Table 3.1. Areas and stream miles underlain by different geologic units in the Scott River watershed derived from the GIS geology layer of the Geologic Map of California (Saucedo et al., 2000).

Geologic unit	Area (acres)	Area (sq miles)	Area (by percent)	Stream Miles
Quaternary	51218	80	10%	199
Granitic	54938	86	11%	259
Mafic	87370	137	17%	401
Sed & Met	326657	510	63%	1641
TOTALS	520184	813	100%	2500

 Table 3.2. Areas and stream miles underlain by different geologic units in the seven subwatersheds of the Scott River watershed derived from the GIS geology layer of the Geologic Map of California (Saucedo et al., 2000).

Subwatershed	Geologic Unit	Area (sq miles)	Total Area (sq miles)	Total Area (% watershed)	Geology type (% subwatershed)	Stream Miles	Total subwatershed stream miles
	Quaternary	1.3			1.4%	5	
West Canvon	Granitic	7.3	99	12.1%	7.4%	26	314
west canyon	Mafic	24.1	55	12.170	24.4%	78	514
	Sed & Met	65.9			66.8%	205	
	Quaternary	0.5			0.5%	4	
Fast Canvon	Granitic	0.0	100	12.3%	0.0%	0	356
Luot ounjon	Mafic	5.0			5.0%	16	
	Sed & Met	94.7			94.5%	336	
	Quaternary	0.0			0.0%	0	
Eastside	Granitic	0.0	121	14.8%	0.0%	0	416
	Mafic	9.6			8.0%	33	
	Sed & Met	110.9			92.0%	383	
	Quaternary	4.7			4.1%	17	
East Headwater	Granitic	7.0	115	14.2%	6.1%	20	362
	Mafic	49.4			42.9%	148	
	Sed & Met	54.1			47.0%	177	
	Quaternary	0.8			1.9%	3	
West Headwater	Granitic	21.2	44	5.4%	48.3%	59	122
	Mafic	16.0			36.4%	41	
	Sed & Met	5.9			13.4%	19	
	Quaternary	7.1			4.0%	20	
Westside	Granitic	50.3	179	22.0%	28.2%	154	528
	Mafic	21.2			11.9%	61	
	Sed & Met	100.0			56.0%	294	
	Quaternary	65.5			42.1%	150	
Scott Valley	Granitic	0.0	156	19.2%	0.0%	0	401
,	Mafic	11.2			7.2%	23	
	Sed & Met	79.0			50.7%	227	
τοτ	TALS	813	813	100%		2500	2500

				Road	proximity t	o stream net	work				1	Road	Density	
Geologic Unit	No. of Stream Crossings	Direct Delivery	0 - 100 ft	100 - 200 ft	> 200 ft	No. of Stream Crossings	Direct Delivery	0 - 100 ft	100 - 200 ft	> 200 ft	0 - 100 ft	100 - 200 ft	> 200 ft	Overall
		Pav	ed Roads (m	niles)			Unpa	ved Roads (miles)			(miles /	sq. mile)	
Quaternary	73	3.1	5.8	5.3	90.6	142	6.0	15.2	17.8	147.9	3.1	3.7	3.6	3.5
Granitic	12	0.5	0.7	1.1	3.2	401	16.9	26.1	36.0	178.1	3.7	5.3	2.5	2.9
Mafic	93	3.9	4.3	7.0	27.3	565	23.8	43.0	50.4	281.0	4.8	6.1	2.6	3.0
Sed & Met	181	7.6	11.7	17.8	47.8	2944	124.0	258.7	247.4	1166.6	8.4	8.4	2.7	3.4
TOTALS	359	15	23	31	169	4052	171	343	352	1774	6.5	7.0	2.8	3.3
Subwatershed	No. of Stream Crossings	Direct Delivery	0 - 100 ft	100 - 200 ft	> 200 ft	No. of Stream Crossings	Direct Delivery	0 - 100 ft	100 - 200 ft	> 200 ft	0 - 100 ft	100 - 200 ft	> 200 ft	Overall
		Pav	ed Roads (m	niles)			Unpa	ved Roads (miles)			(miles /	sq. mile)	
West Canyon	55	2.3	2.6	4.4	10.9	312	13.1	18.2	23.4	182.8	2.6	3.5	2.3	2.5
East Canyon	44	1.9	2.5	5.9	4.7	952	40.1	71.0	73.0	355.9	8.4	9.3	4.3	5.1
Eastside	42	1.8	2.4	2.5	11.6	807	34.0	92.5	68.2	260.8	45.0	34.4	2.3	3.6
East Headwater	67	2.8	4.6	5.3	16.3	473	19.9	40.5	46.4	190.1	5.7	6.7	2.1	2.6
West Headwater	23	1.0	1.3	1.9	9.6	208	8.8	13.0	17.9	99.4	4.4	6.3	2.9	3.3
Westside	51	2.1	3.3	5.5	22.5	937	39.5	70.0	88.8	445.0	5.2	6.9	3.1	3.6
Scott Valley	77	3.2	5.8	5.7	93.3	363	15.3	37.9	34.0	239.6	3.6	3.4	2.5	2.7

Table	3.3.	Mileage of	f paved	and un	paved ro	ads a	t different	distances	from	streams i	n the	Scott	River v	watershe	d (VES	TRA	develor	ed roa	ds lav	er)
																				- /

					Road	l proximity t	o stream net	work				F	Road Densi	ty
Subwatershed	Geologic unit	No. of Stream Crossings	Direct Delivery	0 - 100 ft	100 - 200 ft	> 200 ft	No. of Stream Crossings	Direct Delivery	0 - 100 ft	100 - 200 ft	> 200 ft	0 - 100 ft	100 - 200 ft	> 200 ft
			Pav	ed Roads (m	iles)			Unpa	ved Roads (miles)		(m	iles / sq. m	ile)
	Quaternary			0.1	0.2	0.3	5	0.2	0.4	0.5	3.0	3.5	4.3	3.2
West Canvon	Granitic						36	1.5	2.0	2.6	23.2	2.8	3.8	3.9
West outyon	Mafic	12	0.5	0.4	1.6	0.8	52	2.2	3.1	4.6	37.2	1.9	3.5	1.9
	Sed & Met	43	1.8	2.0	2.6	9.8	219	9.2	12.6	15.7	119.4	2.7	3.5	2.3
	Quaternary	5	0.2	0.4	0.3	0.9	2	0.1	0.3	0.5	0.9	5.8	8.0	6.4
Fast Canvon	Granitic													
Luct ounyou	Mafic	2	0.1	0.0	0.0	0.1	26	1.1	1.4	1.7	13.8	4.0	4.8	3.3
	Sed & Met	37	1.6	2.0	5.6	3.8	924	38.9	69.3	70.8	341.1	8.6	9.5	4.4
	Quaternary					0.2						0.0	0.0	10.3
Eastside	Granitic													
_4010140	Mafic	17	0.7	0.9	1.1	3.5	61	2.6	6.9	5.3	15.4	7.5	6.4	2.5
	Sed & Met	25	1.1	1.6	1.4	7.9	746	31.4	85.5	62.8	245.5	82.6	62.6	2.3
	Quaternary						20	0.8	2.0	3.6	10.6	4.3	8.4	2.8
East Headwater	Granitic						23	1.0	1.5	1.7	10.2	2.5	2.9	1.7
	Mafic	37	1.6	1.9	2.7	9.9	233	9.8	17.1	22.5	110.2	5.8	8.0	2.8
	Sed & Met	30	1.3	2.7	2.6	6.3	197	8.3	19.9	18.6	59.2	6.2	6.1	1.4
	Quaternary						11	0.5	0.5	0.8	2.3	6.4	10.5	3.4
West Headwater	Granitic						83	3.5	5.4	7.5	38.7	3.3	4.9	2.1
	Mafic	15	0.6	0.6	0.8	7.0	85	3.6	4.8	6.5	45.3	5.3	7.4	3.7
	Sed & Met	8	0.3	0.8	1.1	2.6	29	1.2	2.3	3.1	13.1	5.7	8.3	3.2
	Quaternary	6	0.3	0.3	0.5	8.4	31	1.3	2.5	3.2	29.2	4.0	5.6	6.5
Westside	Granitic	12	0.5	0.7	1.1	3.2	259	10.9	17.1	24.2	106.1	4.1	6.0	2.6
	Mafic	9	0.4	0.5	0.6	2.9	94	4.0	8.0	8.1	41.5	5.6	6.0	2.4
	Sed & Met	24	1.0	1.8	3.3	8.0	553	23.3	42.4	53.4	268.3	5.9	7.8	3.2
	Quaternary	62	2.6	5.0	4.4	80.8	73	3.1	9.6	9.2	101.9	2.7	2.8	3.3
Scott Valley	Granitic													
	Mafic	1	0.0	0.0	0.1	3.1	14	0.6	1.7	1.8	17.6	2.3	2.6	2.1
	Sed & Met	14	0.6	0.8	1.3	9.4	276	11.6	26.7	23.0	120.1	4.6	4.1	1.9
TOTALS		359	15	23	31	169	4052	171	343	352	1774			

Table 3.4. Mileage of paved and unpaved roads at different distances from streams in subwatersheds of the Scott River watershed (VESTRA developed roads layer)

Geologic Unit	Distance from a stream	Stream Crossing Failures (tons/	Road- Related Gullies	Fill Failures	Cutbank Failures	Road- Associated Mass Movement	Road Tread Sediment Direct Delivery	Road Tread Sediment Delivery 0 - 100 ft	Road Tread Sediment Delivery 100 - 200 ft	Cut- slope Sediment Direct Delivery	Cut- slope Sediment Delivery 0 - 100 ft	Cut- sloj Sedimer Deliver 100 - 200
		xing-yr)	R	oad Survey res	sults (tons/mi	-yr)		S	EDMODL resu	ılts (tons/mi-y	/r)	
Queterner	≤ 200 ft	1.14	0.40	0.95			69.14	5.18	4.24	5.10	0.40	0.33
Quaternary	> 200 ft		0.01				1.24			0.05		
Mafic	≤ 200 ft	1.06	3.28	0.10	0.03	2.84	18.36	1.61	0.94	1.71	0.16	0.10
Marie	> 200 ft	0.00	0.14				0.53			0.03		
Sed & Met	≤ 200 ft	0.57	0.20	0.48			9.08	0.78	0.51	0.93	0.09	0.06
	> 200 ft	0.00	0.00				0.73			0.05		
Granitic	≤ 200 ft	0.11	2.66	0.43	0.05		57.22	5.49	2.96	18.83	2.01	1.08
Craintio	> 200 ft	0.00	0.17				2.52			0.60		
Granitic s of road-related g	> 200 ft	0.11 0.00 ent contributic	0.17	0.43 iver watershee Fill-slope Sediment	d, estimated the Fill-slope	nrough GSS Fill-slope Sediment	2.52 Road Tread	5.49 Road Tread	2.90 Road Tread	0.60 Cut-slope	Cut-slope	(
				Direct	Delivery	Delivery	Direct	Delivery	Delivery	Direct	Delivery	Deliv
Goologia Unit				Delivery	0 - 100 ft	100 - 200 ft	Delivery	0 - 100 ft	100 - 200 ft	Delivery	0 - 100 ft	100 - 20
Geologic Unit												
Geologic Unit						Granitic Sec	liment Study	(Sommarstro	n et. al., 1990)	(tons/mi-yr)		

Table 3.5. Rates of road-related sediment contribution in South Fork Scott River watershed, estimated using SEDMODL2 and RM road
--

Geologic Unit	Distance from a stream	Stream Crossing Failures	Road- Related Gullies	Fill Failures	Cutbank Failures	Road- Associated Mass Movement	Road Tread Sediment Direct Delivery	Road Tread Sediment Delivery 0 - 100 ft	Road Tread Sediment Delivery 100 - 200 ft	Cut-slope Sediment Direct Delivery	Cut-slope Sediment Delivery 0 - 100 ft	Cut-slope Sediment Delivery 100 - 200 ft	Total Sediment Delivery	Total Sedimen Delivery (tons/
			Road S	urvey results	(tons/yr)				SEDMODL res	sults (tons/yr)			(tons/yr)	sq mi-yr
Quaternary	≤ 200 ft	244	21	51			414	79	76	46	9	8	947	12
Quaternary	> 200 ft		2										2	
Mafic	≤ 200 ft	694	434	13	4	376	437	69	47	47	8	6	2137	16
Walle	> 200 ft		44										44	10
Sod & Mot	≤ 200 ft	1775	134	317			1126	202	125	122	24	15	3840	•
Seu & Met	> 200 ft		4										4	0
Cronitio	≤ 200 ft	44	216	35	4		967	143	106	328	54	40	1936	22
Granitic	> 200 ft		31										31	23
ites of road-relate	d granitic s	ediment co	ntribution i	n Scott Rive Fill-slope	er watershe Fill-slope Sediment	ed, determin Fill-slope Sediment	ed through Road Tread	GSS Road Tread	Road Tread	Cut-slope Sediment	Cut-slope	Cut-slope	Total Sediment	Total Sedime
ates of road-relate Geologic Unit	d granitic s	ediment co	ntribution i	n Scott Rive Fill-slope Sediment Direct Delivery	er watershe Fill-slope Sediment Delivery 0 - 100 ft	ed, determin Fill-slope Sediment Delivery 100 - 200 ft	ed through Road Tread Sediment Direct Delivery	GSS Road Tread Sediment Delivery 0 - 100 ft	Road Tread Sediment Delivery 100 - 200 ft	Cut-slope Sediment Direct Delivery	Cut-slope Sediment Delivery 0 - 100 ft	Cut-slope Sediment Delivery 100 - 200 ft	Total Sediment Delivery	Total Sedimer Delivery (tons/
ates of road-relate Geologic Unit	d granitic s	ediment co	ntribution i	n Scott Rive Fill-slope Sediment Direct Delivery	er watershe Fill-slope Sediment Delivery 0 - 100 ft	ed, determin Fill-slope Sediment Delivery 100 - 200 ft Granitic	ed through Road Tread Sediment Direct Delivery Sediment Stu	GSS Road Tread Sediment Delivery 0 - 100 ft dy (Sommars	Road Tread Sediment Delivery 100 - 200 ft trom et. al.) (to	Cut-slope Sediment Direct Delivery ons/year)	Cut-slope Sediment Delivery 0 - 100 ft	Cut-slope Sediment Delivery 100 - 200 ft	Total Sediment Delivery (tons/yr)	Total Sedimer Delivery (tons/ sq mi-yr
ates of road-relate Geologic Unit Granitic	d granitic s	ediment co	ntribution i	n Scott Rive Fill-slope Sediment Direct Delivery 67	Fill-slope Sediment Delivery 0 - 100 ft	Fill-slope Sediment Delivery 100 - 200 ft Granitic	Road Tread Sediment Direct Delivery Sediment Stu	GSS Road Tread Sediment Delivery 0 - 100 ft dy (Sommars 337	Road Tread Sediment Delivery 100 - 200 ft trom et. al.) (to	Cut-slope Sediment Direct Delivery ons/year) 1720	Cut-slope Sediment Delivery 0 - 100 ft 927	Cut-slope Sediment Delivery 100 - 200 ft 367	Total Sediment Delivery (tons/yr) 4227	Total Sedime Deliver (tons/ sq mi-y 49
ates of road-relate Geologic Unit Granitic	d granitic s	ediment co	ntribution i	n Scott Rive Fill-slope Sediment Direct Delivery 67	Fill-slope Sediment Delivery 0 - 100 ft	Fill-slope Sediment Delivery 100 - 200 ft Granitic	Road Tread Sediment Direct Delivery Sediment Stu 625	GSS Road Tread Sediment Delivery 0 - 100 ft dy (Sommars 337	Road Tread Sediment Delivery 100 - 200 ft trom et. al.) (to 133	Cut-slope Sediment Direct Delivery ons/year) 1720	Cut-slope Sediment Delivery 0 - 100 ft 927	Cut-slope Sediment Delivery 100 - 200 ft 367	Total Sediment Delivery (tons/yr) 4227	Total Sedime Deliver (tons/ sq mi-y 49
ates of road-relate Geologic Unit Granitic Watershed Totals ((SEDMODL2 & RM ro delivery rates fo geologic unit	d granitic s d granitic s tons/yr) ad survey or all s)	ediment co 2757	ntribution i	n Scott Rive Fill-slope Sediment Direct Delivery 67 416	Fill-slope Sediment Delivery 0 - 100 ft 36	rill-slope Sediment Delivery 100 - 200 ft Granitic 14 376	Road Tread Sediment Direct Delivery Sediment Stu 625 2943	GSS Road Tread Sediment Delivery 0 - 100 ft dy (Sommars 337 493	Road Tread Sediment Delivery 100 - 200 ft trom et. al.) (to 133 355	Cut-slope Sediment Direct Delivery ons/year) 1720 544	Cut-slope Sediment Delivery 0 - 100 ft 927 94	Cut-slope Sediment Delivery 100 - 200 ft 367 69	Total Sediment Delivery (tons/yr) 4227 8940	Total Sedime Deliver (tons/ sq mi-y 49

Table 3.6. Rates of road-related sediment contribution in Scott River watershed estimated by extrapolation of rates estimated in South Fork watershed (West Headwater subwatershed) (Table 3.5).

Table 3.7. Road-related sediment contribution in Scott River watershed estimated by extrapolation of rates estimated in South Fork watershed (West Headwater subwatershed)(Table 3.5). (Tons/yr)

West Canyon		Failures	Related Gullies	Fill Failures	Cutbank Failures	Mass Movement	Sediment Delivery	Sediment Delivery	Total Delivery / Geol. unit
West Canyon	Quaternary	5.7	0.6	1.4			18.8	1.5	28
	Mafic	67.5	46.3	1.2	0.4	35.4	49.5	5.8	206
	Sed & Met	148.8	9.2	20.9			101.5	12.6	293
	Quaternary	8.0	0.7	1.7			9.5	2.1	22
East Canyon	Mafic	29.5	16.2	0.4	0.1	9.2	24.0	2.4	82
	Sed & Met	545.8	38.9	89.5			443.2	48.4	1166
	Quaternary		0.0						0
Eastside	Mafic	82.3	60.3	1.7	0.6	50.0	63.4	7.5	266
	Sed & Met	437.9	37.7	87.4			383.7	41.6	988
	Quaternary	22.7	2.7	6.1			83.9	6.3	122
East Headwater	Mafic	284.9	199.1	5.5	1.8	157.9	228.9	25.0	903
	Sed & Met	128.9	10.9	25.4			100.3	12.1	278
	Quaternary	12.5	0.7	1.7			35.3	2.8	53
West Headwater	Mafic	105.5	62.8	1.7	0.6	48.1	79.5	8.8	307
	Sed & Met	21.0	1.9	4.2			14.4	2.0	43
	Quaternary	42.0	3.4	7.6			116.6	10.3	180
Westside	Mafic	108.7	76.6	2.1	0.7	61.0	93.1	9.6	352
	Sed & Met	327.7	26.0	59.5			271.5	29.8	715
	Quaternary	153.4	14.8	32.2			301.4	39.4	541
Scott Valley	Mafic	15.8	16.6	0.4	0.1	11.9	15.2	1.5	62
	Sed & Met	164.7	13.2	30.4			137.9	15.2	361
<pre>toad-related granitic set ontribution in Scott Riv lerived from SEDMODL: survey.</pre>	diment ver watershed 2 & RM road	Stream Crossing Failures	Road- Related Gullies	Fill Failures	Cutbank Failures	Road Related Mass Movement	Road Tread Sediment Delivery	Cut-slope Sediment Delivery	Total Delivery
Vest Canyon		3.8	20.3	2.7	0.3		105.7	35.5	168
ast Canyon									
astside									
ast Headwater	Granitic	2.4	12.8	1.8	0.2		68.7	23.1	109
Vest Headwater		8.8	50.2	7.1	0.8		252.0	84.8	404
Vestside		28.6	163.7	23.5	2.7		789.9	278.2	1287
Scott Valley									
Road-related granitic se contribution in Scott Riv lerived from Granitic Se	diment ver watershed ediment Study.			Fill - slope Sediment Delivery			Road Tread Sediment Delivery	Cut-slope/ Cutbank Sediment Delivery	Total Delivery
Nest Canyon Last Canyon				9.6			92.1	246.1	348
ast Headwater Vest Headwater	Granitic			6.4 23.6			61.5 227.2	164.3 606.9	232 858
Vestside Scott Valley				77.7			715.1	1997.0	2790
		Estimated	Total Sedi	ment Delive	ery by Sub	watershed			

Watershed Totals using S	SEDMODL2 & RM	road survey de	livery rates f	or all geologi	c units			contribution	contribution
	West Canyon	East Canyon	Eastside	East Headwater	West Headwater	Westside	Scott Valley	subwatershed (tons/yr)	subwatershed (tons/sq mi-yr)
Total Contribution by subwatershed (tons/yr)	695	1270	1254	1411	807	2533	964	8040	11
subwatershed (tons/sq mi-yr)	7	11	11	32	5	16	1	0940	
Wetensked Tetels weine (4	h a fua fa		Sediment
Watershed Totals using S Delivery rates for granitic	SEDMODL2 & RM c substrate derive	road survey de d from Granitic	livery rates f Sediment St	or all geologi udy.	c units exce	ot granitic su	ıbstrate.	Sediment	Sediment contribution
Watershed Totals using S Delivery rates for granitic	SEDMODL2 & RM c substrate derive West Canyon	road survey del ed from Granitic East Canyon	livery rates f Sediment St Eastside	or all geologi udy. East Headwater	c units excep West Headwater	ot granitic su Westside	ıbstrate. Scott Valley	Sediment contribution by subbasin (tons/yr)	Sediment contribution by subwatershed (tons/sq mi-yr)
Watershed Totals using S Delivery rates for granitic Total Contribution by subwatershed (tons/yr)	SEDMODL2 & RM c substrate derive West Canyon 875	road survey de ed from Granitic East Canyon 1270	livery rates f Sediment St Eastside 1254	or all geologi udy. East Headwater 1535	C units excep West Headwater 1261	ot granitic su Westside 4036	ubstrate. Scott Valley 964	Sediment contribution by subbasin (tons/yr)	Sediment contribution by subwatershed (tons/sq mi-yr)

Table 3.8. Comparison of granitic sediment delivery in the Scott River watershed relying only on SEDMODL2 and road survey versus incorporating results of Granitic Sediment Study (Sommarstrom et al., 1990) for granitic areas.

	Not using GSS (Source: Table 3.7)	Using GSS (Source: Table 3.7)	Percent greater using GSS
West Canyon (tons/yr) 695	875	26%
East Headwater (tons/y) 1411	1535	9%
West Headwater (tons/yr) 807	1261	56%
Westside (tons/yr) 2533	4036	59%

Table 3.9. Summary of the number of features photointerpreted as possible landslides in Vestra photoanalysis.

					Ph	noto-interpre	ted features	that have be	en field veri	fied					NOT
	Feature	No. of	Active slide Delivering	features	No. of	Active slide Not deliverin	features Iq	No. of Ir (I	nactive slide Not deliverir	features	No. of s NOT s	lide features lides not del	that are ivering	Active	NOT
Subwatershed	type	Line	Point	Polygon	Line	Point	Polygon	Line	Point	Polygon	Line	Point	Polygon	Delivering	Delivering
	Granitic	1	2	2		1	1		2					5	4
WEST CANYON	Mafic	2		3	2	4	3	1		3	1	1	6	5	21
	Sed & Met	2	5	4	4	2	1			10		3	6	11	26
	Granitic														
EAST CANYON	Mafic							4	1	2					7
	Sed & Met							1	1			1			3
	Granitic														
EASTSIDE	Mafic														
	Sed & Met													1	
	Granitic														
EAST HEADWATER	Mafic	1				1		1	1					1	3
	Sed & Met													1	
	Granitic			1	1	1	1		1	İ	İ			1	1
WEST HEADWATER	Mafic		1		1	3	1			1	1			1	6
	Sed & Met														-
	Granitic														
WESTSIDE	Mafic														
	Sed & Met														
	Granitic		-												
SCOTT VALLEY	Mafic														
OCOTT VALLET															
	Sed & Wet														- 1
												101	ALS	23	71
				Photo-inter	preted featu	res that hav	e NOT been f	ield verified						1	
		No. of for	aturos intorn	rotod to bo	No of for	turos intorn	rotod to bo	No of for	turos intorn		Full	Partial	NON		
	Fosturo	fully hyd	diales interp	connected	nartially h	ures merp	leteu to be	NO. OF IES	iluies initerp						
Subwatershed	type	Tuny nya	arologically c				/ connected	to be hyd	Irologically	connected	connect	connect	connect		
oubwatersneu	type		Point	Polygon		Point	/ connected	to be hyd	Irologically	connected	connect	connect	connect		
WEST CANYON	Cronitio	Line	Point	Polygon	Line	Point	/ connected Polygon	to be hyd Line	Point	connected Polygon	connect	connect	connect		
WEST CANTON	Granitic Mofio	Line	Point	Polygon	Line	Point	/ connected Polygon	to be hyd Line	Point	connected Polygon	connect	connect	connect		
	Granitic Mafic	8	Point 5	Polygon 9	Line	Point 12	V connected Polygon	to be hyd Line 2	Point 1 5	Connected Polygon	connect 22	connect 27	connect		
	Granitic Mafic Sed & Met	8 11	Point 5 20	Polygon 9 18	Line 11 6	Point 12 8	V connected Polygon 4 13	to be hyd Line 2 1	Point 1 5 7	Polygon 8	connect 22 49	27 27	connect 1 7 16		
EAST CANYON	Granitic Mafic Sed & Met Granitic	8 11	Point 5 20	Polygon 9 18	Line 11 6	Point 12 8	V connected Polygon 4 13	to be hyd Line 2 1	Irologically of Point 1 5 7	Polygon 8 8	22 49	connect 27 27	connect 1 7 16		
EAST CANYON	Granitic Mafic Sed & Met Granitic Mafic	8 11	Point 5 20	9 18	Line 11 6	Point 12 8	V connected Polygon 4 13	to be hyd Line 2 1	Point 1 5 7	Polygon 8 8	22 49	27 27 27	connect 1 7 16		
EAST CANYON	Granitic Mafic Sed & Met Granitic Mafic Sed & Met	8 11 1	Point 5 20	Polygon 9 18 2	Line 11 6	Point 12 8 2	v connected Polygon 4 13 1 1	to be hyd Line 2 1	Irologically Point 1 5 7 1	Polygon 8 1	22 49 5	27 27 27 3	connect 1 7 16 2		
EAST CANYON	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic	8 11 1	Point 5 20	Polygon 9 18 2	Line 11 6	Point 12 8 2	v connected Polygon 4 13 1 1	to be hyd Line 2 1	Irologically Point 1 5 7 1 1	Result Polygon 8 1	22 49 5	27 27 27 3	connect 1 7 16 2		
EAST CANYON EASTSIDE	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic	8 11 1	Point 5 20 20 2	Polygon 9 18 2	Line 11 6	Point 12 8 2	v connected Polygon 4 13 1 1 1	to be hyd Line 2 1	Irologically Point 1 5 7 1	8 1	22 49 5	27 27 27 3	connect 1 7 16 2		
EAST CANYON EASTSIDE	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met	Line 8 11 1 1	Point 5 20 2 2	Polygon 9 18 2	Line 11 6	2 11 12 12 12 12 12 1	/ connected Polygon 4 13 1 1 1	to be hyd Line 2 1	Irologically Point 1 5 7 1 1	Result Polygon 8 1 2	22 49 5	connect 27 27 3 1	connect 1 7 16 2 3		
EAST CANYON EASTSIDE	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic	Line 8 11 1 1	Point 5 20 20 2	Polygon 9 18 2	Line 11 6 	2 1 1 1 2	/ connected Polygon 4 13 1 1 1 1 1	to be hyd Line 2 1	Irologically Point 1 5 7 1 1	Result Polygon 8 1 2	connect 22 49 5	connect 27 27 3 1	connect 1 7 16 2 3		
EAST CANYON EASTSIDE EAST HEADWATER	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic	Line 8 11 1 2	Point 5 20 20 2	Polygon 9 18 2	Line 11 6 	Point 12 2 1	/ connected Polygon 4 13 1 1	to be hyd Line 2 1 	Irologically Point 1 5 7 1 1 1 1	Polygon 8 1 2 1	connect 22 49 5 2	connect 27 27 3 1	connect 1 7 16 2 3 4		
EAST CANYON EASTSIDE EAST HEADWATER	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Sed & Met Granitic Mafic Sed & Met	Line 8 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Point 5 20 20 2	Polygon 9 18 2 1 2	Line 11 6 	Point 12 8 2 1 1 1 1 1 1 1 1 1	/ connected Polygon 4 13 1 1	to be hyd Line 2 1 1 2 1 2 2 2	Irologically Point 1 5 7 1 1 1 1	Polygon 8 1 2 1 1 1	connect 22 49 5 2 1	connect 27 27 3 1	connect 1 7 16 2 3 4 1		
EAST CANYON EASTSIDE EAST HEADWATER	Granitic Mafic Sed & Met Granitic Mafic Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic	Line 8 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Point 5 20 2 2 1 1	Polygon 9 18 2 1 2	Line 11 6	Point 12 8 2 1 1 1 1 1 1 1 1 1	/ connected Polygon 4 13 1 1	to be hyd Line 2 1 1 2 1 2 2 2	Irologically Point 1 5 7 1 1 1 1	Polygon 8 1 2 1 1 1 1 1 1 1	connect 22 49 5 2 1 1	connect 27 27 3 1	connect 1 7 16 2 3 4 1 1		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER	Granitic Mafic Sed & Met Granitic Mafic Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic	Line 8 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Point 5 20 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Polygon 9 18 2 1 2	Line 11 6	Point 12 8 2 1 1 1 1 1 1 1 1 1	/ connected Polygon 4 13 1 1	to be hyd Line 2 1 	Irologically Point 1 5 7 1 1 1 1 1	Connected Polygon 8 1 2 1 1 1 1	connect 22 49 5 2 1 1	connect 27 27 3 1 1	connect 1 7 16 2 3 4 1 1		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Sed & Met Granitic Sed & Met Granitic Sed & Met	Line 8 11 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Point 5 20 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Polygon 9 18 2 2 1 2	Line 11 6	Point Point 12 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ connected Polygon 4 13 1 1 1	to be hyd Line 2 1 	Irologically Point 1 5 7 1 1 1 1	connected Polygon 8 1 2 1 1 1 1 1 1	connect 22 49 5 2 1 1	connect 27 27 3 1 1 1	connect 1 7 16 2 3 4 1 1		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Sed & Met Granitic Sed & Met Granitic Mafic Sed & Met Granitic	Line 8 11 1 1 2 1 6	Point 5 20 2 2 1 1 1 7	Polygon 9 18 2 2 3 4 5 6 7 8	Line 11 6 	Point Point 12 8 2 1 1 1 1 1 1 1 1 8 8	/ connected Polygon 4 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to be hyd Line 2 1 	Irologically Point 1 5 7 1 1 1 1 4	Connected Polygon 8 1 2 1 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2	connect 22 49 5 2 1 1 2 1 2 1	connect 27 27 3 1 1 1 12	connect 1 7 16 2 3 4 1 1 8		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER WESTSIDE	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Granitic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic	Line 8 11 1 1 2 1 6	Point 5 20 2 2 2 1 1 1 1 7 1 1 7 1 1	Polygon 9 18 2 -<	Line 11 6 	Point Point 12 8 2 1 1 1 1 1 1 1 1 8 8 1 1 1 1 1 1	/ connected Polygon 4 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to be hyd Line 2 1 1 2 1 2 2 2	Irologically Point 1 5 7 1 1 1 1 4	Connected Polygon 8 1 2 1 1 2 2 2	connect 22 49 5 2 1 1 21 1	connect 27 27 3 1 1 1 12 3	connect 1 7 16 2 3 4 1 1 8		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER WESTSIDE	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Granitic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic	Line 8 11 1 1 2 1 6 6 1	Point 5 20 2 2 2 1 1 1 1 7 1 5	Polygon 9 18 2 2	Line 11 6	Point 12 8 2 1 1 1 1 5	/ connected Polygon 4 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to be hyd Line 2 1 1 2 1 2 2 2 2 1	Irologically Point 1 5 7 1 1 1 1 4 4	connected Polygon 8 1 2 1 1 1 2 3	connect 22 49 5 2 1 1 1 21 1 12	connect 27 27 3 1 1 1 12 3 21	connect 1 7 16 2 3 4 1 1 8 8 8		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER WESTSIDE	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic	Line 8 11 1 1 2 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	Point 5 20 2 2 2 1 1 1 1 7 1 5 5 1 1 5 1 1 5 1 1 5 5 1 1 5 5 1 1 5 1 1 1 1 5 1	Polygon 9 18 2 -<	Line 111 6 	Point 12 8 2 1 1 1 1 5	/ connected Polygon 4 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to be hyd Line 2 1 1 2 1 2 2 2 2 1	Irologically Point 1 5 7 1 1 1 1 4 4	Connected Polygon 8 1 2 1 1 2 3	connect 22 49 5 2 1 1 1 21 1 12	connect 27 27 3 1 1 1 12 3 21	connect 1 7 16 2 3 4 1 1 8 8 8 8		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER WESTSIDE SCOTT VALLEY	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Sed & Met Granitic Sed & Met Granitic Sed & Met Granitic Mafic Sed & Met Granitic	Line 8 11 1 1 2 1 6 6 1 1	Point 5 20 2 2 2 1 1 1 1 7 1 5 5 1 1 1 5 1 1 5 1 1 5 1 1 5 1	Polygon 9 18 2	Line 111 6 	Point 12 8 2 1 1 1 5	v connected Polygon 4 13 1 1 0 1 1 1 3 1 9	to be hyd Line 2 1 1 2 1 2 2 2 1	Irologically Point 1 5 7 1 1 1 4 4	connected Polygon 8 1 2 1 1 1 2 1 3 3	connect 22 49 5 2 1 1 1 2 1 1 2 1 1 2 1 1 2	connect 27 27 3 1 1 1 12 3 21	1 7 16 2 3 4 1 8 8 8		
EAST CANYON EASTSIDE EAST HEADWATER WEST HEADWATER WESTSIDE SCOTT VALLEY	Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met	Line 8 11 1 1 1 2 1 6 6 1 1	Point 5 20 2 2 2 1 1 1 1 1 1 1 5 1 1 1 5 1 1 5 1 1 5 1 1 5 1	Polygon 9 18 2	Line 111 6 11 11 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1	Point 12 8 2 1 1 1 5 1 1	/ connected Polygon 4 13 1 1 1 1 1 1 1 1 1 9	to be hyd Line 2 1 1 2 1 2 2 2 1 2 1 1 1	Irologically (Point 1 5 7 1 1 1 1 1 1 4 4 4 4	connected Polygon 8 1 2 1 2 1 2 3 1 1	connect 22 49 5 2 1 1 1 21 1 12	connect 27 27 3 1 1 1 12 3 21 2	connect 1 7 16 2 3 4 1 1 1 8 8 8 8 2 2		

Human activity related Photo-interpretation of slide features																		
•		Feat	ures field ve	rified			Fe	atures that l	nave NOT be	en field verifi	ied				TONS D	Delivered		
Subwatershed	Geologic Unit	Tons/y	yr sediment de	livered	Tons/yr sedi interpret	ment delivered ed as "fully hyd connected"	from features Irologically	Tons/yr sedi interpreted	ment delivered as "partially h connected"	from features /drologically	Tons/yr sedir interprete	ment delivered ed as "not hyd connected"	from features rologically	Tons/ year- geology	Tons/ year- subwatershed	Tons/ year- sq mi-	Tons/ year- sq mi-Scott	
		Line	Point	Polygon	Line	Point	Polygon	Line	Point	Polygon	Line	Point	Polygon			subwatersned	River	
	Granitic		3	2906								0		2909				
WEST CANYON	Mafic	36		953	32	1	1844	10	0	1109		1		3987	22555	229		
	Sed & Met	118	1	7108	13	6	7055	23	1	907		1	425	15660				
	Granitic					-							-		4000	40		
EAST CANYON	Matic						4000							1000	1896	19		
	Sed & Met				30	2	1800		1			0	64	1896				
EASTSIDE	Granitic														0 0 	0		
EASTSIDE			-			-			0					0		v		
	Granitic								0					U	1			
EAST HEADWATER	Mafic	19			52		-				10	٥		81	1 82 1 27 1527 35	1	36	
	Sed & Met	10		<u> </u>			1		0		10	U	1	0				
	Granific					1								v				
WEST HEADWATER	Mafic			1526					0					1527	1527	35		
	Sed & Met			1020											-	, 35	35	
	Granitic				89	1	571		2	228		1		890				
WESTSIDE	Mafic					1								1	3244	3244 18		
	Sed & Met					1		16	1	2335		0		2353				
	Granitic														$\frac{1}{1}$			
SCOTT VALLEY	Mafic														70	0		
SCOTT VALLET	Sed & Met								0		3		66	70				
										•		•			•			
Not human activity	y related							Photo	-interpretatio	on of slide fea	atures							
		Feat	ures field ve	rified			Fe	atures that I	nave NOT be	en field verifi	ied				Tons D	elivered		
Subwatershed	Geologic Unit	Tons/y	yr sediment de	livered	Tons/yr sedi interpret	ment delivered ed as "fully hyd connected"	from features Irologically	Tons/yr sedi interpreted	ment delivered as "partially h connected"	from features /drologically	Tons/yr sedin interpret	ment delivered ed as "not hyd connected"	from features rologically	Tons/ year-	Tons/ year-	Tons/ year- sq mi-	Tons/ year- sq mi-Scott	
		Line	Point	Poly	Line	Point	Poly	Line	Point	Poly	Line	Point	Poly	geology	Subwatersned	subwatershed	River	
	Granitic			398	-		-							398	1			
WEST CANYON	Mafic			812	143	4	3993	85	4		11	1		5053	10982	111		
	Sed & Met		5		132	13	5345	28	1		8	0		5531				
	Granitic																	
EAST CANYON	Mafic																	
	Sed & Met																	
	Granitic																	
EASTSIDE	Mafic														6	0		
														6	1			
	Sed & Met										6	0		0		╉───┤		
	Sed & Met Granitic										6	0		0				
EAST HEADWATER	Sed & Met Granitic Mafic				17						6	0		17	34	0	23	
EAST HEADWATER	Sed & Met Granitic Mafic Sed & Met				17 17						6	0		17 17	34	0	23	
EAST HEADWATER	Sed & Met Granitic Mafic Sed & Met Granitic			364	17 17	1					6			17 17 17 365	34	0	23	
EAST HEADWATER	Sed & Met Granitic Mafic Sed & Met Granitic Mafic			364	17 17	1					6			17 17 365	34 365	0	23	
EAST HEADWATER	Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met			364	17 17	1					6			17 17 17 365	34 365	0	23	
EAST HEADWATER	Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic			364	17 17 	1 6	4282	10	0		6 			17 17 365 4479	34 365	0	23	
EAST HEADWATER WEST HEADWATER WESTSIDE	Sed & Met Granitic Mafic Sed & Met Granitic Mafic Sed & Met Granitic Mafic			364	17 17 	1	4282	10 16	0 0 0		6 			17 17 365 4479 16	34 365 7176	0 8 40	23	
EAST HEADWATER WEST HEADWATER WESTSIDE	Sed & Met Granitic Mafic Sed & Met Granitic Sed & Met Granitic Mafic Sed & Met			364	17 17 165 58	1 6 4	4282	10 16 70	0 0 1		6 	0 		17 17 365 4479 16 2681	34 365 7176	0 8 40	23	
EAST HEADWATER WEST HEADWATER WESTSIDE	Sed & Met Granitic Mafic Sed & Met Granitic Sed & Met Granitic Sed & Met Granitic			364	17 17 165 58	1 6 4	4282	10 16 70	0		6 			6 17 17 365 4479 16 2681	34 365 7176	0 8 40	23	
EAST HEADWATER WEST HEADWATER WESTSIDE SCOTT VALLEY	Sed & Met Granitic Mafic Sed & Met Granitic Sed & Met Granitic Sed & Met Granitic			364	17 17 165 58	1 6 4	4282	10 16 70	0 0 1		6 			6 17 17 365 4479 16 2681	34 365 7176 8	0 8 40 0	23	

Table 3.10. Summary of the sediment delivery from features photointerpreted as possible landslides in Vestra photoanalysis.

Subwatershed		Mining Association	Ass	Road ociation (ton	s/yr)	Ass	Harvest	s/yr)	Ro Asse	ad and Harv ociation (ton	est s/yr)	Tons/ geology-year	Tons/ subwatershe d-	Tons/ sq mi- year	Tons/ sq mi-yea		
	Geologic Unit	(tons/yr)	Line	Point	Polygon	Line	Point	Polygon	Line	Point	Polygon	0 077	year	subwatershe d	Scott Rive		
	Granitic			0						3	2906	2909					
WEST CANYON	Mafic			0	817	42	1	3090	36	0		3987	22554	229			
	Sed & Met		80	5	8605	36	1	425	38	2	6465	15659			-		
	Granitic																
EAST CANYON	Mafic												1896	19			
	Sed & Met		30	2	1800		0	64		0		1896					
	Granitic																
EASTSIDE	Mafic												0 0	0	0	0	
	Sed & Met						0					0					
	Granitic																
EAST HEADWATER	Mafic		19			52			10	0		81	82	1	36		
	Sed & Met			0								0					
	Granitic														1		
WEST HEADWATER	Mafic	1526								0		1527	1527	35			
	Sed & Met																
	Granitic			1		75	1	798	13	1		890					
WESTSIDE	Mafic						1					1	3244	18			
	Sed & Met		5	1	1126		1		11	1	1209	2353					
	Granitic																
SCOTT VALLEY	Mafic												70	0			
	Sed & Met		3							0	66	70					
Te	otal (tons/yr)	1526	Тс	otal (tons/yr)	12495	То	tal (tons/yr)	4589	То	tal (tons/yr)	10763						

Table 3.11. Tons/year of landslide sediment intrepreted to be human-activity related.

Table 3.12. Comparison of soil creep contribution estimates

Source of Estimate	South Fork Scott River SEDMODL2	S. Fork Eel*	Trinity R.**	Scott River Estimate Used
Tons/sq mi/year	24	21	30	29

*Stillwater Sciences (1999)

**Graham Matthews & Associates (2001)

Table 3.13. Soil creep contribution estimates in seven subwatersheds Scott River watershed including stream miles in granite bedrock.

Subwatershed	Stream Miles	Area (sq mi)	Total Delivery (tons/yr)	Soil Creep (tons/sq mi-yr)
West Canyon	314	99	3267	33
East Canyon	356	100	3699	37
Eastside	416	121	4322	36
East Headwater	362	115	3767	33
West Headwater	122	44	1271	29
Westside	528	179	5491	31
Scott Valley	401	156	2084	13
Totals	2500	813	23902	29

Table 3.14. Soil creep contribution estimates in seven subwatersheds Scott River watershed. Stream miles and area in granite are not included here but are included in Table 3.19 in the calculation of granite streamside contribution.

Subwatershed	Stream Miles	Area (sq mi)	Total Delivery (tons)	Soil Creep (tons/sq mi-yr)
West Canyon	289	75	3001	40
East Canyon	356	95	3699	39
Eastside	416	111	4322	39
East Headwater	342	66	3554	54
West Headwater	63	28	657	24
Westside	375	157	3893	25
Scott Valley	401	144	2084	14
Totals	2241	676	21211	31

Table 3.15. Summary of estimated management contribution to stream sediment by large and small discrete features along stratified random samples of stream segments in the Scott River watershed.

	Total	Human- Activity	
Stream reach ID	Contribution (tons)	Related Contribution	Upslope management influences and comments
QUATE	RNARY	•	
Q-01-04	110	0	No visible anthropogenic influences in the field or on aerial photos
Q-02-04	1539	1	Sample survey reach is within the bounds of a timber harvest unit. Documented management-related slide and sediment inputs.
Q-03-04	105	1	Field observations indicate 2 failed stream crossings, also indicate channel torrented, but not included in USFS flood altered inventory.
Q-04-04	1809	0.5	Field observation, landslide has road passing through unstable area, visited in May 2004. Also documented road damage delivery to stream.
Q-05-04	0	0.25	Small percentage of high impact 90's harvests. Moderately high road density. No documented management related slides or sediment inputs.
Q-06-04	0	1	Failed stream crossing at top of sample survey reach : Low impact 1995 timber harvest units within 150-500 ft upslope of entire survey length.
Q-07-04	0	0	Minimal harvest activity. Moderatly high road density. No documented management related slides or sediment inputs.
Q-08-04	1013	1	Numerous management related slides documented within the subbasin
Q-09-04	0	1	Low impact 90's and medium to high impact 2000 timber harvest units. Moderate road density and stream crossings. Extensive past mining activity.
Q-10-04	0	N/A	Mainstem Scott River. Not included in calculation.
Q-11-04	0	0	Low percentage of roads, stream crossings, and (low impact) timber harvest activity. No documented management related slides or sediment inputs. Mainteen Code Divor, Net included in adjusticion
Q-12-04	4576	0.79	Wainstein Scott Kvert. Not included in calculation.
	4370	0.78	Streamside sampling percentage : 3.4 miles of 199.3 miles (1.7%)
GRANIT	TIC		
G-01-03			Subbasin area above sampled reach of insufficient size to be included.
G-02-03			Subbasin area above sampled reach of insufficient size to be included.
G-03-03	0	0	No visible anthropogenic influences in the field or on aerial photos
G-04-04	32	0	Low percentage or roads, stream crossings, and (low impact) timber narvest activity. No documented management related sides or sediment inputs.
G-05-04	1013	0	No visible antiropogenic intuences in the field or other approach to be from patient equiper.
G-00-04	3048	0	Limited logging, while these states since whilm sources an appendix to be non initial causes.
G-08-04	1884	0	Some legay roads visible on aeriar protos, no one visible antimopogenic innoces in rule read of on aeriar protos. Constituing impact 1070 happens diagents diagent visible antimopogenic innoces in rule read of on aeriar protos
G-09-04	899	0	One leader inspact for a nervest expected sort of reaching to commence treases, menagement related shoes on serial on the reaching the series of the series
G-10-04	2106	0	Come legacy reade visite reacting internet water and provide the second second second process.
G-11-04	0	0	Some pre-1990 harvest activity, moderate road density. No documented management related slides or sediment inputs.
G-12-04	0	0	Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos
G-13-04	1836	0.25	1996 timber harvest located just upstream of sample survey reach.
G-14-04	2856	0.5	Sample survey reach is completely within the bounds of a timber harvest unit.
G-15-04	2003	0	Low impact 1980 harvest, low road density. Slides attributed to natural causes. No documented management related slides or sediment inputs.
G-16-04	11	0.25	2001 harvest activity, moderate road density, high number of stream crossings.
G-17-04	34	0.5	45% post 1990 medium to high impact timber harvest activity. Moderate road density.
G-18-04	809	0.75	High impact timber harvest activity post 1987 fire. Numerous documented management related slides and sediment inputs.
G-19-04	741	0.75	High impact timber harvest activity post 1987 fire. Numerous documented management related slides and sediment inputs.
	1		
	17270	0.18	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%)
MAFIC	17270 / ULTRAMAF	0.18 FIC	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%)
MAFIC /	17270 / ULTRAMAF 108	0.18 FIC 0.5	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire.
MAFIC / M-01-03 M-02-03	17270 / ULTRAMAF 108 5702	0.18 FIC 0.5 1	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbacin area above sampled reach of insufficient size to be included.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03	17270 / ULTRAMAN 108 5702	0.18 	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03	17270 (ULTRAMAF 108 5702 0	0.18 FIC 0.5 1	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03	17270 (ULTRAMAF 108 5702 0 0	0.18 	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03	17270 (ULTRAMAF 108 5702 0 0 50	0.18 	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03 M-08-03	17270 (ULTRAMAF 108 5702 0 0 0 50 18	0.18 	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-06-03 M-07-03 M-08-03 M-09-04	17270 / ULTRAMAF 108 5702 0 0 0 50 18 564	0.18 0.5 1 0.25 0.25 0.25 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04	17270 / ULTRAMAF 108 5702 0 0 0 50 18 564 0	0.18 	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04	17270 / ULTRAMAF 108 5702 0 0 0 50 18 564 0 193	0.18 0.5 1 0.25 0.25 0.25 0.25 0 0 0 0 0.5 0.5	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-12-04	17270 / ULTRAMAF 108 5702 0 0 0 50 18 564 0 193 122	0.18 0.5 1 0.25 0.25 0.25 0.25 0 0 0 0 0 0.5 0.5 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04	17270 / ULTRAMAF 108 5702 0 0 0 50 18 564 0 193 122 0	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04	17270 / ULTRAMAF 108 5702 0 0 0 0 50 18 564 0 193 122 0 0 0 0	0.18 	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs. Medium to high impact mid 80°s and 2000 timber harvest activity. Numerous documented management related slides and sediment inputs.
MAFIC / M-01-03 M-02-03 M-03-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-0	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 0 0 134 2	0.18 	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs. Medium to high impact mid 80% or a 2000 timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate moder of the high impact timber harvest activity. High road density and number of stream crossings. Docume
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 134 0 134 0 184	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs. Medium to high impact mid 80's and 2000 timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate amount of timber harvest activity. High road density and number of stream crossings. Documented management rela
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-15-04 M-15-04 M-17-04 M-18-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 133 122 0 134 0 134 0 134 509	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Low road density, minimal 40 year old timber harvest activity. No doccumented management related slides or sediment
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-15-04 M-115-04 M-17-04 M-18-04 M-19-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 133 122 0 134 0 134 0 184 509 3629	0.18 0.5 1 0.25 0.25 0.25 0.25 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs. Medium to high impact mid 80's and 2000 timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate road density minimal 40 year old timber harvest activity. Numerous documented management related slides and sed
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-15-04 M-11-04 M-17-04 M-19-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 133 122 0 134 0 134 0 134 509 3629 11212	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate mount of timber harvest activity. No documented management related slides or sediment inputs. Moderate road density minimal 40 year old timber harvest activity. No documented management related slides and sediment inputs. Medium to high impact mide 30's and 2000 timber harvest activity. Numerous documented management related slides and sedim
MAFIC / M-01-03 M-02-03 M-02-03 M-05-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-13-04 M-15-04 M-15-04 M-17-04 M-19-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 133 122 0 0 134 0 134 509 3629 11212	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides and sediment inputs. Moderate amount of timber harvest activity. High road density and number of stream crossings. Documented management related slides and sediment inputs. Moderate amount of timber harvest activity. High road density and number of stream crossings. Documented management related slides and sediment inputs. Samples urve
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-05-03 M-07-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-13-04 M-15-04 M-15-04 M-17-04 M-17-04 M-19-04 SEDIME	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 133 122 0 0 134 0 134 509 3629 11212 ENTARY / ME	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density minimal 40 year old timber harvest activity. No documented management related slides or sediment inputs. Moderate amount of inber harvest activity. High road density and number of stream crossings. Documented management related slides. Mainstem Scott River. Not included in calculation. Documented management related sli
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-13-04 M-15-04 M-15-04 M-17-04 M-19-04 SEDIME S-01-03 S-01-03	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 0 134 0 134 0 184 509 3629 11212 ENTARY / ME 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related sildes or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos. Low road density, minimal timber harvest activity. No documented management related sildes and sediment inputs. Moderate amount of timber harvest activity. Nu documented management related sildes and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related sildes and sediment inputs. Moderat
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-05-03 M-07-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-14-04 M-15-04 M-17-04 M-17-04 M-19-04 SEDIME S-01-03 S-02-03 S-02-03	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 193 122 0 133 122 0 134 0 0 134 509 3629 11212 ENTARY / ME 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal timber harvest activity. No documented management related slides and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related slides and sediment inputs. Mo
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-05-03 M-07-03 M-07-03 M-07-03 M-09-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-15-04 M-15-04 M-17-04 M-17-04 M-19-04 SEDIME S-01-03 S-02-03 S-02-03 S-03-04 S-04-04	17270 / ULTRAMAF 108 5702 0 0 0 0 50 18 564 0 193 122 0 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.5 1 0.25 0.25 0.25 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. No documented management related slides and sediment inputs. Mediamt b high impact mid 80's and 2000 timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate amount of timber harvest activity. Nu documenter dmanagement related slides and sediment inputs.
MAFIC / M-01-03 M-02-03 M-02-03 M-05-03 M-05-03 M-06-03 M-07-03 M-07-03 M-09-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-13-04 M-15-04 M-15-04 M-17-04 M-17-04 M-19-04 SEDIME S-01-03 S-02-03 S-02-03 S-03-04 S-04-04 S-04-04 S-05-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 0 0 0 0 134 0 0 0 0 0 0 134 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0.5 0 0 0 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.25 0.5 0.5 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density, minimal timber harvest activity. No documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density minimal 40 year old timber harvest activity. No documented management related slides and sediment inputs. Moderate amount of timber harvest activity. No documented management related slides and sediment inputs. Moderate amount of timber harvest activity. Nu documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Do timber harvest activity. High road density and number of stream crossings. Some legac
MAFIC / M-01-03 M-02-03 M-02-03 M-05-03 M-05-03 M-06-03 M-07-03 M-07-03 M-09-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-13-04 M-15-04 M-15-04 M-15-04 M-17-04 M-17-04 M-19-04 SEDIME S-01-03 S-02-03 S-02-03 S-03-04 S-05-04 S-06-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 0 134 0 134 0 134 0 134 0 134 0 11212 NTARY / ME 0 0 0 0 313 13	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0.5 0.5 0 0 0 0 0.5 0.5	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% per 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100t of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related sildes or sediment inputs. Low road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos. Low road density, minimal 40 year old timber harvest activity. No documented management related sildes and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related sildes and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related sildes and sediment inputs. Low road density ant number of stream crossings. Past mining activity and number
MAFIC / M-01-03 M-02-03 M-02-03 M-05-03 M-05-03 M-06-03 M-07-03 M-07-03 M-09-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-15-04 M-15-04 M-15-04 M-17-04 M-17-04 M-19-04 SEDIME S-01-03 S-02-03 S-02-03 S-03-04 S-05-04 S-06-04 S-07-04	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 18 564 0 193 122 0 134 0 134 0 134 0 134 0 134 0 1212 NTARY / ME 0 0 0 0 313 13 4806	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0.5 0.5 0 0 0 0 0.5 0.5	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 85-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at botom end of large clearout. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density, and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal timber harvest activity. No documented management related slides and sediment inputs. Moderate amount of timber harvest activity. Wigh road density and number of stream crossings. Documented m
MAFIC / M-01-03 M-02-03 M-02-03 M-05-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-13-04 M-14-04 M-15-04 M-15-04 M-15-04 M-17-04 M-19-04 S-01-03 S-02-03 S-02-03 S-02-04 S-01-0	17270 / ULTRAMAF 108 5702 0 0 0 18 564 0 193 122 0 18 564 0 193 122 0 133 122 0 134 0 134 0 134 509 3629 11212 NTARY / ME 0 0 0 0 0 133 13 4806 0	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate multilow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mulfilows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos. Low road density, minimal 40 waar old timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate amount of timber harvest activity. High road density and number of stream crossings. Decumented management related slides or sediment inputs. Moderate road density and number of stream crossings. The stream crossing. Documented management related slides or sediment inputs. Moderate road density minimal 4
MAFIC / M-01-03 M-02-03 M-02-03 M-05-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-13-04 M-15-04 M-15-04 M-15-04 M-17-04 M-17-04 M-19-04 S-01-03 S-02-03 S-02-03 S-02-03 S-03-04 S-01-04 S-01-04 S-01-04 S-01-03 S-02-03 S-03-04 S-03-04 S-05-04 S-06-04 S-06-04 S-07-04 S-08-04 S-08-04 S-08-04 S-09-04	17270 / ULTRAMAF 108 5702 0 0 0 18 564 0 193 122 0 18 564 0 193 122 0 133 122 0 134 0 134 0 134 509 3629 11212 NTARY / ME 0 0 0 0 0 131 13 4806 0 1245	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observations: stumps and cut logs buried in a sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate amount of imber harvest activity. No documented management related slides or sediment inputs. Moderate amount of wither harvest activity. Numerous documented management related slides and sediment inputs. Moderate amount of timber harvest activity. High incad density and number of stream crossings. Documented management related slides and sediment inputs. Moderate amount of inber harvest activity. High road density and number of stream crossings.
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-10-04 M-10-04 M-11-0	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 18 509 183 122 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 0 0 0 134 0 0 0 134 0 0 0 134 0 0 0 134 0 0 0 0 134 0 0 0 0 134 0 0 0 0 0 0 0 0 0 0 0 0 0	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearout. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% per 1990 timber harvest activity within the subbasin. High road density, moderale amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related sides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sides and sediment inputs. Some legacy roads visible on aerial photos, no other visible anthropogenic influences in the field or on aerial photos Low road density, minimal 40 year old timber harvest activity. Numerous documented management related sides and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related sides and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related sides and sediment inputs. Moderate amount of timber harvest activity. Numerous documented management related sides and sediment inputs. Some legacy road
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-10-04 M-10-04 M-11-04 S-05-04 S-05-04 S-06-04 S-06-04 S-07-04 S-08-04 S-01-04 S-01-04 S-11-04	17270 / ULTRAMAF 108 5702 0 0 0 18 564 0 193 122 0 18 509 183 122 0 133 122 0 134 0 134 0 134 0 134 0 134 0 134 0 132 NTARY / ME 0 0 0 0 0 131 13 4806 0 1245 182 0	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbasin area above sampled reach of insufficient size to be included. Subbasin area above sampled reach of insufficient size to be included. Approximately 80% pre 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100/t of the stream channel. Field observations: stumps and out logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related sildes or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes or sediment inputs. Moderate mount of timber harvest activity. Numerous documented management related sildes or adlement inputs. Moderate anount of timber harvest activity. Numerous documented management related sildes or adlement inputs. Moderate anount of timber harvest activity. High road density an number of stream crossings. Documented managemen
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 S-05-04 S-05-04 S-06-04 S-06-04 S-06-04 S-07-04 S-01-04 S-01-04 S-11-04 S-11-04 S-11-04 S-11-04 S-11-04	17270 / ULTRAMAF 108 5702 0 0 0 18 50 18 50 18 50 18 50 18 50 18 50 193 122 0 0 133 122 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 134 0 1212 NTARY / ME 0 0 0 0 0 133 133 13 4806 0 1245 182 0 10 10 10 10 10 10 10 10 10	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Stubbasin area above sampled reach of insufficient size to be included. Approximately 80% per 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observation: stumps and cut logs buried in sediments, inclustors of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related sildes or sediment inputs. Low road density, minimal timber harvest activity. No documented management related sildes or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related sildes and sediment inputs. Moderate road density on inminal photes, no citro wisble anthropogenic influences in the field to an aerial photos. Low road density, minimal timber harvest activity. Numerous documented management related sildes and sediment inputs. Moderate mount of timber harvest activity. Numerous documented management related sildes and sediment inputs. Moderate mount of tifform Aumerous documented management related sildes and sediment
MAFIC / M-01-03 M-02-03 M-02-03 M-04-03 M-05-03 M-05-03 M-06-03 M-07-03 M-09-04 M-10-04 M-10-04 M-10-04 M-10-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-11-04 M-13-04 M-15-04 M-15-04 S-01-03 S-05-04 S-06-04 S-07-04 S-07-04 S-08-04 S-01-0	17270 / ULTRAMAF 108 5702 0 0 0 0 18 564 0 193 122 0 18 564 0 193 122 0 133 122 0 134 0 134 509 3629 11212 NTARY / ME 0 0 0 0 134 509 3629 11212 NTARY / ME 0 0 0 13 13 4806 0 1245 182 0 10 1245 182 0 10 1245 182 0 10 1245 182 0 10 1245 182 0 10 1245 182 0 10 1245 124 0 1245 125 125 125 125 125 125 125 12	0.18 0.5 0.5 0.25 0.25 0.25 0.25 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0	Streamside sampling percentage : 6.2 miles of 258.9 miles (2.4%) Approximately 65-70% high impact timber harvest activity post 1987 fire. Field observations indicate mudflow deposits being excavated by stream, at bottom end of large clearcut. Subbain area above sampled reach of insufficient size to be included. Approximately 80% per 1990 timber harvest activity within the subbasin. High road density, moderate amount of stream crossings and length of roads within 100ft of the stream channel. Field observations stumps and cut logs buried in sediments, indications of mudflows post harvest Low road density, minimal timber harvest activity. No documented management related slides or sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road density and number of stream crossings. Past mining activity and documented management related slides and sediment inputs. Moderate road usity, minimal 40 user old timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate road unity minimal 40 user old timber harvest activity. Numerous documented management related slides and sediment inputs. Moderate road unity find 40 user old timber harvest activity. Numerous documented management related slides and sediment inputs. Medianter Davest activity. Num

Geologic unit	Area sq mi	Stream miles	Tons/ stream mi- year	Tons/year- Geologic unit	Anthropogenic Contribution factor (Table 3.15)	Tons/year Human-Activity Associated	Tons/year Natural
Quaternary	15	49	14	708	0.78	551	157
Mafic	125	377	132	49947	0.66	32930	17017
Sed & Met	431	1414	29	40435	0.17	6806	33629
Watershed totals (Granitic excluded)	571	1840	175	91089		40287	50802
				Tons/sq	mile-year	71	89
Geologic unit	Area sq mi	Stream miles	Tons/ stream mi- year	Tons/year- Geologic unit	Anthropogenic Contribution factor (Table 3.15)	Tons/year Human-Activity Associated	Tons/year Natural
Granitic	86	259	87	22631	0.18	4022	18609
				Tonolog			
				TOUS/SQ	n mile-year	47	217
			I	10115/50	n mile-year	47	217
				Tons/sq	n mile-year	47 Tons/year Human-Activity Associated	217 Tons/year Natural
		Watersl	ned totals	Tons/sq Ton	n mile-year s/year	47 Tons/year Human-Activity Associated 44309	217 Tons/year Natural 69411

Table 3.16. Estimate of sediment contribution from streamside large discrete features in the Scott River watershed assuming management and non-management contributions in the ratio estimated in Table 3.15.

Table 3.17. Estimate of sediment contribution from streamside large discrete features in each subwatershed assuming management and non-management contributions in the ratio estimated in Table 3.15.

Subwatershed	Geology Type	Area (sq mi)	Stream Length (miles)	Human-Activity Contribution factor (table 3.15)	Tons/yr Human-Activity Associated	Tons/yr Natural
	Quaternary	1	5	0.78	59	17
West Canyon	Mafic	24	78	0.66	6842	3536
	Sed & Met	66	205	0.17	987	4876
	Quaternary	1	4	0.78	41	12
East Canyon	Mafic	5	16	0.66	1414	731
	Sed & Met	95	336	0.17	1618	7993
	Quaternary	0	0	0.78	0	0
Eastside	Mafic	10	33	0.66	2842	1468
	Sed & Met	111	383	0.17	1845	9116
	Quaternary	5	17	0.78	192	55
East Headwater	Mafic	49	148	0.66	12938	6686
	Sed & Met	54	177	0.17	850	4201
	Quaternary	1	3	0.78	36	10
West Headwater	Mafic	16	41	0.66	3561	1840
	Sed & Met	6	19	0.17	92	456
	Quaternary	7	20	0.78	222	63
Westside	Mafic	21	61	0.66	5334	2756
	Sed & Met	100	294	0.17	1414	6986

Subwatershed	Geology Type	Area (sq mi)	Stream Length (miles)	Human-Activity Contribution factor (table 3.15)	Tons/yr Human-Activity Associated	Tons/yr Natural
West Canyon		7	26		399	1845
East Canyon		0	0		0	0
Eastside	Granitic	0	0	0.18	0	0
East Headwater	Granitic	7	20	0.10	317	1468
West Headwater		21	59		917	4244
Westside		50	154		2389	11053

Estimated Subwatershed Sediment Delivery Totals

		Human ac	tivity associated	N	atural
		Tons/yr	Tons/sq mi-year	Tons/yr	Tons/sq mi-year
West Canyon		8287	84	10274	104
East Canyon	Subwatershed Totals (tons/vr)	3073	31	8735	87
Eastside	(SEDMODL2 & RM road survey	4687	39	10585	88
East Headwater	delivery rates	14297	124	12409	108
West Headwater	for all geologic units)	4607	105	6550	149
Westside		9358	52	20858	117
TOTALS		44309	55	69411	85
TOTALO					
TOTALO	 	Humon oo		N	atural
TOTALO		Human ac Tons/yr	tivity associated	Na Tons/yr	atural Tons/sg mi-year
West Canyon	F	Human ac Tons/yr 7888	tivity associated Tons/sq mi-year 86	Na Tons/yr 8429	atural Tons/sq mi-year 92
West Canyon East Canyon	Subwatershed Totals (tons/yr)	Human ac Tons/yr 7888 3073	tivity associated Tons/sq mi-year 86 34	Ni Tons/yr 8429 8735	atural Tons/sq mi-year 92 97
West Canyon East Canyon Eastside	Subwatershed Totals (tons/yr) (SEDMODL2 & RM road survey	Human ac Tons/yr 7888 3073 4687	tivity associated Tons/sq mi-year 86 34 66	N: Tons/yr 8429 8735 10585	atural Tons/sq mi-year 92 97 148
West Canyon East Canyon Eastside East Headwater	Subwatershed Totals (tons/yr) (SEDMODL2 & RM road survey delivery rates for all geologic units except	Human ac Tons/yr 7888 3073 4687 13980	tivity associated Tons/sq mi-year 86 34 66 140	Na Tons/yr 8429 8735 10585 10942	atural Tons/sq mi-year 92 97 148 109
West Canyon East Canyon Eastside East Headwater West Headwater	Subwatershed Totals (tons/yr) (SEDMODL2 & RM road survey delivery rates for all geologic units except Granitics)	Human ac Tons/yr 7888 3073 4687 13980 3690	tivity associated Tons/sq mi-year 86 34 66 140 37	Na Tons/yr 8429 8735 10585 10942 2307	atural Tons/sq mi-year 92 97 148 109 23
West Canyon East Canyon Eastside East Headwater West Headwater Westside	Subwatershed Totals (tons/yr) (SEDMODL2 & RM road survey delivery rates for all geologic units except Granitics)	Human ac Tons/yr 7888 3073 4687 13980 3690 6969	tivity associated Tons/sq mi-year 86 34 66 140 37 67	N: Tons/yr 8429 8735 10585 10942 2307 9806	atural Tons/sq mi-year 92 97 148 109 23 94

			Associated with	I Human Activity	,	Direct Associ	iation with Human Stream	Activity NOT Ob Reach	oserved Within	Contr	ibution
		Quaternary	Granitic	Mafic	Sedimentary Metamorphic	Quaternary	Granitic	Mafic	Sedimentary Metamorphic		
Total number of	streamside surveys	12	19	19	13	12	19	19	13		
Survey segments w smal	vith streamside discrete I features	2	3	6	2	6	12	10	7		
Average s (cubic meters/	ediment input stream meter/year)	0.005	0.014	0.016	0.009	0.093	0.065	0.022	0.048		
Cubic meters per stream mile		7.8	21.8	25.8	14.9	150.5	104.1	34.8	77.9		
Strea	am miles	199	259	401	1641	199	259	401	1641		
Cubic me	eters per year	1550	5653	10336	24505	29990	26949	13937	127920		
<u>Tons</u>	per year	2721	9921	18140	43007	52633	47296	24460	224499		
	Roads	782	1540	16259							
Human-Activity	Timber Harvest		684		43007						
Related Source	Agriculture / Mining			1526							
	EMIHA ¹	1939	7698							Total Contribution	Total Contribution
Anthropogenic (Tal	Contribution factor ble 3.15)					0.78	0.18	0.66	0.17	tons/year	tons/sq mi-year
Totals Associated (less roads	d with Human Activity source values)	1939	8382	1526	43007	40966	8405	16127	37788	158140	195
Totals of Nat	ural Contribution					11667	38891	8333	186710	245602	302

Table 3.18. Computation of sediment contribution by streamside small features using data from stream surveys in all geologic units.

1 EMIHA (Effects of Multiple Interacting Human Activities)

Table 3.19. Computation of sediment contribution by streamside small features using data from stream surveys in Quaternary, Mafic, and Sedimentary/Metamorphic geologic units. The Scott Granitic Sediment Study of Sommarstrom and others (1990) was used in Granitic areas.

			Associated with	Human Activity	1	Direct Assoc	ciation with Human Stream	Activity not Ob Reach	served Within	Contr	ibution
		Quaternary	Granitic	Mafic	Sedimentary Metamorphic	Quaternary	Granitic	Mafic	Sedimentary Metamorphic		
Total number of	streamside surveys	12		19	13	12	Granitic Sediment Study	19	13		
Survey segments v smal	vith streamside discrete I features	2		6	2	6	Includes	10	7		
Average s (cubic meters/	sediment input stream meter/year)	0.005		0.016	0.009	0.093	Streamside Large features, Streamside	0.022	0.048		
Cubic meters per stream mile		7.8		25.8	14.9	150.5	and Soil Creep.	34.8	77.9		
Stre	am miles	199		401	1641	199	there was no differentiation in	401	1641		
Cubic me	eters per year	1550		10336	24505	29990	to any human activity.	13937	127920		
Tons	per year	2721		18140	43007	52633	56016	24460	224499		
	Roads	782		16259							
Human-Activity	Timber Harvest				43007						
Related Source	Agriculture / Mining			1526							
	EMIHA ¹	1939								Total Contribution	Total Contribution
Anthropogenic (Tal	Contribution factor ble 3.15)					0.78	0.18	0.66	0.17	tons/year	tons/sq mi-year
Totals Associate (less roads	d with Human Activity source values)	1939		1526	43007	40966	9955	16127	37788	151308	186
Totals of Nat	ural Contribution					11667	46062	8333	186710	252773	311

1 EMIHA (Effects of Multiple Interacting Human Activities)

Table 3.20. Estimate of sediment contribution from streamside small discrete features that do not have direct human activity association observed within the stream reach in which they occur.

Subwatershed				Direct Association with Human Activity NOT Observed Within Stream Reach				
	Geology Type	Area (sq mi)	Stream Length (miles)	Total Delivery (tons)	Human-Activity Contribution factor (Table 3.15)	Tons/yr Human-Activity Associated	Tons/yr Natural	
	Quaternary	1	5	1384	0.78	1077	307	
West Canyon	Mafic	24	78	4789	0.66	3158	1632	
	Sed & Met	66	205	28042	0.17	4720	23322	
	Quaternary	1	4	968	0.78	753	215	
East Canyon	Mafic	5	16	990	0.66	652	337	
	Sed & Met	95	336	45964	0.17	7737	38227	
	Quaternary							
Eastside	Mafic	10	33	1989	0.66	1311	678	
	Sed & Met	111	383	52425	0.17	8824	43600	
	Quaternary	5	17	4502	0.78	3504	998	
East Headwater	Mafic	49	148	9056	0.66	5971	3085	
	Sed & Met	54	177	24160	0.17	4067	20094	
	Quaternary	1	3	854	0.78	665	189	
West Headwater	Mafic	16	41	2493	0.66	1643	849	
	Sed & Met	6	19	2622	0.17	441	2181	
	Quaternary	7	20	5192	0.78	4041	1151	
Westside	Mafic	21	61	3733	0.66	2461	1272	
	Sed & Met	100	294	40177	0.17	6763	33414	
	Quaternary	65	150	39733	0.78	30925	8808	
Valley Floor	Mafic	11	23	1410	0.66	930	481	
	Sed & Met	79	227	31109	0.17	5236	25872	

				Direct Association with Human Activity NOT Observed Within Stream Reach Total Contribution (tons) Human-Activity Contribution factor (Total Contribution				
Subwatershed	Geology Type	Area (sq mi)	Stream Length (miles)	Total Contribution (tons)	Human-Activity Contribution factor (Table 3.15)	Tons/yr Human-Activity Associated	Tons/yr Natural	
West Canyon		7	26	4690		833	3856	
East Canyon								
Eastside								
East Headwater	Granitic	7	20	3730	0.18	663	3067	
West Headwater		21	59	10785		1917	8868	
Westside		50	154	28091]	4992	23099	
Valley Floor								
GSS		86	259	56016 0.18 9955 46062				

Estimated Subwatershed Sediment Delivery Totals

		Subwatershed Contribution Totals (Natural)						
		Tons/yr	Tons/sq mi-year		Tons/yr	Tons/sq mi-year		
West Canyon		29117	295	SEDMODL2 &	29828	302		
East Canyon	SEDMODI 2 &	38779	387	RM road survey delivery rates for all geologic	38779	387		
Eastside East Headwater West Headwater	RM road survey	44278	367		44278	367		
	delivery rates	27244	236		27810	241		
	for all geologic	12088	276	GSS delivery	13723	313		
Westside	units	58936	330	rates for	63195	354		
Valley Floor		35161	226	Granitics	35161	226		
TOTALS		245602	302		252773	311		

Table 3.21. Estimate of sediment contributions from streamside small discrete features that have documented association with human activity in the stream reach in which they occur.

				Human Activity Related Source (rates in tons/yea				
Subwatershed	Geology Type	Area (sq mi)	Stream Length (miles)	Roads	Timber Harvest	Agriculture/ Mining	EMIHA ¹	
	Quaternary	1	5	21			51	
West Canyon	Mafic	24	78	3183		299		
	Sed & Met	66	205		5372			
	Quaternary	1	4	14			36	
East Canyon	Mafic	5	16	658		62		
	Sed & Met	95	336		8805			
	Quaternary							
Eastside	Mafic	10	33	1322		124		
	Sed & Met	111	383		10043			
	Quaternary	5	17	67			166	
East Headwater	Mafic	49	148	6019		565		
	Sed & Met	54	177		4628			
	Quaternary	1	3	13			31	
West Headwater	Mafic	16	41	1657		156		
	Sed & Met	6	19		502			
	Quaternary	7	20	77			191	
Westside	Mafic	21	61	2482		233		
	Sed & Met	100	294		7697			
	Quaternary	65	150	590			1464	
Valley Floor	Mafic	11	23	937		88		
	Sed & Met	79	227		5959			

				Human Activity Related Source (rate in tons/year				
Subwatershed	Geology Type	Area (sq mi)	Stream Length (miles)	Roads	Timber Harvest	Agriculture/ Mining	EMIHA ¹	
West Canyon		7	26	153	68		763	
East Canyon								
Eastside	1							
East Headwater	Granitic	7	20	121	54		607	
West Headwater	1	21	59	351	156		1755	
Westside	1	50	154	914	406		4572	
Valley Floor	1							

Estimated Subwatershed Sediment Delivery Totals

		Subwatershed Contribution Totals						
Includes Human Activity values from Table 3.20		Tons/yr	Tons/sq mi-year		Tons/yr	Tons/sq mi-year		
West Canyon		16341	166	SEDMODL2 &	15664	159		
East Canyon	SEDMODL2 &	18045	180	RM road survey delivery rates for all geologic units except Granitics (less	18045	180		
Eastside	RM road survey	20303	168		20303	168		
East Headwater	delivery rates for all geologic	20224	175		19686	171		
West Headwater	units (less roads	7267	166		5709	130		
Westside	source values)	31357	176	roads source	27299	153		
Valley Floor		44603	582	values)	44603	287		
TOTALS		158140	195		151308	186		

Table 3.22 Scott River Watershed Sediment Source Summary (tons/sq mi-year) used for TMDL. Granitic sediment study used for road delivery¹.

		Natural Proce	esses Delivery (tons	s/sq mi-year)	
		³ Large Discrete	⁴ Small Discrete	_	Unique Landslide
Subwatershed	² Landslide	Features	Features	⁵ Soil Creep	Features
West Canyon	111	104	295	33	
East Canyon	0	87	387	37	
Eastside	0	88	367	36	
East Headwaters	0	108	236	33	
West Headwaters	8	149	276	29	140
Westside	40	117	330	31	
Scott Valley	0	0	226	13	
Watershed Totals (Tons/sq mi-yr)	23	85	302	29	8
	(Table 3.10)	(Table 3.17)	(Table 3.20)	(Table 3.12)	(Report Text)
Subwatershed	² Landslide	Human-Activity Proc ³ Large Discrete Features	esses Related Deliv ⁴ Small Discrete Features	ery (tons/sq mi-yea	r) Unique Landslide Features
West Canyon	132	84	166	105	
East Canyon	1	31	180	31	
Eastside	0	39	168	10	
East Headwaters	1	124	175	13	
West Headwaters	35	105	166	29	9
Westside	12	52	176	29	
Scott Valley	0	0	287	6	
Watershed Totals (Tons/sq mi-yr)	21	55	195	29	0
	(Table 3.11)	(Table 3.17)	(Table 3.21)	(Table 3.7)	(Report Text)
Sediment					
Deliverv		Total		Doroantora	Abovo Notural
SUMMARY	Deliverv	Related Delivery	Total Delivery	Fercentage	ADDIE Naturai
West Canvon	544	487	1031	9	0%
Fast Canyon	511	242	754	4	7%
Fastside	491	218	709	4	4%
East Hoadwatore	377	31/	601	ب و	3%
Lasi neauwalers	511	242	045		7%
west neauwaters	519	343	940 796	5	70/2 20/2
westside Scott Vallov	010 220	209	100		2 /0
Scott valley	209	293	555	12	
Watershed Totals	447	299	746	6	7%

1 Minor errors in addition due to rounding differences

2 Landslides derived from VESTRA Resources landslide analysis (excluding road-related landslides)

3 Large Discrete Features derived from Stream Surveys all geologic units

4 Small Discrete Features derived from Stream Surveys all geologic units

(Tons/sq mi-yr)

5 Soil Creep derived from SEDMODL2 parameters
6 Road Related derived from SEDMODL2 and Resources Management road survey all geologic units except Granitic (including road-related landslides)

Table 3.23. Load Allocations for Sediment

Sources NOT Associated With Human Activity	Current Loading Estimate (tons/sq mi-yr)	Load Allocation (tons/sq mi-yr)	Reduction Needed (%)	
Landslides ¹	23	23	0%	(Table 3.10)
Streamside Sediment Delivery				
Large Features	93	93	0%	(Table 3.17)
Small Features	302	302	0%	(Table 3.18)
Soil Creep	29	29	0%	(Table 3.12)
Subtotal (Natural Sources)	448	448	0%	
Sources Associated With Human Activity	Current Loading Estimate (tons/sq mi-yr)	Load Allocation (tons/sq mi-yr)	Reduction Needed (%)	
Road Related				
Road Surface Erosion	4	2	54%	(Table 3.6)
Road-Stream Crossing Failures	3	1	71%	(Table 3.6)
Road Related Gullying	1	1	31%	(Table 3.6)
Road Related Cut/Fill Failures	4	1	76%	(Table 3.6)
Road Related Landslides ¹	16	7	56%	(Table 3.11)
Landslides				
Harvest Related	19	9	52%	(Table 3.11)
Mining Related ¹	2	2	0%	(Table 3.11)
Streamside Sediment Delivery				
Large Features				
EMIHA ²	55	17	69%	(Table 3.22)
Small Features				
Harvest Related	54	20	63%	(Table 3.18)
Mining Related	2	2	0%	(Table 3.18)
EMIHA ²	139	50	64%	(Table 3.18)
Subtotal (Human Activity)	299	112	63%	
Total Contribution	747	560		
Percentage Above Natural Sources	67%	25%		4
TMDL (tons/sq mi-year)		560]

Includes unique landslide features reported in Table 3.22
 EMIHA (Effects of Multiple Interacting Human Activities)