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1 Introduction 
The Laguna de Santa Rosa is the largest tributary of the Russian River and home to threatened and 

endangered anadromous fish species.  The watershed is the metropolitan center of the North Coast 

Region.  Significant land uses include: urban/rural residential, farming, ranching, and forestry.  The 

watershed contains the largest freshwater wetlands complex on the northern California coast, which 

was designated in 2010 as a “Wetland of International Importance” by the Ramsar Convention 

(Ramsar, 2015). 

Portions of the Laguna de Santa Rosa have been identified as impaired for indicator bacteria, 

dissolved oxygen, phosphorus, water temperature, sediment, and mercury (among others).  These 

problems are linked to one another in a variety of complex ways as has been laid out in detail in the 

conceptual models developed for the system (Sloop et al., 2007). 

Impairments in the Laguna are in part driven by ongoing external loads of nutrients, sediment, and 

oxygen-demanding material.  However, there is also a significant role played by internal recycling, 

including regeneration of nutrients from the sediment and creation of biomass (and associated 

oxygen demand) by plant growth within the Laguna.  Infestation of the Laguna by the exotic 

emergent macrophyte Ludwigia spp. plays an important role here.  The Ludwigia infestation has a 

feedback effect on water quality as the massive growths slow water and promote deposition of 

sediment and associated nutrients, while the general shallowing of the system, exacerbated by the 

macrophytes, is itself a risk factor for additional Ludwigia growth (see Section 3).  All of these 

individual factors contribute to exceedances of the Basin Plan (NCRWQCB, 2011) narrative criterion 

for biostimulatory substances, and all are ultimately related to excess loads of sediment, much of 

which was delivered under past conditions in the watershed.  These sediment loads store and release 

nutrients and oxygen-consuming organic material and cause shallowing that encourages the growth 

of Ludwigia.  Thus, quantifying the sources and status of sediment in the system is a key component 

for the successful completion of the full suite of pending TMDLs for the Laguna.   

Tetra Tech recently completed a report for the North Coast Regional Water Quality Control Board 

(Regional Board) entitled Laguna de Santa Rosa Sediment Budget (Tetra Tech, 2015).  That report 

assembles data and analyses regarding the sources and fate of sediment in the Laguna de Santa Rosa 

watershed.  This companion report summarizes information available on loading of nutrients and 

organic material to the Laguna.  The ultimate goal is to support the development of watershed 

implementation strategies that can help to simultaneously address the many factors that together 

contribute to impairment of beneficial uses in the Laguna de Santa Rosa. 
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2 Overview of Nutrient-Related Impairments in 
the Laguna de Santa Rosa 

The Laguna de Santa Rosa in Sonoma County, CA is a series of low gradient channels, pools, and 

wetlands that developed along the western edge of a tectonic depression formed between two tilting 

crustal blocks (the Santa Rosa block and the Sebastopol block).  The system is slow-moving and poorly 

flushed.  As a result it naturally collects runoff, sediment, and nutrients from the surrounding watershed – 

including urban runoff, agricultural runoff, loads from onsite wastewater systems, and loading from the 

City of Santa Rosa’s Subregional Wastewater Reclamation Facility.  It is likely that the Laguna was 

always a naturally productive system; however, it is also clear that human activities have greatly 

increased nutrient and sediment loads to the Laguna, as well as altering the hydrology of the system, 

leading to over-enrichment by nutrients and associated hyper-eutrophication.  The waterbody has been 

officially considered impaired and not fully supporting its beneficial uses since 1990. 

2.1 REGULATORY BACKGROUND 
Excess nutrients in the Laguna de Santa Rosa result in increased algal and macrophyte growth, which in 

turn impact dissolved oxygen (DO) levels.  Existing regulations regarding water quality are clear on DO 

objectives, but less clear about nutrient objectives. 

The Water Quality Control Plan for the North Coast Region (“Basin Plan”; NCRWQCB, 2011) identifies 

two different sets of numeric water quality objectives for DO.  The first consists of three site-specific 

objectives designed to protect beneficial uses, and the second set is based on life-cycle requirements for 

aquatic life.  The life cycle DO objectives are based on designated aquatic life use (“WARM”, “COLD”, 

and “SPWN”) (Butkus, 2012d). 

Site-specific DO water quality objectives: 

 DO levels shall not fall below 7.0 mg/L at any time. 

 90 percent or more of all annual DO levels shall be equal to or exceed 7.5 mg/L. 

 50 percent or more of all annual DO levels shall be equal to or exceed 10.0 mg/L. 

Life cycle requirement based DO objectives: 

 Waters designated WARM: ≥ 5.0 mg/L minimum DO. 

 Waters designated COLD: ≥ 6.0 mg/L minimum DO. 

 Waters designated SPWN: ≥ 7.0 mg/L minimum DO. 

 Waters designated SPWN: ≥ 9.0 mg/L minimum DO during critical spawning and egg incubation 

periods. 

The Basin Plan does not contain explicit numeric objectives for nutrient concentrations in the Laguna de 

Santa Rosa; it does, however, contain a narrative water quality objective for biostimulatory substances 

that states: “Waters shall not contain biostimulatory substances in concentrations that promote aquatic 

growths to the extent that such growths cause nuisance or adversely affect beneficial uses.”  This 

narrative standard implies that some sort of linkage analysis should be undertaken to determine the 

amount of nutrient and organic matter loading (“biostimulatory substances”) that is consistent with 

holding “aquatic growths” to levels that do not “adversely affect beneficial uses.”  Determining what 

levels are appropriate is subject to uncertainty, as is further discussed in Section 6. 
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The early history of regulatory actions to address nutrient and DO impairments in the Laguna de Santa 

Rosa is described in the Regional Board’s update recommendations for the federal Clean Water Act 

Section 303(d) List of Impaired Waterbodies (NCRWQCB, 2001): 

The Laguna de Santa Rosa was added to the 303(d) List in 1990 for high levels of ammonia and 

low dissolved oxygen (DO) concentrations.  A TMDL was completed for the Laguna for ammonia 

and dissolved oxygen in 1995.  The TMDL concluded that high ammonia levels in the Laguna 

were the result of point and non-point source nitrogen inputs of various forms.  Low dissolved 

oxygen concentrations were a result of inputs of organic matter and nutrients which stimulate 

algal growth and subsequently cause depressed dissolved oxygen levels when the algae dies and 

decays. 

The TMDL led to the development of a Waste Reduction Strategy (WRS; Morris, 1995) that focused on 

nitrogen loading from point and non-point sources and was intended to directly address the ammonia 

listing as well as reducing excess algal growth, which in turn affects DO levels.  Morris noted that there 

were “artificially high concentrations of nitrogen in the Laguna’s water column” and that algal growth 

potential studies had indicated nitrogen was the most limiting nutrient.  The 2011 303(d) List 

recommendations continue: 

With the implementation of the WRS and operational improvements at the City of Santa Rosa 

Waste Water Treatment Plant as well as improvements in waste storage and disposal activities at 

local dairies, nitrogen inputs to the Laguna were significantly reduced.  Following 

implementation of the WRS and the subsequent attainment of nitrogen ammonia interim 

concentration goals, as stated in the WRS, the Laguna was removed from the 303(d) List for 

ammonia and dissolved oxygen in 1998, pursuant to a recommendation by US EPA. 

Despite these improvements, subsequent monitoring revealed that DO levels in the Laguna continued to 

frequently fall below the Basin Plan minimum DO objective of 7 mg/L and that phosphorus 

concentrations were elevated.  Consequently, California’s 2010 303(d) List identified the mainstem of the 

Laguna de Santa Rosa as not supporting beneficial uses and requiring the development of Total 

Maximum Daily Loads (TMDLs) for nitrogen, phosphorus, dissolved oxygen, temperature, and sediment.  

The mainstem of the Laguna de Santa Rosa was also listed as impaired for pathogenic bacteria and 

mercury, although these impairments are not discussed further in this report.  California’s 2012 Integrated 

Report (CWA Section 303(d) List / 305(b) Report; 

http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2012.shtml) removed the listing 

for nitrogen based on several lines of evidence, including a finding that “phosphorus is the limiting 

nutrient and reductions in nitrogen loads beyond current levels are not expected to result in added 

protection of the beneficial use or significant water quality improvements.” 

2.2 CONCEPTUAL MODEL 
Sloop et al. (2007) provide extensive discussions of the impairments of the Laguna de Santa Rosa and the 

many complex ways that they are related to hydrology, sedimentation, and nutrient loading from the 

watershed.  The overall water quality conceptual model is reproduced in Figure 2-1. 

The conceptual model is divided into a series of categories beginning with external loading stressors and 

other exogenous risk cofactors (A) that progress through a series of response categories (B-F) to 

beneficial uses (G).  The model illustrates potential linkages between categories.  The primary response 

category (B) responds to stressors and exogenous risk cofactors (A) and is linked to changes in the 

descending categories for physical habitat and water chemistry changes. 

Nutrients and organic matter were identified as the primary external stressors for this conceptual model 

due to unusually high concentrations and external loadings of nitrogen, phosphorus, and organic matter to 

http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2012.shtml
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the Laguna ecosystem.  Risk cofactors (such as channel modification) are also stressors that in 

combination with nutrients can result in degraded conditions. 

Reduced DO is linked to external loading of organic matter, and, via algal and macrophyte growth and 

decay, to external loads of nutrients.  Sloop et al. (2007) concluded that the significant factors 

contributing to low DO “include low flow, low gradient of water, channel morphology, high loadings of 

nutrients and organic carbon, high sediment oxygen demand, and an abundance of algae and 

macrophytes.” 
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Figure 2-1.  Laguna de Santa Rosa Water Quality Overview Conceptual Model (from Sloop et al., 2007) 
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3 Nutrients, Sediment, and Ludwigia in the 
Laguna de Santa Rosa 

The genus Ludwigia comprises a group of invasive aquatic plants from South America, commonly 

known as water primrose, that have invaded the Laguna de Santa Rosa watershed.  The genus 

contains a number of closely related and difficult to distinguish species.  Earlier reports refer to the 

species present in the Laguna as Ludwigia hexapetala.  More recent botanical investigations suggest 

that the invader is either the non-native Ludwigia peploides subspecies montevidensis, a hybrid, or a 

species new to California (Sears et al., 2006). 

3.1 IMPAIRMENT OF BENEFICIAL USES ASSOCIATED WITH LUDWIGIA 
Significant portions of the Laguna de Santa Rosa and its tributary channels experience dense 

coverage by Ludwigia, which trails and floats on the water surface, crowding out most other 

vegetation (e.g., Figure 3-1).  

 

Figure 3-1.  Ludwigia Infestation in Bellevue Wilfred Channel Looking Southwest off the Millbrae 
Road Bridge, June 2007 (from Meisler, 2008) 

The Ludwigia infestation interferes with management goals in a number of ways, as described by 

Sears et al. (2006): 

Invasive Ludwigia is a rapidly growing aquatic shrub currently covering at least 150 acres of 

shallow-water areas in the Laguna ecosystem.  Ludwigia creates a perceived public health threat 

as densely-growing patches create protective habitat for mosquito species that can carry West 
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Nile virus (WNV), which reached Sonoma County in 2004.  Several Ludwigia-infested areas have 

seasonal adult mosquito populations more than 100 times greater than normally acceptable.  The 

Marin/Sonoma Mosquito and Vector Control District (MSMVCD) expended more than $80,000 

for 2003-04 alone for mosquito control in Ludwigia areas, diverting resources and energy from 

other parts of the County.  Vector Control operators have stated that they have limited ability to 

control mosquitoes in these areas because dense Ludwigia growth inhibits larvacide 

applications.  If larvacide cannot be properly applied, operators must use pyrethrin-based 

adulticides, which are less effective overall and tend to have greater negative impacts on fish.  In 

addition, the stagnant eutrophic conditions associated with Ludwigia appear to favor ‘foul-

water’ mosquito species that are superior vectors for West Nile virus (in the genus Culex). 

Besides threatening public health, WNV has a potential to severely impact resident bird 

populations.  The Laguna de Santa Rosa is a stopover on the Pacific Flyway, and hosts a very 

diverse bird community.  More than a third of the permanent or seasonal avian residents of the 

Laguna are known to be susceptible to WNV, including the ecologically dominant herons, egrets, 

raptors, and corvids.  Thirty-four of Laguna species are given priority conservation status under 

the Riparian Habitat Joint Venture, the North American Wetlands Conservation Act (NAWCA) 

for Coastal California wetlands, and/or California Department of Fish and Game (CDFG) list of 

Species of Special Concern…  Horses on surrounding farms are also vulnerable to the virus … 

which has unknown effects on other mammalian wildlife. 

Ludwigia is also a direct threat to the diversity of native plant and animal communities, growing 

over surrounding vegetation to produce a thick mat of woody perennial stems and decaying plant 

matter.  This mat inhibits the recovery and recruitment of other plants, and eliminates open-water 

habitats that are important foraging-grounds for birds and other wildlife.  As Ludwigia tissue 

sloughs off and decomposes, microbial growth reduces dissolved oxygen in the water, impacting 

fish and invertebrate populations.  Current efforts to protect and enhance Laguna wetland 

habitats for migratory birds and waterfowl on the Pacific Flyway are substantially limited by 

Ludwigia growth, especially in the CDFG’s Laguna Wildlife Area where more than 100 acres of 

floodplain are covered with Ludwigia. 

Ludwigia may also contribute to flooding in the Laguna system, as plant biomass fills in flood 

control channels, reducing its capacity for flood-retention and dramatically altering the 

characteristics of the wetland.  Perennial Ludwigia mats slow the movement of water through the 

system, and likely act as a trap for fine sediments, further reducing capacity and degrading the 

wetland.  Projecting current trends, with no remediation, Ludwigia will potentially lead to a 

decrease in shallow wetland areas overall, but with increased flooding during storm events. 

The Ludwigia infestation is believed to play a key role in the nexus between excess nutrient and sediment 

loading and impaired DO conditions in the Laguna de Santa Rosa.  Dense growths of Ludwigia, which are 

associated with sediment aggradation and excess nutrients as described above in the conceptual model 

(Figure 2-1), contribute large amounts of biomass, which, upon senescence and decay, deplete DO from 

the water column.  Because Ludwigia is an emergent/floating macrophyte, its photosynthetic production 

contributes little DO to the water column.  At the same time, slowing of flow by Ludwigia and dense 

coverage of the water surface reduces the opportunity for reaeration. 

3.2 LUDWIGIA MANAGEMENT EFFORTS 
To address the many threats posed by the Ludwigia infestation in the short term, the Laguna de Santa 

Rosa Foundation undertook a three-year Ludwigia control project (Meisler, 2008).  In this project, 5.3 

miles of channel and 99 acres of floodplain with Ludwigia infestation were treated by application of 

aquatic herbicide followed by mechanical removal of biomass.  Herbicide-only applications only 

temporarily reduced biomass due to Ludwigia’s strong regenerative capacities.  Further, leaving dead 
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biomass in place creates additional oxygen demand and exacerbates DO problems.  Deeper channels 

treated with herbicide followed by biomass removal retained excellent control for two seasons; however, 

the dry winter of 2007 resulted in low water levels and some of these areas experienced strong late season 

regrowth as a result (Meisler, 2008). 

The final report of the Ludwigia control project reached the following conclusions (Meisler, 2008): 

Ludwigia is symptomatic of underlying problems in the Laguna.  These problems will be solved 

only through watershed-level efforts including reduction of nutrient, sediment and summer water 

inputs, as well as physical changes to the problem areas including large-scale restoration.  

Because these actions take considerable time, efforts should be taken to ensure that ground 

gained through the project period is not lost. 

Unfortunately, areas treated under the Ludwigia control project have since become fully re-infested 

(personal communication from David Kuszmar, P.E., North Coast Regional Water Quality Control Board, 

to Jonathan Butcher, Tetra Tech, 12/12/2015), demonstrating the need for “watershed-level efforts” called 

for by Meisler. 

3.3 SENSITIVITY OF LUDWIGIA TO ENVIRONMENTAL CONDITIONS 
Ludwigia species are recognized as problematic invasives throughout much of the world; however, 

quantitative analyses of the conditions promoting impairment by Ludwigia are scarce.  There is general 

agreement that conditions of slow flow, shallow water, and high nutrient concentrations promote 

dominance by Ludwigia (Fried, 2011; Hussner, 2010); however, quantitative estimates on the degree to 

which nutrients need to be controlled to reduce impairment by Ludwigia are lacking. 

One complicating factor is that it is not simply the growth potential of Ludwigia that causes impairment 

of beneficial uses but also the form that the growth takes.  The greatest risk to beneficial uses occurs when 

Ludwigia exhibits traits of massive floating mats that choke out other aquatic vegetation, reduce 

reaeration, and provide breeding grounds for mosquitos and other vectors (Rejmánková, 1992).  However, 

the trailing/spreading trait may respond differently to environmental conditions than the overall growth 

potential. 

Somewhat more work on conditions promoting excessive and deleterious dominance by Ludwigia species 

has been conducted in Europe than in the U.S., as aquarium releases have taken hold and caused problems 

over many decades in southern and western Europe, starting in France in the 1830s. 

The environmental responses of different Ludwigia species (L. peploides, L. hexapetala, L. grandiflora) 

are believed to be very similar (Hussner, 2010; Fried, 2011).  Their abundance is correlated with 

increased nutrients and decreased water levels (Hussner, 2010), with optimal growth occurring at water 

depths of 0.3 – 0.7 m (Dutartre et al., 2007).  Ludwigia species tolerate a wide range of nutrient 

conditions, but become dominant under nutrient-rich conditions (Rejmánková, 1992).  The European 

consensus (Fried, 2011) is that nitrogen is generally not limiting on Ludwigia growth, while growth can 

occur over a wide range of phosphorus concentrations.  High ambient phosphorus levels are, however, 

believed to lend Ludwigia a competitive advantage (Gerard et al., 2014). 

Experimental evaluation of growth potential of Ludwigia relative to nutrient concentrations is 

complicated because the plants can take up nutrients both directly from the water column and through 

their roots in the sediment.  Hussner (2010) examined Ludwigia response to eutrophic versus mesotrophic 

conditions and found that as inorganic N in the sediment decreased from 37 to 5.3 mg-N/kg-solids and 

inorganic P (as P205) decreased from 112 to 13.6 mg-P/kg-solids, the relative growth rate of Ludwigia 

species declined by about one third.  In contrast, Gerard et al. (2014) looked at the sensitivity of L. 

grandiflora and L. peploides aboveground biomass to phosphorus concentrations in the water column, 

contrasting treatments with ambient P concentrations at 30 and 100 μg/L, combined with nutrient poor 

sediment.  A 70 percent reduction in water column P (from 100 to 30 μg/L) resulted in an approximately 
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33 percent reduction in biomass.  The authors, however, note that the “relevance of our study applies to 

lakes and ponds where the water column has been loaded with phosphorus but the sediment is low in 

phosphorus…” 

It should be noted that the environmental phosphorus concentrations examined by Hussner (2010) and 

Gerard et al. (2014) are relatively low.  The sediment concentrations evaluated by Hussner equate to 0.03 

– 0.22 lb-P/ton-sediment, which is much less than is typically observed in suspended sediment in the 

Laguna watershed (see Section 5.2).  Similarly, water column concentrations of phosphorus observed in 

the Laguna de Santa Rosa are higher than the maximum concentrations evaluated by Gerard et al. 

(Section 6.2.1). 

American studies seem to have focused on the ability of Ludwigia species to remove nutrients from the 

water column, particularly in treatment wetlands, rather than environmental controls on nuisance growth.  

These studies do demonstrate that Ludwigia is readily able to access water column nutrients.  For 

example:  

 Ensign et al. (2006) studied instream nutrient uptake of streams in coastal North Carolina.  

Ephemeral ditches vegetated with Ludwigia sp. were found to remove 65-98% of the dissolved 

nutrient load delivered from agricultural runoff.   

 Deaver et al. (2005) studied the removal of dissolved nutrients by Ludwigia peploides in 

mesocosm experiments based on a 4-hour hydraulic retention rate (HRT).  The study showed the 

following mean nutrient removal efficiencies:  25% removal of dissolved phosphorus, 83% 

removal of ammonia-N, and 40% removal of nitrate-N.   

 Jing et al. (2002) studied the effect of varying HRT on dissolved nutrient removal from 

constructed wetlands planted with Ludwigia octovalis.  Nutrient removal efficiencies were 

measured in constructed wetlands with HRTs varied between 1 to 4 days.  The study showed the 

following range of nutrient removal efficiencies:  16-81% removal of dissolved phosphorus and 

32-98% removal of ammonia-N. 

In sum, there is wide agreement that Ludwigia impairs beneficial uses in the Laguna, and that the 

overgrowth of Ludwigia is promoted by sedimentation (that leads to shallowing) and by excessive 

nutrient loads – but there is little clear basis in the literature for determining exactly what loads of 

nutrients and sediments would be consistent with reducing the impact of Ludwigia to levels sufficient to 

support beneficial uses. 
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4 QUAL2Kw Modeling of Nutrients and DO 
Impairment 

4.1 QUAL2KW IMPLEMENTATION 
The QUAL2Kw model (Pelletier and Chapra, 2008) was selected by Regional Board staff to simulate 

dissolved oxygen (DO) responses for waters in the Laguna de Santa Rosa watershed.  QUAL2Kw 

simulates steady-state hydraulics and diel water quality conditions in a one-dimensional channel, well-

mixed vertically and laterally.  Two models were developed: one for Lower Santa Rosa Creek to 

represent lotic reaches in the lower Laguna watershed, and one for the remnant of historic Lake Jonive 

along the Laguna de Santa Rosa mainstem at Occidental Road near Sebastopol to represent lentic areas 

with open water (Figure 4-1).  Initial and upstream conditions were defined by nutrient concentration data 

collected by Regional Board staff in June and September 2008 and by diel DO, water temperature, and 

pH data collected in 2009.  The models were applied to simulations representing summer critical low flow 

periods (Butkus, 2011a).  Following model calibration and corroboration, additional analyses were 

performed by staff and subsequently by Tetra Tech to help answer key remaining questions regarding the 

role of various assumptions and sources in contributing to nutrient related impairments in the Laguna. 

 

Figure 4-1.  Location of QUAL2Kw Model Applications in the Laguna de Santa Rosa Watershed 
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4.2 MODEL CALIBRATION 
The Lower Santa Rosa Creek model was run for 20 days to achieve steady state and calibrated using diel 

data for August 25-27, 2009.  The Lake Jonive model was run for 1,000 days to achieve steady state and 

calibrated using diel data for September 3-7, 2009.  The long run time for Lake Jonive was a result of 

near-zero flow measurements during this period resulting in very high water residence times.   

Calibration of both models required relatively high estimates of sediment oxygen demand (SOD) of 10 g-

O2/m2/day for Lake Jonive and 2.6 g-O2/m2/day for Lower Santa Rosa Creek.  Comparison of predicted to 

observed DO showed no apparent bias for Lake Jonive, but showed a bias of over-prediction of DO for 

Lower Santa Rosa Creek.  Overall, modeled constituents for Lower Santa Rosa Creek were below 5 

percent model error with the exception of hourly DO concentrations, which showed a large model error 

(23.6 percent).  Errors in the time course of DO concentrations within the day are likely thrown off by an 

assumption of zero shading.  Critical daily minimum DO for Lower Santa Rosa Creek showed a very low 

model error (0.05 percent).  The Lake Jonive calibration also exhibited a reasonable fit to calibration data, 

with the largest model discrepancies for phytoplankton, ammonium-N, and nitrate-N (6.1 percent, 5.4 

percent, and 5.2 percent, respectively) (Butkus, 2011). 

4.3 MODEL CORROBORATION 
Regional Board staff conducted a model corroboration exercise for the Lower Santa Rosa Creek model by 

applying the calibrated model to diel data for July 29 and August 1-2, 2009, while the Lake Jonive model 

was corroborated using diel data for July 22-26, 2009.  For Lower Santa Rosa Creek, the diel pattern of 

predicted DO generally followed observed values but did not match well with minimum and maximum 

observed DO.  Overall, the model corroboration for Lower Santa Rosa Creek showed a bias of under-

predicting DO, in contrast to the pattern of over-prediction observed during model calibration.  The 

Lower Santa Rosa Creek model corroboration showed the highest model errors for organic phosphorus, 

phytoplankton, and nitrate-N (all greater than 20 percent).  For Lake Jonive, the diel pattern of predicted 

DO generally followed observed values but the model showed high errors for phytoplankton (67.5 

percent) and inorganic phosphorus (22.6 percent) (Butkus, 2011a).  The discrepancies in predicting 

observations during the corroboration tests suggest that the calibrated parameter values may not be robust. 

4.4 MODEL SENSITIVITY ANALYSES 

4.4.1 Input Parameter Sensitivity Analysis 
Regional Board staff undertook a variety of sensitivity analyses relative to the assumptions made in the 

development of the Lake Jonive and Lower Santa Rosa Creek water quality models (Butkus, 2011a).  

Rate process parameters, initial upstream conditions, and measures of physical features were varied by 

±50 percent to develop response sensitivities for predicted DO, phytoplankton, and nutrient 

concentrations.  Results were provided for the six variables exhibiting the highest sensitivity.  For Lower 

Santa Rosa Creek, SOD and bottom algae respiration were the most sensitive parameters for predicting 

DO (i.e., minimum, maximum, and mean concentrations), while bottom algae respiration and growth 

were the most sensitive parameters for predicting DO in Lake Jonive.  Additionally, upstream and initial 

hourly temperature and DO concentrations were varied by ±2 degrees Celsius and ±2 mg/L, respectively.  

The Lower Santa Rosa Creek model was most sensitive to changes in upstream DO for predictions of DO 

(relative deviations approximately 1 percent), and most sensitive to changes in upstream temperature for 

predictions of nitrate-N, phytoplankton, and DO (relative deviations for DO were below 5 percent).  The 

Lake Jonive model was sensitive to changes in upstream DO for predictions of minimum and maximum 

DO concentrations, as well as phytoplankton (relative deviations less than 0.2 percent), and most sensitive 
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to changes in upstream temperature for predictions of nitrate-N and phytoplankton (relative deviations for 

DO were below 1 percent) (Butkus 2011a). 

For Lower Santa Rosa Creek specifically, increasing SOD by +50 percent of the calibrated value (from 

2.6 to 3.9 g-O2/m2/d) reduced the daily minimum DO from about 6.25 mg/L to about 4.80 mg/L. 

Decreasing SOD by -50 percent of the calibrated value (from 2.6 to 1.3 g-O2/m2/d) increased the daily 

minimum DO from about 6.25 mg/L to about 7.70 mg/L (Butkus 2011a).  This is equivalent to about a 

1.1 mg/L increase in daily minimum DO per unit decrease in SOD (g-O2/m2/d), and vice versa. 

The DO linkage analysis (Butkus 2012c) showed that “oxygen demanding substances in the benthic 

sediment are the primary mechanism of DO depletion in both lentic and lotic surface water quality 

models.”  The response of minimum DO to SOD in the calibrated models (with user-specified reaeration) 

is shown in the following figures.  In both cases, the simulated DO decreases linearly with increasing 

SOD.  (Note that the response shown below for Lake Jonive differs from Figure 11 provided in Butkus, 

2012c, which had incorrect assignments of SOD on the x axis). 

 

 

Figure 4-2.  Sensitivity of Minimum DO to Sediment Oxygen Demand in the Lake Jonive QUAL2Kw 
Model  
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Figure 4-3.  Sensitivity of Minimum DO to Sediment Oxygen Demand in the Lower Santa Rosa 
Creek QUAL2Kw Model  

 

The previous work by Regional Board staff had not examined the sensitivity of the models to the 

reaeration rate, which is another major component of the DO balance.  The default for QUAL2Kw is to 

use the composite method of Covar (1967) to estimate reaeration rates based on depth and flow; however, 

this choice is over-ridden if reaeration rates are explicitly entered on the Reach Rates tabs, as was done in 

the Lower Santa Rosa Creek and Lake Jonive model applications.  Regional Board staff apparently 

calibrated these rates to 2.86 day-1 for Lower Santa Rosa Creek and 4.41 day-1 for Lake Jonive.  These 

rates differ significantly than those that would be calculated by the Covar method (10.49 day-1 for Lower 

Santa Rosa Creek and 0.05 – 0.63 day-1, depending on whether wind effects are represented, for Lake 

Jonive).  The current specifications with a higher reaeration rate in slowly moving Lake Jonive than in 

Lower Santa Rosa Creek seems suspect and the estimates are likely a tradeoff with the specified SOD 

values.  For example, a similar fit in Lower Santa Rosa Creek could likely be obtained with higher 

reaeration and higher SOD.  Model sensitivity to reaeration rate is summarized in Figure 4-4 and Figure 

4-5. 
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Figure 4-4.  Sensitivity of Minimum DO to Reaeration Rate in the Lake Jonive QUAL2Kw Model  

 

Figure 4-5.  Sensitivity of Minimum DO to Reaeration Rate in the Lower Santa Rosa Creek 
QUAL2Kw Model 

Sensitivity of model DO predictions to reaeration rate may be of particular interest in light of the fact that 

the floating/creeping habit of Ludwigia reduces reaeration opportunity at the water surface. 

4.4.2 Macrophyte Nutrient Uptake 
One concern identified with the QUAL2Kw modeling framework was its ability to adequately simulate 
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QUAL2Kw does not explicitly simulate macrophytes, but does contain routines that address planktonic 

and attached benthic algae.  The benthic algal routines are often used to approximate the growth of 

submersed macrophytes, but are not fully applicable to floating or emergent macrophytes, which do not 

experience the same light limitations. 

The original efforts by Regional Board staff at QUAL2Kw model development for Lower Santa Rosa 

Creek and Lake Jonive (Butkus, 2011a) assumed that Ludwigia obtained nutrients for growth from 

sediments and did not draw nutrients from the water column.  A subsequent literature review (Butkus, 

2012b) indicated a wide range of dissolved nutrient uptake by Ludwigia, so a sensitivity analysis was 

performed in which the fraction of phosphorus and nitrogen supplied from the water column was varied 

between zero and 100 percent, both separately and together, in order to simulate nutrient availability to 

macrophytes.  Model results for Lake Jonive showed very little sensitivity in all modeled constituent 

concentrations as a result of varying dissolved nutrient availability.  However, Lower Santa Rosa Creek 

showed sensitivity for many constituents.  With increasing dissolved nitrogen, a large (72 percent) 

decrease occurred in the diel range of DO concentration accompanied by a large (49 percent) decrease in 

phytoplankton concentration, suggesting a shift of productivity to macrophytes and away from 

phytoplankton.  Water column concentrations of inorganic phosphorus, ammonia-N, and nitrate-N in 

Lower Santa Rosa Creek also decreased by 51 percent, 83 percent, and 92 percent, respectively (Butkus, 

2012b).  Although model results showed that a change in nitrogen availability affected DO concentrations 

in Lower Santa Rosa Creek due to a shift in productivity, the report did not recommend selection of a 

different parameter value for macrophyte nutrient availability. 

4.4.3 Sediment Flux Rates 
QUAL2Kw includes a sediment diagenesis module that computes a steady-state balance of accumulation, 

decay, and re-release of chemical constituents from the sediment bed.  Simulations were run by Regional 

Board staff to compare sediment flux rates calculated by QUAL2Kw’s sediment diagenesis module to the 

rates determined from model calibration with the diagenesis module off (Butkus, 2012a).  The goal of this 

analysis was to help evaluate the relative importance of current versus historic sediment pollutant sources.  

In theory, differences in sediment fluxes between calibrated rates and predictions from the diagenesis 

module should indicate that loading at higher rates prior to the time period simulated is affecting the 

model.  However, because QUAL2Kw is a steady-state model (with diel variability) it is not easy to 

ascertain whether this excess SOD is due to historical processes or simply loading that has occurred 

during the previous wet season. 

The nutrient flux rates set through model calibration included supplementary SOD and nutrient fluxes to 

achieve a reasonable representation of the observed DO and nutrient concentrations.  For Lake Jonive, 

calibrated fluxes for sediment ammonium-N, and inorganic P were 29 to 64 percent higher than the rates 

calculated by the sediment diagenesis module.  For Lower Santa Rosa Creek, the ammonium-N fluxes 

determined in calibration were twice as large as those estimated with the sediment diagenesis model.  

Both the calibrated model input and the sediment diagenesis model have no sediment flux of inorganic P 

as the sediment-water interface remains oxygenated.  For Lower Santa Rosa Creek, daily minimum, daily 

maximum, and daily mean DO concentrations were 21 percent, 17 percent, and 20 percent higher, 

respectively, when using calculated sediment flux rates compared to the calibrated rates.  Little change in 

simulated DO was seen in the Lake Jonive model. 

The results of these experiments suggest that legacy sediments in Lake Jonive are responsible for about 

50 percent of sediment oxygen demand exerted in the lake, and about 32 percent of the sediment oxygen 

demand in Lower Santa Rosa Creek.  As noted above, however, the nature of the model does not allow 

determination of whether this loading was recent (e.g., previous wet season) or the net result of decades of 

loading. 
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4.5 DO LINKAGE ANALYSIS AND LOADING CAPACITY ASSESSMENT 
Regional Board staff undertook a linkage analysis with the QUAL2Kw models to establish a relationship 

between nutrient loads, SOD, and instream water quality response; in particular, DO concentration.  

Model results of daily minimum DO concentration were used to assess support of aquatic life uses (e.g., 

SPWN, WRM, and COLD).  External and internal nutrient loads were reduced by factors ranging from 10 

percent to 90 percent, and increased by 120 percent from current loads to evaluate the effect of nutrient 

loading on resulting daily minimum DO concentrations.  For both Lake Jonive and Lower Santa Rosa 

Creek, among external loads only reductions in total carbon loading showed a positive improvement in 

minimum daily DO concentrations.  These results were assumed to be due to the high calibrated SOD 

values in both models (Butkus 2012c).  

SOD is caused by the biological oxidation of organic matter on and in the sediment.  This organic matter 

can originate from the watershed (e.g., leaf litter, organic solids) or from internal production of algal and 

macrophyte biomass that is deposited in the sediment.  To isolate the role of SOD in the QUAL2Kw 

model applications, Regional Board staff set headwaters DO concentrations to just meet DO criteria using 

observed diel DO cycles.  The SOD rate in each model simulation was then reduced until the model 

results showed that the daily minimum DO criteria were met (Butkus 2012d).   

For Lower Santa Rosa Creek, achieving the critical period SPWN criterion required a 70 percent 

reduction in SOD, and the non-critical SPWN criterion was met with a 12 percent SOD reduction.  No 

SOD reduction was needed to meet the COLD criterion.  For Lake Jonive, the WARM minimum DO 

criterion was met with no SOD reduction, and the COLD (rearing) criterion was met with a 1 percent 

SOD reduction.   

Because both SOD and the range of diel DO fluctuations are linked to algal productivity and respiration, 

the model output was also used to assess phosphorus reductions to achieve the target SOD reductions.  

Only reductions in total phosphorus loads were considered for the decrease in algal biomass because it 

was assumed that nitrogen deficits would be made up by stimulation of nitrogen fixation by native aquatic 

plants, such as the water fern Azolla filliculoides, which is widespread throughout the Laguna de Santa 

Rosa watershed. 

The modeled relationship between total phosphorus and SOD showed that a 7 percent reduction in total 

phosphorus in Lake Jonive could achieve the 1 percent reduction in SOD needed to meet the COLD 

(rearing) criterion.  The Lower Santa Rosa Creek model results indicated that the needed reduction in 

SOD could not be met by reductions in total phosphorus loading to control autochthonous biomass alone, 

and that allochthonous organic material load from the watershed would also need to be reduced to meet 

the desired SOD reduction.  In addition to phosphorus load reductions, the report suggested that benthic 

sediment removal may also be an effective mechanism for controlling internal loads of total phosphorus 

by reducing the rate of nutrient recycling (Butkus 2012d). 

4.6 DISCUSSION OF MODEL LIMITATIONS 
Throughout the QUAL2Kw model calibration and corroboration process, several key limitations were 

identified that will impact the model’s effectiveness as a tool for developing quantitative loading capacity 

estimates in the TMDL process.  However, it is agreed that the model can be useful as part of a weight-of-

evidence approach that adequately addresses the limitations and uncertainties. 

The limited data available to define initial and upstream conditions in the model are recognized as one of 

the main factors affecting its usefulness.  The model was found to be very sensitive to these values which 

were based on just four measurements of nutrient concentrations at each site, collected during June 2008 

(one sample) and September 2008 (three samples).  The 2008 grab sample data were combined with diel 

water quality measurements collected in 2009 (including DO, temperature, pH, and conductivity) to 

define initial and upstream conditions.  While the data are limited in themselves and reflect uneven 
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seasonal sampling, the model linkages are also only valid if the assumption that water quality conditions 

in 2008 and 2009 were the same is true.  Further analysis also showed that stream flows in 2008 and 2009 

(mean seasonal low flows) reflected decadal lows and were not necessarily representative of typical 

summer conditions for the Laguna. 

The steady state QUAL2Kw model is set up for summer critical low flow conditions, which does not 

allow for evaluation of storm event impacts, conditions over time, or the cumulative impacts of 

wastewater discharges.  Diel data were not collected during winter discharge conditions.  However, a 

sensitivity analysis performed using mock wastewater discharges to Lower Santa Rosa Creek and Lake 

Jonive indicated minimal impacts from wastewater relative to other sources (Butkus, 2012a).  Another 

consideration is that it is not clear how the model would perform over a range of flows since model 

calibration and corroboration were both performed at low flow.  Model sensitivity to flow rate has not 

been evaluated. 

Another of the major concerns with selection of the QUAL2Kw framework, which currently only 

incorporates bottom algae routines, was its ability to sufficiently simulate Ludwigia, an emergent 

macrophyte.  In the initial model calibration and corroboration scenarios, it was assumed that 

macrophytes only used sediment nutrients for growth and did not draw nutrients from the water column.  

Sensitivity analyses were performed to begin to evaluate the model response upon increasing the fraction 

of water column dissolved phosphorus and nitrogen.  While the Lake Jonive model showed little 

sensitivity to changes in these parameters, Lower Santa Rosa Creek showed sensitivity for many 

constituents in response to increased water column dissolved nitrogen, suggesting a shift of productivity 

from phytoplankton to macrophytes.  Literature rates on water column nitrogen and phosphorus uptake by 

Ludwigia were found to vary widely (15-100 percent) (Butkus, 2012b).  Consequently, no modifications 

were made to the original calibration and corroboration in response to these findings.  The resulting 

degree of uncertainty combined with limitations on representative modeling of the effect of Ludwigia on 

water quality in the Laguna emphasize the limits of the model’s application as a quantitative tool. 
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5 Modeling of Nonpoint Nutrient Loading 
Sources 

A process-based watershed model that is calibrated and validated for nutrients is not available for the 

Laguna de Santa Rosa watershed – in large part due to limitations in data available for model 

development and calibration.  Potter and Hiatt (2009) did develop a Soil and Water Assessment Tool 

(SWAT) model of watershed runoff and sediment loading; however, the comparison of model predicted 

sediment loads and concentrations to observed data was poor (monthly Nash-Sutcliffe coefficients of 

model fit efficiency less than zero and a large percent low bias relative to observed values).  That model 

has not been further developed for nutrients, and such development is not recommended unless a better 

sediment calibration can be achieved due to the importance of sediment transport in the delivery of 

phosphorus loads. 

Lacking a process-based watershed model that can simulate nutrient loading, Regional Board staff 

developed an empirical, data-based model of nutrient loading.  This tool, the Land Cover Loading Model 

(LCLM) is described in Section 5.1.  An alternative analysis for phosphorus loading based on association 

with sediment is presented in Section 5.2. 

5.1 LAND COVER LOADING MODEL 

5.1.1 Development of the Land Cover Loading Model 
The Land Cover Loading Model (LCLM) was developed by Regional Board staff beginning in 2010.  The 

original memorandum documenting the LCLM (Butkus, 2010) has been revised in draft several times, but 

a final revised version has not yet been formally released.  A revised draft markup (Butkus, 2013) is the 

most recent version available as of this writing and is relied on in this discussion. 

Butkus (2013) describes the development of the pollutant loading functions in the LCLM as follows: 

Regional Water Board staff selected nutrient loading rates for each land cover category based on 

sampling pollutant concentrations in runoff from forest, rangeland, crop and pasture, orchards 

and vineyards, non-sewered residential, sewered residential, and commercial land covers from 

2009-2010 (NCRWQCB, 2010).   

Samples were collected during both wet and dry periods as identified by federal guidance 

(USEPA, 1992) and federal regulations (40 CFR 122.21(g)(7)(ii)).  The LCLM addresses the 

distribution of loads between wet and dry periods.  Dry period loads were derived from the 

measured pollutant concentration data and estimates of the base flow at the sampling location.  

Wet period loads were derived from measured pollutant concentration data and sampling 

location flows estimated as the combined base flow plus the storm event runoff flow.  Statistical 

hypothesis test results showed significant differences between wet period and dry period 

concentrations and between the land covers assessed (NCRWQCB, 2010)… 

Loading rates were estimated from a limited numbers of water samples collected from catchments 

representing various land covers in the Laguna watershed (NCRWQCB, 2010).  Butkus (2010) 

showed that the samples collecting was biased to larger flows that the historical distribution of 

flows.  To account the bias from the limited samples, Monte Carlo simulations were conducted to 

provide estimates of the range of loads across the full range of climatic conditions (extreme dry 

to extreme wet periods).  Monte-Carlo simulation was used to address the potential bias from 

using only flows observed during sampling events.  Monte Carlo simulation is a stochastic 

method that accounts for the inherent variability of data sets.  Monte Carlo simulations rely on 



Laguna de Santa Rosa Nutrient Analysis December 2015 

 

 22 

repeated random sampling to obtain numerical results as distributions.  The probability 

distributions from the flow, precipitation, and concentration records were applied to the loading 

models repeatedly until descriptive statistics converged in the resulting loading distribution…   

Table 3 [in Butkus, 2013 – see Table 5-1 below] compares the median and mean loading rate 

values.  The central tendency for years with wet days represents the 2-year return period.  A 2-

year return period storm has a 50% chance of occurring each year and is represented at the 

center of the x-axis on the load duration curves.  The 2-year return period was estimated to be 

13.4% wet days per year.  The 2-year return period was used to estimate annual loads. 

Sample sites used for land use monitoring were selected randomly from a set of candidate sites with the 

requirement that at least 50 percent of the drainage area was occupied by the target land use 

(NCRWQCB, 2010).  Sampling was done at road crossings.  Drainage areas associated with the 

individual sample sites are not given; however, the median size appears to have been on the order of 800 

acres. 

5.1.2 LCLM Results 
The summary table of loading rates provided in the LCLM report (Table 5-1) presents dry weather and 

wet weather loading rates as if the weather type occupied the full year.  The annual result is then the 

mixture of the two types based on the two-year return period (i.e., 13.4% wet days, as noted above). 
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Table 5-1.  Median and Mean Unit Area Loading Rates by Land Cover in the LCLM 

Land Cover Period 

Total Phosphorus 
(lb/ac/yr) 

Total Nitrogen (lb/ac/yr) 

Median Mean Median Mean 

Forest 

Dry 0.04 0.43 0.25 2.74 

Wet 0.64 1.87 3.86 12.37 

Annual 0.12 0.62 0.73 4.03 

Cropland and Pasture 

Dry 0.39 5.27 0.23 8.37 

Wet 11.97 57.01 30.60 258.27 

Annual 1.94 12.19 4.29 41.78 

Rangeland 

Dry 0.10 1.07 0.62 6.37 

Wet 4.73 17.88 15.73 37.93 

Annual 0.72 3.32 2.64 10.59 

Residential 

with Sewer 

Dry 0.17 1.65 0.89 8.74 

Wet 9.00 15.28 37.71 70.43 

Annual 1.35 3.47 5.81 16.99 

Orchards and Vineyards 

Dry 0.29 4.40 0.59 5.27 

Wet 6.24 15.53 19.85 48.77 

Annual 1.09 5.89 3.16 11.08 

Residential 

without Sewer 

Dry 0.19 2.27 0.48 6.32 

Wet 10.13 30.19 40.65 73.69 

Annual 1.51 6.00 5.85 15.33 

Commercial 

Dry 0.09 0.98 0.57 7.25 

Wet 7.14 12.74 43.35 66.08 

Annual 1.03 2.55 6.29 15.12 

Other Land Uses 

Dry 0.18 2.30 0.52 6.44 

Wet 7.12 21.50 27.39 81.08 

Annual 1.11 4.86 4.11 16.42 

Note: Table from Butkus (2013).  Analyses omitted one “Residential without Sewer” sample from 10/15/2009 due to 
QA/QC concerns (personal communication from Steve Butkus, North Coast Regional Water Quality Control Board, 
to Jonathan Butcher, Tetra Tech, 12/28/2015).  Annual loading rates are based on a 2-year return period (50% 
probability to exceed). 

Table 5-1 gives both mean (average) and median (50th percentile) results.  The data distributions shown in 

Butkus (2013) exhibit a strong skew, with mean concentrations often higher than the 75th percentile load.  

To protect against undue influence by outliers, Butkus (2013) recommended use of the median load rates 

as the best indicator of the central tendency of the distribution.  Estimated total phosphorus loads by this 
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method are summarized in Table 5-2, and, not surprisingly, are dominated by wet period loads.  Estimated 

total nitrogen loads are shown in Table 5-3 and are about three times greater than the phosphorus loads. 

On the whole (i.e., per unit acre), LCLM results found that “Cropland and Pasture” had the highest total 

phosphorus loading rates during wet and dry periods.  The highest total nitrogen loading rate during the 

dry period was for “Residential with Sewer,” and the highest total nitrogen loading rate during the wet 

period was “Commercial”.  Wet period loading rates are always significantly higher than dry period 

loading rates for all land use classes.  When total annual loads by land use area are tabulated, the highest 

total phosphorus loads (Table 5-2) and total nitrogen loads (Table 5-3) are attributed to Cropland and 

Pasture.  An analysis of the Cropland Data Layer for 2013 reveals that vineyards cover approximately 7% 

of the entire watershed area, while other crop types cover less than 1%.  As the LCLM created a separate 

land cover class for “Orchards and Vineyards,” the “Cropland and Pasture” land cover class is about 99% 

Pasture and 1% Cropland. 

Table 5-2.  LCLM Estimates of Typical Total Phosphorus Loads by Land Cover 

Land Cover 

Laguna 
Watershed Land 

Cover Area 
(acres) 

Median Wet 
Period Load 

(lb/yr) 

Median Dry 
Period Load 

(lb/yr) 

Median Annual 
Load  
(lb/yr) 

Forest 48,315 4,150 1,734 5,884 

Cropland & Pasture 44,458 71,130 14,903 86,032 

Rangeland 21,767 13,777 1,949 15,726 

Residential with 
Sewer 

15,348 18,474 2,255 20,729 

Orchards and 
Vineyards 

12,825 10,699 3,239 13,938 

Residential without 
Sewer 

9,857 13,346 1,580 14,926 

Commercial 8,577 8,191 682 8,873 

Other Land Uses 1,461 1,391 230 1,622 

Total Watershed 162,608 141,159 26,571 167,730 

Note: Table from Butkus (2013).  Analyses omitted one “Residential without Sewer” sample from 10/15/2009 due to 
QA/QC concerns (personal communication from Steve Butkus, North Coast Regional Water Quality Control Board, 
to Jonathan Butcher, Tetra Tech, 12/28/2015).  Annual loading rates are based on a 2-year return period (50% 
probability to exceed).  Note that land use categories and acreages reported here differ somewhat from Tetra Tech’s 
analyses. 

  



Laguna de Santa Rosa Nutrient Analysis December 2015 

 

 25 

Table 5-3.  LCLM Estimates of Typical Total Nitrogen Loads by Land Cover 

Land Cover 

Laguna 
Watershed Land 

Cover Area 
(acres) 

Median Wet 
Period Load 

(lb/yr) 

Median Dry 
Period Load 

(lb/yr) 

Median Annual 
Load  
(lb/yr) 

Forest 48,315 24,927 10,271 35,198 

Cropland & Pasture 44,458 181,867 8,745 190,611 

Rangeland 21,767 45,779 11,742 57,520 

Residential with 
Sewer 

15,348 77,378 11,821 89,199 

Orchards and 
Vineyards 

12,825 34,032 6,542 40,575 

Residential without 
Sewer 

9,857 53,579 4,128 57,706 

Commercial 8,577 49,708 4,241 53,948 

Other Land Uses 1,461 5,351 656 6,006 

Total Watershed 162,608 472,620 58,145 530,764 

Note: Table from Butkus (2013).  Analyses omitted one “Residential without Sewer” sample from 10/15/2009 due to 
QA/QC concerns (personal communication from Steve Butkus, North Coast Regional Water Quality Control Board, 
to Jonathan Butcher, Tetra Tech, 12/28/2015).  Annual loading rates are based on a 2-year return period (50% 
probability to exceed).  Note that land use categories and acreages reported here differ somewhat from Tetra Tech’s 
analyses. 

Examination of the Regional Board staff’s calculation sheets demonstrates that selection of the mix of wet 

and dry periods at the 50th percentile year provides a reasonable approximation of average hydrologic 

conditions across all years analyzed for the wet-dry distribution (1931 – 2009); however, the interquartile 

range on the Monte Carlo analysis for nutrient loading conditions is large (for example, the median 

annual loading rate for total phosphorus from cropland has an interquartile range of 0.7 to 6.2 lb/ac/yr).  

An important source of uncertainty is the use of the median load results from the Monte Carlo analysis for 

nutrient loading conditions rather than the mean (average).  The median is appropriate for the stated goal 

of estimating “typical” loads during a “typical” year; however, the bulk of sediment and phosphorus 

loading may occur during large events.  In addition, it is possible that the monitoring on which the LCLM 

is based could be biased low for more intensive land uses because the selection requirement was that the 

drainage area contain at least 50 percent of the target land use.  Thus, sampling for a vineyard site could 

represent a mix of relatively high loads from vineyards with lower loads derived from vacant rangeland.  

Given these concerns, we recalculated LCLM loading estimates based on mean, rather than median 

loading rates (Table 5-4).  The resulting estimates are about 5 times greater for total phosphorus and six 

times greater for total nitrogen than the typical-year loads based on the median analysis; however, they 

are subject to high uncertainty and influenced by data outliers. 
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Table 5-4.  LCLM Estimates of Mean Annual Phosphorus and Nitrogen Loads by Land Cover 

Land Cover 
Laguna Watershed Land 

Cover Area (acres) 
Mean Annual Total 

Phosphorus Load (lb/yr) 
Mean Annual Total 

Nitrogen Load (lb/yr) 

Forest 48,315 30,048 194,642 

Cropland & Pasture 44,458 541,935 1,857,418 

Rangeland 21,767 72,246 230,545 

Residential with Sewer 15,348 53,230 260,687 

Orchards and Vineyards 12,825 75,524 142,157 

Residential without Sewer 9,857 59,153 151,102 

Commercial 8,577 21,865 129,672 

Other Land Uses 1,461 7,100 23,990 

Total Watershed 162,608 861,102 2,990,213 

Note:  Tabulation is based on the land use categories and acreages in Butkus (2013), which differ somewhat from 
Tetra Tech’s analyses.  Analyses omitted one “Residential without Sewer” sample from 10/15/2009 due to QA/QC 
concerns (personal communication from Steve Butkus, North Coast Regional Water Quality Control Board, to 
Jonathan Butcher, Tetra Tech, 12/28/2015).   

5.1.3 LCLM Corroboration 
The strongest corroboration for the performance of the LCLM is comparison to two other methods of 

estimating phosphorus loads that demonstrate that LCLM load predictions are reasonable.  Those 

comparisons are provided below in Section 5.4.  Additionally, Butkus (2013) presented a number of lines 

of evidence to corroborate LCLM results.  These are summarized immediately below along with some 

supplementary comparisons developed by Tetra Tech. 

5.1.3.1 Staff Literature Review 
Regional Board staff conducted a literature review to compare published land use-based loading rates 

with the results of the LCLM.  Unit area nutrient loading rates for total nitrogen and total phosphorus 

were obtained from some fifteen different published sources as they specifically applied to the land use 

categories of forest, rangeland, cropland and pasture, orchard and vineyard, sewered residential, non-

sewered residential, and commercial lands.  Literature values used for comparison were assumed to 

represent a median hydrologic year, and can vary widely depending on precipitation, source activity, and 

soils.  The LCLM memorandum (Butkus, 2013) does not compute statistics on the literature values, but 

rather compares results visually by plotting mean values alongside LCLM results.  Visual inspection of 

the literature values plotted against the LCLM results shows general agreement on loading rates by land 

use.  In general, a wider distribution of mean loading values were seen from literature for nitrogen than 

for phosphorus, with the greatest range seen for commercial lands, orchards and vineyards, and rangeland.  

The ranges of reported mean loading rates for total phosphorus and total nitrogen are compared to LCLM 

results in Table 5-5.  
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Table 5-5.  Range of Mean Annual Loading Rates Reported in Published Literature Compared to 
LCLM Median Annual Loading Rates 

Land Use Category Literature Mean 
Total Phosphorus 

(lb/ac/yr) 

LCLM Median 
Total Phosphorus 

(lb/ac/yr) 

Literature Mean  
Total Nitrogen 

(lb/ac/yr) 

LCLM Median 
Total Nitrogen 

(lb/ac/yr) 

Forest 0.05 – 0.21 0.12 0.64 – 2.55 0.73 

Rangeland 0.09 – 1.01 0.72 0.89 – 14.75 2.64 

Cropland and Pasture 0.45 – 1.39 1.94 1.78 – 8.92 4.29 

Orchard and Vineyard 0.45 – 1.78 1.09 1.78 – 14.75 3.16 

Non-Sewered 
Residential 

0.18 – 1.33 1.51 0.89 – 8.90 5.85 

Sewered Residential 0.36 – 1.86 1.35 1.78 – 9.42 5.81 

Commercial 0.36 – 3.04 1.03 1.78 – 17.55 6.29 

Note: LCLM analyses omitted one “Residential without Sewer” sample from 10/15/2009 due to QA/QC concerns 
(personal communication from Steve Butkus, North Coast Regional Water Quality Control Board, to Jonathan 
Butcher, Tetra Tech, 12/28/2015). 

 

The LCLM median annual loading rates recommended for application by Butkus (2013) generally fall 

within the range of mean loading rates by land use reported in published literature; however, the LCLM 

total phosphorus loading rates for the cropland and pasture and non-sewered residential land use 

categories are greater than the upper ends of the literature ranges. 

5.1.3.2 Uncalibrated GWLF Model 
Regional Board staff used an uncalibrated application of the Generalized Watershed Loading Functions 

(GWLF) model (Haith et al., 1992) as another line of evidence to corroborate LCLM results (Butkus, 

2013).  GWLF is designed to provide scoping level estimates of pollutant loading from mixed land cover 

watersheds using NRCS curve number and Universal Soil Loss Equation calculations.  Staff combined 

measured concentrations of baseflow nutrients from dry weather samples collected in 2008 in the Laguna 

de Santa Rosa watershed with an uncalibrated representation of storm runoff and erosion (Butkus, 2010).  

Staff concluded the LCLM and GWLF models overall produce qualitatively “similar” estimates of annual 

pollutant loads, with a wide variation between tributary load estimates.  Overall, the GWLF model over-

estimated both total phosphorus and total nitrogen loads as compared to the LCLM estimates. 

5.1.3.3 Comparison to TMDL Analyses 
As noted above in Section 2.1, a previous TMDL for nitrogen was developed for the Laguna de Santa 

Rosa by Morris (1995) based on an assessment conducted by CH2M Hill (1994).  Pollutant loading rates 

were estimated for land use categories based on storm and dry weather sampling completed in 1994 for 

multiple storm events and dry periods.  Unit area loading rates for nitrogen differ from those estimated by 

the LCLM.  Nitrogen loads from non-irrigated agriculture, estimated at 13.1 lb/ac/yr, are similar to the 

LCLM mean estimate for orchards and vineyards of 11.1 lb/ac/yr; however, the estimates for 

urban/developed land uses (2.4 lb/ac/yr plus 0.7 lb/ac/yr for areas on septic systems) and undeveloped 

land (0.1 lb/ac/yr) are much lower than the estimates produced by the LCLM.  The differences are likely 

mostly due to the limited sampling data available for the 1994 effort. 

Few other nutrient TMDLs that provide nonpoint source nutrient loading rate estimates are available for 

the immediate region.  However, the Central Coast Regional Board has several completed nutrient 

TMDLs which may provide relevant comparisons to the Laguna de Santa Rosa: Pajaro River, Lower 
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Salinas River, and Santa Maria River.  These regional nutrient TMDLs generally address: nitrate, low 

dissolved oxygen, chlorophyll a, and orthophosphate (CCRWQCB, 2015; 2013a; 2013b).  

The Central Coast nutrient TMDLs used the EPA’s Spreadsheet Tool for Estimating Pollutant Loads, 

version 4.0 (STEPL; Tetra Tech, 2011), which predicts annual loading based on event mean 

concentrations for storm runoff events.  The assumed nutrient event mean concentrations for each land 

use category for the Central Coast TMDLs are derived from a variety of literature sources (Table 5-6).   

Table 5-6.  Nutrient Event Mean Concentrations by Land Use Specified for STEPL Modeling in 
Central Coast TMDLs (CCRWQCB, 2015; 2013a; 2013b) 

Land Use 

 

Santa Maria TMDL Salinas TMDL Pajaro TMDL 

N (mg/L) P (mg/L) N (mg/L) P (mg/L) N (mg/L) P (mg/L) 

Agriculture 11.41,2 0.641 11.41,2 0.641 11.41,2 0.641 

Forest 0.23 0.13 0.23 0.13 0.23 0.13 

Rangeland 0.254 0.272 0.254 0.272 0.254 0.212 

Urban 1.5-2.53 0.15-0.43 4.05 0.531 1.9-3.626 0.15-0.56 

Data sources cited in TMDL documents: 

1-Southern California Coastal Water Research Project, Technical Report 335 (Nov. 2000) Appendix C 
2-US Dept. of Agriculture MANAGE database 
3-STEPL default values for a specific land use type 
4-California Rangeland Watershed Laboratory 
5-Average for western cities from Shaver et al., 2007 
6-Natonal Stormwater Quality Database (version 3, 2 Feb 2008) 

The resulting annual unit-area nutrient loads reported in each of the Central Coast TMDLs are 

summarized in Table 5-7 and compared to the LCLM annual median and mean loading rates from Table 

5-1.  For nitrogen, the Central Coast values tend to fall between the LCLM median and mean loading 

rates for agricultural and urban land uses, but are lower than the LCLM rates for rangeland and forest land 

uses.  LCLM phosphorus loads also appear to be higher than the Central Coast estimates for undeveloped 

lands.  Higher loads in the LCLM are likely directly related to differences in annual precipitation – Santa 

Rosa receives about 31 inches per year, whereas Salinas and Santa Maria receive only 15.5 and 14 inches 

per year, respectively. 

Comparison on a concentration basis between the Central Coast STEPL modeling event mean 

concentration assumptions and wet weather samples from the 2009-2010 Laguna de Santa Rosa 

watershed intensive monitoring used by Regional Board staff as the basis for the LCLM is shown in 

Table 5-8.  For total phosphorus, the concentrations are in general agreement, except that the Laguna de 

Santa Rosa monitoring revealed higher average concentrations for runoff from rangeland than the STEPL 

estimates, which were taken from a general USDA database.  Nitrogen results are more discrepant, with 

the Laguna de Santa Rosa watershed monitoring yielding lower results for agriculture, and higher results 

for forest and rangeland.  The difference for agriculture seems reasonable, as the Central Coast TMDLs 

are for areas that grow irrigated salad and fruit crops on land that often has drain tiles, which promote 

nitrogen export.  Higher concentrations for forest and rangeland may reflect the greater rainfall in the 

Laguna de Santa Rosa area, which both results in more atmospheric deposition of N and greater leaching. 
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Table 5-7.  Comparison of Estimated Unit-Area Nutrient Loads for Central Coast TMDLs to LCLM 
Estimates 

Land Use 

Santa Maria TMDL Salinas TMDL Pajaro TMDL LCLM 

N 
(lb/ac/yr) 

P 
(lb/ac/yr) 

N 
(lb/ac/yr) 

P 
(lb/ac/yr) 

N 
(lb/ac/yr) 

P 
(lb/ac/yr) 

Comparable 
Land Use 

Median/ 
Mean N 
(lb/ac/yr) 

Median/ 
Mean P 
(lb/ac/yr) 

Agriculture 40.03 2.60 18.25 3.02 19.25 2.10 

Cropland and 
Pasture 

4.29/41.78 1.94/12.19 

Orchard & 
Vineyard 

3.16/11.08 1.09/5.89 

Urban 10.32 1.59 5.34 0.71 6.10 0.72 

Commercial 6.29/15.12 1.03/2.55 

Residential 
with Sewer 

5.81/16.99 1.35/3.47 

Residential 
no Sewer 

5.85/15.33 1.51/6.00 

Rangeland 0.83 0.75 1.75 0.66 0.73 0.48 Rangeland 2.64/10.59 0.72/3.32 

Forest 0.38 0.19 0.21 0.08 0.24 0.12 Forest 0.73/4.03 0.12/0.62 

Source: CCRWQCB, 2015; 2013a; 2013b.  LCLM analyses omitted one “Residential without Sewer” sample from 
10/15/2009 due to QA/QC concerns (personal communication from Steve Butkus, North Coast Regional Water 
Quality Control Board, to Jonathan Butcher, Tetra Tech, 12/28/2015).   

 

Table 5-8.  Comparison of STEPL Event Mean Nutrient Concentrations from Central Coast Nutrient 
TMDLs to Average Wet Weather Concentrations from Laguna de Santa Rosa 
Watershed Monitoring 

Land Use 

Total Phosphorus (mg/L) Total Nitrogen (mg/L) 

Central Coast 
TMDLs 

Laguna de Santa 
Rosa Monitoring 

Central Coast 
TMDLs 

Laguna de Santa 
Rosa Monitoring 

Agriculture 0.64 0.55 – 1.84 11.4 1.73 – 9.14 

Forest 0.1 – 0.2 0.08 0.2 0.52 

Rangeland 0.21 – 0.27 0.67 0.25 1.41 

Urban 0.15 – 0.53 0.19 – 0.93 1.5 – 4.0 1.04 – 2.37 

Note: Ranges cover separate land use subcategories (e.g., orchard, vineyard, and cropland within agricultural class.)  
LCLM analyses omitted one “Residential without Sewer” sample from 10/15/2009 due to QA/QC concerns (personal 
communication from Steve Butkus, North Coast Regional Water Quality Control Board, to Jonathan Butcher, Tetra 
Tech, 12/28/2015). 

5.1.3.4 Dry Weather Loading from Independent Samples 
An additional corroboration test performed by Butkus (2013) was based on samples collected during the 

summer of 2008 near the mouth of each of the major tributaries draining to the Laguna.  These samples 
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were not used in LCLM development.  Summer 2008 was a drought period, so the samples were assumed 

to represent dry weather loading conditions.  Weighted average loads based on land use in each tributary 

and LCLM unit area dry weather loading rates were compared to loads estimated for each tributary using 

2008 measured concentrations and flows scaled from the USGS gaging location at Trenton-Healdsburg 

Road.  Statistical tests did not identify any significant differences in median or mean loads from the two 

methods in a majority of tests, suggesting that the LCLM estimates are consistent with measured dry-

weather loads. 

5.2 PHOSPHORUS LOADING AS A FUNCTION OF SEDIMENT LOADING 
Inorganic phosphorus loads from the land surface are particle-reactive, and primarily move with 

sediment.  Organic phosphorus loads, which are mostly associated with detrital plant material, also move 

with sediment.  Typically, watershed nonpoint source loads of dissolved phosphorus are small relative to 

particulate loads on an annual basis1.  Therefore, a separate line of analysis was developed to relate 

phosphorus loads to sediment loading in the watershed, as described in the sediment budget report (Tetra 

Tech, 2015). 

5.2.1 Upland Loads 
Estimates of sediment loads can be converted to estimates of phosphorus loads through application of 

sediment potency factors (pounds of phosphorus per ton of sediment).  The 2009-2010 land-use 

monitoring conducted by Regional Board staff included total phosphorus, dissolved phosphorus, and total 

suspended sediment.  For the purposes of the approximate analysis of load based on sediment transport, 

we assumed that only sorbed phosphorus is associated with sediment load and that the sorbed load 

transported during larger flow events is the major component of annual phosphorus loading to the 

Laguna; and further that wet period loads will dominate the total loading process.  In many instances 

within this sampling effort TSS was not fully quantified and was often reported at the detection limit of 

15 mg/L2.  Therefore, in relation to load prediction, we analyzed the phosphorus potency only on wet 

period samples where the reported TSS concentration was greater than 15 mg/L. 

Phosphorus potency was computed for each valid sample, and averages and medians were calculated for 

land use classes employed in both the LCLM applications (as reported in Table 1 of Butkus, 2013) and 

the RUSLE sediment load modeling (as reported in Table 5-3 of Tetra Tech, 2015).  Given the influence 

of outliers on the averages and the fact that most sediment moves during storm events, the median wet 

weather potencies were selected for further analysis. 

  

                                                      

1 Although relatively small on an annual basis, it is worth noting that dissolved phosphorus loads from sources such 

as agricultural irrigation and recycled water runoff, dry weather MS4 discharges, and leaky septic systems can 

account for a significant fraction of dry weather nutrient loads.  These loads are often discharged during periods of 

low flow and under critical water quality conditions, when they are most likely to be bioavailable to growing 

macrophytes and algae. 

2 NCRWQCB (2010) incorrectly reports the TSS detection limit as 0.015 mg/L (personal communication from 

David Kuszmar, P.E., North Coast Regional Water Quality Control Board, Watershed Protection Division to 

Jonathan Butcher, Tetra Tech, 12/12/2015). 
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Table 5-9.  Phosphorus Sediment Potency in Laguna de Santa Rosa Land Use Monitoring Data, 
2009 - 2010 Wet Weather Samples with TSS > 15 mg/L 

RUSLE Land Use LCLM Land Use Average Wet Potency  
(lb-P/ton-sediment) 

Median Wet Potency  
(lb-P/ton-sediment) 

Cropland Cropland and Pasture 61.00 14.92 

Pasture Cropland and Pasture 61.00 14.92 

Grass Cropland and Pasture 61.00 14.92 

Vineyard Orchard and Vineyard 26.70 8.17 

Water/Wetland N/A 0 0 

Forest Forest 8.86 3.00 

Developed Commercial, Residential 
with Sewer, Non-Sewered 
Residential 

29.02 7.04 

Barren Rangeland 15.43 3.98 

Shrubland Rangeland 15.43 3.98 

Analyses omitted one “Residential without Sewer” sample from 10/15/2009 due to QA/QC concerns (personal 
communication from Steve Butkus, North Coast Regional Water Quality Control Board, to Jonathan Butcher, Tetra 
Tech, 12/28/2015). 

The phosphorus potencies reported in Table 5-9 appear elevated for land uses affected by human activity.  

National surveys (Parker et al., 1946; Mills et al., 1985) report that the typical P2O5 concentration of 

surface soils in this part of California should be approximately in the range of 0.10 – 0.19%.  As P2O5 is 

44 percent P, the likely background phosphorus content of soils should be on the order of 0.88 to 1.67 

lb/ton.  Because phosphorus is preferentially sorbed to fine clay particles, eroded sediment should be 

enriched relative to the total soil content.  The enrichment ratio varies with the intensity of events and is a 

function of the clay content of the soil; however, for annual analysis enrichment ratios in the range of 2 – 

5 are common (Mills et al., 1985; Novotny and Olem, 1994).  This suggests that phosphorus potency 

ought to be in the range of 2 to 8 lb/ton.  Both average and median potencies are well above this range for 

cropland and pasture land use categories, while only the average estimates appear clearly elevated for the 

vineyard and developed land use categories. 

Applying the median wet weather potency factors to the RUSLE delivered sediment estimates in Table 5-

3 of Tetra Tech (2015) results in the loading estimates shown below in Table 5-10.  The distribution by 

land use is shown graphically in Figure 5-1. 
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Table 5-10.  Estimated Upland Phosphorus Load based on RUSLE Sediment Yield and Sediment 
Potency 

Land Cover 

Laguna 
Watershed 
Land Cover 

Area 
(acres)* 

RUSLE 
Sediment 

Delivery Rate 
(t/ac/yr) 

RUSLE 
Sediment 

Yield 
(tons/yr) 

Median Wet 
Potency  
(lb-P/ton 

Sediment) 

Phosphorus 
Load from 
Sediment 
Delivery  
(lb-P/yr) 

Cropland 405 0.138 56 14.92 837 

Pasture 142 0.075 11 14.92 159 

Grass 47,199 0.075 3,548 14.92 52,945 

Vineyard 10,264 0.138 1,419 8.17 11,598 

Water/Wetland 1,123 0.025 28 0.00 0 

Forest 33,152 0.112 3,709 3.00 11,113 

Developed 49,334 0.119 5,872 7.04 41,325 

Barren 28 0.107 3 3.98 12 

Shrubland 19,427 0.135 2,625 3.98 10,446 

Total 161,075 0.107 17,271 7.44 128,435 

* Excluding drainage area below Ritchurst Knob.  Note that the land use tabulations used here (Tetra Tech, 2015) 
differ from those developed for the LCLM (Butkus, 2013). 
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Figure 5-1.  Source Attribution of Annual Upland Phosphorus Load for the Laguna de Santa Rosa 
Watershed Estimated from RUSLE Analysis 

The phosphorus load from the entire watershed estimated using the sediment potency approach (128,435 

lb/yr, as reported above in Table 5-10) is somewhat lower than the LCLM load based on medians 

(167,730 lb/yr, as reported in Table 5-2), and much smaller than the LCLM load based on averages 

(861,102 lb/yr, as reported in Table 5-4).  Individual land uses are delineated differently in the LCLM and 

the RUSLE sediment potency applications.  In particular, the sum of the RUSLE-based Cropland, 

Pasture, and Grass land-cover areas together best match up with the “Cropland & Pasture” land cover 

category in LCLM, with a total estimated phosphorus load that is substantially lower than the LCLM 

model.  Estimates of loading from vineyards, the sum of developed land, and shrub or rangeland areas are 

similar between the two approaches, although somewhat lower for the RUSLE-based sediment potency 

approach.  The RUSLE-based analysis attributes a greater load to forest, even though the tabulation of 

forest area is less.  Some differences between the two methods are expected due to the uncertainty in 

estimating event mean concentrations and sediment potency factors from limited data; however, there 

may also be a systematic under-estimation using the sediment potency approach as it does not account for 

dissolved-phase loads.  In addition, the RUSLE-based analysis does not account for phosphorus 

associated with sediment that derives from sources other than upland erosion, as discussed in the next 

section.  Analysis of total nitrogen loads using the sediment potency approach was not attempted because 

a large fraction of the nitrogen load is expected to move in soluble form. 

5.2.2 Phosphorus and Other Sources of Sediment Loads 
The sediment budget for the Laguna de Santa Rosa watershed (Tetra Tech, 2015) suggests that only about 

19% of the total sediment load in the watershed is derived from upland erosion processes described by the 

RUSLE model.  Of the remainder, the largest source is channel degradation.  Other sources include 

colluvial soil creep, gully formation, and road-related erosion. 

The monitoring data described in NCRWQCB (2010) occurred at roads and with contributing drainage 

areas that appear to be on the order of 800 acres.  The monitoring data are thus likely, to a large extent, to 

include the effects of these other sources of sediment loading, especially the road, soil creep, and gully 
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sources.  Tetra Tech (2015) estimated that much of the channel degradation load originates on old alluvial 

fans in areas relatively downstream in the drainage network and nearer to the Laguna de Santa Rosa.  

Thus, the channel degradation source (estimated at 56 percent of the total sediment load) is likely to be 

largely omitted from the 2008-2010 monitoring results. 

If the road, soil creep, and gully sediment loads are included within the monitoring results then the 

estimated sediment potencies would be more properly applied to the sum of these sediment sources plus 

the upland sediment load.  This could increase the estimated total phosphorus load by a factor of about 2 

or 3, but is highly uncertain. 

Sediment derived from channel degradation will also have an associated phosphorus load.  Concentrations 

associated with channel degradation in the watershed are not precisely known, but are likely 

approximated by the stream sediment samples for the area contained in the National Geochemical Survey 

Database (Grossman, et al., 2008).  Five individual samples from the Laguna de Santa Rosa watershed 

range from 0.05% to 0.129% P by weight, with a median of 0.0895%.  The average for Sonoma County 

as a whole is 0.07%.  The median for the Laguna watershed converts to a sediment potency of 1.79 lb/ton.  

Based on the estimated channel degradation sediment load of 47,589 t/yr (Table 8-1 in Tetra Tech, 2015), 

this could account for an additional phosphorus load of up to 85,184 lb/yr.  Compensating for this 

increase, there will also be decreases due to sediment removal associated with SCWA channel 

maintenance activities. 

5.3 FLUX ANALYSIS OF NUTRIENT LOADS IN SANTA ROSA CREEK 
The Sonoma County Water Agency (SCWA) has collected nutrient samples in Santa Rosa Creek at 

Fulton Road since 1997 in accordance with its municipal separate storm sewer system (MS4) stormwater 

permit.  From 1997 to 2009 samples were collected on an annual basis during storm events.  Since 2010, 

SCWA has collected samples on a monthly basis at a variety of flow conditions.  The samples prior to 

2010 are primarily of value for quantifying nitrogen species as there appears to have been a high detection 

limit for phosphorus (1 mg/L) between 1999 and 2009.  Phosphorus was quantified at levels less than 1 

mg/L in 1997 – 1998, but flow gaging is not available for those years.  The one valid total phosphorus 

concentration from the 1999 – 2009 time period is incorporated into the analysis. 

The drainage area upstream of Fulton Road (excluding the Matanzas Reservoir and Lake Ilsanjo 

drainages) contains 29,701 acres, or roughly one-sixth of the Laguna watershed area.  Unfortunately, flow 

is not monitored directly at Fulton Road.  The USGS gage on Santa Rosa Creek is located a short distance 

downstream, at Willowside Road; however, Piner Creek, which drains a significant portion of the western 

part of the City of Santa Rosa, enters between these two locations.  This limits the ability to evaluate 

loads from the SCWA monitoring.  An approximate estimate was made by combining the monitoring 

with USGS gaging of flows in Santa Rosa Creek at Willowside Road, prorated for the difference in 

drainage area (factor of 0.9579), to develop estimates of nutrient loading using the FLUX tool. 

FLUX is an interactive program developed by the U.S. Army Corps of Engineers’ Waterways Experiment 

Station and designed for use in estimating loads of nutrients or other water quality constituents from 

concentration monitoring data (Walker, 1999).  The model may be used to estimate long-term load 

estimates or daily series based on relationships between concentration and flow.  Data requirements 

include (1) point-in-time water quality concentration measurements, (2) flow measurements coincident 

with the water quality samples, and (3) a complete flow record (mean daily flows) for the period of 

interest. 

Estimating constituent mass loads from point-in-time measurements of water-column concentrations 

presents many difficulties.  Load is determined from concentration multiplied by flow, and while 

measurements of flow are continuous (daily average), only intermittent (e.g., monthly or tri-weekly grab) 

measurements of concentration are available.  Calculating total load therefore requires "filling in" 

concentration estimates for days without samples and extrapolating point-in-time measurements to whole-
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day averages.  The process is further complicated by the fact that concentration and flow are often highly 

correlated with one another, and many different types of correlation may apply.  For instance, if a load 

occurs primarily as a result of nonpoint soil erosion, flow and concentration will tend to be positively 

correlated; that is, concentrations will increase during high flows, which correspond to precipitation-

washoff events.  On the other hand, if load is attributable to a relatively constant point discharge, 

concentration will decrease as additional flow dilutes the constant load.  In most cases, a combination of 

processes is found. 

Preston et al. (1989) undertook a detailed study of advantages and disadvantages of various methods for 

calculating annual loads from tributary concentration and flow data.  Their study demonstrates that simply 

calculating load for days when both flow and concentration have been measured and using results as a 

basis for averaging is seldom a good choice.  Depending on the nature of the relationship between flow 

and concentration, more reliable results may be obtained by one of three approaches: 

1. Averaging Methods:  An average (e.g., yearly, seasonal, or monthly) concentration value is 

combined with the complete time series of daily average flows; 

2. Regression Methods:  A linear, log-linear, or exponential relationship is assumed to hold 

between concentration and flow, thus yielding a rating-curve approach; and 

3. Ratio Methods:  Adapted from sampling theory, load estimates by this method are based on 

the flow-weighted average concentration times the mean flow over the averaging period and 

performs best when flow and concentration are only weakly related. 

No single method provided superior results in all cases examined by Preston et al.; the best method for 

extrapolating from limited sample data depends on the nature of the relationship between flow and 

concentration, which is typically not known in detail.  Preston et al. show that stratification of the sample 

data and analysis method, however, can reduce error in estimation.  Stratification refers to dividing the 

sample into two or more parts, each of which is analyzed separately to determine the relationship between 

flow, concentration, and load.  Sample data are usually stratified into high- and low-flow portions, 

allowing a different relationship between flow and load at low-flow (e.g., diluting a constant base load) 

and high-flow regimes (e.g., increasing load and flow during nonpoint washoff events).  Stratification 

could also be based on time or season to account for temporal or seasonal changes in loading. 

The FLUX package implements all three of the general approaches described by Preston et al., including 

a number of variants on the regression approach, and allows flexible specification of stratification.  FLUX 

also calculates error variances for the estimates. 

SCWA monitoring, coupled with area-adjusted USGS gage records for Santa Rosa Creek, enables the 

estimation of annual loads for total phosphorus, total Kjeldahl nitrogen (organic nitrogen plus ammonium 

nitrogen), nitrate nitrogen, and ammonium nitrogen.  Total nitrogen estimates can be assembled as the 

sum of Kjeldahl nitrogen and nitrate nitrogen (nitrite nitrogen concentrations are typically minimal in 

oxygenated waters).  For each constituent, a reasonable fit was obtained (based on analysis of the residual 

coefficient of variation) using FLUX method 6 with stratification at or near median flow.  Method 6 is a 

bias-corrected regression of concentration on flow, implemented on a daily basis. 

Results of the FLUX analysis, based on flows for WY 1999-2014 and using interpolation to residuals on a 

15-day time window, are shown in Table 5-11. 
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Table 5-11.  FLUX Estimates of Annual Nutrient Loads in Santa Rosa Creek at Fulton Road based 
on SCWA Monitoring for 2010 - 2014 

Parameter Interpolated Load 
(lb/yr) 

Flow-weighted Concentration 
(mg/L) 

Total Phosphorus 29,920 0.172 

Nitrate-N 80,757 0.473 

Total Kjeldahl-N 212,628 1.225 

Ammonium-N 39,826 0.235 

Total N 293,384 1.698 

 

5.4 COMPARISON OF LOADING ESTIMATES FOR SANTA ROSA CREEK 
The FLUX analysis provides an independent estimate of loading in Santa Rosa Creek passing Fulton 

Road, although, as described above, the estimate is imprecise because the flow gage is not at the same 

location.  The FLUX estimates can be combined with estimates using the LCLM and sediment potency 

approaches (Sections 5.1 and 5.2) calculated using only the area upstream of Fulton Road and omitting 

the area upstream of Matanzas Reservoir and Lake Ilsanjo, which are likely to trap most phosphorus load. 

The various load estimates for total P and total N above Fulton Road are compared in Table 5-12.  For 

total phosphorus, the load estimates based on upland sediment potency are less than those obtained from 

FLUX and from the LCLM using median concentrations, while estimates from the LCLM using mean 

concentrations are much higher.  The FLUX estimates of total N load fall about midway between those 

obtained from the LCLM using median concentrations and those obtained using average concentrations.  

The fact that the sediment potency estimates of phosphorus load are lower than the other estimators may 

be due to the omission of dissolved phosphorus loads as well as phosphorus associated with other sources 

of sediment load, such as channel degradation.  As discussed in Section 5.2.2, phosphorus associated with 

road, soil creep, and gully sediment loads could increase the upland sediment-associated phosphorus load 

estimate by a factor of about 2.3, while additional loads may come from channel erosion.  These 

additional loads would likely increase the estimate from the upland sediment potency method to be 

somewhat greater than the estimate based on LCLM with median concentrations and FLUX. 

Table 5-12.  Comparison of Annual Loading Rate Estimates for Santa Rosa Creek above Fulton 
Road 

 LCLM, Average 
Concentration 

LCLM, Median 
Concentration 

Upland Sediment 
Potency Method 

FLUX, 1999 - 2014 

Total P (lb/yr) 115,650 27,125 19,655 29,920 

Total N (lb/yr) 437,252 103,214 NA 293,384 

Note: LCLM and Upland Sediment Potency Method estimates omit land area upstream of Lake Ilsanjo and Matanzas 
Creek Reservoir. 

In sum, estimates of nonpoint source nutrient loading in Santa Rosa Creek and in the Laguna de Santa 

Rosa watershed as a whole are highly uncertain.  Several lines of evidence suggest that the LCLM 

provides a reasonable, if imprecise, order-of-magnitude estimate of nutrient loads.  FLUX analysis of 

SCWA monitoring at Fulton Road suggests that the actual nutrient loads may lie between the LCLM 
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estimates based on median concentrations and those based on average concentrations.  Additional 

monitoring in small watersheds with relatively homogenous land use would likely improve the accuracy 

of the LCLM and would also provide data that could in the future support calibration of a process-based 

nutrient delivery model. 

5.5 LOADING RATES PRIOR TO EUROPEAN SETTLEMENT 
Regional Board staff performed a detailed analysis to estimate land use coverage in the watershed prior to 

European settlement (Butkus, 2011b).  Under pre-settlement conditions, about 18 percent of the 

watershed area was in oak savanna.  Representative nutrient loading rates for this land use were assigned 

by Butkus (2010) based on data from an un-grazed watershed near the town of Hopland in 1999-2000 

reported by Dahlgren et al. (2001). 

Using land use coverage provided by Butkus (2011b) we recalculated nutrient loads for pre-settlement 

conditions using both the median and average annual load rates (Table 5-13).  The median loads differ 

slightly from those presented by Butkus (2013), but we agree that pre-settlement loads were likely an 

order of magnitude less than those under current conditions. 

Table 5-13.  Nutrient Loads for Conditions prior to European Settlement Estimated by the LCLM 

Pre-Settlement 
Land Cover 

Land Cover 
Area 

(acres)* 

Median Annual 
P Load (lb/yr) 

Average Annual 
P Load (lb/yr) 

Median Annual N 
Load (lb/yr) 

Average Annual 
N Load (lb/yr) 

Open Water 2,963 0 0 0 0 

Perennial Wetland 16,964 0 0 0 0 

Riverine Wetland 5,058 0 0 0 0 

Rangeland 24,182 17,471 80,262 63,902 256,124 

Oak Savanna 28,832 2,499 6,327 11,831 30,148 

Forest 83,076 10,118 51,667 60,522 334,681 

Total 161,075 30,088 138,256 136,255 620,953 

* Excluding drainage area below Ritchurst Knob. 

Butkus (2013) notes that loads of nutrients from the watershed that were actually delivered to the Laguna 

de Santa Rosa under conditions prior to European settlement were likely much less than the loads 

estimated by the LCLM.  In contrast to current conditions in which flood control channels are designed to 

move water off the Santa Rosa Plain, the pre-settlement land coverage (Butkus, 2011b) contained many 

disconnected channels that discharged into seasonal wetlands on alluvial fans, and there were extensive 

amounts of both riparian and permanent wetlands. 

Regional Board staff estimated that a total of 73 percent of the upland phosphorus load and 87 percent of 

the upland nitrogen load was likely “assimilated” in wetlands prior to reaching the Laguna mainstem 

under pre-settlement conditions (Butkus, 2013).  These estimates appear highly speculative as they are 

based on estimates reported in EPA compilations of the median removal efficiency of riparian wetland 

buffers for nitrogen (USEPA, 2005) and riparian buffers in general for phosphorus (USEPA, 1993), along 

with application of the simple PREWet model of nutrient removal in perennial wetlands (Dortch and 

Gerald, 1995).  These references primarily address removal efficiencies through managed riparian buffers 
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and constructed wetlands in a modern landscape and may differ significantly from the performance of the 

natural system that existed pre-settlement.  Removal efficiencies are likely to have been lower because the 

source strength in runoff was lower.  Reported percent removal in BMPs is strongly dependent on source 

water concentration, and many treatments exhibit an “irreducible concentration” below which net removal 

is essentially non-existent (Wright Water Engineers and Geosyntec Consultants, 2007).  In addition, 

trapping of nutrients in wetlands is in large part not permanent as nutrients that settle out or are converted 

to biomass can later be remobilized in large flow and scour events or converted back to dissolved form in 

hypoxic sediments.  The only pathways for permanent removal in a wetland or riparian area would be 

through removal of sediment or biomass (which would by definition be non-existent or minor under pre-

settlement conditions) or denitrification that converts nitrogen compounds to nitrogen gas.  It appears 

clear that the large area of wetlands present under pre-settlement conditions would reduce the rate of 

nutrient transport into the Laguna mainstem, but the net effect would likely be smaller than the estimates 

provided above, which can be considered to provide an approximate upper bound on removal.  Even 

without accounting for assimilation by wetlands, phosphorus loads under pre-settlement conditions are 

estimated to be only 18 percent of present day loads (using the LCLM median-basis analysis). 
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6 Nutrient Numeric Endpoints Analysis 

6.1 THE CA NNE APPROACH 
Evaluating nutrient concentrations within a waterbody alone is not an effective means of assessing the 

impacts of eutrophication on beneficial uses.  The State Water Resources Control Board has not yet 

adopted a final policy on nutrient criteria for streams, but is in the process of developing a Nutrient 

Numeric Endpoints (NNE) approach.  In support of this process, Tetra Tech (2006) developed a draft 

technical support document for California NNE.  The proposed CA NNE approach is based on an 

evaluation of the risk of impairment of beneficial uses in response to nutrient loading, rather than 

assigning fixed nutrient concentration targets.  Such an approach recognizes that many site-specific 

factors influence the expression of impacts of nutrients on uses, and also that nutrient-caused impairment 

may be due to a combination of ongoing water column loads and previously loaded nutrients stored in 

waterbody sediment.   

The CA NNE approach also addresses natural background nutrient concentrations:  Nutrients occur 

naturally, and vary in relationship to soils, geology, and land cover.  It is inappropriate to set a nutrient 

criterion that is lower than natural background for a specific waterbody, as could occur through 

application of ecoregional statistical criteria. 

The CA NNE approach recognizes that there is no clear scientific consensus on precise levels of nutrient 

concentrations or response variables that result in impairment of a designated use.  To address this 

problem, waterbodies are classified in three categories, termed Beneficial Use Risk Categories (BURCs).  

BURC I waterbodies are not expected to exhibit impairment due to nutrients, while BURC III 

waterbodies have a high probability of impairment due to nutrients.  BURC II waterbodies are in an 

intermediate range, where additional information and analysis may be needed to determine if a use is 

supported, threatened, or impaired.  The BURC categories and CA NNE assessment process are 

summarized in Figure 6-1. 
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Figure 6-1.  Beneficial Use Risk Classification (BURC) Categories and Nutrient Assessment 
Process (from Tetra Tech, 2006) 
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Tetra Tech (2006) lists consensus targets for response indicators defining the boundaries between BURC 

I/II and BURC II/III.  These were generally defined as measures of effect and include DO, pH, and 

chlorophyll a concentrations (benthic and planktonic).  For DO and pH, the numeric criteria in the local 

Basin Plan apply and can be considered as equivalent to the BURC II/III boundary.  The proposed 

numeric endpoints for algal biomass indicators are shown in Table 6-1. 

Table 6-1.  Nutrient Numeric Endpoints for Algal Biomass Indicators – Beneficial Use Risk 
Category (BURC) Boundaries: I / II and II / III (adapted from Tetra Tech, 2006) 

RESPONSE INDICATOR 

RISK – 
CATEGORY 
BOUNDARY 

BENEFICIAL USE and NUMERIC ENDPOINT 

COLD WARM REC-1 REC-2 MUN1 SPWN MIGR 

Benthic Algal Biomass in 
streams/rivers (mg chl-
a/m2) -Maximum 

I / II 100 150 C C 100 100 B 

II / III 150 200 C C 150 150 B 

Planktonic Algal Biomass 
in Lakes and Reservoirs 
(as µg/L chl-a)2 – summer 
mean 

I / II 5 10 10 10 5 A B 

II / III 10 25 20 25 10 A B 

A = No direct linkage to impairment of beneficial use 

B = More research needed to quantify linkage; not applicable at this time 

C = Addressed by Aquatic Life Criteria 

1 For application to zones within waterbodies that include drinking water intakes 
2 Reservoirs may be composed of zones or sections that will be assessed as individual waterbodies 

 

The CA NNE development team evaluated macrophyte density as a potential endpoint, but concluded that 

measures of macrophyte density were “not useful as a general numerical effect measure” to address 

nutrient numeric endpoints due to the many factors controlling macrophyte growth and the general lack of 

models that are able to accurately predict macrophyte responses to nutrients. 

Tetra Tech (2006) also documents a set of relatively simple spreadsheet tools to assist in evaluating the 

translation between response indicators and nutrient concentrations or loads.  These simplified tools were 

intended to provide a starting place for the estimation of site-specific nutrient endpoints, and are intended 

to be superseded by calibrated site-specific models where available.  The two spreadsheet tools 

respectively address benthic algae in wadeable streams and planktonic algae in lakes and reservoirs.  

Neither tool simulates the response of macrophytes to nutrient eutrophication, and neither is fully 

appropriate to the slow-moving and macrophyte-dominated waters of the Laguna de Santa Rosa. 

The State Board in 2007 issued a staff report containing recommendations on screening levels of nutrient 

and chlorophyll a concentrations for use in the 303(d) listing process (SWRCB, 2007).  Values selected 

for rivers and streams were based on four case studies conducted by Tetra Tech using the benthic biomass 

spreadsheet described in Tetra Tech (2006); values for lakes and reservoirs are taken from 

recommendations compiled from the literature in Welch and Jacoby (2004).  We do not recommend using 

the screening levels for streams derived in this way for detailed analyses of specific individual streams 

because: 

 The results are derived from a small set of applications with widely varying environmental 

conditions, ranging from the Klamath River to Malibu Creek; 

 The benthic biomass tool on which the numbers are based is still under review, and more recent 

research suggests the nutrient levels predicted by the tool as consistent with attaining measures of 

effect, such as target benthic algal biomass, may need to be revised (e.g., Fetscher et al., 2014); 



Laguna de Santa Rosa Nutrient Analysis December 2015 

 

 42 

 The benthic biomass tool contains multiple model options that provide differing results; 

 Results are likely not applicable to the slow-moving, macrophyte-dominated waters of the 

Laguna de Santa Rosa. 

In contrast, the lake and reservoir targets summarized by Welch and Jacoby (2004) represent a broad 

consensus in the literature as to the approximate boundary between eutrophic and hypereutrophic 

conditions.  These correspond to a total nitrogen (TN) concentration of 1.2 mg/L and a total phosphorus 

(TP) concentration of 0.1 mg/L, intended to correspond to a chlorophyll a target of 25 µg/L (all values 

expressed as growing season median or geometric mean concentrations). 

6.2 LINES OF EVIDENCE 

6.2.1 Water Quality Monitoring 
Water quality monitoring in the Laguna de Santa Rosa through 2010 is described in detail by Fitzgerald 

(2013) and those details are not reported here.  Data (for some nutrients) goes back to 1972 and appears to 

show large declines in both nitrogen and phosphorus concentrations up until the late 1990s.  Sloop et al., 

(2007, Ch. 5) provide an extensive discussion of nutrient concentrations in the Laguna de Santa Rosa 

based on samples from 1985 – 2005.  Their summary documents highly elevated nutrient concentrations, 

but also shows decreases over time that are likely reflective of improvements to wastewater treatment and 

reduction in nutrient loads from dairies.  Key points in this summary include the following: 

 Very high total NH3 and TKN concentrations (e.g., average of 6.8 mg/l at certain locations) 

were observed for the period of 1989 to 1994.  

 Total NH3, TKN, NO3, and TP have shown different degrees of decreases from 1989 to 1994, 

1995 to 2000, and 2000 to 2005.  The largest decreases are in total NH3 and TKN 

concentrations.  Among the three sampling periods, 1995 to 2000 has the lowest nutrient 

concentrations.  

 Current nutrient concentrations for the Laguna main channel during 2000 to 2005 are quite 

uniform for total NH3, with median concentrations in the range of 0.3-0.5 mg/l.  Median NO3 

concentrations remain high at 1-3 mg/l and show larger variations.  Organic nitrogen is 

relatively uniform and generally below 2 mg/l with median values around 1 mg/l at many 

sampling locations.  Median TP concentrations are generally between 0.5- 1 mg/l with a few 

locations showing median TP above 1 mg/l.  

 For the main channel of the Laguna, nutrient concentrations are generally lower at the 

upstream station… increase downstream to [Occidental Road]… then further decrease 

downstream of [Occidental Road]…  Santa Rosa Creek generally has lower nutrient 

concentrations.  Dilution from Santa Rosa Creek decreases nutrient concentrations further 

downstream.  

 Generally higher nutrient concentrations are observed during winter/spring months.  Low 

NO3 concentrations are observed in summer for all the locations.  However, relatively high 

TP concentrations (0.3-0.5 mg/l) have also been observed in summer months, suggesting 

contribution from other sources rather than wastewater discharge.  

Sloop et al. noted that mean TN and TP concentrations within the Laguna are considerably higher than the 

mean of minimally impacted waters sampled within Ecoregion 6 (Southern and Central California 

Chaparral and Oak Woodlands; Omernik, 1987), and noted that concentrations may be sufficiently high 

that nutrients are not limiting growth.  They also noted: 
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It is possible neither nitrogen nor phosphorus ever becomes limited in the Laguna due to the 

availability of these nutrients released from the sediments.  It would be necessary to further 

control N and P loadings to begin to address excess algal and macrophyte growth in the Laguna.  

However, other risk cofactors including shallow water depth, lack of riparian cover, low flow, 

altered flow regime, and high water temperature also contribute to excess algal and macrophytes 

growth.  A nutrient management strategy will have limited success in controlling excess algal 

growth without also addressing other risk cofactors. 

Three compliance stations on the shallow, lake-like Laguna mainstem were established as a result of the 

Waste Reduction Strategy (Morris, 1995): at Stony Point Road (LSR), at Occidental Road (LOR), and at 

Guerneville Road (LGR) (Figure 6-2).  (The Waste Reduction Strategy also established a compliance 

station on lower Mark West Creek at Trenton-Healdsburg Road.  This station is downstream of Ritchurst 

Knob and not necessarily representative of lentic conditions within the Laguna mainstem, and so is not 

further evaluated here.)  Water quality sampling within the Laguna de Santa Rosa over the last 10 years 

(since 2005) has been limited, but does include efforts at all the compliance stations in 2008 and 2013, 

plus samples at Occidental Road (only) in 2005.  Statistics for the recent data are presented in Table 6-2, 

while the TN and TP data are summarized in the form of box plots in Figure 6-3 and Figure 6-4, 

respectively. 
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Figure 6-2.  Nutrient Compliance Monitoring Points in the Laguna de Santa Rosa 
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Table 6-2.  Nutrient and Chlorophyll a Concentrations within the mainstem Laguna de Santa Rosa, 
2005 - 2013 

Parameter Statistic 
Laguna at 

Stony Point Rd. 
Laguna at 

Occidental Rd. 
Laguna at 

Guerneville Rd. 

Ammonia as N (mg/L) 

count 7 7 16 

median 0.15 0.23 0.27 

range 0.07 - 0.51 0.045 - 0.68 0.015 - 0.6 

Total N (mg/L) 

count 7 7 16 

median 0.92 1.68 1.91 

range 0.69 - 4.61 0.74 - 6.01 0.31 - 5.3 

Total P (mg/L) 

count 7 7 16 

median 0.59 0.48 0.63 

range 0.35 - 0.749 0.322 - 0.67 0.31 - 0.94 

Dissolved P (mg/L) 

count 4 4 0 

median 0.30 0.33 

 

range 0.25 - 0.52 0.25 - 0.42  

Chlorophyll a (µg/L) 

count 0 15 0 

median 

 

401 

 

range 

 

40 – 2,480 
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Figure 6-3.  Boxplot for Total Nitrogen Concentrations in the Laguna de Santa Rosa, 2005 – 2013 

Note: Central box shows median and interquartile range, while the whiskers are set at 1.5 times the interquartile 
range or the observed maximum (minimum) if smaller (larger).  Outliers beyond the whiskers are plotted individually. 

 

Figure 6-4.  Boxplot for Total Phosphorus Concentrations in the Laguna de Santa Rosa, 2005 – 
2013 

Note: Central box shows median and interquartile range, while the whiskers are set at 1.5 times the interquartile 
range or the observed maximum (minimum) if smaller (larger).  Outliers beyond the whiskers are plotted individually. 
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The monitoring data confirm a high degree of nutrient enrichment in the Laguna de Santa Rosa.  For 

comparison, USEPA’s (2001) analysis of nutrient distributions in lakes and reservoirs within Aggregate 

Nutrient Ecoregion III (which includes the Laguna de Santa Rosa watershed) documented the 25th 

percentile of the data distributions (inferred to approximate unimpaired conditions) as 0.40 mg/L total 

nitrogen and 0.017 mg/L total phosphorus. 

The sample size is small, but suggests that total P concentrations are relatively consistent across the 

mainstem Laguna de Santa Rosa and in the neighborhood of 0.5 mg/L.  This is consistent with the 

findings of Fitzgerald (2013), who calculated the median across all the compliance stations as 0.43 mg/L 

for 1995 – 2000 and 0.70 mg/L for 2001 – 2010.  These concentrations are far above the 0.1 mg/L total P 

recommended as the boundary between eutrophic and hypereutrophic lentic waters cited above. 

Total N concentrations appear to increase from around 1 mg/L upstream at Stony Point to around 2 mg/L 

at Guerneville Road.  These median concentrations are again generally consistent with the medians 

reported earlier for total N by Fitzgerald (2013) of 1.5 mg/L for 1995-2000 and 3.2 mg/L for 2001 – 2010 

and above the eutrophic – hypereutrophic boundary concentration of 1.2 mg/L reported by Welch and 

Jacoby (2004). 

The Occidental Road (LOR) station on the Laguna mainstem is coincident with the remnants of historical 

Lake Jonive, an open water area near the center of the Laguna de Santa Rosa mainstem.  Recent 

chlorophyll a data are available only for this station, and range up to 2,480 µg/L with a median of 401 

µg/L, suggesting a hypereutrophic system.  It should be noted, however, that the chlorophyll a data 

consist of 15 observations collected on only three days (in August, September, and October of 2008) to 

support development of a low-flow critical conditions application of the QUAL2Kw model, and the 

results may thus be biased high relative to the growing season average.  Nonetheless, these observations 

from Lake Jonive provide an indication of the high algal growth potential that is present in the system in 

areas not shaded out by macrophytes.   

Earlier year-round observations from 1990-1994 at the Occidental Road station showed chlorophyll a 

concentrations ranging from 2 to 564 µg/l, with an overall median of 61.8.  The median for April – Oct 

was 75.8.  These median concentrations are lower than those reported in 2008, although nutrient 

concentrations were higher in the latter period.  They are still indicative of hypereutrophic conditions. 

6.2.2 BATHTUB Analysis of Planktonic Chlorophyll 
The Laguna de Santa Rosa contains areas of lentic, open water, such as the remnants of Lake Jonive near 

Sebastopol.  During low flow conditions, this area behaves like a shallow lake; however, on a year-round 

basis it is part of the stream network, with a relatively short residence time as compared to most lakes.  

The tools developed for CA NNE analysis by Tetra Tech (2006) include a simple spreadsheet calculator 

for lakes and reservoirs based on the BATHTUB modeling tool (Walker, 1986; 1999).  As noted above, 

this tool is not fully appropriate for analysis of Lake Jonive due to the shallow depth in summer 

(averaging approximately 0.34 m), which is outside the range of test sites (primarily U.S. Army Corps of 

Engineers reservoirs) upon which the empirical BATHTUB model equations were built and because of 

the short residence time of water on an annual basis.  BATHTUB is a steady-state model that predicts 

growing season average concentrations of nitrogen, phosphorus, and chlorophyll a in lake surface waters 

based on watershed loading rates and morphometry of the lake.  It can be applied to lakes with short 

residence times, but it is challenging to determine what the appropriate period for evaluating antecedent 

loading should be if most of the winter flow quickly washes through the system, and the general 

assumption that a steady-state approximation of summer conditions is appropriate is suspect in shallow 

water bodies with short residence times.  Nonetheless, some insight can be gained through examination of 

the relationships between nutrients and algal response provided by BATHTUB. 

The QUAL2Kw model of Lake Jonive developed by Regional Board staff was discussed above in Section 

4.  Detailed bathymetry of this segment was not available, but a growing-season BATHTUB model of 
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Lake Jonive was constructed with volume, depth, and surface area consistent with the QUAL2Kw model 

based on the hydraulic geometry assumptions provided in Butkus (2011a), resulting in a volume of 

12,426 m3 and a surface area of 35,914 m3.   

Average annual flow through Lake Jonive (based on records for 1998-2014 for USGS gage 11465750, 

Laguna de Santa Rosa near Sebastopol) is 74.4 cfs (the gage records outflow from the remnant Lake 

Jonive segment, but this is assumed to be equal to inflow).  This is equivalent to a residence time of only 

0.00019 years.  The May – October average flow is 5.4 cfs (residence time 0.03 years).  In contrast, at the 

extreme low flows evaluated in the QUAL2Kw model (0.0001 m3/s), the residence time would be 3.94 

years. 

Given the short residence time even for the seasonal (May – October) representation, it is not clear what 

watershed loads are relevant to a steady-state prediction of response.  We can, however, adjust the 

influent loads to replicate the observed median concentrations at Occidental Road of 0.48 mg/L total P 

and 1.68 mg/L total N (see Section 6.2.1), using default values of 1 for the BATHTUB calibration factors.  

These observed concentrations can be matched by the model if the May – October load is set to 310 kg 

total P and 735 kg total N based on an average flow of 5.4 cfs (total volume of 0.40 hm3 in the units used 

by BATHTUB).  The corresponding flow-weighted inputs are 0.78 mg/L total P and 1.84 mg/L total N.  

The BATHTUB tool predicts a median chlorophyll a concentration of 106 μg/L for these conditions.  For 

the extreme low flow conditions evaluated in the QUAL2Kw run, a load of only 55 kg total P and 31.5 kg 

total N (over an undefined but brief antecedent time period) is needed to reproduce the median nutrient 

concentrations observed at Occidental Road, resulting in a predicted median chlorophyll a concentration 

of 120 μg/L.   

The observed chlorophyll a concentrations at Occidental Road are higher than those predicted by 

BATHTUB, with a median of 401 and interquartile range of 240 – 468 μg/L, although, as noted above, 

the sampling is biased toward extreme low flow conditions.  The chlorophyll a samples are also not 

coincident in time with nutrient samples.  If the loads are adjusted to match the maximum instream 

concentrations observed during summer 2008 of 0.67 mg/L total P and 6.01 mg/L total N, the resulting 

uncalibrated BATHTUB prediction of chlorophyll a is 367 μg/L, approximately consistent with 

observations.  Under these extreme low flow conditions, reducing the predicted chlorophyll a from the 

uncalibrated BATHTUB application to the target concentration of 25 μg/L would require reducing the 

total P concentration to around 0.03 mg/L or the total N concentration to around 0.58 mg/L.  In the 

application with average growing season flows of 5.4 cfs, the median chlorophyll a concentration target 

of 25 μg/L can be achieved with an approximately 65 percent reduction in current median concentrations 

to 0.16 mg/L total P and 0.59 mg/L total N. 

The experiments with the BATHTUB model are of limited value as quantitative predictions because the 

conditions in remnant Lake Jonive are clearly outside of the intended range of applicability of the 

BATHTUB tool.  They do, however, reinforce the conclusion that significant reductions in current 

summer nutrient concentrations would be needed to achieve a planktonic chlorophyll a goal of 25 μg/L, 

as is recommended in the CA NNE draft approach (Tetra Tech, 2006), or an equivalent amount of 

macrophyte growth. 

6.3 POTENTIAL NUMERIC NUTRIENT ENDPOINTS FOR THE LAGUNA DE 

SANTA ROSA 
The previous sections of this report contain a variety of analyses relative to the nutrient balance and the 

linkage between nutrients and eutrophication in the Laguna de Santa Rosa.  There is no single definitive 

analysis that yields a quantitative estimate of appropriate nutrient concentration or loading targets that 

will result in attainment of beneficial uses.  Yet, there are multiple lines of evidence that together help 

constrain appropriate endpoints.  The information discussed above is summarized in the following bullets: 
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 Investigations of the physiology of Ludwigia (Section 3.3) indicate that its dominance is 

promoted by shallow depths (associated with sedimentation) and elevated phosphorus loads and 

concentrations.  Reducing phosphorus concentrations (in water and sediment) can reduce 

Ludwigia growth, but experimental information is not available to establish a quantitative target.  

Work of Gerard et al. (2014) suggests that water column phosphorus concentrations may need to 

decrease to around 0.03 mg/L to achieve substantial reductions in growth rate. 

 QUAL2Kw modeling (Section 4) indicates that DO impairments are most strongly related to 

SOD, which is derived from a combination of macrophyte biomass accrual and loading of organic 

matter from the watershed. 

 The QUAL2Kw modeling also shows strong sensitivity to reaeration rate, which is likely 

depressed by coverage of the water surface by Ludwigia. 

 Estimates of present day nutrient loading rates by various methods are in general agreement for 

Santa Rosa Creek and confirmed by the results of MS4 monitoring.  Phosphorus loads in Santa 

Rosa Creek are on the order of 0.84 lb/ac/yr and LCLM median-basis loads for cropland, pasture, 

orchards/vineyards, residential, and commercial land are between 1 and 2 lb/ac/yr (Table 5-1).  

These loads are significantly elevated relative to natural loading rates from forest and rangeland. 

 Estimates of nutrient loading rates under conditions prior to European settlement (Section 5.5) 

suggest that anthropogenic activities have greatly increased nutrient loading to the Laguna de 

Santa Rosa.  Total phosphorus loads under present-day conditions appear to be at least 5 times 

and possibly as much as an order of magnitude higher than pre-settlement loads.  In accordance 

with CA NNE recommendations (Tetra Tech, 2006) the pre-settlement loading rate should be 

interpreted as a baseline that defines the maximum possible reduction target. 

 Welch and Jacoby (2004) suggest a total phosphorus concentration of 0.1 mg/L (as a growing 

season average) is needed to prevent hyper-eutrophication in lentic waters.  The median 

phosphorus concentrations from recent monitoring at three compliance stations within the 

mainstem of the Laguna de Santa Rosa (Table 6-2) range from 0.48 to 0.63 mg/L by station, 

suggesting a need for a reduction of up to 84 percent in phosphorus loads.  Extremely high 

chlorophyll a concentrations observed for the open water section of the Laguna at Occidental 

Road (“Lake Jonive”) support the need for a large reduction in nutrients that support excess algal 

growth. 

 Recent observations of total phosphorus concentration at Occidental Road have a median of 0.48 

mg/L.  In contrast, USEPA (2001) recommendations for lentic waters suggest a phosphorus 

concentration of 0.017 mg/L as an approximate upper boundary for unimpaired sites.  This 

represents a reduction of 96 percent; however, the target is likely overly strict for a waterbody 

such as the Laguna de Santa Rosa that would likely be naturally enriched in nutrients, although 

not to the extent observed under current conditions. 

 BATHTUB modeling of remnant Lake Jonive (Section 6.2.2) suggests that growing season 

median total phosphorus and total nitrogen concentrations need to be reduced by about 65 percent 

to achieve the CA NNE proposed target growing season median of 25 µg/L chlorophyll a. 

The 303(d) listing process and supporting analyses have identified the Laguna de Santa Rosa as impaired 

by phosphorus, and addressing eutrophication by control of nitrogen concentrations is believed to be 

infeasible due to the presence of nitrogen-fixing aquatic plants that can derive nitrogen from the 

atmosphere.  The weight of evidence suggests that phosphorus loading reductions on the order of 65 

percent (based on the BATHTUB analysis of Lake Jonive) to 84 percent (to attain the recommended total 

P recommendation of 0/1 mg/L in the Laguna de Santa Rosa mainstem) are needed to address nutrient-

related impairment in the Laguna de Santa Rosa.  It is important to remember, however, that phosphorus 
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concentrations within the Laguna have a significant component due to legacy loading from past 

management practices.  For this reason, a concentration based target may be preferable for TMDL 

development. 

Because the most recent 303(d) List removes nitrogen as a cause of impairment in the Laguna de Santa 

Rosa it is not necessary to develop a specific nitrogen loading target to directly address eutrophication-

related impairments, although it will be important to control both phosphorus and nitrogen loading.  

Regional Board staff (Butkus, 2012e) have developed a loading capacity analysis for total nitrogen based 

on preventing instream toxicity due to ammonia nitrogen (NH3-N).  The analysis establishes a 

relationship between NH3-N and total N concentrations measured at the compliance points within the 

Laguna de Santa Rosa.  The result is a recommended concentration target of 0.885 mg-N/L.  As shown in 

Table 6-2, the median of recent (2005-2013) total nitrogen concentration measurements at the Guerneville 

Road compliance station (near the downstream end of the Laguna) is 1.91 mg/L.  The proposed 

concentration target thus represents a reduction in nitrogen of about 54 percent. 

The conceptual model (Sloop et al., 2007; see Figure 2-1 in this report) makes clear that impairments of 

the Laguna de Santa Rosa arise from the complex interactions and combined effects of nutrient loads, 

organic matter loads, sediment loads, and alterations to hydrology.  An effective implementation plan will 

need to address these issues together through management activities that control peak flows and summer 

low flows, reduce erosion and sediment transport, and reduce both dissolved and sediment-attached 

phosphorus loads. 
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