemicals of concern. The effluent limitations included in Orders R4-2006-0008 and R4-2006-0036 for the rocket engine test stands will be included as "benchmarks".

A "benchmark" is a water quality based effluent limit or a performance based limit that is used to evaluate the performance of BMPs with regard to the removal of contaminants present in the discharge. In this permit, the benchmarks are established based on water quality based effluent limitations. Exceedance of a benchmark triggers an evaluation of the BMPs implemented at the site. The evaluation may determine that the BMPs require augmentation, upgrading, or replacement. If so, the Discharger must develop a plan to implement the required upgrades and report to the Regional Board staff within 60 days of the reported exceedance. The Discharger will continue monitoring as directed in the Monitoring and Reporting Program and the Basin Management Practices Compliance Plan.

Topanga Fire: The Topanga Fire occurred on September 28, 2005. The fire resulted in significant alterations to the site. Over 70 percent of the SSFL burned with significant areas denuded of vegetation, making much of the steep terrain highly erodible. The exposure of the surface soils with no vegetative cover to runoff has increased the potential for the transport of those surface soils and associated contaminants offsite as a result of the fire. All of the BMPs in place onsite were destroyed.

After the fire Boeing immediately began efforts to replace the BMPs that were destroyed. Many of the drainage areas were vacuumed to remove accumulated ash. The Discharger hydromulched in excess of 800 acres onsite and installed erosion control devices throughout much of the SSFL site prior to the January 19, 2006 Board Meeting. BMPs implemented prior to the fire were typical of those routinely used at construction sites to retard the transport of sediment (silt fences, plastic sheeting, etc). In most cases, the BMPs implemented after the fire were designed to slow flows (i.e. using underdrain systems) and to treat specific contaminant groups (i.e. metals) using bags filled with carbon or vermiculite.

On May 24, 2007, Boeing submitted to the Regional Board the *Phase 2 Post-Fire Vegetation Recovery Assessment Report* prepared for Geosyntech Consultants by Western Botanical Services, Inc. The report assessed the status of and time to recovery of chaparral and scrub at the project site subsequent to the Topanga Fire which began on September 28, 2005. The executive summary of the report asserts that chaparral and scrub represent the dominant vegetation types at SSFL and that these plant communities represent an important natural vegetation-based means of erosion control at the site. It further states that the "perennial plant cover differed by significantly more than 30 percent between burned and unburned transects, total vegetative cover differed by significantly greater than 20 percent cover and ground cover differed by significantly more than 30 percent cover." The executive summary also states that the burned chaparral and scrub vegetation will likely recover to previous conditions within five to ten years.

The report also includes a section titled *Chaparral Recovery after Fire*. The section includes summaries of other studies completed on chaparral. Several studies (Guo

2001, Grace & Keeley 2006, Keeley & Keeley 1981, Horton & Kraebel 1955, Robi chaud et al 2000) concluded that the total vegetative cover is generally high in the first two years following a fire: reported values are from 11 to 85 percent. The report estimates that between March 26 and April 12, 2007, the mean total vegetative cover within the burned areas on the SSFL site is 46.6 percent.

Soil infiltration capacity is sometimes reduced after a fire. This reduction in soil infiltration capacity is due to an increase in soil water repellency (hydrophobicity) which is caused by waxy residues that are deposited on the soils during the burning of vegetation. On July 17, 2007, Boeing submitted the "Post Fire Soil Hydrophobicity and Recovery of Infiltration Capacity Report". The report documented an investigation of the pre-fire and post fire hydrophobicity conditions in four onsite target soil groups. The analysis was completed in April 2007. The conclusion suggests no statistical difference in the hydrophobicity of the soils between the burned and unburned tested areas onsite other than a portion of watershed 002 (west of Outfall 018). (Based on a confidence level of α =0.05.) The report included the statement that case studies indicate that the recovery time ranged from one to three years. The study at SSFL was completed nineteen months after the fire which began on September 28, 2005.

Regional Board's Wet Weather Task Force: During the Regional Board hearing on the 2005-07 Triennial Review of the Basin Plan, many stakeholders raised the issue of compliance with water quality standards and TMDLs during wet weather as a significant challenge and suggested that the formation of a Wet Weather Task Force to discuss and identify potential solutions to the challenges involved in complying with water quality standards during wet weather would be helpful. The Regional Board requested that staff convene a task force to identify project ideas that would address these wet weather concerns. The task force identified as a top priority a project to evaluate alternative design storm criteria. A design storm is a specific size storm event used to plan for and design storm water controls. Specifically, a design storm would assist in determining the scale and treatment capacity of controls such as BMPs. The Regional design storm issue arose again as a high priority for stakeholders as well as the Board at the hearing on the Los Angeles River Metals TMDL. During the TMDL hearing, the Executive Officer, Jonathan Bishop, committed Regional Board resources to fund an initial 2-year contract with Southern California Coastal Water Research Project (SCCWRP) to begin an evaluation of potential design storms that could be used by responsible agencies when implementing TMDLs.

Over the last two years, Regional Board staff has been working with SCCWRP, GeoSyntec, and a cross-section of stakeholders in the region known as the Design Storm Project Steering Committee on this project to evaluate potential design storms in terms of capturing storm water runoff, achieving water quality standards and implementability. A draft report is scheduled for circulation in early September 2007, which will summarize the results of the first two years of the project; discuss the complexities of establishing a regional design storm; and set forth recommendations for additional technical studies, sensitivity analysis and modeling.

Regional Board staff recognizes that while there are an infinite number of site specific considerations and permutations that could be considered in evaluating

CA0001309

The Boeing Company Santa Susana Field Laboratory FACT SHEET

potential design storms (e.g. different land uses, different pollutants, different interevent times, different levels of effluent quality, etc.), it was necessary to make many assumptions and generalizations during this initial evaluation of regional design storms.

Therefore, Regional Board staff anticipates that further work will be needed before proposing a regional design storm policy or any site-specific design storm in order to further explore these assumptions and generalizations; evaluate the efficacy of the design storm for different pollutants and land uses; refine the data used in modeling the water quality outcomes of potential design storms and consider policy with regard to incorporating design storms into permits. It is therefore premature to establish a regional design storm or site-specific design storm at this time prior to this additional technical work and prior to a full consideration of the policy considerations of adopting a regional design storm policy.

Boeing's BMP Capacity Evaluations: On February 23, 2007, Boeing submitted to the Regional Board a memo entitled Outfall BMP Capacity Evaluation – 1 year storm 1 hour time of concentration. The memo evaluated the capacity of onsite structural best management practices. The memo also documented discussions with Regional Board staff which introduced the possibility of the use of the design storm size used for the trash TMDL in the Los Angeles River. The site specific storm proposed by Boeing utilized the same approach as was utilized in the Los Angeles River Trash TMDL, with some modifications. Boeing's concluded that a storm that generated a flow of 2.3 inches depth could be considered the "site specific design storm" and it was used to design the structural BMPs.

On April 3, 2007, Boeing submitted to the Regional Board a letter entitled Boeing SSFL Best Management Practice Rainfall Capacity Submittal. The letter included a summary of the site specific storm analysis and an evaluation of the BMPs in place. The analysis of the BMPs in place concluded that BMPs at Outfalls 003 and 004 required upgrades to capture and treat the 2.3 inches of rainfall. All other storm water only outfalls had best management practices capable of treating the storm depth of 2.3 inches, except Outfalls 008 and 009. The Discharger proposed the implementation of natural BMPs to treat the 2.3 inches of rainfall at Outfalls 008 and 009. The Discharger indicated that the location, terrain, and size of these outfalls make the implementation of structural BMPs to treat that volume of water (2.3 inches) much more difficult at these locations. The modeling and the structural BMP upgrades required to treat the site specific storm have been implemented at Outfalls 003 through 007.

The assumptions and generalizations utilized to develop the site specific storm have not been enumerated by the Discharger. The Regional Board has not developed a regional design storm policy or a policy for the consideration and evaluation of site specific storms developed for individual discharges. Therefore, this permit does not implement the 2.3 inches as the upper bound of the runoff that the discharger must treat for compliance with the final effluent limitations. When the Regional Board Design Storm Project, and associated policy considerations, are further developed along with an evaluation of acceptable assumptions and generalizations, the storm size developed by the Discharger may be considered by the Regional Board. **Reasonable Potential Analysis:** A reasonable potential analysis was completed for data collected through May 22, 2006. The analysis did not result in the inclusion of any new constituents with effluent limitations in this Order.

Outfalls 015 through 017 will be deleted. The discharger currently trucks the wastewater offsite for disposal at one of the County Sanitation Districts of Los Angeles facilities and there are no plans to initiate discharges from the treatment plants in the future. Therefore, the updated ROWD included a request that Outfalls 015 through 017 be removed from the permit.

To prevent further degradation of the water quality of the Los Angeles River and Calleguas Creek and to protect their beneficial uses, mixing zones and dilution credits are not allowed in this Order. This determination is based on:

- Many of the beneficial uses stipulated are intermittent for Dayton Canyon Creek, Bell Creek and the Arroyo Simi. The discharges from SSFL in many cases provide a significant portion of the headwaters for these waterbodies. Since there is little assimilative capacity of the receiving water, a dilution factor is not appropriate and the final WQBEL should be a numeric objective applied end-of-pipe.
- The discharge may contain the 303(d) listed pollutants that are bioaccumulative such as metals. These pollutants, when exceeding water quality criteria within the mixing zone, can potentially result in tissue contamination of an organism directly or indirectly through contamination of bed sediments with subsequent incorporation into the food chain. The SIP, section 1.4.2.2.B. states that the "Regional Board shall deny or significantly limit a mixing zone and dilution credit as necessary to protect beneficial uses..." It continues that "such situations may exist based upon the quality of the discharge... or the overall discharge environment (including ... potential for bioaccumulation)."

For some pollutants, including aldrin, alpha-BHC, chlordane, DDT, dieldrin, heptachlor, heptachlor epoxide, several PAHs, PCBs, TCDD equivalents, and toxaphene the applicable water quality objectives are below the levels that current analytical techniques can measure. Reasonable potential analyses have been completed on each of these constituents and two of them had reasonable potential: alpha-BHC and TCDD equivalents. The MEC detected for TCDD exceeded the CTR criterion and the detection limits for alpha-BHC in the receiving water and the effluent exceeded the criterion.

VI. MODIFICATIONS ASSOCIATED WITH STATE BOARD ORDER WQ 2006-0012 AND WITH THE REVISED REPORT OF WASTE DISCHARGE SUBMITTED BY BOEING ON FEBRUARY 20. 2007

The State Board Order included the following provisions:

• Remanded the permit to the Regional Board to revise the provisions concerning Outfalls 001, 002, 011, and 018,

- Stayed the effluent limitations at Outfalls 011 and 018 pending a determination by the Regional Board deleting either Outfalls 011 and 018 or Outfalls 001 and 002,
- Directed the Regional Board to issue a Cease and Desist Order with the shortest possible compliance schedule and interim effluent limitations. The effective date of the CDO was to be January 19, 2006,
- Review the permit to ensure that numeric effluent limitations for different outfalls do not count the same violation twice in such a manner as to treat a single violation as multiple violations.
- In all other respects, the petitions were denied.

Orders R4-2006-0008 and R4-2006-0036 included numeric effluent limitations for discharges from Outfalls 001, 002, 011, and 018. Outfall 018 is located upstream of Outfall 002 and Outfall 011 is upstream of Outfall 001. The same effluent limitations were applicable to all four outfalls. The State Board Order concluded that Outfalls 001 and 002 were duplicative of Outfalls 011 and 018 and directed the Regional Board to retain only two of the four compliance points with numeric effluent limitations. Since Outfalls 011 and 018 are closer to the developed portion of the site, this Order (Order R4-2007-0055) retains the numeric effluent limitations. Outfall 011 will transport effluent from the groundwater treatment unit and storm water runoff. Therefore, the effluent limitations at Outfall 011 include daily maximum and monthly average concentrations. Outfall 018 will transport storm water runoff from the site; therefore this location is regulated with daily maximum limitations only. This is consistent with the NPDES dischargers in this Region that discharge storm water only.

Outfalls 001 and 002 have monitoring requirements with benchmarks and a requirement for the Discharger to implement BMPs that will be upgraded based on the monitoring data relative to the benchmark. The benchmarks for Outfall 001 will include daily maximum and monthly average limitations since the discharge from Outfall 011 and Outfall 001 will include treated groundwater from Outfall 019 and storm water runoff. Since the discharge at Outfall 001 will be composed of both storm water runoff and treated groundwater both the daily maximum and monthly average benchmarks are applicable. The benchmarks for Outfall 002 are the daily maximum effluent limitations stipulated for Outfalls 011 and 018, since Outfall 002 will transport storm water runoff only.

The State Board Order concluded that the discharge from Outfall 018 was duplicative of the discharge from Outfall 002 and that the discharge from Outfall 011 was duplicative of the Outfall 001. Discharges from Outfalls 018 only occur during storm events. Outfall 018 is located in the same subwatershed with several solid waste management units (SWMU). Flow leaving the R-2 Pond travels 4,500 feet prior to reaching Outfall 002. Prior to the discharge reaching Outfall 002 storm water from STL-IV and from various regions of the buffer zone will also enter the drainage. Storm water from the buffer zone will provide dilution for the contaminants in the discharge. However, storm water from STL-IV may contain elevated levels of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, chromium, copper, lead, and zinc, all chemicals of concern associated with this SWMU. Therefore, discharges from Outfall 018 may pick up additional contaminants from storm water runoff traversing contaminated areas at STL-IV and entering the drainage prior to the water exiting Outfall 002.

Discharges from Outfall 011, Perimeter Pond, travel along the southeastern edge of Area 1 Burn Pit (A1BP) prior to entering the buffer zone. A partial list of the chemicals of concern

in soil associated with the A1BP include perchlorate, dioxins, metals (including cadmium, chromium, selenium, copper, mercury, boron, etc.) total petroleum hydrocarbons, and pentachlorophenol. Downstream in the buffer zone discharges from the Perimeter Pond also join with storm water runoff from the southeastern portion of the COCA area of concern (AOC) and the Component Test Laboratory V (CTL V) AOC. Additional runoff from the buffer zone is added to the drainage prior to the flow reaching Outfall 001. Discharges from Outfall 011 may pick up additional contaminants from storm water runoff from the COCA and CTL V AOCs prior to being discharged offsite at Outfall 001.

Outfalls 001 and 002, are downstream from Outfalls 011 and 018. Outfall 001 includes storm water runoff from the southern portion of STL IV and the buffer zone south of Outfall 018. Outfall 002 includes storm water runoff from CTL V the COCA area, A1BP and the buffer zone south of Outfall 011. The discharger will be required to continue to monitor at Outfalls 001 and 002 while implementing BMPs to ensure that contaminants associated with site activities are not transported offsite by storm water runoff.

Based on the State Board Order, a Cease and Desist Order was developed to address new effluent limitations included in Order R4-2006-0008.

A Cease and Desist Order (Order R4-2007-0056) was adopted on November 1, 2007. The Cease and Desist Order included interim effluent concentrations and a time schedule for discharges form Outfalls 001 through 018 as directed by the Remand from State Board. The CDO also included time for the Discharger to implement engineered natural treatment systems at Outfalls 008 and 009. Included in that task was a requirement to assemble a panel of professionals with technical expertise and experience working with natural treatment systems to treat contaminants in storm water runoff. A number of tasks were to be assigned to the panel. They were to review site conditions, evaluate the flows that have been modeled for the site including the design storm recommendation previously provided by the Discharger, the contaminants of concern, the BMPs capable of treating the discharge to meet the final effluent limitations. Subsequently, the panel of experts would be required to select, design and oversee implementation of the selected BMPs.

VII. 2008 Report of Waste Discharge (ROWD)

On December 11, 2008, Boeing submitted a new Report of Waste Discharge. Supplemental material was submitted on February 2, 2009, to complete the ROWD. The ROWD included requests for a number of actions in the NPDES permit. Following is a summary of those requests and the Regional Board responses:

<u>Remove Compliance Points at Outfalls 012 (Alpha Test Stand), 013 (Bravo Test</u> <u>Stand) and 014 (APTF):</u> These outfalls were originally established to monitor the wastewater discharges associated with the rocket engine testing at these locations. Since that time the testing operations have ceased. However, Board staff believes that the testing operations have resulted in contamination in the areas which may be transported downstream via storm water runoff. Therefore, once the operations ceased, the requirements in the permit were altered to require monitoring of storm water runoff from these areas. The Discharger requested a provision to terminate sampling once the structures are removed. Sampling after the structures are removed will provide information regarding the potential transport of residual contamination by storm water runoff. Therefore

the request to remove the compliance points at Outfalls 012 through 014 has not been implemented.

Design Storm: Following the adoption of the NPDES permit on November 1, 2007, Order R4-2007-0055, and the Cease and Desist Order (R4-2007-0056), the Discharger assembled a panel with input from the Regional Board staff and water resources-focused environmental organizations to review site conditions, modeled flow, contaminants of concern and evaluate the BMPs capable of providing the required treatment to meet the final effluent limitations. The panel initially evaluated site conditions and on April 30, 2008, issued a report entitled "Expert Panel Final Consensus Recommendation on a Site Specific Design Storm for the SSFL." The Expert Panel recommended a site specific design storm defined as either 2.5 inches during a 24-hour period, or 0.6 inches in an hour, as measured at the Area IV rain gauge located at the SSFL.

The Regional Board has funded the preliminary work for the development of a regional design storm and the associated policy. This work is documented in the Fact Sheet in the section titled Regional Board's Wet-Weather Task Force. Regional Board staff anticipates that further work will be needed before proposing a regional design storm policy or any site-specific design storm, in order to further explore these assumptions and generalizations; evaluate the efficacy of the design storm for different pollutants and land uses; refine the data used in modeling the water quality outcomes of potential design storms and consider policy implications with regard to incorporating design storms into permits. It is therefore premature to establish a regional design storm or site-specific design storm prior to this additional technical work and prior to a full consideration of the policy considerations of adopting a regional design storm policy.

Regional Board staff also believes it is not appropriate to incorporate the design storm into the permit at this time. Depending on how the design storm is implemented, the size of the storm stipulated by the Expert Panel would result in storms each year that would generate runoff which may not be required to comply with the final effluent limitations that are currently in the permit. The development of a policy is essential to ensure that when a design storm is approved; the implementation of the design storm is consistent throughout the region. There is currently no policy in place for the Los Angeles Region or in any other region throughout the state that Regional Board staff is aware of. However, the work completed on the design storm provides the basis for the design of the BMPs around the site.

Composite versus Grab Sampling: The Discharger also requested to alter the type of monitoring required in the permit from grab to composite. The Expert Panel during the evaluation of the site and permit conditions recommended that using composite versus grab for constituents where composite sampling is appropriate would provide a more representative sample to evaluate contaminants in storm water runoff.

In May, 2004, the Regional Board issued a Section 13267 request for sampling at two locations using grab and composite results. The composite samples were collected over a three hour time span during storm events. The data collected did not yield significant differences in the detected concentrations of the constituents of concern. Since the data collected previously indicates that there is no difference between grab and composite samples, the request to utilize composite sampling has not been incorporated.

<u>**Outfalls 008 and 009.**</u> Order R4-2007-0055 included a time schedule from November 1, 2007 through June 10, 2009 compliance for the discharges from site would be evaluated utilizing "benchmarks". This time schedule was to allow the assembly of the Expert Panel, and time to plan, design and implement the engineered natural treatment systems (ENTS). The Discharger has:

- The Panel has completed the following tasks:
 - Submitted a recommendation for the Design Storm;
 - o Designed ENTs for Boeing owned property at Outfall 009; and
 - Designed ENTs for Outfall 008.
- The Discharger has:
 - o Implemented Phase 1 of the ENTs project including culvert upgrades; and
 - Submitted application for Special Use Permit with Ventura County which is required to construct the ENTs.

The modification of the Special Use Permit requires California Environmental Quality Act (CEQA) review. This process takes about four or five months for a mitigated negative declaration. The time required can be increased significantly if the project requires additional evaluation.

Interim Source Removal Action: On December 3, 2008, the Regional Board issued a Section 13304 Order to perform an Interim/Source Removal Action (ISRA) of Soil in the Areas of Outfalls 008 and 009 Drainage Areas. The Order directed the Discharger to undertake source removal of impacted soils that are causing or contributing to violations of limitations contained in NPDES Permit No. CA0001309. Coordinating the efforts to implement the ENTs and the implementation of the source removal activities within both the Outfall 008 and 009 watersheds will result in the maximum benefit. Time will be required for planning, permitting, excavation of the soil, and subsequent re-stabilization of the impacted areas.

The Discharger will utilize source removal actions coupled with the ENTs to comply with the final effluent limitations included in this Order.

VIII. Reasonable Potential Analysis - 2009

The new data submitted was utilized to complete a new RPA. The RPA did not yield any new constituents with reasonable potential (RP).

IX. SPECIFIC RATIONALES FOR EACH OF THE NUMERICAL EFFLUENT LIMITATIONS

A. The following table presents the effluent limitations and the specific rationales for pollutants that are expected to be present in the discharge from Outfalls 011, 018 and 019. The daily maximum effluent limitations are applicable for discharges of storm water runoff from Outfall 018 and 011. The daily maximum and monthly average effluent limitations are applicable for discharges from Outfalls 011 and 019(the groundwater treatment unit).

These effluent limitations will also be used as benchmarks when evaluating the performance of BMPs implemented at Outfalls 001 (daily maximum and monthly average) and Outfall 002 (daily maximum discharge limitations only).

		Discharge	Limitations	
		Monthly	Daily	
Constituents	Units	Average	Maximum	Rationale ¹
рН	pH Units		6.5-8.5	Basin Plan
Temperature	۴		86	BPJ/Thermal Plan
Total suspended solids	mg/L	15	45	BPJ–Previous Order
BOD₅20 ℃	mg/L	20	30	BPJ – Previous Order
Oil and grease	mg/L	10	15	BPJ – Previous Order
Settleable solids	ml/L	0.1	0.3	BPJ – Previous Order
Total residual chlorine	mg/L		0.1	Basin Plan
Total dissolved solids	mg/L		950	Basin Plan
Chloride	mg/L		150	Basin Plan
Sulfate	mg/L		300	Basin Plan
Barium	mg/L		1.0	BPJ-Previous Order
Iron	mg/L		0.3	BPJ-Previous Order
Fluoride	mg/L		1.6	Basin Plan
Detergents (as MBAS)	mg/L		0.5	Basin Plan
Nitrate + Nitrate-N	mg/L		8.0	Basin Plan
Ammonia-N	mg/L	1.96©	10.1®	LA River Nutrients TMDL
Nitrate-N	mg/L		8.0	LA River Nutrients TMDL
Nitrite-N	mg/L		1.0	LA River Nutrients TMDL
Manganese	μg/L		50	BPJ-Previous Order
Cyanide	μg/L	4.3	8.5	CTR
Antimony	µg/L		6.0	Basin Plan-Title 22
Arsenic	μg/L		10	USEPA MCL
Beryllium	μg/L		4.0	Basin Plan-Title 22
Cadmium	µg/L	2.0	4.0/3.1 ^{* β}	CTR/TLA River Metals TMDL
Chromium (VI)	μg/L	8.1	16.3	CTR
Copper	μg/L	7.1	14.0	CTR
Lead	μg/L	2.6	5.2	CTR
Mercury	μg/L	0.05	0.1	CTR
Nickel	μg/L	35	96	CTR
Selenium	μg/L	4.1	8.2/5 ^{#β}	CTR/LA River Metals TMDL

¹ The rationale includes plans, policies, regulations, and other sources of effluent limitations. Basin Plan is Water Quality Control Plan Los Angeles Region, BPJ is Best Professional Judgement, TMDL is Total Maximum Daily Load, CTR is California Toxics Rule (40 CFR Part 131).

* Effluent limit applies only during wet weather discharges.

* Effluent limit applies only during dry weather discharges.

© Thirty day average at ph = 7.9 and 20°C, when hourly samples are collected and composited or only one grab sample is collected.

^B This effluent limit shall be deemed vacated at such time as Regional Board Resolutions R05-006 and R05-007 are vacated in compliance with a writ of mandate in the matter of Cities of Bellflower et al v. State Water Resources Control Board et al, Los Angeles Superior Court # BS101732. The Regional Board shall provide notice to the discharger of any such action.

		Discharge	Limitations	
		Monthly	Daily	
<u>Constituents</u>	<u>Units</u>	Average	<u>Maximum</u>	Rationale ¹
Silver	μg/L	2.0	4.1	CTR
Thallium	μg/L		2.0	Basin Plan
Zinc	μg/L	53.6	119	CTR
1,1-Dichloroethylene	μg/L	3.2	6.0	CTR/BPJ-Title 22
Trichloroethylene	μg/L		5.0	BPJ/Basin Plan-Title 22
Perchlorate	μg/L	·	6.0	BPJ/DHS Action Level
2,4,6-Trichlorophenol	μg/L	6.5	13.0	CTR
2,4-Dinitrotoluene	μg/L	9.1	18.3	CTR
Alpha-BHC	μg/L	0.01	0.03	CTR
Bis(2-ethylhexyl)phthalate	μg/L		4.0	Basin Plan/Title 22
N-Nitrosodimethylamine	μg/L	8.1	16.3	CTR
Pentachlorophenol	μg/L	8.2	16.5	CTR
TCDD	μg/L	1.4E-08	2.8E-08	CTR
Radioactivity		· · · · · · · · · · · · · · · · · · ·		
Gross Alpha	pCi/L		15	BPJ/Basin Plan
Gross Beta	pCi/L		50	BPJ/Basin Plan
Combined Radium-226 &				
Radium-228	pCi/L		5	BPJ/Basin Plan
Tritium	pCi/L		20,000	BPJ/Basin Plan
Strontium-90	pCi/L		8	BPJ/Basin Plan

B. Following are the effluent limitations and the specific rationales for pollutants discharged from Outfalls 003 through 010. The effluent limitations are effective on the effective date of the permit for Outfalls 003 through 007 and 010. Discharges from Outfalls 008 and 009 must demonstrate compliance with the final effluent limitations after May 17, 2010. During the interim time period (June 10, 2009 through May 17, 2010) the final limitations serve as benchmarks at Outfalls 008 and 009.

		Discharg	e Limitations	
		Monthly	Daily	
<u>Constituents</u>	<u>Units</u>	Average	<u>Maximum</u>	Rationale
pH	pH Units		6.5-8.5	Basin Plan
Oil and grease	mg/L		15	BPJ
Chloride	mg/L		150	Basin Plan
Sulfate	mg/L		250 ^{2a}	Basin Plan
Sulfate	mg/L		300 ^{2b}	Basin Plan
Boron ¹	mg/L		1.0	Basin Plan
Fluoride	mg/L		1.6	Basin Plan
Nitrate + Nitrate-N	mg/L		10.0 ^{2a}	Basin Plan

One hour average WLA at 7.9 pH and 20°C, applies if hourly samples are taken throughout the storm and each is analyzed. No single sample may exceed the 10.1 mg/L limit.

¹ Limit is for discharges for Outfalls 003 through 007, 009, and 010 which flows to Calleguas Creek. It is not applicable to discharges from Outfall 008 to Dayton Canyon Creek.

CA0001309

The Boeing Company Santa Susana Field Laboratory FACT SHEET

		Discharg	e Limitations	
		Monthly	Daily]
<u>Constituents</u>	<u>Units</u>	Average	Maximum	Rationale
Nitrate + Nitrate-N	mg/L		8 ²⁶	Basin Plan
Total dissolved solids	mg/L		850 ^{2a}	Basin Plan
Total dissolved solids	mg/L		950 ²⁶	Basin Plan
Ammonia-N ^(Outfall 008 only)	mg/L		<u>10.1</u> ®	LA River Nutrients TMDL
Nitrate-N ^(Outfall 008 only)	mg/L		8.0	LA River Nutrients TMDL
Nitrite-N ^(Outfall 008 only)	mg/L		1.0	LA River Nutrients TMDL
Selenium (Outfall 008 only)	μg/L		5 ^{#β}	LA River Metals TMDL
Zinc (Outfall 008 only)	μg/L		159* ^β	LA River Metals TMDL
Antimony	μg/L		6.0	Basin Plan/Title 22
Cadmium	μg/L		4.0/3.1* ^β	CTR/LA River Metals TMDL
Copper	μg/L		14.0	CTR
Mercury	μg/L		0.13	Calleguas Creek Metals TMDL
Nickel	μg/L		100	Calleguas Creek Metals
				TMDL/Basin Plan (Title 22)
Thallium	μg/L		2.0	Basin Plan
Lead	μg/L		5.2	CTR
TCDD	μg/L		2.8E-08	CTR
Perchlorate	μg/L		6.0	BPJ/ DHS Notification Level
Radioactivity				
Gross Alpha	pci/L		15	Basin Plan/Title 22
Gross Beta	pci/L		50	Basin Plan/Title 22
Combined Radium-226				
& Radium-228	pci/L		5	Basin Plan/Title 22
Tritium	pci/L		20,000	Basin Plan/Title 22
Strontium-90	pci/L		8	Basin Plan/Title 22

^{2a} This limit is for discharges which flow to Calleguas Creek from Outfalls 003 through 007, 009, and 010.

		Discharge	Limitations	
		Monthly	Daily	
Constituents	<u>Units</u>	<u>Average</u>	<u>Maximum</u>	Rationale
pH	pH Units		6.5-8.5	Basin Plan
Oil and grease	mg/L	-	15	BPJ
Chloride	mg/L		150	Basin Plan
Sulfate	mg/L		300	Basin Plan
Fluoride	mg/L		1.6	Basin Plan
Nitrate + Nitrate-N	mg/L		8	Basin Plan
Total dissolved solids	mg/L		950	Basin Plan
Settleable solids	ml/L		0.3	Basin Plan
Total suspended solids	mg/L		45	BPJ
Ammonia-N	mg/L		10.1®	LA River Nitrogen TMDL
Nitrate-N	mg/L		8.0	LA River Nitrogen TMDL
Nitrite-N	mg/L		1.0	LA River Nitrogen TMDL
Cadmium	μg/L	[.]	3.1* ^β	LA River Metals TMDL
Selenium	μg/L		5 ^{# β}	LA River Metals TMDL
Zinc	μg/L		159* ^β	LA River Metals TMDL
Copper	μg/L		13.5	CTR
Mercury	μg/L		0.10	CTR /
Lead	μg/L		5.2	CTR
TCDD	μg/L		2.8E-08	CTR
Naphthalene	μg/L		21	BPJ
Total Petroleum Hydrocarbons	μg/L		100	BPJ
Ethylene dibromide	μg/L		50	BPJ
Tertiary butyl alcohol	μg/L		12	BPJ
1,4-dioxane	μg/L		3	BPJ
Perchlorate	μg/L		6.0	BPJ/ DHS Notification
	. •			Level

C. Following are the benchmarks and the specific rationales for pollutants discharged in storm water runoff from Outfalls 012 through 014.

X. Receiving Water Limitations

A. The discharge shall not cause the concentration of constituents in Arroyo Simi, a tributary of Calleguas Creek, in excess of the following limitations.

Constituents	<u>Units</u>	Discharge Monthly Average	Limitations Daily Maximum	Rationale
Chlorpyrifos	μg/L		0.02	Toxicity TMDL
Diazinon	μg/L		0.16	Toxicity TMDL
Chlordane	μg/L		0.001	OC Pest & PCBs TMDL
4,4-DDD	μg/L		0.0014	OC Pest & PCBs TMDL
4,4-DDE	μg/L		0.001	OC Pest & PCBs TMDL

		<u>Discharge</u>	Limitations	Rationale
Constituents	<u>Units</u>	Monthly Average	Daily Maximum	
4,4-DDT	μg/L		0.001	OC Pest & PCBs TMDL
Dieldrin	μg/L		0.0002	OC Pest & PCBs TMDL
PCBs	µg/L		0.0003	OC Pest & PCBs TMDL
Toxaphene	μg/L		0.0003	OC Pest & PCBs TMDL

XI. Receiving Water Sediment Effluent Limitations

A. Final Ambient WLAs for Pollutants in Sediment for Storm Water Dischargers

The following are the final ambient WLAs for storm water permittees that were established in the Calleguas Creek OC Pesticides & PCBs TMDL. They are measured as in-stream annual averages at the base of each subwatershed where the discharges are located.

The final WLAs must be achieved and become sediment limitations after the sampling indicates that the Discharger is able to comply with the final WLAs or at the end of the 20-year compliance schedule specified in the TMDL (March 24, 2026), which ever occurs first. In either event, the permit will be reopened at that time to include appropriate sediment limitations.

Constituents	<u>Units</u>	Discharge Monthly Average	Limitations Daily Maximum	Rationale
Chlordane	μg/g		0.0033	OC Pest & PCBs TMDL
4,4-DDD	μg/g		0.002	OC Pest & PCBs TMDL
4,4-DDE	μg/g		0.0014	OC Pest & PCBs TMDL
4,4-DDT	µg/g		0.0003	OC Pest & PCBs TMDL
Dieldrin	μg/g		0.0002	OC Pest & PCBs TMDL
PCBs	μg/g		0.12	OC Pest & PCBs TMDL
Toxaphene	μg/g		0.0006	OC Pest & PCBs TMDL

B. Interim Ambient WLAs for Pollutants in Sediment for Storm Water Dischargers

The following sediment interim WLAs for Arroyo Simi are effective June 26, 2014 (five years from the effective date of this permit).

0	1	Discharge	Limitations	Rationale
Constituents	Units	Monthly Average	Daily Maximum	
Chlordane	μg/g		0.0033	OC Pest & PCBs TMDL
4,4-DDD	μg/g		0.014	OC Pest & PCBs TMDL
4,4-DDE	μg/g		0.17	OC Pest & PCBs TMDL
4,4-DDT	μg/g		0.025	OC Pest & PCBs TMDL
Dieldrin	μg/g		0.0011	OC Pest & PCBs TMDL
PCBs	μg/g		25.7	OC Pest & PCBs TMDL
Toxaphene	μg/g		0.23	OC Pest & PCBs TMDL

XII. Monitoring Requirements

A. Effluent Monitoring

To access the impact of the discharge to the beneficial uses of the receiving waters, the Discharger is required to monitor the conventional and priority pollutants and other identified parameters.

B. Storm Water Monitoring and Reporting

Storm water runoff discharges from the SSFL are subject to requirements stipulated in this NPDES permit and the Discharger is required to comply with all applicable provisions of the Storm Water Pollution Prevention Plan (Attachment A of the Order). This plan includes requirements to develop, implement, and when appropriate update a Storm Water Pollution Prevention Plan (SWPPP) along with Best Management Practices (BMPs) with the goal of preventing all pollutants from contacting storm water and with the intent of keeping all contaminants of concern from moving into receiving waters. The BMPs are designed to treat flows generated by storm water runoff from a storm depth up to 2.3 inches to meet the final effluent limitations.

C. Receiving Water Monitoring and Reporting

The Calleguas Creek Toxicity TMDL and the Calleguas Creek OC Pesticides & PCBs TMDL include receiving water concentrations that are to be accomplished utilizing BMPs. The OC Pesticides & PCBs TMDL includes sediment contaminant concentrations for tributaries of Calleguas Creek as well. This permit includes monitoring requirements to demonstrate compliance with the stipulated effluent limitations.

A requirement has also been included to require priority pollutant monitoring in the Arroyo Simi and in Bell Creek once during the five year permit term.

D. Sediment Monitoring and Reporting

The Calleguas Creek OC Pesticides & PCBs TMDL includes waste load allocations and a requirement for monitoring of the sediment. The TMDL stipulates that compliance with the sediment based WLAs is measured as an in-stream annual average at the base of each subwatershed where the discharges are located.

E. Bioassessment Monitoring

The goals of the bioassessment monitoring for the Arroyo Simi and Los Angeles River are to:

- Determine compliance with receiving water limitations;
- Monitor trends in surface water quality;
- Ensure protection of beneficial uses;
- Provide data for modeling contaminants of concern;

- Characterize water quality including seasonal variation of surface waters within • the watershed;
- •
- Assess the health of the biological community; and Determine mixing dynamics of effluent and receiving waters in the estuary. •

.

.

Boeing SSFL Outfalls 001 and 002 (CA0001309, C1-6027)

						CTR C	RITERIA										HUMAN HEALTH CALCULATIONS		
											REASONA	BLE POT	ENTIAL	ANALYSI	S (RPA)				
	•				Frest	water	Human	Health	Basin Plan									Organisns C	nly
							Mat		-			TING		TIONS	TI 2	Tian 7			
					C acute #	C chronic =	applicable C		Title 22		MEC >=	Need		Need	other info	liel ? -			
CTR#	DATE	Units	cv	MEC	CMC tot	CCC tot	hh W&O	C hh O	GWR	Lowest C	Lowest C	limit?	B>C	limit?	?	limit?	ECA = C hh O	multiplier	MDEL hh
					•							Go to							
1	Antimony	µg/L	0.6	0.43	NONE	NONE	14	4300	6	6.0	No	Tier 2	No	NO	Yes	Yea	4300	2.01	8627
2	Arsenic	มด/	0.6	67	340	150	NONE	NONE	10	10.0	No	Tier 2	No	NO	NO	NO	NONE	2.01	1
		100-								1010								2.01	
3	Beryllium	µg/L	0.6	11	NONE	NONE	Narrative	Narrative	4	· 4.0	YES	Yes	No	Yes	Yes	Yes	Narrative	2.01	<u>.</u>
Ι.	0.1.1.1								_		1								1
4		19/L	0.6971	0,9	4.0	2.4	Narrative	NAFFALIVE	5	2.4	TES	Tes	NO	188	105	165	Marrative	2.01	
5a	Chromlum III*	µg/L	2.2223	100	.1741	209	Narrative	Narrative	· 50	50,0	YES	Yes	No	Yes	Yes	Yes	Narrative	2.01	
												Go to	[
5b	Chromium Vi	µg/L	0.6	0	16.3	11.5	Narrative	Narrative		11.5	No	Tler 2	No	NO	NO	NO	Narrative	2.01	<u> </u>
6	Copper*	ug/L	1.5861	100	13.5	9.4	1300	NONE	•	9.4	YES	Yes	No	Yes	Yes	Yes	NONE	2.0	ł
7	Lead*	ug/L	5.1437	160	82.2	3.2	Narrative	Narrative		3.2	YES	YES	No	NO	NO	NO	Narrative	2.0	
я	Marcury		0 8827	0.22	Basaryad	Reserved	. 0.06	0.054		0.05	VES	Var	No	Vae	Yas	Yee	0.051		0 10
		н а н	0.0037	0.52	110361980	1/0301484	0.03	0,031		0.03	103	105		199	105	165	0.031	2.0	
9	Nickel*	µg/L	0.6	23	471	52	<u>510</u>	4600	100	52.16	No	Yes	No	Yes	Yes	Yes	4600	2.01	9228
								•			1								
					i l						1	Go to	1						
10	Selenium	µg/L	0.8864	0.63	Reserved	5	Narrative	Narralive	50	5.00	No	Tior 2	No	NO	NO	NQ	Nerralive	2.01	
	011											Go to						•	
11	Silver	hôvr	0.6	0,14	4	none	NONE	NONE		4.00	No	Ge to	NO_	NO .	NO	NO	NONE	2.01	
12	Thailium	μg/L	0.6	0.46	NONE ·	NONE	1.7	6.3	. 2	2.00	No	Tier 2	No	NO	NO	NO	6.3	2.01	13
13	Zinc*	<u>µg/L</u>	1,191	160	122.7	121.7	none	NONE		121.70	YES	Yes	No	Yes	Yes	Yes	NONE	2.01	<u> </u>
14	Cyanide	րց/Լ	0.6	18	22	5.2	700	220.000	200	5.2	YES	YES	No	YES	YES	YES	220000	2.0	441362
		Fibers/										Go to ·					· · ·		
· 15	Asbeslos	<u>L</u>			NONE	NONE	7,000,000	NONE	7x10^6	7x10^6	No	Tier 2	No	NO	NO	NO			
16	2,3,7,8-TCDD (Dioxin)	µg/L	1.2325	5E-06	NONE	NONE	1.3E-08	1.4E-08	3x10^-5	1.4E-08	YES	Yes	Yes	Yes	Yes	Yes	0.000000014	2.01	2,81E-08
		<u> </u>										Go to							
30	1,1-Dichloroethylene	μg/L	0.6		NONE	NONE	0.057	3.2	6	3.2	No	Tier 2	No	NO	NO .	NO	3.2	2.01	6
	T-2-61					Neve					l.,	Go to	I				<u>ا</u>		· .
43	Inchiordeinylene	Lhdir	1.4346	2.4	NONE	NONE	2.7	81	5	5	No	Go lo	No	NO	Yes	Yes	81	2.01	163
53	Pentachlorophenol	µg/L	0.6	L	32,54	24.97	0.28	8.2			No	Tier 2	No ·	NO	Yes	Yes	. 8.2	2.01	16
												Go to							
55	2,4,8-Inhiorophenol	µg/L	0.6		NONE	NONE	2.1	6,5		6,5	No	Fier 2	No	NO NO	NO	NO	6,5	2.01	13
68	Bis(2-Ethylhexyl) Phihalate	µg/L	0.9114	5.7	NONE	NONE	1.8	5.9	4	4	No	YES					5.9	2.01	12
										1		Go to		1			T		
	2,4-Dinitrololuene	µg/L	0.6	0.23	NONE	NONE	0.11	9.1		9.1	No	Tier 2	No	NO	NÖ	NO	9.1	2.01	<u> 18</u>
96	N-Nitrosodimethylamine	ug/L	0.6	l	NONE	NONE	0.00069	8.1		8.1	No	Tier 2	No	NO	Yes	Yes	B.1	2.01	16
										1		Go to			· · · ·		1		
103	alpha-BHC	µg/L	0.6	J	NONE	NONE	0.0039	0.013	l Crister	0.013	No	Tier 2	No	L NO	Yes	Yes	0.013	2.01	0
	These metals are hardness	l	r	r	production in the	r	r de la Calegoria. F	andr 2009 I	esa®≤ter. I	pares acto	12612-28876	1 and the second	6385-1	(188-)	n se an	p Stat	assi di Westar	gara.erad I	1 ^{1.1.8} (1.1.2 1.4
	dependent. CTR criteria was								· ·										
	calculated using an average															•	1		
	receiving water hardness of 100	l '					1				1						1		
	mg/L,	L Jutfall 01	Q is dies!	harming	Effluent itent	e tro honch-	arke at Out-1	0.001 and 00	1	<u> </u>						<u> </u>			<u> </u>
	anon out and ord only wildli t		- 14 4100							,	•	•				•	•	1	

4/27/2009

F:\TableR1-Priority Pollulants-1and2.xis

1/2

Boeing SSFL Outfalls 001 and 002 (CA0001309, CI-6027)

		T	L	AQUATI	C LIFE CALCU	LATIONS		A	QUATIC LIFE	CALCULATIC	ONS	[
1					Freshwater				Fresh	water		PROPOS	ED LIMITS	
			ECA acute multiplier		ECA chronic			AMEL multiplier		MDEL multiplier				
CTR#	IDATE	Units	{p.7}	LTA acute	multiplier	LTA chronic	Lowest LTA	<u>(n</u> ≖4)	AMEL aq.life	(n=4)	MDEL adlife	Lowest AMEL**	Lowest MDEL	Recommendation BPJ used to implement
1	Anlimony	µg/L_	0.32		0.53			1.6	i	3,1			. 6	Basin Plan ilmit
2	Arsenic	pg/L	0.32	109	0.53	79.1	79,1	1.6	123	3.1	246			EPA MCL.
3	Beryllium	ug/L	0.32		0.53			1.6	8	3.1		_	4	BPJ used to implement Basin Plan limit
4	Cadmium*	µg/L	0.32	1.5	0.53	1.3	1.3	<u>.</u> 1.0	2	3.1	4	2.0	4	Limit Based on CTR
5a	Chromium III*	pg/L	. 0,32	559	0.53	110.4	110.4	1.6	171	3.1	344	·	· -	Interim Monitoring
5b	Chromium VI	µg/L	0.32	5	0.53	. 6.0	5.2	1.6	i 8	3.1	16	8.1	16	Limit Based on CTR
	Copper*	ug/L	0.32	4.3	0.53	4.9	4.3	. 1.6	7.1	3.1	13.5	7.1	14	Limit Based on CTR
	Lead	hdvr.	0.32	26.4	0.53	1.7	1.7	1.6	2.6	3.1	5.2		5.2	Limit Based on CIR
8	Mercury	<u>µg/L</u>	0.32	!	0.53			1.6	i	3.1		0.05	0.10	Limit Based on CTR
9	Nickel*	µg/L_	0.32	151,2	0.53	27.5	27.5	1,6	35	3.1	96	35	96	Limit Based on CTR
10	Selenium	µg/L	0.32		0.53	· 2.6	2.6	1.6	4.1	3.1	8.2	4.1	8.2	Limit Based on CTR
11	Silver*	vial	0.32	13	0.53		13	16	. 20	31	4		4.0	1 imit Based on CTR
12	Thallium	jug/L	0.32	1	0.53			1.6		3.1		-	. 2	BPJ used to Implement Basin Plan limit
13	Zinc*	µg/L	0.32	39.4	0.53	64.2	39.4	1.0	i 54	3.1	<u>119</u>	53.6	119	Limit Based on CTR
14	Cyanide	udfL	0.3	7.1	0.53	2.7	2.7	· 1.6	4.3	3.1	8.5	4.3	8.5	Limit Based on CTR
15	Asbestos	Fibers/			[Interim Monitoring - No CTR-based Limit
16	2,3,7,8-TCDD (Dloxin)	µg/L	0.32	2	0.53			1.0	5	. 3.1	•	1.40E-08	2,8E-08	Limit Based on CTR
30	1,1-Dichloroelhylene	µg/L	0.32	2	0.53			1.6	5	3.1		3.2	6.0	Limit Based on CTR/BPJ Title-22
43	Trichloroethylene	ug/L	0.32	2	0.53			1.0	a	3.1	-		5	Limit based on BPJ/Basir Plan-Title 22
53	Pentachlorophenol	ug/L	0.32	10.4	0.53	13.16836558	10.4	1.0	5 16	3.1	33	8.2	16	Limit Based on CTR
55	2,4,6-trihlorophenol	µg/L_	0.32	2	0.53			1.0	3	3.1		. 6.5	13.0	Limit Based on CTR
68	Bis(2-Ethylhexyl) Phthalate	ug/L	0,32		0.53			1.6	3	3.1			4	Limit Based on CTR
82	2.4-Dinitrololuene	ug/L	0.32	2	0.53			1.0	3	3.1		9.1	18.3	Limit Based on CTR
96	N-Nitrosodimethylamine -	ug/L_	0.32	2	0.53	·		1.0	3	3.1		8.1	16.3	Limit Based on CTR
103	alpha-BHC	µg/L	0.32	2	0.53			1.6	, ,	3.1		0.01	0.03	Limit Based on CTR
IFOOTN	OTE: These metals are hardness dependent. CTR critoria was colculated using an avorago receiving water hardness of 100 mg/L.		-				ر بر بر بر می این این این این این این این این این ای						osoa Alto la	ainiti Districture

4/27/2009

F:\TableR1-Priority Pollutants-1and2.xls

2/2

Reasonable Potential Analysis for Non-Priority Pollutants in Storm Water The Boeing Company (Santa Susana Field Laboratory) Outfalls 001and 002 (CA0001309, CI-6027)

CONSTITUENT	Units	Number of Samples	Maximum Observed Effluent Concentration	cV	Multiplier	Projected Maximum Effluent Concentration (99/99)	Dilution Ratio	Background Concentration	Projected Maximum Receiving Water Concentration	Water Quality Objectives	BU - Beneficial use protection NC-Human noncarcinogen AP-Aquatic life protection	REASONABLE POTENTIAL
Iron			07.00	0.40	0.00		0		640	0.2	DU	VEO
Manganaga	mg/L	25	97.00	2.43	0.08	454050	<u> </u>		154050	0.3		
Borium	mg/L.	11 E	11000	3.70	14.02	154250	0,		154250	00	DU DU	
Sattlooblo solida	mg/L	5	0.07	0.33	- 2.27	50.90	0		50.90			
Total Dissolved Solids	mg/L	58	1000	4.93	0.09	1600 00	0		1609.00	950		
Total Suspended solids	mg/L	57	33000.00	6 71	5.88	193964	0		193964	45	BU	YES
BOD=20°C	ma/l	58	33	2.03	3.14	103 72	0		103 72	30	BU	YES
Oil and Grease	mg/L	58	63	1 14	2 27	14.29	0	<u> </u>	14 29	15	BU	NO
Chloride	mg/L	58	56	0.53	1.56	87.48	0		87.48	150.00	BU	NO
Fluoride	mg/L	7	0.45	0.00	1.00	0.72	0	· · · · · · · · · · · · · · · · · · ·	0.72	1 60	BU	NO
Sulfate	mg/L	58	400	0.25	1.00	780.69	0		780 69	300	BU	YES
Gross Alpha	nci/l	15	701	3.61	15.75	11039.20	0		11039.20	15	BU	YES
Gross Beta	pci/l	11	426	2.85	17.38	7404.26	0		7404.26	50	BU	YES
Strontium	pci/L	9	0.16	2.69	20.29	3.25	0		3.25	8	BU	NO
Radium 226 and 228	pci/L	8	17.0	2.32	19.12	325.25	0		325.25	5	BU	YES
Tritium	pci/L	9	157	-7.84	67.88	10658	0		10658	20000	BU	NO
Nitrate + Nitrite as Nitrogen	mg/L	51	10	1.78	3.16	32	0		32	8	BU	YES
Surfactants (MBAS)	mg/L	58	4.4	2.50	3.53	16	0		16	0.5	BU	·.YES
Residual Chlorine	mg/L	4	0.14	0.62	4.96	1	· 0		1	. 0.1	BU	YES
Ammonia as Nitrogen	mg/L	59	18	2.14	3.20	58	0		58	10.1	BU	YES
Nirate as Nitrogen	mg/L	12	3.8	1.14	5.42	21	0		21	8.0	BU	YES

Table A3

F:\Table A3 Non-PPol RPAOutfall001and002.xis

1

Boeing SSFL Outfalis 003 -007, and 010 (CA0001309, CI-6027)

						·	CTR CR			-	REASONABLE POTENTIAL ANALYSIS (RPA)								
	:				·	Fresh	waler	Humai	n Health	Basin Plan							(NI A)		
CTR#	DATE	Units	cv	MEC		C acute ≃ CMC tot	C chronic = CCC tot	Not applicable C hh W&O	Chh O	Title 22 GWR	Lowest C		MEC >= Lowest C	Tier 1 - Need limit?	B (RD- 1)	B>C	Tier 2 - Need limit?	Tier 3 - other info. ?	Tier 3 - need limit?
-	Antimony	unt	2 83	35	35	NONE	NONE	44	1300		6.0		VEQ	Go to		No	Vac	Vac	VER
·'		Hare	2.00			NORL	NONL		4300	· ·	0.0			Go to		NU	163	103	165
2	Arsenic	µg/L	0.6979	10	10	340	150	NONE	NONE	10	10.0		No	Tier 2 Go to		No	NO	NO	NO
4	Cadmium*	µg/L	1.66	1.6	1.6	4.6	2.4	Narrative	Narrative	5	2.4		No	Tier 2		No	NO	Yes	YES
5a	Chromium III*	µg/L	1.0626	13	13	1741	209	Narrative	Narrative		209,3		No	Go to Tier 2		No	NO	NO	NO
555	Chromium VI	uni	0.6		0	16.3		Marraliua	hiarrathra	50	- 04		No	Go to		No	NO	NO	NO
<u></u>		129/1	0.0		0	10.3		Nanauve	IVAIIAUVE		5.4		110	1101 2	· ·				
6	Copper*	ua/L `	1.1	34	. · 34	13.5	9.4	1300	NONE		9.4		YES	Yes		No	Yes	Yes	YES
	l ord*	uat	2.07	70	70	× 02.9		Maryathua	Norrathro				VEC	Vac		No	Yaa	Vor	VES
		149rs	<u></u>	15				Nallauve	Hairauve		U,Z		120	103			163	103	1
	Mercury	µg/L	1.2	0.89	0.89	Reserved	Reserved	0.05	0.051	2	0.05		YES	Yes Go to		No	Yes	Yes	YES
	Nickel*	µg/L_	1.2451	· 15	15	470.94	52.1564694	610	4600	100	52.16		No	Tier 2	· · · · · ·	No	NO	Yes	Yes
		-																	
10) Selenium	uo/L	0.6	4.7	4.7	Reserved	F	Narralive	Narralive	50	5:00		NO	Go to Tier 2		No	NO	Yes	Yes
	Churt	1	0.0						NONE		4.00		A la	Go to	1	bla	10	110	10
¹		<u>µg/L</u>	0.0	3.1		4	none	NONE	NONE		4.00			Go to				NO	
12	2 Thallium	µg/L	0.6	0,34	0,34	NONE	NONE	1.7	6.3	2	2.00		No	Tier 2	ļ	No	NO	NO	Yes
	1	1.					-				•					1			
1:	Zinc*	µg/L	1.2906	91	91	· 122.7	121.7	none	NONE		121.70		No	Go to Tier 2		No	NO	Yes	Yes
	Cvanida	ual	0.6	20	20		5.2	700	220.000	200	52		No	No		No	NO	NO	No
- <u>-</u> -	- Cyanas		0.0	2.3	2.3			/00	220,000	200	0,2								1.0
				1				1				1.						Ì	
1	i 2,3,7,8-TCDD (Dioxin)	µg/L	0.6	2E-04	0.00019	NONE	NONE	1.3E-08	1.4E-08	3x10^-5	1.4E-08		YES	Yes		No	Yes	Yes	YES
20	Bromoform	µg/L	0.6	3,1	3.1	NONE	NONE	4.3	360		360	ND	No	Tier 2		No	NO	NO	NO
23	Dibromochloromethane	µg/L	0,6	2.8	2.8	NONE	NONE	0.401	34		34	ND	No	Go to Tier 2		No	NO	NO	NO
20	Malhul ablarida		0.60	0.42	0.42	NONE	NONE	-	Marathan		Alemetica	ND	No Criteria	Go to	Nod	-1-	10	NO	NO
		<u> </u>	0.00	0.43		NONE	NUNE	Ivariative	Natianve		Narrative		Avasable	Go to			NU	NO	
36	Methylene chloride	µg/L	0.60	1.40	1.4	NONE	NONE	4.7	1,600	<u> </u>	1,600	ND	No .	Tier 2 Go to		No	NO	NO	<u></u>
4.	1,1,1-Trichloroethane	µg/L_	0.6	0.76	0.76	NONE	NONE	Narrative	Narrative	200	200		No	Tier 2		No	NO	NO	NO
43	Trichloroethylene	µg/L	0.6	0.66	0.66	NONE	NONE	2.7	81	5	5		No	Go to Tier 2		No	NO	NO	NO
FOOTN	OTE: These metals are hardness	1	······		r				2. <u></u>	T			1	1	T			r	· [
*	dependent. CTR criteria was calculated using an average receiving water hardness of 100							-				-	-						

1/3

F:\TableR1-Priority Pollulants-StormWater2009.xls

.

4/27/2009 Outfalls 003-007,010

.

Boeing SSFL Outfalls 003 -007, and 010 (CA0001309, CI-6027)

			TOTA DESCRIPTION OF A SERVICE	HUMAN	HEALTH	CALCULATION	S		
	N		and Wa	ter:& Organism			Organisns O	niy	
CTR#	DATE	Units	AMEL hh = ECA = C hh W &O	MDEL/AMEL multiplier (n=4)	MDEL hh	AMELhh = ECA = C hh O	MDEL/ AMEL multiplier	MDEL hh	ECA acute muitiplier (p.7)
1	Antimony	µg/L		3.24		4300	3.24		0.10
2	Arsenic	µg/L		2.15		NONE	2.15		0.28
4	Cadmium*	µg/L		2.96		Narrative	2.96		0.13
5a	Chromlum III*	µg/L		2.58		Narrative	2.58		0.19
5b	Chromium VI	µg/L		•		Narrative	2.01		0.32
6	Copper*	μg/L		2.63		NONE	2.6		0,18
7	Lead*	µg/L		3.26		Narrative	3.3		0.09
	Mercury	µg/L	0.05	2.71	0.135726	0.051	2.7	0.14	0.17
9	Nickei*	ug/L		2.73		4600	2.73	12564	0.17
10	Selenium	µg/L		2.01		Narrative	2.01		0.32
11	Silver*	µg/L		2.01		NONE	2.01	· ·	0.32
12	Thallium	µg/L		2.01		6.3	2.01	13	0.32
13	Zinc*	ug/L		2.76		NONE	2.76		0.16
14	Cyanide	ug/L	700	2.01	1404.332	220000	2.0	· 441362	0.32
		1	· ·						
16	2,3,7,8-TCDD (Dioxin)	µg/L		2.01		0.000000014	2.01	2.81E-08	- 0,32
20	Bromoform	µg/L		2.01			2.01		0.32
23	Dibromochloromelhane	µg/L	0.401	2.01	0.804482		2.01		0.32
35	Methyl chloride	ug/L		2.01			2.01		0.32
36	Melhylene chloride	µg/L		2.01			2.01	·	0,32
41	1.1.1-Trichloroethane	ug/L		2.01		· ·	. , 2.01		0.32
43	Trichloroethylene	µg/L		2.01			2.01		0.32
FOOTNO	DTE:		1			·····	, <u></u>	<u>je za s</u>	
•	dependent. CTR criteria was calculated using an average receiving water hardness of 100 mo/L.							· .	

)

2/3

F:\TableR1-Priority Pollutants-StormWater2009.xls

...

 $\langle \cdot \rangle$

•• ••

4/27/2009 Outfails 003-007,010

Boeing SSFL Outfalls 003 -007, and 010 (CA0001309, CI-6027)

	1		AQUATI	C LIFE CALCU	LATIONS		A	QUATIC LIFE	CALCULATIC	NS			
				Freshwater				Fresh	water		PROPOS	SED LIMITS	
CTR#	DATE	Units	LTA acute	ECA chronic	LTA chronic	Lowest LTA	AMEL multiplier (n=4)	AMEL ag.life	MDEL multiplier (n=4)	MDEL aglife	Lowest AMEL	Lowest MDEL	Recommendation
		<u> </u>							· · · ·				RP Limit based Basin
1	Antimony	µg/L		0,15			3.24		10.5			6	Plan/Title 22.
2	Arsenic	µg/L_	95.8	0.48	72.2	72.2	1.65	119.1	3.5	256.3			Interim Monitoring - No RP
4	Cadmium*	µg/L	0.6	0.24	· 0.6	.0.6	2.53	1.5	. 7.5	4.4		4	BPJ used to apply limit
<u>5a</u>	Chromium III*	µg/L	336.2	0.36	74.3	74:3	2.01	149.0	5.2	384.7			Interim Monitoring - No CTR based Limit
5b	Chromium VI	µg/L	5.2	0.53	4.9	4.9	1.55	7.7	3.1	15.4			Interim Monitoring - No CTR based Limit
	4				,								
6	Copper*	µg/L	2.5	0.34	3.2	2,5	2,1	5.1	5,4	13.5	· •••	14	RP limit based upon CTR
7	Lead*	µg/L_	. 7.7	0.15	0.5	0.5	3.3	1.5	10.7	5.2		5.2	RP Limit Based on CTR
	Mercury	µg/L		0.32			2.2		5.9		·	0.130	RP limit based on CTR
9	Nickel*	µg/L	79.2	0.31	16.2	16	2.18	35.3	5.9	100.0		100	Limit Calleguas Crrek TMDI
10	Selenium	ug/L		0.53	2.6	2.6	1.55	4.1	· 3.1	8,2		5	Limit LA River TMDL
. 11	Silver*	ua/L	1.3	. 0.53		1.3	1.55	2.0	3.1	4.0	-		Interim Monitoring - No CTR based Limit
12	Thatlium	10/1		0.53			1.55		31	<u></u>		2	BPJ used to apply Basin Plan Criteria
		199.0	1	0			1.00						
1													
		ha/r	20.0	0.30	36.7	20	2,22	44.4	6.1	159.0		159	Interim Monitoring - No CTR
14	Cyanide	µg/L	7.1	0.53	2.7	2.7	1.55	i <u>4.</u> 3	3.1	8.5			based Limit
]	-		
16	2,3,7,8-TCDD (Dioxin)	µg/L		0.53			1.55	i	3.1			2.8.E-08	RP Limit Based on CTR.
20	Bromoform	. µg/L		0.53			1.55	i	3.1				Interim Monitoring - No Limi
23	Dibromochloromelhane	µg/L_		0.53			1.55		3.1				Interim Monitoring - No Limi
35	Methyl chloride	µg/L		0.53			1.55	i)	3.1			-	Interim Monitori <u>ng - No Lim</u> i
36	Methylene chloride	µg/L		0.53			1.55	;	3.1				Interim Monitoring - No Limi
41	1.1.1-Trichloroethane	uo/L		0.53			1.55		3.1		_		Interim Monitoring - No Limi
43	Trichloroethylene	uo/I		0.53			1.55		31				Interim Monitorina - No I imi
FOOTNO	OTE:							1				بورینید بورید امریک در در در میلید. میگرنگیست است در میداد میل در	
	These metals are hardness dependent. CTR criteria was calculated using an average receiving water hardness of 100 mg/L.					r							

4/27/2009 Outfalls 003-007,010

3/3

F:\TableR1-Priority Pollutants-StormWater2009.xis

Reasonable Potential Analysis for Non-Priority Pollutants in Storm water The Boeing Company (Santa Susana Field Laboratory) Outfalls 003-007,010 (CA0001309, CI-6027)

CONSTITUENT	Units	Number of Samples	Maximum Observed Effluent Concentration	cV	Multiplier	Projected Maximum Effluent Concentration (99/99)	Dilution Ratio	Background Concentration	Projected Maximum Receiving Water Concentration	Water Quality Objectives	BU - Beneficial use protection NC-Human noncarcinogen AP-Aquatic life protection	REASONABLE POTENTIAL
Total Dissolved Solids		157	000	0.95	1 27	1244.00			1344 22	850	BU	Ves
Oil and Grease	mg/L	157	33	.2 12	1.37	57 78	0	-	57 78	15	BU	YES
Boron	 	21	0.18	1.54	5.08	0.91	0		0.91	1.0	BU	NO
Chloride	ma/L	157	210	1.44	1.58	330.84	0		330.84	150	BU	YES
Fluoride	mg/L	. 9	0.46	0.23	1.61	0.74	0		0.74	1.6	BU	NO
Sulfate	mg/L	157	.180	1.41	1.57	282.30	0		282.30	250	BU	YES
Gross Alpha	pci/L	48	8.96	1.54	3.00	26.86	0		26.86	15	BU	YES
Gross Beta	pci/L	51	63.8	1.06	2.31	147.47	0		147.47	50	BU	YES
Strontium	pci/L	46	11.4	2.63	4.32	49.29	0		49.29	8	BU	YES
Radium 226 and 228	pci/L	28	2.2	· 2.31	5.83	12.63	0		12.63	5	BU	YES
Tritium	pci/L	39	106	-3.21	5.61	595	0 _		595	20000	BU	NO
Nitrate + Nitrite as Nitrogen	mg/L	157	51	2.53	1.84	94	0		94	10	BU	YES
Uranium	[pci/L	16	2.75	1.15	4.56	13	0	l	13	20	BU	NO

1

Table A3

F:\Table A3 Non-PPol RPAOutfall003-007,010.xls

Boeing SSFL. Outfalls 008 (CA0001309, CI-6027)

<u> </u>				1		CTR C	RITERIA		_	REASONABLE POTENTIAL ANALYSIS (RPA)						HUMAN HEALTH CALCULATIONS			
					Fres	hwater	Human	Health	Basin Plan	Plan								Ornaniene O	niv
CTR#	DATE	Units	cv	MEC	C acute =	C chronic =	i Not applicable C bb W&D	C bh O	Title 22	Lowest C	MEC >= Lowest C	Tier 1 - Néed limit?	B>C	Tier 2 - Need limit?	Tler 3 - other info. 7	Tier 3 - need limit?	AMELhh = ECA = C hh O	MDEL/ AMEL	MDEL hh
	1 Antimony	µg/L	0.6	0.38	NONÉ	NONE	14	4300	6	6.0	No	Go to Tier 2	No	NO	NO	NO	4300	2.01	8627
	2 Arsenic	µg/L			340	150	NONE	NONE	10	10.0	No	Go to Tier 2	No	NO	NO	NO	NONE	2.01	
	3 Beryilium	µg/L			NONE	NONE	Narrative	Narrative	4	4.0	No	Go to Tier 2	No	NO	NO	NO	Narrative	2.01	
<u> </u>	4 Cadmium*	µg/L			4.6	5 2.4	Narrative	Narrative	5	· 2.4	No	No	No	No	Yes	Yes	Narrative	2.01	
<u>5a</u>	Chromium III*	µg/L			1741	209	Narrative	Narrative	50	50.0	No	Go to Tier 2	No	Yes	NO	NO	Narrative	2.01	
<u>5b</u>	Chromium VI	µg/L_			16.3	11.5	Narrative	Narrative		11.5	No	Tier 2	No	Yes	NO	NO	Narrative	2.01	
	6 Copper*	µg/L	0.6	5	13.5	5 9.4	1300	NONE		9.4	No	Yes	No	Yes	Yes	Yes	NONE	2.0	
	7 Lead*	µg/L	0.6	6.3	82.2	2 3.2	Narrative	Narralive		3.2	YES	Go to Tier 2	No	NÓ	NO	Yes	Narrative	2.0	
	8 Mercury	µg/L	0.6		Reserved	Reserved	0.05	0.051	2	0.05	NO	Yes	No	Yes	Yes	Yes	0.051	2.0	0.10
	9 Nicke!*	µg/L	0.6	4.3	. 471	1 52	610	4600	100	52.16	No	Tier 2	No	NO	NO	NO	4600	2.01	9228
1	0 Selenium	µg/L	0.6	0.32	Reserved		Narrative	Narrative	50	5.00	No	Go to Tier 2	No	NO	Yes	Yes	Narrative	2.01	
1	1 Silver*	µg/L				1 none	NONE	NONE		4.00	No	Go to Tier 2	No	NO	NO	NO	NONE	2.01	
1	2 Thallium	µg/L	ļ		NONE	NONE	1.7	6.3	2	. 2.00	No	Tier 2	No	NO	NO	NO	6.3	2.01	13
1	3 Zinc*	µg/L	0.6	19	122.7	7 121.7	none	NONE		121.70	No	Tier 2 Go to	No	Ňo	Yes	Yes	NONE	2.01	
1	4 Cyanide	µg/L.		 	22	. 5.2	700	220,000	200	5.2	No	Tier 2				<u> </u>	220000	2.0	441362
FOOT	6 2,3,7,8-TCDD (Dioxin) IOTE: These metals are hardness dependent. CTR criteria was calculated usino an average	µg/L	0.6	1.13E-08	NONE		0.000000013	1.4E-08	3x10^-5	1.4E-08		No	<u>No</u>	<u>NO</u>	Yes	Yes ////////////////////////////////////	0.000000014	2.01	2.81E-08
<u>.</u>	receiving water hardness of 100 mg/L,.	r 2007 l	hrough D		008				-						ļ				

٠.

F:\TableR1-Priority PollutantsOutfall008.xis

4/27/2009

1/2

- TABLE R1

Boeing SSFL Outfalls 008 (CA0001309, CI-6027)

			AQUATIC LIFE CALCULATIONS					A	QUATIC LIFE (CALCULATIC	NS			
					Freebuster				Frach	wator		PPOPOS		
				i	TIESHWALEI	•			116311			FROF03		
l		l	ECA acute					AMEL		MDEL				
CTR#	DATE	tinits	multiplier	I TA acute	ECA chronic	I TA chronic	I owest I TA	multiplier (n=4)	AMEL an life	multiplier	MDEL anlife	Lowest AMEI	Lowest MDF/	Recommendation
<u>0110</u>		91,113	(19.17	17 0000	Inditipater	LINCHIONE	Lowear LIA	10	Puncie aquito	(14)	MDEC aquite	LOWEST AMLL	LOWEST MDLL	Interim Monitoring - No CTR-
1	Antimony	µg/L	0.32		0,53		· · ·	1.6		3.1		-		based Limit
,	Arsenic	uall	0.32	100	0.53	70 1	70 1	16	. 123	34	246			Interim Monitoring - No CTR-
<u>-</u>		1997-	0.02	103	0.00	10.1	75.1		120					Interim Monitoring - No CTR-
3	Beryllium	µg/L	0.32		0.53			1.6		. 3.1		-	-	based Limit
	Codmisunt		0.00			4.5		10						RP Limit Based on CTR/ LA
<u></u>		I PB/C	0.32	1.3	0.53	1.3	1.0	1.0	ź	3,1	4		3.1	Interim Monitoring -No CTR
5a	Chromium III*	µg/L	0.32	559	0.53	110.4	110.4	1.6	171	· 3.1	344			based limit
														Interim Monitoring - No CTR-
50		lhð\r	0.32	5	0.53	6.0	5.2	1.6	. 8	3.1	16		···· ·	based Limit
e	Copper*	րց/Լ	0.32	4.3	0.53	4.9	4.3	1.6	6.7	3.1	13.5	-	13.5	Limit Based on CTR
1	1	ļ	1					1						
7	Lead*	µg/L	0.32	26.4	0.53	1.7	[.] 1.7	1.6	2,6	3,1	5.2		5.2	BPJ used to implement Limit
														BPJ used to implement
⁶	simercury	ipg/L	0.32		0.53			1.0		3.1		**	0.10	Interim Monitoring - No CTR-
	Nickel*	µg/L	0.32	151.2	0.53	27.5	27.5	1.6	43	3,1	86			based limit
		•			ļ									
					1						1			Limit based on LA River
· 10	Selenium	µg/L	0.32		0.53	2.6	2.6	1.6	4.1	3.1	8		5	TMDL
	Cline +			·										Interim Monitoring - No CTR-
		lhð\r	0.32	1.3	0.53	·	1.3	1.6	2,0	3.1	4			lolerim Monitoring - No CTR-
12	2 Thallium	µg/L	0.32		0.53			1.6		3.1		-	-	based Limit
				•										RP Limit Based on CTR/
	Zinc*	µg/L	0.32	39.4	0.53	64.2	39.4	1.6	61	3.1	159		159	LA River 1 MDL Interim Monitoring - No CTR-
14	Cyanide	µg/L	0.3	7.1	0.53	2.7	2.7	1.6	4.3	3.1	8.5	-	·	based Limit
									ŀ					
FOOTN	0[2,3,7,8-1 COD (DIOXIN) OTE:	lhä\r	1		0.53	L	ļ,,	1.6	l <u></u>	3.1	kr.::::::::::::::::::::::::::::::::::::	5-75-27-27-27	<u>2.8</u> E-08	BPJ - LIMIT Based on CIR
. <u></u>	These metals are hardness		····	T		,				1.		1		
	dependent. CTR criteria was				· ·		ŀ		ļ ,			· ·		
	calculated using an average						· ·							
*	Ing/L.,			· ·				•		1				
	Data included extends for December	r 2007 tł		·[· · · · · · · · · · · · · · · · · · ·	· · · ·			1			

4/27/2009

F:\TableR1-Priority PollulantsOutfall008.xls

2/2

Reasonable Potential Analysis for Non-Priority Pollutants in Storm water
The Boeing Company
(Santa Susana Field
Outfall 008
(CA0001309, CI-6027)

CONSTITUENT	Units	Number of Samples	Maximum Observed Effluent Concentration	cv	Multiplier	Projected Maximum Effluent Concentration (99/99)	Dilution Ratio	Background Concentration	Projected Maximum Receiving Water Concentration	Water Quality Objectives	BU - Beneficial use protection NC-Human noncarcinogen AP-Aquatic life protection	REASONABLE POTENTIAL
Total Dissolved Solids	mall	10	200	0.21	1.60	462.76	0		162 76	950		Vos
Oil and Grease	mg/L	19	12	1.55	5 49	65.90	0		65.90	<u>9</u> 50 15	BU BU	YES
Chloride	mg/L	19	25	0:59	2.30	57.62	0		57.62	150	BU	NO
Sulfate	mg/L	19	21	0.55	2.20	46.29	0		46.29	300	BU	NO
Gross Alpha	pci/L	5	6.07	0.94	7.80	47.34	0		. 47.34	15	BU	YES
Gross Beta	pci/L	5	23.7	1.03	9.05	214.51	0		214.51	50	BU	YES
Strontium	pci/L	4	0.214	-214.17	9784.35	2093.85	0		2093.85	8	BU	YES
Radium 226 and 228	pci/L	3	0.5	1.21	19.27	9.71	0		9.71	5	BU	YES
Tritium	pci/L	4		-0.23	1.90	-87	0		-87	20000	BU	NO
Uranium	pci/L	3	0.682	0.53	4.73	3	0		3	20	BU	NO
Nitrate + Nitrite	Img/L	6	7.7	0.37	2.36	18	0	•	18	8	BU	YES

1

Table A3

1

F:\Table A3 Non-PPol RPAOutfall008.xls

.

Boeing SSFL Outfalls 009 (CA0001309, CI-6027)

							CTR C	RITERIA		REASONARI E POTENTIAL ANALYSIS (RPA)						JLATIONS				
					1	Frest	water	Human	Health	Basin Plan	n Plan								Organishs O	ntv
					{							T	1						ľ	
				· :	{	C nauto -	C obronio -	Not		THe 22		NEC ST	Tier 1 -		Tier 2 -	Tier 3 -	Tier 3 -		MORICAMEL	
CTR#	DATE	u.	nits	cv	MEC	CMC tot	C Chronic =	hh W&O	C hh O	GWR	Lowest C	Lowest C	limit?	B>C	limit?	other into.	limit?		multiplier	MDFI hh
		-											Go to					1011 0 101 0		
	1 Antimony	ha	g/L	0.6	1.6	NONE	NONE	14	4300	6	6.0	No	Tier 2	No	NO	NO	NO	4300	2.01	/ 8627
.	Arsenic	uc	٦Ĥ	06		340	150	NONE		10	10.0	VES	GO to	No	NO	NO -	NO	NONE	201	
<u> </u>		Ps		<u> </u>	[1						1.20	Go to							·
	3 Beryilium	μg	<u>у/L</u>	0.6		NONE .	NONE	Narrative	Narrative	4	4.0	NO ·	Tier 2	No	NO	NO	NO	Narrative	2.01	
Ι.	4 Cadmium*		-/1	0.60	0.64	46	24	Narralive	Narrative	5	24	No	No	No	No	Yes	Yes	Narrative	2.01	
		PS		0.00	0.04			Trainauro	inditude .				Go to			100	1.00	Raitabro		
<u>5a</u>	Chromium III*	<u> </u> µg	1/L			1741	209	Narrative	Narrative	50	50.0	No	Tier 2	No	Yes	NO	NO	Narrative	2.01	
56	Chromium VI	00	5/L			16.3	11.5	Narralive	Narrative		11.5	No	Tier 2	No	Yes	NO .	NO	Narrative	2.01	
		1						1000				1.00						have		
	bicopper	146	yr	0.6	12	13.5	9.4	1300	NONE		9.4	YES	Yes	NO	Tes	Yes	Yes	NUNE	2.0	
1			. 6										Go to		1					[
	/ Lead	h	g/L	0.6	2.9	62.2	3.2	Narrative	Narrative	· · · · · ·	3.2	NO	Lier 2	NO	NO		Yes	Narrauve	2.0	
	8 Mercury	. µg	g/L	0.6	0.073	Reserved	Reserved	0.05	0.051	· 2	0.05	YES	Yes	No	Yes	Yes	Yes	0.051	2.0	0.10
	9 Nickel*		-/1	90	26	471	52	610	4600	100	52.16	No	Go to	No	NO	NO	NO	4600	2.01	9228
			<u> </u>	0.0	<u></u>				4000	100	02.10		11012	1					2.01	
	l .											•								
1 1	0 Selenium	uć	ĠЛ.	0.6		Reserved	5	Narrative	Narrative	50	5.00	NO	Tier 2	No	NO	Yes	Yes	Narrative	2.01	
						ľ							Go to							
1	1 Sliver*	<u>h</u> č	g/L		ļ	44	none	NONE	NONE		4.00	No	Tier 2	No	NO	NO	NO	NONE.	2.01	
1	2 Thalfium	uc	۵/L			NONE	NONE	1.7	6.3	2	2.00	No	Tier 2	No	NO	NO	NO	6.3	2.01	13
						-							Go to							
1-1	3 Zinc*	<u> </u>	g/L	·	<u> </u>	122.7	121.7	none	NONE		121.70	No	Tier 2	No	No	Yes	Yes	NONE	2.01	
1	4 Cyanide	μç	g/L			22	5.2	700	220,000	200	-5.2	No	Tier 2					220000	2.0	441362
	m	Fi	bers/										Go to	1					1	
	SASDESIOS					NONE	NONE	7,000,000	NONE	17X10*6	1/210-6	NO	TIEF 2	NO	NU	INU	NU .	┼────	·	
1	6 2,3,7,8-TCDD (Dloxin)	µ	g <u>/L</u>	0.6	3.58E-07	NONE	NONE	0.000000013	1.4E-08	3x10^-5	1.4E-08	YES	Yes	No	yes	Yes	Yes	0.000000014	2.01	2.81E-08
FOOTN	IOTE:			· · · · · · · · · · · · · · · · · · ·					1.87.4 - 1919) 1		······································			<u></u>	Ý 32	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·······	1
	dependent. CTR criteria was								ļ											· ·
	calculated using an average						1	-						1						
	receiving water hardness of 100						1		ł			· ·								
	Data included extends for Decen	nher 20	007 1	rough De	l acember 2	008		<u> </u>			+	+		1	1		h			

1/2

/ F:\TableR1-Priority PollutantsOutfall009.xis 4/27/2009

Boeing SSFL Outfalls 009 (CA0001309, CI-6027)

			AQUATIC LIFE CALCULATIONS					A	QUATIC LIFE	CALCULATIC	DNS	1		
					Freshwater			.	Fresh	water		PROPOS	ED LIMITS	
				1	1							11101 00		
1			ECA acute		FCA chronic			AMEL		MDEL				
CTR#	DATE	Units	(p.7)	LTA acute	multiplier	LTA chronic	Lowest LTA	(n=4)	AMEL ag.life	(n=4)	MDEL aglife	Lowest AMEL	Lowest MDEL	Recommendation
				· ·										Interim Monitoring - No CTR-
¹	Antimony	lµg/L	0.32	·	0.53			1.6		3.1	<u> </u>			based Limit
2	Arsenic	µg/L	0.32	109	0.53	79.1	79.1	1.6	123	3.1	246	_	-	based Limit
												بر		Interim Monitoring - No CTR-
3	Beryłlium	µg/L	0,32		0.53			1.6		3.1	<u> </u>	<u> </u>	-	based Limit
4	Cadmium*	ug/L	0.32	1.5	0.53	1.3	1.3	1.6	2	3.1	4		3.1	River TMDL
														Interim Monitoring -No CTR
5a	Chromium III*	lug/L	0.32	559	0.53	110.4	110.4	1.6	171	3.1	344	-		based limit
5b	Chromium VI	µg/L·	0.32	5	0,53	6.0	. 5.2	1.6	8	3.1	16	_	_	based Limit
	Connert		0.20	12	0.53				67		42.5		49.0	Link Based on CTD
°).	րդու	0.52	4.3	0,55	4.9	4,3	1.0	0./	3.1	13.3		13.0	Linit based on CTR
ļ	l andt					·	; -							DD to and the local second L local
<u> </u>	Lea0	Ind\r	. 0,32	26.4	0.53	1.7	1.7	1.0	2.6	. 3.1	5.2	-	5.2	BPJ used to implement Limit
8	Mercury	µg/L	0.32	·	0.53			1.6	i	3.1	· ·		0.10	Limit
	Niekelt			454.0	0.50	07.5	07.5		40					Interim Monitoring - No CTR-
°			0.32	151.2	0.55	27.5	21,3	1.0	43		0			
1 / 10	Salarium		0.22		. 0.52			1.0] _	Limit based on LA River
	Selenium	ILIGN.	0.32	·	0.53	2.0	2.0	1.0	4.1	3.1	a	-	3	Interim Monitoring - No CTR-
11	Silver*	µg/L	0.32	1.3	0.53		1.3	1.6	2.0	3.1	4	-		based Limit
1 12	Thallium		0.22		0.52			1.0						Interim Monitoring - No CTR-
<u>'</u> *		1991	0.32		0.55			1.0		J				NO RP Limit Based on LA
13	Zinc*	µg/L	0.32	39.4	0.53	64.2	39.4	1.6	61.2	3.1	159		159	River TMDL
14	Cvanide	110/	03	71	0.53		27	1.6	12	31	85	_		Interim Monitoring - No CTR- based Limit
<u> </u>		Fibers/	0.0		0.00	2.1	2.1		4.5					Interim Monitoring - No CTR-
15	Asbestos	L												based Limit
16	2.3.7.8-TCDD (Dioxin)	und	0.32		0.53			. 16		. 31		_	2 85-08	l imit Based on CTR
FOOTN	DIE:	199.0	, <u>, , , , , , , , , , , , , , , , ,</u>		<u> </u>		h magarogy	<u>, 47,9 % (0. 55</u>		M. PARK V.				<u>Jenne 20300 on o m</u>
	These metals are hardness													
	cependent. CTR criteria was					1								
	receiving water hardness of 100						[
*	mg/L,.		1	ļ				L						
1	Data included extends for December	er 2007 🗄	1	1	1		1	1	1		1	1	1	1

F:\TableR1-Priority PollutantsOutfall009.xis

4/27/2009

2/2