

PLYWOOD COVERED DITCH INVESTIGATION REPORT

Sierra Pacific Industries Arcata Division Sawmill 2593 New Navy Base Road Arcata, California

June 9, 2003

Prepared For:

SIERRA PACIFIC INDUSTRIES

Prepared By:

MFG, INC. 1165 G Street, Suite E Arcata, California 95521 (707) 826-8430

MFG Project No. 030229.8

PROFESSIONAL CERTIFICATION

This report was prepared by MFG, Inc. under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional hydrogeologic practice, and within the scope of the project. There is no other warranty, either express or implied.

No. HG 214

HYDROGEOLOGIST

OF CALLED

June 9, 200 3

Edward P. Conti C.HG. No. HG 214 Senior Consulting Geologist MFG, INC.

TABLE OF CONTENTS

		<u>Page</u>
LIST	Γ OF TABLES	iii
LIST	Γ OF FIGURES	iii
LIST	Γ OF APPENDICES	iii
1.0	INTRODUCTION	
2.0	BACKGROUND	2
	2.1 Site Description	
	2.2 Plywood Covered Ditch	2
3.0	SITE GEOLOGY AND HYDROGEOLOGY	3
4.0	SOIL SAMPLING METHODS AND RESULTS	4
	4.1 Field Methods	
	4.2 Stratigraphy and Field Observations	5
	4.3 Chemical Analysis Methods and Results	5
5.0	DISPOSAL OF INVESTIGATION-DERIVED WASTE	7
6.0	ADDITIONAL WORK PLANNED	8
7.0	REFERENCES	10

LIST OF TABLES

Table	Title
<u>No.</u>	<u>Title</u>
1	Summary of Chemical Analysis Results of Soil Samples for Oil and Grease, TEPH, Chlorinated Phenols and VOCs

LIST OF FIGURES

Figure No.	<u>Title</u>
1	Location Map
2	Site Plan
3	Plywood Covered Ditch Sample Locations

LIST OF APPENDICES

<u>Appendix</u>	<u>Title</u>
A	Humboldt County Division of Environmental Health Boring Permit
В	Boring Logs
C	Photographs
D	Laboratory Report and Chain-of-Custody Record for Soil Samples

1.0 INTRODUCTION

MFG, Inc. has prepared this report on behalf of Sierra Pacific Industries (SPI) to document soil sampling activities in the plywood covered ditch at SPI's Arcata Division Sawmill. This work was performed to satisfy the requirements of paragraph 18 of the Consent Decree between Ecological Rights Foundation and Sierra Pacific Industries, Inc. et al (case number C-01-0520-MEJ). The Arcata Division Sawmill is located at 2593 New Navy Base Road in Arcata, California (hereinafter "the Site"). The Site location is shown in Figure 1. A Site plan showing the location of the plywood covered ditch at the Arcata Division Sawmill is presented in Figure 2. An enlargement of the plywood covered ditch area is presented in Figure 3.

This work was performed in accordance with the scope of work presented in MFG's *Plywood Covered Ditch Investigation* letter to SPI, dated March 31, 2003. Investigation activities consisted of collecting and chemically analyzing soil samples from two locations in the ditch. This report summarizes the methods and results of the soil sampling and analysis activities.

This report is organized as described below. Background information is provided in Section 2.0. The geology and hydrogeology of the Site is discussed in Section 3.0. The soil sampling and analysis methods and results are described in Section 4.0. Disposal of investigation-derived waste is presented in Section 5.0. Additional work planned is presented in Section 6.0, and references cited in this report are listed in Section 7.0.

2.0 BACKGROUND

2.1 Site Description

The Site is located on the Samoa Peninsula in Arcata, Humboldt County, California (Figure 1). A Site plan showing features of the Arcata Division Sawmill is included in Figure 2. The Site features in the area of the plywood covered ditch are included in Figure 3.

The Site was originally undeveloped land, consisting of sand dunes and mud flats, until approximately 1950 when SPI converted the land into a lumber mill. During conversion, SPI filled in portions of the Site. SPI began operations at this facility before the area was completely filled in. The mill has been active from 1950 to present day.

2.2 Plywood Covered Ditch

The plywood covered ditch is located in the southwestern portion of the property (Figure 2). The ditch is approximately 20 feet long and a few feet wide. The ditch runs between the parts storage area and the oil shed, immediately northwest of the Hyster Shop (Figure 3). The ditch was excavated to install an underground electrical conduit and was covered with plywood during the installation process. The ditch currently contains an electrical conduit and is backfilled with native soil. It is no longer covered with plywood.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

The subsurface lithology and hydrogeology at the Site was previously investigated and described by Environet Consulting (Environet, 2003). The subsurface lithology consists primarily of fine- to medium-grained sand of apparent sand dune origin to a depth of approximately 22 feet below ground level (bgl), the maximum depth explored during previous drilling activities at the Site. The sand is sporadically interbedded with thin lenses of "Bay Mud," consisting of a mixture of sand and silt.

In the eastern portion of the Site, groundwater has been measured in existing monitoring wells at depths ranging from approximately 1 to 5 feet bgl and the groundwater flow direction is generally to the east, toward the Mad River Slough (Figure 2) (Environet, 2003). Groundwater was measured at a depth of approximately 2 feet bgl in a temporary monitoring well that was installed in April 2003 in the vicinity of the Truck Shop, which is located immediately south of the Hyster Shop. Based on the proximity of the Truck Shop to Humboldt Bay, the groundwater flow direction in this area is likely to the south-southeast, toward Humboldt Bay.

4.0 SOIL SAMPLING METHODS AND RESULTS

4.1 Field Methods

Prior to soil sampling activities, MFG obtained a boring permit from the Humboldt County Division of Environmental Health (HCDEH) (Appendix A). Underground Service Alert (USA) was contacted to mark the area for underground utilities and SPI personnel reviewed facility drawings for the presence of underground utilities in the vicinity of the plywood covered ditch.

On April 3, 2003, MFG attempted to collect soil samples using a hand auger; however, auger refusal was encountered at a depth of approximately 6 inches bgl at 3 attempted locations because of the gravelly nature of the subsurface material in the area. The three hand auger locations were subsequently filled with neat cement. On April 8, 2003, MFG returned to the area to collect soil samples at two locations using a shovel and stainless steel trowel. The two soil sampling locations (PD-1 and PD-2) are shown in Figure 3.

Soil samples were collected at the ground surface (0.0 to 0.5 feet bgl) and at a depth of 2.0 to 2.5 feet bgl at each location. Soil collected from each sample interval for chemical analysis was placed directly into wide-mouth glass jars with Teflon[®]-lined caps using the stainless steel trowel. The sample containers were labeled and immediately placed in an ice-cooled, insulated chest for transport to the laboratory. A chain-of-custody record was completed for the samples and accompanied the samples until receipt by the laboratory.

The soil was described in the field for lithologic classification, color and moisture content in accordance with the American Society of Testing and Materials (ASTM) Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) D 2488. Indications of contamination, including observations regarding odor or staining, if any, were noted on a boring log for each location. The boring logs are included as Appendix B. Headspace measurements of soil from each sample interval were made in the field using a Thermo-Environmental Instruments Model 580B portable photoionization detector (PID). The PID was calibrated using a 96 parts per million by volume (ppmv) isobutylene gas standard. The response factor of the PID was set such that the instrument would read in ppmv as isobutylene. To prepare the soil for headspace measurements, the soil was placed in a sealable plastic bag, the bag was sealed, and then the soil was broken up and agitated. The bag was allowed to stand for approximately 10

minutes, agitated again, and then the PID probe was inserted into the bag. The highest PID reading was recorded for each sample and noted on the boring log opposite the respective sample interval (Appendix B). At the conclusion of sampling activities, the soil that had been removed with the shovel was returned to each location and manually compacted to the surrounding grade. Photographs of the soil sampling activities are presented in Appendix C.

Sampling equipment was decontaminated before and after use at each sampling location by washing it in a solution of Liquinox[®] detergent and water and triple rinsing with distilled water.

Soil cuttings and equipment wash water generated during sampling activities were placed in separate steel, 55-gallon, Department of Transportation (DOT)-approved drums that were sealed and labeled and are being temporarily stored in a secure location at the Site pending disposal (Section 5.0).

4.2 Stratigraphy and Field Observations

The soil encountered during sampling activities consisted of concrete debris, gravel and medium sand from the ground surface to approximately 2.0 feet bgl. Silty sand with clay was encountered from approximately 2.0 to 2.5 feet bgl, the maximum depth explored. The depth to saturated soil was approximately 1.2 feet bgl. A slight organic-like odor was detected in each sample; however, evidence of soil staining was not observed (Appendix B). The PID readings from headspace measurements of the soil samples ranged from 6.0 to 44 ppmv (Appendix B).

4.3 Chemical Analysis Methods and Results

The soil samples were submitted for chemical analysis to Alpha Analytical Laboratories Inc. (Alpha) of Ukiah, California. The samples were analyzed for the following constituents:

- Oil and grease using EPA Method 9071B with silica gel cleanup;
- Total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil using modified EPA Method 8015 with silica gel cleanup;
- Chlorinated phenols using the Canadian Pulp Method; and

Volatile organic compounds (VOCs) using EPA Method 8260B.

The chemical analysis results are summarized in Table 1. Copies of the laboratory report and chain-of-custody record are included in Appendix D.

Oil and Grease was detected in the four soil samples at concentrations ranging from 1,100 to 8,200 milligrams per kilogram (mg/kg). Total extractable petroleum hydrocarbons (TEPH) as diesel was detected in the four soil samples at concentrations ranging from 17 to 330 mg/kg. However, the laboratory report indicated that the diesel range organics in samples PD-1 (0-.5) and PD-2 (0-.5), collected from 0.0 to 0.5 feet bgl, were primarily due to overlap from a heavier oil range compound. TEPH as motor oil was detected in the four soil samples at concentrations ranging from 160 to 1,300 mg/kg (Table 1).

Chlorinated phenols were not detected in any of the soil samples. The only VOCs detected included: chlorobenzene, 1,4-dichlorobenzene, naphthalene and 1,2,4-trimethylbenzene at concentrations ranging from 0.24 to 0.49 mg/kg in soil sample PD-1 (2-2.5) collected at a depth of 2.0 to 2.5 feet bgl; and 1,4-dichlorobenzene at a concentration of 0.35 mg/kg in soil sample PD-2 (2-2.5) collected at a depth of 2.0 to 2.5 feet bgl. All other VOCs were not detected at or above their respective laboratory reporting limits in the four soil samples (Table 1).

5.0 DISPOSAL OF INVESTIGATION-DERIVED WASTE

Soil cuttings and equipment wash water are being stored temporarily at the Site in steel, 55-gallon drums (Section 4.1). Following completion of the additional work described in Section 6.0, investigation-derived waste from this investigation and the waste generated during the additional work will be disposed of in accordance with applicable regulations.

6.0 ADDITIONAL WORK PLANNED

SPI plans to remove the soil covering the electrical conduit and pour concrete in the area. This is a necessary safety action to secure the electrical conduit and protect mill personnel. Since petroleum hydrocarbons and low levels of some volatile organic compounds (VOCs) were detected in the soil samples collected during this investigation, additional soil in the vicinity of the plywood covered ditch will be removed in conjunction with the maintenance work described above. We anticipate excavating an area approximately 30 feet by 4 feet to a depth ranging from 2 to 3 feet bgl. The actual area and depth of excavation will be determined in the field based on field observations, physical access, and the stability of nearby structures.

Excavated soil will be placed in covered soil bins, drums, and/or a covered, bermed area at the Site. The excavated soil will be stored temporarily at the Site and then disposed of in conjunction with the soil generated during the plywood covered ditch investigation (Section 5.0).

If groundwater is encountered in the excavation, groundwater will be pumped from the pit and placed in temporary, above-ground holding tanks or drums at the Site. The volume of groundwater extracted will depend on the depth encountered, the size of the excavation, and the stability of the excavation sidewalls. A sample of the extracted groundwater will be collected and analyzed for oil and grease, total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil, and VOCs. The extracted groundwater will be stored temporarily at the Site pending the results of the chemical analyses and then disposed of along with equipment wash water generated during this work and during the plywood covered ditch investigation (Section 5.0).

Following completion of the excavation activities, confirmation soil and groundwater (if encountered) samples will be collected. At a minimum, 4 confirmation soil samples (one from each sidewall) and one groundwater sample will be collected. The confirmation samples will be analyzed for oil and grease, total extractable petroleum hydrocarbons (TEPH) as diesel and motor oil, and VOCs.

The excavation will be backfilled with clean fill and concrete or asphalt will be placed at the ground surface.

MFG will prepare a report that summarizes the methods and results of the work discussed above. Observations made during the excavation activities will be summarized in the report. The report will include a Site plan showing the excavation area as well as the locations of confirmation samples. The report will also include tabulated chemical analysis data, copies of laboratory reports and sample chain-of custody records, and documentation of the management and disposal of investigation-derived waste.

7.0 REFERENCES

Environet Consulting (Environet), 2003, Results of the Remedial Investigation for Sierra Pacific Industries - Arcata Division Sawmills, Arcata, California: January 30.

TABLE 1

SUMMARY OF CHEMICAL ANALYSIS RESULTS OF SOIL SAMPLES
FOR OIL AND GREASE, TEPH, CHLORINATED PHENOLS AND VOCs

Sierra Pacific Industries Arcata Division Sawmill Arcata, California

				OIL	TEPH	TEPH			1,4-		1,2,4-	
	SAMPLE			&	AS	AS	CHLORINATED	CHLORO-	DICHLORO-	NAPH-	TRIMETHYL	OTHER
	DEPTH	SAMPLE		GREASE	DIESEL	MOTOR OIL	PHENOLS	BENZENE	BENZENE	THALENE	BENZENE	VOCs
SAMPLE ID	(feet bgl)	DATE	LITHOLOGY	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		I	Reporting Limit:	50	10	20	1.0	0.0050	0.0050	0.0050	0.0050	0.0050-0.020
PD-1(05)	0.0-0.5	8-Apr-03	SAND	1,200	17 1	160	ND	ND	ND	ND	ND	ND
PD-1(2-2.5)	2.0-2.5	8-Apr-03	SILTY SAND W/ CLAY	7,800	330	1,300	ND	0.49	0.39	0.24	0.33	ND [0.22-0.87]
PD-2(05)	0.0-0.5	8-Apr-03	SAND	1,100	20 1	250	ND	ND	ND	ND	ND	ND
PD-2(2-2.5)	2.0-2.5	8-Apr-03	SILTY SAND W/ CLAY	8,200	140	850	ND	ND [0.22]	0.35	ND [0.22]	ND [0.22]	ND [0.22-0.87]

NOTES:

ND

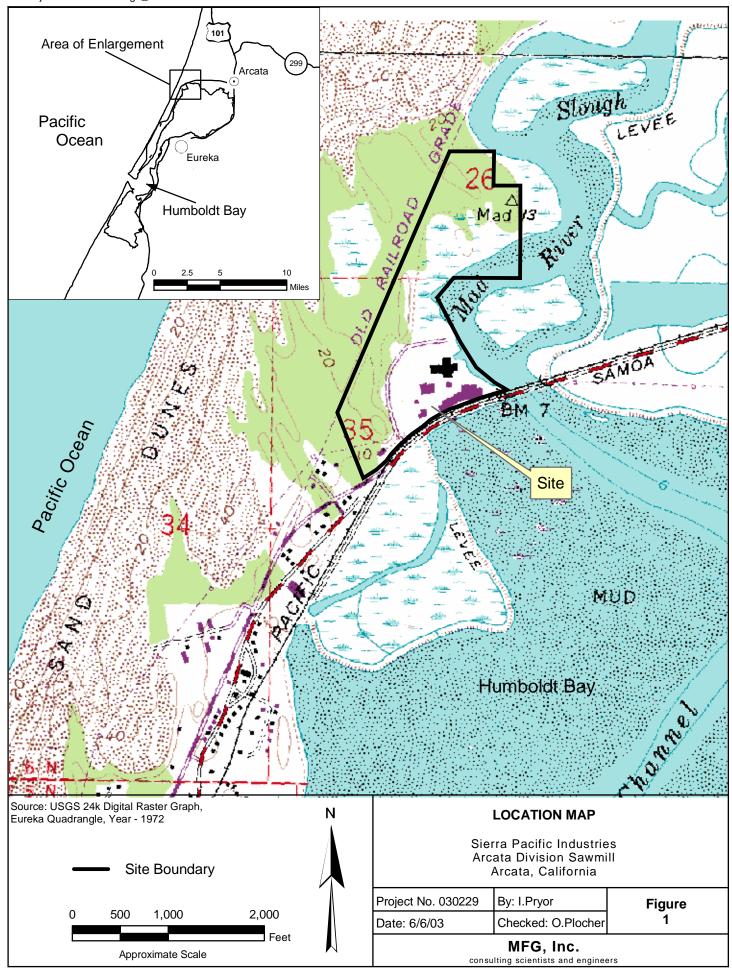
TEPH Total extractable petroleum hydrocarbons. Analyzed using modified EPA Method 8015 with silica gel cleanup and quantified against diesel and motor oil standards.

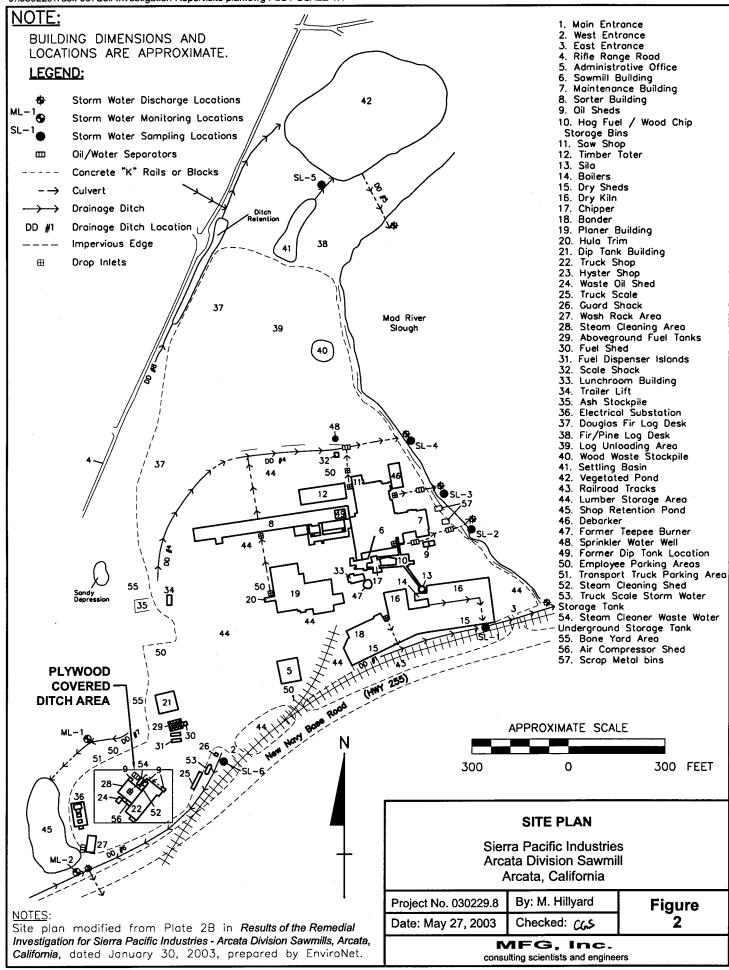
bgl Below ground level.

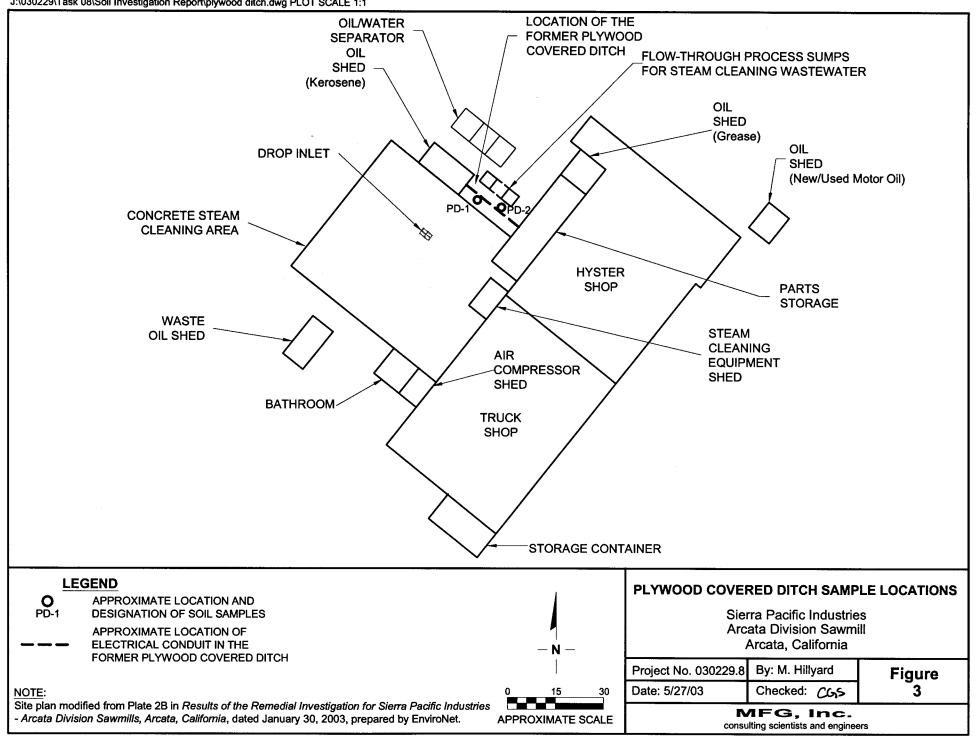
mg/kg Milligrams per kilogram.

Not detected at or above the laboratory reporting limit indicated at the top of the column.

[] Indicates the reporting limit is different than that shown at the top of the column.


Laboratory indicated that the result is primarily due to overlap from a heavier oil range compound.


Oil and Grease was analyzed using EPA Method 9071B with silica gel cleanup.


Chlorinated phenols were analyzed using the Canadian Pulp Method and included the following target analytes: 2,4,6-trichlorophenol;

2,3,5,6-tetrachlorophenol; 2,3,4,6-tetrachlorophenol; 2,3,4,5-tetrachlorophenol; and pentachlorophenol.

VOCs Volatile organic compounds. Analyzed using EPA Method 8260B.

APPENDIX A

Humboldt County Division of Environmental Health Boring Permit

HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS WARRANGENTAL HEALTH - WELL and BORING PERMIT APPLICATION

Facility ID #	1 NHUS 26	Permit #	<u> </u>	
Facility Name: <u>Sierra Pacifi</u> Site Address: 77.03	c Industrie	s, Arrata Sa	wmill Divis	iòn
Site Address: 2293 Samoa	Road, Hica-	a, CA		· · · · · · · · · · · · · · · · · · ·
Site Owner: Sierra Pacific : Address: Do 7	Industries		Telephone:	530-378-8000
Address: <u>PO Box 496028</u>	Redding, CA	96049-6028	AP#:	
RP Name: Sierra Pacific				530-378-800
Address: PO Box 496028 1	Redding, CA	96049-6028		330-310-600
Consultant: MFG, Inc.	J			
Address: 1165 G. Strept	Swite E Acc	ata CA acco	Telephone:	<u> 707-826-8430</u>
Driller NA Wassel st	MILL FILE	414.CH 482 C	Reg.#/Type:	
Driller: NA, Nand aug Address:	gerea		Telephone:	
214411133.			C-57 Lic.#:	
Wells # On-site			# Off-site	
Wells Boring	s <u> </u>	Wells	Borings	-
Activity:	☐ Repair/Modify	Electrode	Type:	
Investigation Type: Site Assessmen	nt Disposal	Direct Push Boring Practice UST mpoundment AST	☐ Other*	oint
Suspected Contaminants: PCP,	TCP Diagram	G TO:		
——————————————————————————————————————	-ici, proxin	tacan 114	P, orligica	36
Disposal/Containment for Soil Cutti	ngs: Ashbucc	155-901/0	o dom	
Disposal/Containment for Rinsate:		155-99		
Disposal/Containment for Developme	ent Water: NA	7		
Permits will not be processed	•	owing informati	on:	
Scaled Construction Detail	Appro			
Detailed Site Plan		of Workplan (if not	on file of UCDEU)	
Lead Agency Approval Lette	r		on the at neden)	
Off Site Well Requirements:				
Legal Right of Entry	Proposed W	ork Date: Apr.	3 (03	
Off Site Address/Locati				
☐ Encroachment Permit				
Coastal Zone Permit		•		

HUMBOLDT COUNTY DIVISION of ENVIRONMENTAL HEALTH - HAZARDOUS MATERIALS UNIT WELL and BORING PERMIT APPLICATION

Facility ID# 1NHU526 Permit# 27-E

I hereby agree to comply with all laws, ordinances and regulations of the county of Humboldt and State of California pertaining to water well construction. <u>I will contact the Humboldt County Hazardous Materials Unit at (707) 445-6215 five</u>

[5] working days prior to commencing this work. I will furnish to the County of Humboldt, Division of Environmental Health, and the owner a legible copy of the State Water Well Completion Report (form DWR 188) within fifteen (15) days of the completion of work to obtain final approval of the well(s). I acknowledge that the application will become a permit permit is not transferable and expires one hundred twenty (120) days from the date of issuance

Certi	ficates of Insurance:	f issuance.
	A currently effective General Liability Certificate of Insurance is on file with the Humboldt County Division of Environmental Health as additional named	this office, endorsed to include
	A currently effective Worker's Compensation Certificate of Insurance is on f include the Humboldt County Division of Environmental Health as additional	insured.
Sign	ature of Well Driller - <u>no proxies</u> - original signature only in blue ink	Date
Well	identification number and type must be affixed to exterior su	Irface of goodside
The to th	applicant is responsible for notifying Underground Services A	Alert at least 48 hours prior

 A State of California Department of Water resources Well Completion Report (Form DWR 1-88) must be filed within 15 days of completion of work for all well completions and destructions.

A licensed California C-57 Well Driller is required for all wells and direct push work.

Permit Approval: Fee: D	FOR OFFICE USE ONLY Date: 4 1 2003 Receipt: 215399	1 2003
Initial Inspection: Final Inspection:	Date:	
	Date:	

APPENDIX B

Boring Logs

ABBREVIATIONS/SYMBOLS USED IN BORING LOGS

GENERAL

PID - Photoionization Detector

OVM - Organic Vapor Meter

ppm - parts per million in air

sfc csg - surface casing

USCS - Unified Soil Classification System

NGVD - National Geodetic Vertical Datum of 1929

NAVD - North American Vertical Datum of 1988

NA - Not Analyzed

sit - slight or slightly bgl - below ground level

DTW - depth to water

COLORS

v - very

lt - light

dk - dark

yel - yellow/yellowish

bm - brown/brownish

red-brn - reddish brown

a.a. - as above

(10YR 4/6) - Munsell notation (hue value/chroma)

SAND GRAIN SIZE

VF - Very Fine

F - Fine

Med - Medium

Crs - Coarse

DENSITY/STIFFNESS

Med - Medium

V - Very

GEOLOGICAL CONTACTS

- - Observed Contact

--- -- Inferred Contact

GEOTECHNICAL

L.L. - Liquid Limit in percent

P.I. - Plasticity Index in percent

K - Vertical Hydraulic Conductivity (permeability) in cm/sec

MOISTURE CONTENT

Observed top of saturated soil interval

NOTE:

Field soil logging procedures were performed in accordance with ASTM D-2488-93 (Visual-Manual Procedure).

EXPLANATION FOR BORING LOGS

MFG, Inc. consulting scientists and engineers

Boring log explain, MacCad, Rev. 11-18-1999

3	MFG, Inc. consulting scientists and engineers				LOG OF BOI	
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drilling Ager Drilling Meth Sampler Typ Sampling Me	od oe	: S	IFG, Inc. hovel tainless steel trowel rab sample	(Page 1 of 1) Logged By : Jason Triolo Reviewed By : Christopher Spill, R.G.
	MFG Project No. 030229.8	Ground Elev	ation	: N	ot Surveyed	0.75.
Depth in Feet	DESCRIPTION	SOSO	Sample Interval	Recovery (inches)	REMARKS	Date Started: April 8, 2003 Date Finished: April 8, 2003
0-	SAND: dk brn (10YR 3/3); Med sand, few subangular F gravel and rootlets, dry.	SP	1	6	PID calibrated using 96 ppmv isobutylene.	
1 —	SAND w/ GRAVEL: dk brn (10YR 2/1); Med sand, some F subangular gravel, little concrete fragments, trace wood chips, moist.	SP			PID = 23 ppmv (0.0 - 0.5 feet bgl). Slight organic odor.	■ Neat Cement
Co-E1-2003 C. DOOZESTI GAN GO SOII III VASSI QABIUTI REPOI ED III QUANTU-1. DOOZ	SILTY SAND w/ CLAY: v. dk grayish br (10YR 3/2); Med sand, some silt, trace clay, trace wood chips, wet.	SM	2	6	PID = 44 ppmv (2.0 - 2.5 feet bgl). Slight organic odor.	
3	NOTE: 1. Depth to water measured at 1.25 feet bgl.	t			·	

	MFG, Inc. consulting scientists and engineers							((Page 1 of 1)
	Sierra Pacific Industries Arcata Division Sawmill Arcata, California	Drillir Sam	ng Ager ng Meth pler Typ pling Me	od e	: S	FG, Inc. hovel tainless steel trowel rab sample	Logged By Reviewed		: Jason Triolo : Christopher Spill, R.G
	MFG Project No. 030229.8	Grou	nd Elev	ation	: N	ot Surveyed	1		
epth in eet	DESCRIPTION		nscs	Sample Interval	Recovery (inches)	REMARKS			pril 8, 2003 April 8, 2003
1	SAND: dk brn (10YR 2/1); Med sand, few subangular F gravel and rootlets, dry.		SP	1	6	PID calibrated using 96 ppmv isobutylene.			
1	CLAYEY SAND w/ GRAVEL: v. dk grey (10YR 3/2); Med sand, some subangula F gravel, moist.	/ ar				PID = 6.0 ppmv (0.05 feet bgl). Slight organic odor			
1 1 1	some wood chip fragments.					·			
1-			sc				▼	Neat (Cement
-									
2-				[]		PID = 20 ppmv (2.0 - 2.5			
-	SILTY SAND w/ CLAY: v. dk grey (10YR 3/2); Med sand, some silt, few subrounded F gravel, few clay, wet.	1	SM	2	6	feet bgl).			
-	NOTE: 1. Depth to water measured at 1.25 feet bgl.	L :					J 1 <u>4//</u> 2		

APPENDIX C

Photographs

Picture looking southwest showing the location of the Plywood Covered Ditch (now filled and not covered with plywood) with sampling locations PD-1 and PD-2.

Picture looking southeast showing sampling locations PD-1 and PD-2.

Soil sample location PD-1.

Soil sample location PD-2.

APPENDIX D

Laboratory Report and Chain of Custody Record for Soil Samples

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

19 May 2003

MFG, Inc - Arcata

Attn: Matt Hillyard

1165 G. Street, Suite E

Arcata, CA 95521

RE: SPI Arcata Sawmill Work Order: A304264

Enclosed are the results of analyses for samples received by the laboratory on 04/09/03 15:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Cheryl Watson For Sheri L. Speaks

Project Manager

This represents an amended copy of the original report

RECEIVED

MAY 2 3 2003

Alpha ♥Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

			_
Alpha	Analytical	Laboratorie	s. Inc.

			J		,			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	POL	NOTE
PD-1 (05) (A304264-01)			Sample Ty	pe: Soil	Sa	mpled: 04/08/03 00:00		
Volatile Organic Compounds by EPA	A Method 8260B							
Acetone	EPA 8260B	AD32511	04/21/03	04/22/03	1	ND mg/kg	0.020	
Benzene	н	н	11	**	**	ND "	0.0050	
Bromobenzene	Ħ	11	11	u u	н	ND "	0.0050	
Bromochloromethane	11	11	U	н	tt	ND "	0.0050	
Bromodichloromethane	11	11	H	"	11	ND "	0.0050	
Bromoform	Ħ	11	11	**	11	ND "	0.0050	
Bromomethane	Ħ	11	11	11	**	ND "	0.0050	
n-Butylbenzene	11	**	**	#1	11	ND "	0.0050	
sec-Butylbenzene	11	Ħ	**	u	n .	ND "	0.0050	
tert-Butylbenzene	Ħ	**	n	н	**	ND "	0.0050	
Carbon tetrachloride	If	ti .	*1	11	**	ND "	0.0050	
Chlorobenzene	tt.	11	**	**	**	ND "	0.0050	
Chloroethane	**	**	11	Ħ	Ħ	ND "	0.0050	
Chloroform	π	н	**	**	н	ND "	0.0050	
Chloromethane	**	"	n	11	11	ND "	0.0050	
2-Chlorotoluene	**	11	"	11	"	ND "	0.0050	
4-Chlorotoluene	tt	tT .	**	11	n	ND "	0.0050	
Dibromochloromethane	Ħ	tr	"	11	**	ND "	0.0050	
1,2-Dibromo-3-chloropropane	н	11	**	**	H	ND "	0.0050	
1,2-Dibromoethane (EDB)	n	**		*1	"	ND "	0.0050	
Dibromomethane	n.	**	**	**	m .	ND"	0.0050	
1,2-Dichlorobenzene	11	11	**	11	**	ND"	0.0050	
1,3-Dichlorobenzene	11	"	**	11	11	ND "	0.0050	
1,4-Dichlorobenzene	11	"	11	17	**	ND "	0.0050	
Dichlorodifluoromethane	"	**	"	11	**	ND "	0.0050	
1,1-Dichloroethane	11	Ħ	11	**	11	ND "	0.0050	
1,2-Dichloroethane	11	"	11	n	**	ND "	0.0050	
1,1-Dichloroethene	#1	и	11	11	11	ND "	0.0050	
cis-1,2-Dichloroethene	Ħ	u	n	11	11	ND "	0.0050	
trans-1,2-Dichloroethene	**	*1	"	**	**	ND "	0.0050	
1,2-Dichloropropane	11	u	"	11	11	ND "	0.0050	

The results in this report to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

Alpha Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264

Receipt Date/Time 04/09/2003 15:30

Client Code **MFGARC**

Client PO/Reference

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	POL	NOTE
PD-1 (05) (A304264-01)			Sample Ty	pe: Soil		Sampled: 04/08/03 00:00		
Volatile Organic Compounds by E	PA Method 8260B (c	ont'd)						
1,3-Dichloropropane	EPA 8260B	f t	11	04/22/03	11	ND "	0.0050	
2,2-Dichloropropane	11	#	**	**	11	ND "	0.0050	
1,1-Dichloropropene	11	**	"	11	"	ND "	0.0050	
cis-1,3-Dichloropropene	11	11	11	**	п	ND "	0.0050	
trans-1,3-Dichloropropene	11	11	11	11	"	ND "	0.0050	
Ethylbenzene	tt	11	**	n	11	ND "	0.0050	
Hexachlorobutadiene	11	**	н	**	Ħ	ND "	0.0050	
Isopropylbenzene	Ħ	Ħ		**	"	ND "	0.0050	
p-Isopropyltoluene	**	**	н	**	#1	ND "	0.0050	
Methyl ethyl ketone	H	"	#	n .	и	ND "	0.015	
Methyl isobutyl ketone	**	н	н	**	II .	ND "	0.010	
Methyl tert-butyl ether	**	Ħ	**	11	н	ND "	0.0050	
Methylene chloride	**	н	11	11	**	ND "	0.0050	
Naphthalene	"	"	**	11	**	ND "	0.0050	
n-Propylbenzene	u	"	n	"	11	ND "	0.0050	
Styrene	**	**	11	**	0	ND "	0.0050	
1,1,2-Tetrachloroethane	**	**	**	**	"	ND "	0.0050	
1,1,2,2-Tetrachloroethane	n	**	"	**	11	ND "	0.0050	
Tetrachloroethene	"	11	**	u	**	ND "	0.0050	
Toluene	"	11	**	"	**	ND "	0.0050	
1,2,3-Trichlorobenzene	11	**	,,	n	11	ND "	0.0050	
1,2,4-Trichlorobenzene	**	11	н	#	#	ND "	0.0050	
1,1,1-Trichloroethane	**	11	**	**	#	ND "	0.0050	
1,1,2-Trichloroethane	**	**	n ·	n	**	ND "	0.0050	
Trichloroethene	Ħ	11	**	**	11	ND "	0.0050	
Trichlorofluoromethane	11	Ħ	11	**	**	ND "	0.0050	
Trichlorotrifluoroethane	11	"	н	n	"	ND "	0.0050	
1,2,3-Trichloropropane	и	**	"	"	"	ND "	0.0050	
1,2,4-Trimethylbenzene	11	**	"	**	**	ND "	0.0050	
1,3,5-Trimethylbenzene	Ħ	**	11	**	"	ND "	0.0050	
Vinyl chloride	**	**	**	**	**	ND "	0.0050	

The results in this report apply to the samples analyzed in accordance with the chain of custody document in artificial report must be reproduced in its entirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

Alpha 🛮 Analytical Laboratories Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264

Receipt Date/Time 04/09/2003 15:30

Client Code **MFGARC**

Client PO/Reference

A 1 1	A 1	T - 1 4 1	w
Ainna	Anaivucai	Laboratories	. inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT		POL	NOTE
PD-1 (05) (A304264-01)			Sample Ty	pe: Soil	Sa	ampled: 04/08/03 00:	00		
Volatile Organic Compounds by EPA	Method 8260B (co	ont'd)							
m,p-Xylene	EPA 8260B	11	**	04/22/03	11	ND "		0.0050	
o-Xylene	11	n	11	**	**	ND "		0.0050	
Xylenes (total)	"	"	**	**	**	ND "		0.0050	
Surrogate: Dibromofluoromethane	"	"	"	n		118 %	70-130		
Surrogate: Toluene-d8	"	11	"	"		99.2 %	70-130		
Surrogate: Bromofluorobenzene	"	n	"	n		84.0 %	70-130		
Chlorinated Phenols by Canadian Pul	p Method								
2,4,6-Trichlorophenol	EnvCan	AD31611	04/10/03	04/14/03	1	ND mg/kg		1.0	
2,3,5,6-Tetrachlorophenol	11	"	11	n	н	ND "		1.0	
2,3,4,6-Tetrachlorophenol	11	#1	*1	"	**	ND "		1.0	
2,3,4,5-Tetrachlorophenol	11	**	**	**	11	ND"		1.0	
Pentachlorophenol	#	n	n	H	Ħ	ND "		1.0	
Surrogate: Tribromophenol	"	#	n	H.		72.6 %	23-140		
Conventional Chemistry Parameters b	y APHA/EPA Mo	ethods							
Oil & Grease (HEM-SG)	EPA 9071B	AD32307	04/17/03	04/22/03	1	1200 mg/kg		50	
TPH as Diesel and Motor Oil by EPA	Method 8015 Mod	dified							
TPH as Diesel	EPA 8015DRO	AD31615	04/16/03	04/17/03	10	17 mg/kg		10	D-09
TPH as Motor Oil	Ħ	11	**	11	н	160 "		20	
Surrogate: 1,4-Bromofluorobenzene	<i>"</i>	"	<i>n</i>	<i>n</i>		57.1 %	25-132		
DD 1 (2.2.5) (1.2042(4.02)			0 1 10	G 11	~	1 1 04/00/03 00			

PD-1 (2-2.5) (A304264-02) Volatile Organic Compounds by EP.	A Method 8260B	;	Sample Ty	pe: Soil		Sampled: 04/08/03 00:00	R-06
Acetone	EPA 8260B	AD32209	04/15/03	04/17/03	43.3	ND mg/kg	0.87
Benzene	"	"	n	Ħ	11	ND "	0.22
Bromobenzene	"	"	"	**	**	ND "	0.22
Bromochloromethane	u u	**	**	**	**	ND "	0.22
Bromodichloromethane	Ħ	**	**	ŧŧ	**	ND "	0.22
Bromoform	#	"	**	"	11	ND "	0.22

The results in this report apply to the samples and recording condenses will custody document. This analytical report must be special and smile of the condenses will be samples and smile of the condenses will be sampled to the cond the chain of

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 5 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARE	D ANALYZED	DILUTION	RESULT	POL	NOTE
PD-1 (2-2.5) (A304264-02)			Sample T	ype: Soil		Sampled: 04/08/03 00:00		
Volatile Organic Compounds by EP	A Method 8260B (c	ont'd)						R-06
Bromomethane	EPA 8260B	**	**	04/17/03	u u	ND "	0.22	
n-Butylbenzene	**	u	Ħ	**	11	ND "	0.22	
sec-Butylbenzene	Ħ	**	"	"	11	ND "	0.22	
tert-Butylbenzene	**	**	"	· ·	**	ND "	0.22	
Carbon tetrachloride	**	n	"	H	"	ND "	0.22	
Chlorobenzene	**	11	**	**	11	0.49 "	0.22	
Chloroethane	н	**	11	11	11	ND "	0.22	
Chloroform	n	"	11	п	"	ND "	0.22	
Chloromethane	11	11	n	**	**	ND "	0.22	
2-Chlorotoluene	n	11	#	**	"	ND "	0.22	
4-Chlorotoluene	11	11	**	11	tt	ND "	0.22	
Dibromochloromethane	**	11	n	**	**	ND "	0.22	
1,2-Dibromo-3-chloropropane	**	"	u	11	11	ND "	0.22	
1,2-Dibromoethane (EDB)	"	51	11	H	n	ND "	0.22	
Dibromomethane	"	**	ŧŧ	н	Ħ	ND "	0.22	
1,2-Dichlorobenzene	11	**	"	11	"	ND "	0.22	
1,3-Dichlorobenzene	н	**	"	**	#1	ND "	0.22	
1,4-Dichlorobenzene	**	"	"	tt .	**	0.39 "	0.22	
Dichlorodifluoromethane	**	**	"	n	11	ND "	0.22	
1,1-Dichloroethane	**	Ħ	11	"	***	ND "	0.22	
1,2-Dichloroethane	**	**	11	**	"	ND "	0.22	
1,1-Dichloroethene	11	**	u	**	11	ND "	0.22	
cis-1,2-Dichloroethene	"	**	**	"	11	ND "	0.22	
trans-1,2-Dichloroethene	u	**	**	**	**	ND "	0.22	
1,2-Dichloropropane	"	**	"	11	"	ND "	0.22	
1,3-Dichloropropane	11	11	**	**	"	ND "	0.22	
2,2-Dichloropropane	"	"	**	**	**	ND "	0.22	
1,1-Dichloropropene	**	**	**	н	11	ND "	0.22	
cis-1,3-Dichloropropene	**	"	ti .	"	11	ND "	0.22	
trans-1,3-Dichloropropene	n	**	**	11	"	ND "	0.22	
Ethylbenzene	,,	**	† †	11	11	ND "	0.22	

The results in this report apply to the samples and partial coordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 2003

Tetra Tech/MFG, Inc.

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 6 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPARED	ANALYZED	DILUTION		POL	NOTE
D-1 (2-2.5) (A304264-02)			Sample Ty	pe: Soil		Sampled: 04/08/03 00:00	0	
Volatile Organic Compounds by EPA	Method 8260B (c	ont'd)						R-0
Hexachlorobutadiene	EPA 8260B	"	**	04/17/03	**	ND "	0.22	
Isopropylbenzene	11	н	**	н	11	ND "	0.22	
p-Isopropyltoluene	11	11	"	**	"	ND "	0.22	
Methyl ethyl ketone	***	**	**	"	**	ND "	0.65	
Methyl isobutyl ketone	#	u	"	n	***	ND "	0.43	
Methyl tert-butyl ether	**	11	"	Ħ	n	ND "	0.22	
Methylene chloride	**	"	11	11	11	ND "	0.22	
Naphthalene	n	**	u	**	#1	0.24 "	0.22	
n-Propylbenzene	н	11	**	tt	"	ND "	0.22	
Styrene	**		"	11	11	ND "	0.22	
1,1,1,2-Tetrachloroethane	"	***	**	**	**	ND "	0.22	
1,1,2,2-Tetrachloroethane	Ħ	"	*1	11	**	ND "	0.22	
Tetrachloroethene	11	**	**	**	11	ND "	0.22	
Toluene	31	и	**	**	tt	ND "	0.22	
1,2,3-Trichlorobenzene	11	11	"	**	11	ND "	0.22	
1,2,4-Trichlorobenzene	Ħ	Ħ	11	"	Ħ	ND "	0.22	
1,1,1-Trichloroethane	11	**	11	n	**	ND "	0.22	
1,1,2-Trichloroethane	н	**	n	**	н	ND "	0.22	
Trichloroethene	11	#	n	"	**	ND "	0.22	
Trichlorofluoromethane	tt	41	"	n	**	ND "	0.22	
Trichlorotrifluoroethane	**	**	n	n	"	ND "	0.22	
1,2,3-Trichloropropane	11	11	n	"	"	ND "	0.22	
1,2,4-Trimethylbenzene	11	Ħ	11	11	**	0.33 "	0.22	
1,3,5-Trimethylbenzene	"	ŧŧ	H.	**	11	ND "	0.22	
Vinyl chloride	"	**	11	**	**	ND "	0.22	
m,p-Xylene	**	11	n	11	**	ND "	0.22	
o-Xylene	"	**	**	II.	"	ND "	0.22	
Xylenes (total)	**	17	**	tt	"	ND "	0.22	
Surrogate: Dibromofluoromethane		"	"	n .		79.7 %	70-130	
Surrogate: Toluene-d8	"	"	"	"		95.4 %	70-130	
Surrogate: Bromofluorobenzene	"	"	"	"		95.4 %	70-130	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report market comparises it insections.

MAY 2 3 Zuud

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 7 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264

Receipt Date/Time

Client Code **MFGARC** 04/09/2003 15:30

Client PO/Reference

		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	POL	NOT
PD-1 (2-2.5) (A304264-02)			Sample Typ	pe: Soil		Sampled: 04/08/03 00:00)	
Chlorinated Phenols by Canadian Pulp	p Method							
2,4,6-Trichlorophenol	EnvCan	AD31611	04/10/03	04/14/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	11	n	**	ŧf	ND "	1.0	
2,3,4,6-Tetrachlorophenol	11	tt	11	н	*1	ND "	1.0	
2,3,4,5-Tetrachlorophenol	**	9	11	n	11	ND "	1.0	
Pentachlorophenol	"	**	**	**	"	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		78.2 %	23-140	
Conventional Chemistry Parameters b	oy APHA/EPA Me	ethods						
Oil & Grease (HEM-SG)	EPA 9071B	AD32307	04/17/03	04/22/03	1	7800 mg/kg	50	
TPH as Diesel and Motor Oil by EPA	Method 8015 Mod	dified						
TPH as Diesel	EPA 8015DRO	AD31615	04/16/03	04/17/03	10	330 mg/kg	10	
TPH as Motor Oil	n	"	11	0	11	1300 "	20	
Surrogate: 1,4-Bromofluorobenzene	"	"	n	"		49.3 %	25-132	
							_	

PD-2 (05) (A304264-03)		9	Sample Ty	pe: Soil	Sa	ampled: 04/08/03 00:00	
Volatile Organic Compounds by EPA	Method 8260B						
Acetone	EPA 8260B	AD32511	04/21/03	04/22/03	1	ND mg/kg	0.020
Benzene	11	"	11	**	**	ND "	0.0050
Bromobenzene	Ħ	#	11	n n	11	ND "	0.0050
Bromochloromethane	H.	tt	**	**	11	ND "	0.0050
Bromodichloromethane	**	11	11	"	er .	ND "	0.0050
Bromoform	и	n	**	н	**	ND "	0.0050
Bromomethane	**	11	n	11	**	ND "	0.0050
n-Butylbenzene	"	"	н	"	**	ND "	0.0050
sec-Butylbenzene	**	n	11	Ħ	11	ND "	0.0050
tert-Butylbenzene	tt	**	"	11	н	ND "	0.0050
Carbon tetrachloride	**	11	**	Ħ	н	ND "	0.0050
Chlorobenzene	11	n	**	"	11	ND "	0.0050
Chloroethane	11	**	n	Ħ	n	ND "	0.0050

The results in this report apply to the sample Praired Lacy and Dith the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 8 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264

Receipt Date/Time 04/09/2003 15:30

Client Code **MFGARC**

Client PO/Reference

Alpha Analytical Laboratories, Inc.

	METHOD	BATCH	PREPAREI	O ANALYZED	DILUTION	RESULT	POL	NOTE
PD-2 (05) (A304264-03)			Sample Ty	ype: Soil	Sa	mpled: 04/08/03 00:00		
Volatile Organic Compounds by EP	A Method 8260B (c	ont'd)						
Chloroform	EPA 8260B	**	"	04/22/03	"	ND "	0.0050	
Chloromethane	ŧŧ	11	**	"	"	ND "	0.0050	
2-Chlorotoluene	"	11	11	н	**	ND "	0.0050	
4-Chlorotoluene	**	n	**	Ħ	н	ND "	0.0050	
Dibromochloromethane	"	11	**	,,	11	ND "	0.0050	
1,2-Dibromo-3-chloropropane	п	n	н	n	n	ND "	0.0050	
1,2-Dibromoethane (EDB)	**	#	**	tt	tt.	ND "	0.0050	
Dibromomethane	"	11	**		Ħ	ND "	0.0050	
1,2-Dichlorobenzene	11	**	"	#1	tt	ND "	0.0050	
1,3-Dichlorobenzene	**	**	u	11	11	ND "	0.0050	
1,4-Dichlorobenzene	H	11	**	"	**	ND "	0.0050	
Dichlorodifluoromethane	#	н	**	n	**	ND "	0.0050	
1,1-Dichloroethane	#	11	"	"	"	ND "	0.0050	
1,2-Dichloroethane	Ħ	**	**	"	**	ND "	0.0050	
1,1-Dichloroethene	11	11	**	н	**	ND "	0.0050	
cis-1,2-Dichloroethene	**	n	**	**	11	ND "	0.0050	
trans-1,2-Dichloroethene	11	11	**	н	n	ND "	0.0050	
1,2-Dichloropropane	"	**	11	"	"	ND "	0.0050	
1,3-Dichloropropane	n	11	11	tt	n	ND "	0.0050	
2,2-Dichloropropane	н	11	**	n	**	ND "	0.0050	
1,1-Dichloropropene		ii	**	**	u	ND "	0.0050	
cis-1,3-Dichloropropene	**	**	n	**	tt	ND "	0.0050	
trans-1,3-Dichloropropene	11	"	**	Ħ	н	ND "	0.0050	
Ethylbenzene	11	u	11		**	ND "	0.0050	
Hexachlorobutadiene		#	Ħ	11	**	ND "	0.0050	
Isopropylbenzene	. "	11	**	"	u	ND "	0.0050	
p-Isopropyltoluene	u,	11	**	**	**	ND "	0.0050	
Methyl ethyl ketone	11	11	"	**	11	ND "	0.015	
Methyl isobutyl ketone		n	ft	u	"	ND "	0.010	
Methyl tert-butyl ether	**	"	*1	**	11	ND "	0.0050	
Methylene chloride	**	"	**	n	11	ND "	0.0050	
wiemyiene chioride						2 13.0	0.0000	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in the mirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 9 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Alpha Analytical Laboratories, Inc.

		Aipna	Allalytical	Laborato	1105, 1110.			
	METHOD	ВАТСН	PREPARED	ANALYZED	DILUTION	RESULT	POL	NOTE
D-2 (05) (A304264-03)			Sample Ty	pe: Soil		Sampled: 04/08/03 00:0)0	
Volatile Organic Compounds by EPA	Method 8260B (c	ont'd)						
Naphthalene	EPA 8260B	11	u	04/22/03	Ħ	ND "	0.0050	
n-Propylbenzene	**	11	**	"	"	ND "	0.0050	
Styrene	u	11	"	н	**	ND "	0.0050	
1,1,1,2-Tetrachloroethane	11	II	#	"	"	ND "	0.0050	
1,1,2,2-Tetrachloroethane	u	**	"	Ħ	11	ND "	0.0050	
Tetrachloroethene	tr	"	11	11	"	ND "	0.0050	
Toluene	**	#	u u	11	11	ND "	0.0050	
1,2,3-Trichlorobenzene	**	"	"	17	11	ND "	0.0050	
1,2,4-Trichlorobenzene	11	et	11	11	н	ND "	0.0050	
1,1,1-Trichloroethane	**	**	"	11	"	ND "	0.0050	
1,1,2-Trichloroethane	11	н	"	11	t1	ND "	0.0050	
Trichloroethene	11	tt	"	**	**	ND"	0.0050	
Trichlorofluoromethane	n	11	**	**	**	ND "	0.0050	
Trichlorotrifluoroethane	"	**	Ħ	"	"	ND "	0.0050	
1,2,3-Trichloropropane	n	11	**	**	11	ND "	0.0050	
1,2,4-Trimethylbenzene	11	11	**	**	11	ND "	0.0050	
1,3,5-Trimethylbenzene	н	n	11	"	n	ND "	0.0050	
Vinyl chloride	11	11	**	Ħ	H	ND "	0.0050	
m,p-Xylene	11	11	**	11	#	ND "	0.0050	
o-Xylene	"	et .	**	**	#1	ND "	0.0050	
Xylenes (total)	11	**	**	11	11	ND "	0.0050	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				106 %	70-130	
Surrogate: Dibromofluoromethane Surrogate: Toluene-d8	"	"	"	"		101 %	70-130	
Surrogate: Tottene-uo Surrogate: Bromofluorobenzene	"	"	"	"		82.4 %	70-130	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 ZUU3

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 10 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time

Client Code

Client PO/Reference

A304264 (04/09/2003 15:30		M	FGARC		and the selection of the control of			
		Alpha A	nalytical	Laborato	ries, Inc.				
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PC)L	NOTE
PD-2 (05) (A304264-03)			Sample Ty	pe: Soil		Sampled: 04/08/03 00:	00		
Chlorinated Phenols by Canadian Pu	ılp Method								
2,4,6-Trichlorophenol	EnvCan	AD31611	04/10/03	04/14/03	1	ND mg/kg	1	.0	
2,3,5,6-Tetrachlorophenol	n	##	**	"	**	ND "	1	.0	
2,3,4,6-Tetrachlorophenol	n	**	**	Ħ	**	ND "	I	.0	
2,3,4,5-Tetrachlorophenol	"	tt	**	**	11	ND "	.1	.0	
Pentachlorophenol	"	11	"	**	11	ND "	1	.0	
Surrogate: Tribromophenol	"	"	"	"	a final for the second the field of assessment them.	37.9 %	23-140		
Conventional Chemistry Parameters	by APHA/EPA Me	ethods							
Oil & Grease (HEM-SG)	EPA 9071B	AD32307	04/17/03	04/22/03	1	1100 mg/kg	:	50	
TPH as Diesel and Motor Oil by EPA	Method 8015 Mod	dified							
TPH as Diesel	EPA 8015DRO	AD31615	04/16/03	04/17/03	10	20 mg/kg		10	D-09
TPH as Motor Oil	ti .	**	If	"	11	250 "	:	20	
Surrogate: 1,4-Bromofluorobenzene	, "	"	"	"		48.5 %	25-132		
PD-2 (2-2.5) (A304264-04)			Sample Ty	pe: Soil		Sampled: 04/08/03 00:	00		
Volatile Organic Compounds by EPA	A Method 8260B					•			R-06

PD-2 (2-2.5) (A304264-04)		:	Sample Ty	pe: Soil		Sampled: 04/08/03 00:00		
Volatile Organic Compounds by E	PA Method 8260B							R-0
Acetone	EPA 8260B	AD32209	04/15/03	04/17/03	43.3	ND mg/kg	0.87	
Benzene	II .	**	**	11	11	ND "	0.22	
Bromobenzene	11	"	11	ff .	**	ND "	0.22	
Bromochloromethane	"	**	tt	tt	**	ND "	0.22	
Bromodichloromethane	II	"	**	tt	11	ND "	0.22	
Bromoform	tt	"	**	**	н	ND "	0.22	
Bromomethane	n .	"	17	11	11	ND "	0.22	
n-Butylbenzene	"	**	11	"	11	ND "	0.22	
sec-Butylbenzene	"	**	**	**	11	ND "	0.22	
tert-Butylbenzene	Ħ	**	11	*5	11	ND "	0.22	
Carbon tetrachloride	"	**	Ħ	75	**	ND "	0.22	
Chlorobenzene	11	**	"	15	**	ND "	0.22	
Chloroethane	Ħ	n	**	**	11	ND "	0.22	
Chloroform	"	**	**	**	**	ND "	0.22	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report multiple reproduced of is estimated.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 11 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Alpha Analytical Laboratories, Inc.

		-	•	ai Laboratoi	•			
DD 0 (0 0 5) (1 20 10 (1 0 f)	METHOD	BATCH		D ANALYZED		RESULT	POL	NOTE
PD-2 (2-2.5) (A304264-04)			Sample T	ype: Soil	S	ampled: 04/08/03 00:00		
Volatile Organic Compounds by EP	,							R-06
Chloromethane	EPA 8260B	Ħ	"	04/17/03	**	ND "	0.22	
2-Chlorotoluene	"	11	11	**	Ħ	ND "	0.22	
4-Chlorotoluene	11	н	н	**	н	ND "	0.22	
Dibromochloromethane	**	11	"	**	**	ND "	0.22	
1,2-Dibromo-3-chloropropane	11	11	Ħ	**	"	ND "	0.22	
1,2-Dibromoethane (EDB)	"	**	11	tt	**	ND "	0.22	
Dibromomethane	"	11	"	н	#1	ND "	0.22	
1,2-Dichlorobenzene	u	**	"	11	11	ND "	0.22	
1,3-Dichlorobenzene	11	**	11	11	"	ND "	0.22	
1,4-Dichlorobenzene	н	11	11	**	**	0.35 "	0.22	
Dichlorodifluoromethane	11	11	11	**	**	ND "	0.22	
1,1-Dichloroethane	rt	. "	"	**	u	ND "	0.22	
1,2-Dichloroethane	п	**	**	11	**	ND "	0.22	
1,1-Dichloroethene	11	tt	**	**	"	ND "	0.22	
cis-1,2-Dichloroethene	11	IT	tt	"	**	ND "	0.22	
trans-1,2-Dichloroethene	**	u u	"	"	"	ND "	0.22	
1,2-Dichloropropane	"	**	11	11	n	ND "	0.22	
1,3-Dichloropropane	rr	11	"	**	H	ND "	0.22	
2,2-Dichloropropane	"	**	11	Ħ	H	ND "	0.22	
1,1-Dichloropropene	11	**	17	n .	**	ND "	0.22	
cis-1,3-Dichloropropene	Ħ	11	11	11	0	ND "	0.22	
trans-1,3-Dichloropropene	#	н	51	n	Ħ	ND "	0.22	
Ethylbenzene	#		**	п	11	ND "	0.22	
Hexachlorobutadiene	H	**	**	**	tt	ND "	0.22	
Isopropylbenzene	**	Ħ	"	н	11	ND "	0.22	
p-Isopropyltoluene	Ħ	**	"	**	11	ND "	0.22	
Methyl ethyl ketone	Ħ	**	"	11	0	ND "	0.65	
Methyl isobutyl ketone	н	**	11	"	u	ND "	0.43	
Methyl tert-butyl ether	11	**	11	**	#	ND "	0.22	
Methylene chloride	"	Ħ	**		Ħ	ND "	0.22	
Naphthalene	tf	11	**	**	**	ND "	0.22	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 ZUU3

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 12 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Alpha Analytical Laboratories Inc

		Alpha A	Analytica	il Laborato	ries, Inc.			
	METHOD	BATCH	PREPAREI	O ANALYZED	DILUTION	RESULT	POL	NOTE
PD-2 (2-2.5) (A304264-04)			Sample Ty	pe: Soil		Sampled: 04/08/03 00:0	0	
Volatile Organic Compounds by EPA	Method 8260B (c	cont'd)						R-06
n-Propylbenzene	EPA 8260B	**	11	04/17/03	"	ND "	0.22	
Styrene	11	**	f1	н	Ħ	ND "	0.22	
1,1,1,2-Tetrachloroethane	"	"	11	11	**	ND "	0.22	
1,1,2,2-Tetrachloroethane	**	**	**	н	11	ND "	0.22	
Tetrachloroethene	**	**	11	н	Ħ	ND "	0.22	
Toluene	1Î	Ħ	n	**	11	ND "	0.22	
1,2,3-Trichlorobenzene	11	**	"	"	н	ND"	0.22	
1,2,4-Trichlorobenzene	11	11	**	#	11	ND"	0.22	
1,1,1-Trichloroethane	II .	***	11	11	11	ND "	0.22	
1,1,2-Trichloroethane	11	11	**	n	11	ND "	0.22	
Trichloroethene	II.	11	**	**	"	ND "	0.22	
Trichlorofluoromethane	n n	0	**	tt	Ħ	ND "	0.22	
Trichlorotrifluoroethane	н	**	**	**	**	ND "	0.22	
1,2,3-Trichloropropane	n	**	11	Ħ	**	ND "	0.22	
1,2,4-Trimethylbenzene	"	**	11	н	11	ND "	0.22	
1,3,5-Trimethylbenzene	"	**	"	n	11	ND "	0.22	
Vinyl chloride	**	"	n	**	H	ND "	0.22	
m,p-Xylene	11	**	"	**	Ħ	ND "	0.22	
o-Xylene	н	"	"	11	11	ND "	0.22	
Xylenes (total)	**	"	11	"	"	ND "	0.22	
Surrogate: Dibromofluoromethane	"	"	"	"		84.8 %	70-130	
Surrogate: Toluene-d8	"	"	11	"		97.2 %	70-130	
Surrogate: Bromofluorobenzene	"	"	"	"		93.5 %	70-130	

The results in this report apply to the samples analysed in accordance with the chain of custody document. This analytical report most be reported in its entirety.

MAY 2 3 2003

Tetra Tech/MFG, Inc.

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 13 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264

Receipt Date/Time

Client Code MFGARC

Client PO/Reference

04/09/2003 15:30

Alpha Analytical Laboratories, Inc.

		Aipua A	mary ticar	Laborato	i ics, iiic.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	POL	NOT
D-2 (2-2.5) (A304264-04)			Sample Ty	pe: Soil		Sampled: 04/08/03 00:00		
Chlorinated Phenols by Canadian Pulp	Method							
2,4,6-Trichlorophenol	EnvCan	AD31611	04/10/03	04/14/03	1	ND mg/kg	1.0	
2,3,5,6-Tetrachlorophenol	**	**	**	"	#	ND "	1.0	
2,3,4,6-Tetrachlorophenol	"	11	**	"	n	ND "	1.0	
2,3,4,5-Tetrachlorophenol	"	11	н	**	11	ND "	1.0	
Pentachlorophenol	**	11	n	"	u	ND "	1.0	
Surrogate: Tribromophenol	"	"	"	"		35.5 % 2	3-140	20.0
Conventional Chemistry Parameters by	y APHA/EPA Me	ethods						
Oil & Grease (HEM-SG)	EPA 9071B	AD32307	04/17/03	04/22/03	1	8200 mg/kg	50	
TPH as Diesel and Motor Oil by EPA	Method 8015 Mod	dified						
TPH as Diesel	EPA 8015DRO	AD31615	04/16/03	04/17/03	10	140 mg/kg	10	
TPH as Motor Oil	tt .	**	"	tř	tt	850 "	20	
Surrogate: 1,4-Bromofluorobenzene	"	"	"	"		49.5 % 2	5-132	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 14 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

SourceResult

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
Blank (AD32209-BLK1)				Prepared:	04/15/03	Analyzed	: 04/16/03			
Acetone	ND	0.87	mg/kg							
Benzene	ND	0.22	11							
Bromobenzene	ND	0.22	lt.							
Bromochloromethane	ND	0.22	**							
Bromodichloromethane	ND	0.22	11							
Bromoform	ND	0.22	11							
Bromomethane	ND	0.22	11							
n-Butylbenzene	ND	0.22	11							
sec-Butylbenzene	ND	0.22	"							
tert-Butylbenzene	ND	0.22	**							
Carbon tetrachloride	ND	0.22	11							
Chlorobenzene	ND	0.22	н							
Chloroethane	ND	0.22	ti .							
Chloroform	ND	0.22	"							
Chloromethane	ND	0.22	**							
2-Chlorotoluene	ND	0.22	"							
4-Chlorotoluene	ND	0.22	11							
Dibromochloromethane	ND	0.22	n							
1,2-Dibromo-3-chloropropane	ND	0.22	н							
1,2-Dibromoethane (EDB)	ND	0.22	**							
Dibromomethane	ND	0.22	*1							
1,2-Dichlorobenzene	ND	0.22	*							
1,3-Dichlorobenzene	ND	0.22	**							
1,4-Dichlorobenzene	ND	0.22	"							
Dichlorodifluoromethane	ND	0.22	"							
1,1-Dichloroethane	ND	0.22	**							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 ZULS

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 15 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
Blank (AD32209-BLK1)				Prepared:	04/15/03	Analyzed	1: 04/16/03			
1,2-Dichloroethane	ND	0.22	11							
1,1-Dichloroethene	ND	0.22	"							
cis-1,2-Dichloroethene	ND	0.22	**							
trans-1,2-Dichloroethene	ND	0.22	u							
1,2-Dichloropropane	ND	0.22	*1							
1,3-Dichloropropane	ND	0.22	"							
2,2-Dichloropropane	ND	0.22	н							
1,1-Dichloropropene	ND	0.22	n							
cis-1,3-Dichloropropene	ND	0.22	11							
trans-1,3-Dichloropropene	ND	0.22	"							
Ethylbenzene	ND	0.22	11							
Hexachlorobutadiene	ND	0.22	11							
Isopropylbenzene	ND	0.22	н							
p-Isopropyltoluene	ND	0.22	"							
Methyl ethyl ketone	ND	0.65	**							
Methyl isobutyl ketone	ND	0.43	11							
Methyl tert-butyl ether	ND	0.22	u.							
Methylene chloride	ND	0.22	u							
Naphthalene	ND	0.22	"							
n-Propylbenzene	ND	0.22	11							
Styrene	ND	0.22	"							
1,1,1,2-Tetrachloroethane	ND	0.22	"							
1,1,2,2-Tetrachloroethane	ND	0.22	"							
Tetrachloroethene	ND	0.22	"							
Toluene	ND	0.22	11							
1,2,3-Trichlorobenzene	ND	0.22	11							
1,2,4-Trichlorobenzene	ND	0.22	**							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

LAKEO Inc

208 Mason St. Ukiah, California 95482 Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 16 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
Blank (AD32209-BLK1)				Prepared:	04/15/03	Analyzed	: 04/16/03			
1,1,1-Trichloroethane	ND	0.22	11							
1,1,2-Trichloroethane	ND	0.22	**							
Trichloroethene	ND	0.22	**							
Trichlorofluoromethane	ND	0.22	**							
Trichlorotrifluoroethane	ND	0.22	51							
1,2,3-Trichloropropane	ND	0.22	**							
1,2,4-Trimethylbenzene	ND	0.22	Ħ							
1,3,5-Trimethylbenzene	ND	0.22	11							
Vinyl chloride	ND	0.22	"							
m,p-Xylene	ND	0.22	19							
o-Xylene	ND	0.22	"							
Xylenes (total)	ND	0.22	#							
Surrogate: Dibromofluoromethane	4.35		"	5.41		80.4	70-130			
Surrogate: Toluene-d8	5.47		"	5.41		101	70-130			
Surrogate: Bromofluorobenzene	4.60		н	5.41		85.0	70-130			
LCS (AD32209-BS1)				Prepared	I: 04/15/03	Analyze	d: 04/16/03	,		
Acetone	4.80	0.87	mg/kg	5.33		90.1	3-147			
Benzene	1.27	0.22	"	1.35		94.1	71-116			
Bromobenzene	1.46	0.22	**	1.35		108	87-112			
Bromochloromethane	1.11	0.22	**	1.35		82.2	77-113			
Bromodichloromethane	1.36	0.22	n	1.35		101	85-121			
Bromoform	1.50	0.22	"	1.35		111	86-124			
Bromomethane	1.35	0.22	**	1.35		100	47-128			
n-Butylbenzene	1.37	0.22	**	1.35		101	66-113			
sec-Butylbenzene	1.45	0.22	**	1.35		107	76-115			
tert-Butylbenzene	1.40	0.22	ŧŧ	1.35		104	77-120			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 17 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS									
LCS (AD32209-BS1)				Prepared:	04/15/03 Analyze	d: 04/16/03			
Carbon tetrachloride	1.46	0.22	#	1.35	108	67-118			
Chlorobenzene	1.31	0.22	**	1.35	97.0	79-114			
Chloroethane	1.28	0.22	11	1.35	94.8	57-121			
Chloroform	1.33	0.22	"	1.35	98.5	75-115			
Chloromethane	1.26	0.22	"	1.35	93.3	60-110			
2-Chlorotoluene	1.55	0.22	*1	1.35	115	67-127			
4-Chlorotoluene	1.49	0.22	н	1.35	110	73-110			
Dibromochloromethane	1.30	0.22	#1	1.35	96.3	85-121			
1,2-Dibromo-3-chloropropane	1.46	0.22	"	1.35	108	70-120			
1,2-Dibromoethane (EDB)	1.51	0.22	n	1.35	112	82-122			
Dibromomethane	1.34	0.22	11	1.35	99.3	75-117			
1,2-Dichlorobenzene	1.39	0.22	n	1.35	103	80-115			
1,3-Dichlorobenzene	1.47	0.22	"	1.35	109	77-123			
1,4-Dichlorobenzene	1.35	0.22	11	1.35	100	66-116			
Dichlorodifluoromethane	1.16	0.22	#	1.35	85.9	54-107			
1,1-Dichloroethane	1.31	0.22	**	1.35	97.0	74-121			
1,2-Dichloroethane	1.32	0.22	**	1.35	97.8	73-116			
1,1-Dichloroethene	1.50	0.22	11	1.35	111	60-124			
cis-1,2-Dichloroethene	1.34	0.22	0	1.35	99.3	77-117			
trans-1,2-Dichloroethene	1.39	0.22	**	1.35	103	61-120			
1,2-Dichloropropane	1.31	0.22	**	1.35	97.0	79-120			
1,3-Dichloropropane	1.37	0.22	**	1.35	101	80-116			
2,2-Dichloropropane	1.30	0.22	н	1.35	96.3	27-151			
1,1-Dichloropropene	1.27	0.22	**	1.35	94.1	57-119			
cis-1,3-Dichloropropene	1.31	0.22	**	1.35	97.0	81-119			
trans-1,3-Dichloropropene	1.38	0.22	"	1.35	102	86-128			
Ethylbenzene	1.47	0.22	11	1.35	109	79-114			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report much be compared to the solution of the custody document.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482 Alpha Analytical Laboratories Inc.

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 18 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
LCS (AD32209-BS1)				Prepared:	04/15/03	Analyzed	: 04/16/03			
Hexachlorobutadiene	1.54	0.22	11	1.35		114	68-131			
Isopropylbenzene	1.41	0.22	11	1.35		104	77-113			
p-Isopropyltoluene	1.35	0.22	u	1.35		100	74-115			
Methyl ethyl ketone	2.49	0.65	**	2.71		91.9	19-150			
Methyl isobutyl ketone	2.25	0.43	"	2.69		83.6	53-137			
Methyl tert-butyl ether	1.41	0.22	Ħ	1.35		104	59-128			
Methylene chloride	1.39	0.22	**	1.35		103	72-114			
Naphthalene	1.41	0.22	**	1.35		104	75-118			
n-Propylbenzene	1.37	0.22	11	1.35		101	75-114			
Styrene	1.44	0.22	**	1.35		107	82-114			
1,1,1,2-Tetrachloroethane	1.56	0.22	"	1.35		116	84-118			
1,1,2,2-Tetrachloroethane	1.36	0.22	¥t .	1.35		101	81-121			
Tetrachloroethene	1.46	0.22	Ħ	1.35		108	66-124			
Toluene	1.52	0.22	a	1.35		113	73-124			
1,2,3-Trichlorobenzene	1.38	0.22	**	1.35		102	68-119			
1,2,4-Trichlorobenzene	1.41	0.22	"	1.35		104	58-120			
1,1,1-Trichloroethane	1.26	0.22	"	1.35		93.3	69-114			
1,1,2-Trichloroethane	1.41	0.22	"	1.35		104	84-119			
Trichloroethene	1.33	0.22	**	1.35		98.5	77-118			
Trichlorofluoromethane	1.28	0.22	**	1.35		94.8	63-115			
Trichlorotrifluoroethane	1.24	0.22	11	1.33		93.2	61-119			
1,2,3-Trichloropropane	1.43	0.22		1.35		106	86-123			
1,2,4-Trimethylbenzene	1.44	0.22	H	1.35		107	75-111			
1,3,5-Trimethylbenzene	1.40	0.22	"	1.35		104	77-114			
Vinyl chloride	1.16	0.22	**	1.35		85.9	47-142			
m,p-Xylene	2.98	0.22	"	2.70		110	75-113			
o-Xylene	1.53	0.22	**	1.35		113	67-126			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its end

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 19 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264

Receipt Date/Time 04/09/2003 15:30

Client Code **MFGARC**

Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
LCS (AD32209-BS1)				Prepared:	04/15/03	Analyzed	: 04/16/03			
Xylenes (total)	4.51	0.22		4.05		111	75-113			
Surrogate: Dibromofluoromethane	4.85		"	5.41		89.6	70-130			
Surrogate: Toluene-d8	5.69		"	5.41		105	70-130			
Surrogate: Bromofluorobenzene	5.76		"	5.41		106	70-130			
LCS Dup (AD32209-BSD1)				Prepared	: 04/15/03	Analyzed	1: 04/16/03			
Acetone	4.62	0.87	mg/kg	5.33	2 1 1 1	86.7	3-147	3.82	25	
Benzene	1.24	0.22	"	1.35		91.9	71-116	2.39	25	
Bromobenzene	1.44	0.22	**	1.35		107	87-112	1.38	25	
Bromochloromethane	1.17	0.22	"	1.35		86.7	77-113	5.26	25	
Bromodichloromethane	1.22	0.22	**	1.35		90.4	85-121	10.9	25	
Bromoform	1.48	0.22	**	1.35		110	86-124	1.34	25	
Bromomethane	1.37	0.22	**	1.35		101	47-128	1.47	25	
n-Butylbenzene	1.37	0.22	н	1.35		101	66-113	0.00	25	
sec-Butylbenzene	1.39	0.22	11	1.35		103	76-115	4.23	25	
tert-Butylbenzene	1.40	0.22	"	1.35		104	77-120	0.00	25	
Carbon tetrachloride	1.42	0.22	11	1.35		105	67-118	2.78	25	
Chlorobenzene	1.39	0.22	11	1.35		103	79-114	5.93	25	
Chloroethane	1.20	0.22	n	1.35		88.9	57-121	6.45	25	
Chloroform	1.28	0.22	**	1.35		94.8	75-115	3.83	25	
Chloromethane	1.16	0.22	11	1.35		85.9	60-110	8.26	25	
2-Chlorotoluene	1.48	0.22	II	1.35		110	75-113	4.62	25	
4-Chlorotoluene	1.46	0.22	u	1.35		108	73-110	2.03	25	
Dibromochloromethane	1.46	0.22	97	1.35		108	85-121	11.6	25	
1,2-Dibromo-3-chloropropane	1.42	0.22	**	1.35		105	70-120	2.78	25	
1,2-Dibromoethane (EDB)	1.47	0.22	**	1.35		109	82-122	2.68	25	
Dibromomethane	1.36	0.22	и	1.35		101	75-117	1.48	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 20 of 38

MFG. Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264

Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC

Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
LCS Dup (AD32209-BSD1)				Prepared:	04/15/03	Analyzed	: 04/16/03			
1,2-Dichlorobenzene	1.37	0.22	**	1.35		101	80-115	1.45	25	
1,3-Dichlorobenzene	1.43	0.22	**	1.35		106	77-123	2.76	25	
1,4-Dichlorobenzene	1.35	0.22	11	1.35		100	66-116	0.00	25	
Dichlorodifluoromethane	1.13	0.22	**	1.35		83.7	54-107	2.62	25	
1,1-Dichloroethane	1.38	0.22	11	1.35		102	74-121	5.20	25	
1,2-Dichloroethane	1.27	0.22	11	1.35		94.1	73-116	3.86	25	
1,1-Dichloroethene	1.35	0.22	11	1.35		100	60-124	10.5	25	
cis-1,2-Dichloroethene	1.26	0.22	**	1.35		93.3	77-117	6.15	25	
trans-1,2-Dichloroethene	1.35	0.22	**	1.35		100	61-120	2.92	25	
1,2-Dichloropropane	1.22	0.22	п	1.35		90.4	79-120	7.11	25	
1,3-Dichloropropane	1.44	0.22	н	1.35		107	80-116	4.98	25	
2,2-Dichloropropane	1.31	0.22	**	1.35		97.0	27-151	0.766	25	
1,1-Dichloropropene	1.28	0.22	"	1.35		94.8	57-119	0.784	25	
cis-1,3-Dichloropropene	1.29	0.22	11	1.35		95.6	81-119	1.54	25	
trans-1,3-Dichloropropene	1.37	0.22	11	1.35		101	86-128	0.727	25	
Ethylbenzene	1.41	0.22	11	1.35		104	79-114	4.17	25	
Hexachlorobutadiene	1.52	0.22	11	1.35		113	68-131	1.31	25	
Isopropylbenzene	1.38	0.22	"	1.35		102	77-113	2.15	25	
p-Isopropyltoluene	1.33	0.22	н	1.35		98.5	74-115	1.49	25	
Methyl ethyl ketone	2.39	0.65	**	2.71		88.2	19-150	4.10	25	
Methyl isobutyl ketone	2.08	0.43	**	2.69		77.3	53-137	7.85	25	
Methyl tert-butyl ether	1.29	0.22	"	1.35		95.6	59-128	8.89	25	
Methylene chloride	1.31	0.22	"	1.35		97.0	72-114	5.93	25	
Naphthalene	1.41	0.22	11	1.35		104	75-118	0.00	25	
n-Propylbenzene	1.37	0.22	**	1.35		101	75-114	0.00	25	
Styrene	1.37	0.22	11	1.35		101	82-114	4.98	25	
1,1,1,2-Tetrachloroethane	1.56	0.22	"	1.35		116	84-118	0.00	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 21 of 38

MFG. Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
LCS Dup (AD32209-BSD1)				Prepared:	04/15/03	Analyzed	1: 04/16/03			
1,1,2,2-Tetrachloroethane	1.34	0.22	11	1.35		99.3	81-121	1.48	25	
Tetrachloroethene	1.40	0.22	"	1.35		104	66-124	4.20	25	
Toluene	1.49	0.22	**	1.35		110	73-124	1.99	25	
1,2,3-Trichlorobenzene	1.43	0.22	11	1.35		106	68-119	3.56	25	
1,2,4-Trichlorobenzene	1.43	0.22	н	1.35		106	58-120	1.41	25	
1,1,1-Trichloroethane	1.33	0.22	"	1.35		98.5	69-114	5.41	25	
1,1,2-Trichloroethane	1.35	0.22	11	1.35		100	84-119	4.35	25	
Trichloroethene	1.22	0.22	"	1.35		90.4	77-118	8.63	25	
Trichlorofluoromethane	1.24	0.22	**	1.35		91.9	63-115	3.17	25	
Trichlorotrifluoroethane	1.28	0.22	н	1.33		96.2	61-119	3.17	25	
1,2,3-Trichloropropane	1.39	0.22	**	1.35		103	86-123	2.84	25	
1,2,4-Trimethylbenzene	1.41	0.22	11	1.35		104	75-111	2.11	25	
1,3,5-Trimethylbenzene	1.38	0.22	н	1.35		102	77-114	1.44	25	
Vinyl chloride	1.11	0.22	"	1.35		82.2	47-142	4.41	25	
m,p-Xylene	2.93	0.22	**	2.70		109	75-113	1.69	25	
o-Xylene	1.47	0.22	11	1.35		109	79-112	4.00	25	
Xylenes (total)	4.39	0.22	**	4.05		108	75-113	2.70	25	
Surrogate: Dibromofluoromethane	4.47			5.41		82.6	70-130			
Surrogate: Toluene-d8	5.67		**	5.41		105	70-130			
Surrogate: Bromofluorobenzene	5.59		"	5.41		103	70-130			
Matrix Spike (AD32209-MS1)	Sou	rce: A304	264-01	Prepared	l: 04/15/03	Analyze	d: 04/16/03	,		
Acetone	5.01	0.87	mg/kg	5.33	ND	94.0	3-147			
Benzene	1.28	0.22	n	1.35	ND	94.8	71-116			
Bromobenzene	1.35	0.22	н	1.35	ND	100	87-112			
Bromochloromethane	1.20	0.22	11	1.35	ND	88.9	77-113			
Bromodichloromethane	1.38	0.22	11	1.35	ND	102	85-121			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in the entirety.

Tetra Tech/MFG, Inc.

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 22 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
Matrix Spike (AD32209-MS1)	Sou	rce: A3042	264-01	Prepared	04/15/03	Analyzed:	04/16/03			,,,
Bromoform	1.38	0.22	11	1.35	ND	102	86-124			
Bromomethane	1.48	0.22	11	1.35	ND	110	47-128			
n-Butylbenzene	1.38	0.22	**	1.35	ND	102	66-113			
sec-Butylbenzene	1.40	0.22	**	1.35	ND	104	76-115			
tert-Butylbenzene	1.37	0.22	"	1.35	ND	101	77-120			
Carbon tetrachloride	1.48	0.22	#	1.35	ND	110	67-118			
Chlorobenzene	1.34	0.22	**	1.35	ND	99.3	79-114			
Chloroethane	1.29	0.22	*1	1.35	ND	95.6	57-121			
Chloroform	1.35	0.22	н	1.35	ND	100	75-115			
Chloromethane	1.39	0.22	**	1.35	ND	103	60-110			
2-Chlorotoluene	1.46	0.22	"	1.35	ND	108	75-113			
4-Chlorotoluene	1.42	0.22	11	1.35	ND	105	73-110			
Dibromochloromethane	1.24	0.22	er e	1.35	ND	91.9	85-121			
1,2-Dibromo-3-chloropropane	1.40	0.22	**	1.35	ND	104	70-120			
1,2-Dibromoethane (EDB)	1.22	0.22	o o	1.35	ND	90.4	82-122			
Dibromomethane	1.39	0.22	Ħ	1.35	ND	103	75-117			
1,2-Dichlorobenzene	1.35	0.22	**	1.35	ND	100	80-115			
1,3-Dichlorobenzene	1.38	0.22	**	1.35	ND	102	77-123			
1,4-Dichlorobenzene	1.32	0.22	Ħ	1.35	ND	97.8	66-116			
Dichlorodifluoromethane	1.24	0.22	u	1.35	ND	91.9	54-107			
1.1-Dichloroethane	1.53	0.22	**	1.35	ND	113	74-121			
1,2-Dichloroethane	1.42	0.22	11	1.35	ND	105	73-116			
1,1-Dichloroethene	1.55	0.22	н	1.35	ND	115	60-124			
cis-1,2-Dichloroethene	1.39	0.22	**	1.35	ND	103	77-117			
trans-1,2-Dichloroethene	1.46	0.22	11	1.35	ND	108	61-120			
1,2-Dichloropropane	1.20	0.22	11	1.35	ND	88.9	79-120			
1,3-Dichloropropane	1.25	0.22	n	1.35	ND	92.6	80-116			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

Toch/MFG. Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 23 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
Matrix Spike (AD32209-MS1)	Sou	rce: A3042	264-01	Prepared:	04/15/03	Analyzed	: 04/16/03			
2,2-Dichloropropane	1.42	0.22	и	1.35	ND	105	27-151			
1,1-Dichloropropene	1.31	0.22	n	1.35	ND	97.0	57-119			
cis-1,3-Dichloropropene	1.24	0.22	н	1.35	ND	91.9	81-119			
trans-1,3-Dichloropropene	1.21	0.22	11	1.35	ND	89.6	86-128			
Ethylbenzene	1.34	0.22	11	1.35	ND	99.3	79-114			
Hexachlorobutadiene	1.61	0.22	**	1.35	ND	119	18-170			
Isopropylbenzene	1.34	0.22	Ħ	1.35	ND	99.3	77-113			
p-Isopropyltoluene	1.30	0.22		1.35	ND	96.3	74-115			
Methyl ethyl ketone	2.69	0.65	15	2.71	ND	99.3	19-150			
Methyl isobutyl ketone	2.36	0.43	11	2.69	ND	87.7	53-137			
Methyl tert-butyl ether	1.35	0.22	11	1.35	ND	100	59-128			
Methylene chloride	1.46	0.22	11	1.35	ND	108	72-114			
Naphthalene	1.36	0.22	п	1.35	ND	101	75-118			
n-Propylbenzene	1.33	0.22	н	1.35	ND	98.5	75-114			
Styrene	1.32	0.22	11	1.35	ND	97.8	82-114			
1,1,1,2-Tetrachloroethane	1.44	0.22	"	1.35	ND	107	84-118			
1,1,2,2-Tetrachloroethane	1.27	0.22	**	1.35	ND	94.1	81-121			
Tetrachloroethene	1.33	0.22	**	1.35	ND	98.5	66-124		145.	
Toluene	1.39	0.22	11	1.35	ND	103	73-124		7.	
1,2,3-Trichlorobenzene	1.38	0.22	**	1.35	ND	102	68-119			
1,2,4-Trichlorobenzene	1.41	0.22	**	1.35	ND	104	58-120			
1.1.1-Trichloroethane	1.48	0.22	"	1.35	ND	110	69-114			
1,1,2-Trichloroethane	1.22	0.22	"	1.35	ND	90.4	84-119			
Trichloroethene	1.33	0.22	"	1.35	ND	98.5	77-118			
Trichlorofluoromethane	1.42	0.22	**	1.35	ND	105	63-115			
Trichlorotrifluoroethane	1.32	0.22	11	1.33	ND	99.2	61-119			
1,2,3-Trichloropropane	1.26	0.22	u	1.35	ND	93.3	86-123			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report report of the chain of custody document.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 24 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32209 - EPA 5030 Soil MS										
Matrix Spike (AD32209-MS1)	Sou	rce: A3042	264-01	Prepared:	04/15/03	Analyzed	: 04/16/03			
1,2,4-Trimethylbenzene	1.39	0.22	19	1.35	ND	103	75-111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1,3,5-Trimethylbenzene	1.34	0.22	u	1.35	ND	99.3	77-114			
Vinyl chloride	1.24	0.22	"	1.35	ND	91.9	47-142			
m,p-Xylene	2.81	0.22	"	2.70	ND	104	75-113			
o-Xylene	1.43	0.22	**	1.35	ND	106	79-112			
Xylenes (total)	4.24	0.22	n	4.05	ND	105	75-113			
Surrogate: Dibromofluoromethane	5.33		"	5.41		98.5	70-130			
Surrogate: Toluene-d8	5.41		n	5.41		100	70-130			
Surrogate: Bromofluorobenzene	5.46		"	5.41		101	70-130			
Blank (AD32511-BLK1)				Prepared	: 04/21/03	Analyzed	i: 04/22/03		** ***** ** ** ** ** ***	
Acetone	ND	0.020	mg/kg	rrepared	. 04/21/03	Allalyzec	1. 04/22/03			
Benzene	ND	0.0050	"							
Bromobenzene	ND	0.0050	**							
Bromochloromethane	ND	0.0050	"							
Bromodichloromethane	ND	0.0050	"							
Bromoform	ND	0.0050	**							
Bromomethane	ND	0.0050	**							
n-Butylbenzene	ND	0.0050	**							
sec-Butylbenzene	ND	0.0050	**							
tert-Butylbenzene	ND	0.0050	"							
Carbon tetrachloride	ND	0.0050	11							
Chlorobenzene	ND	0.0050	n							
Chloroethane	ND	0.0050	**							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 ZUU3

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

Total Toch MIFG Inc.

oratories Inc. 208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 25 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number A304264 Receipt Date/Time 04/09/2003 15:30

Client Code MFGARC Client PO/Reference

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS		,								
Blank (AD32511-BLK1)				Prepared:	04/21/03	Analyzed	1: 04/22/03			
Chloromethane	ND	0.0050	11							
2-Chlorotoluene	ND	0.0050	**							
4-Chlorotoluene	ND	0.0050	ti							
Dibromochloromethane	ND	0.0050	Ħ							
1,2-Dibromo-3-chloropropane	ND	0.0050	R							
1,2-Dibromoethane (EDB)	ND	0.0050	11							
Dibromomethane	ND	0.0050	##							
1,2-Dichlorobenzene	ND	0.0050	н							
1,3-Dichlorobenzene	ND	0.0050	Ħ							
1,4-Dichlorobenzene	ND	0.0050	**							
Dichlorodifluoromethane	ND	0.0050	**							
1,1-Dichloroethane	ND	0.0050	н							
1,2-Dichloroethane	ND	0.0050	•							
1,1-Dichloroethene	ND	0.0050	11							
cis-1,2-Dichloroethene	ND	0.0050	ц							
trans-1,2-Dichloroethene	ND	0.0050	н							
1,2-Dichloropropane	ND	0.0050	11							
1,3-Dichloropropane	ND	0.0050	n							
2,2-Dichloropropane	ND	0.0050	***							
1,1-Dichloropropene	ND	0.0050	"							
cis-1,3-Dichloropropene	ND	0.0050	11							
trans-1,3-Dichloropropene	ND	0.0050	н							
Ethylbenzene	ND	0.0050	"							
Hexachlorobutadiene	ND	0.0050	11							
Isopropylbenzene	ND	0.0050	11							
p-Isopropyltoluene	ND	0.0050	11							
Methyl ethyl ketone	ND	0.015	0							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager 5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 26 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil M	IS									
Blank (AD32511-BLK1)				Prepared:	04/21/03	Analyzed	: 04/22/03			
Methyl isobutyl ketone	ND	0.010	(1							
Methyl tert-butyl ether	ND	0.0050	**							
Methylene chloride	ND	0.0050	**							
Naphthalene	ND	0.0050	**							
n-Propylbenzene	ND	0.0050	11							
Styrene	ND	0.0050	**							
1,1,1,2-Tetrachloroethane	ND	0.0050	tf							
1,1,2,2-Tetrachloroethane	ND	0.0050	**							
Tetrachloroethene	ND	0.0050	"							
Toluene	ND	0.0050	"							
1,2,3-Trichlorobenzene	ND	0.0050	**							
1,2,4-Trichlorobenzene	ND	0.0050	**							
1,1,1-Trichloroethane	ND	0.0050	11							
1,1,2-Trichloroethane	ND	0.0050	**							
Trichloroethene	ND	0.0050	11							
Trichlorofluoromethane	ND	0.0050	**							
Trichlorotrifluoroethane	ND	0.0050	n							
1,2,3-Trichloropropane	ND	0.0050	11							
1,2,4-Trimethylbenzene	ND	0.0050								
1,3,5-Trimethylbenzene	ND	0.0050	11							
Vinyl chloride	ND	0.0050	**							
m,p-Xylene	ND	0.0050	11							
o-Xylene	ND	0.0050	**							
Xylenes (total)	ND	0.0050	**							
Surrogate: Dibromofluoromethane	0.140		n	0.125		112	70-130			
Surrogate: Toluene-d8	0.124		"	0.125		99.2	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 27 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS										
Blank (AD32511-BLK1)				Prepared:	04/21/03	Analyzed:	04/22/03			
Surrogate: Bromofluorobenzene	0.107		"	0.125		85.6	70-130			ANTINA LANGUAGE AND ANTINAMENTA
LCS (AD32511-BS1)				Prepared:	04/21/03	Analyzed:	04/23/03			
Acetone	0.159	0.020	mg/kg	0.123		129	3-147			
Benzene	0.0279	0.0050	"	0.0312		89.4	71-116			
Bromobenzene	0.0286	0.0050	**	0.0312		91.7	87-112			
Bromochloromethane	0.0292	0.0050	**	0.0312		93.6	77-113			
Bromodichloromethane	0.0272	0.0050	"	0.0312		87.2	85-121			
Bromoform	0.0276	0.0050	**	0.0312		88.5	86-124			
Bromomethane	0.0261	0.0050	**	0.0312		83.7	47-128			
n-Butylbenzene	0.0244	0.0050	**	0.0312		78.2	66-113			
sec-Butylbenzene	0.0260	0.0050	**	0.0312		83.3	76-115			
tert-Butylbenzene	0.0249	0.0050	11	0.0312		79.8	77-120			
Carbon tetrachloride	0.0270	0.0050	**	0.0312		86.5	67-118			
Chlorobenzene	0.0281	0.0050	11	0.0312		90.1	79-114			
Chloroethane	0.0270	0.0050	**	0.0312		86.5	57-121			
Chloroform	0.0290	0.0050	11	0.0312		92.9	75-115			
Chloromethane	0.0300	0.0050	11	0.0312		96.2	60-110			
2-Chlorotoluene	0.0275	0.0050	11	0.0312		88.1	75-113			
4-Chlorotoluene	0.0251	0.0050	"	0.0312		80.4	73-110			
Dibromochloromethane	0.0252	0.0050	11	0.0312		80.8	56-141			
1,2-Dibromo-3-chloropropane	0.0308	0.0050	"	0.0312		98.7	70-120			
1,2-Dibromoethane (EDB)	0.0298	0.0050	Ħ	0.0312		95.5	82-122			
Dibromomethane	0.0271	0.0050	Ħ	0.0312		86.9	75-117			
1,2-Dichlorobenzene	0.0262	0.0050	**	0.0312		84.0	80-115			
1,3-Dichlorobenzene	0.0258	0.0050	**	0.0312		82.7	77-123			
1,4-Dichlorobenzene	0.0259	0.0050	**	0.0312		83.0	66-116			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report that be reproduced with onlinety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 28 of 38

MFG. Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS										
LCS (AD32511-BS1)				Prepared:	04/21/03	Analyzed	: 04/23/03			
Dichlorodifluoromethane	0.0326	0.0050	**	0.0312		104	54-107			
1,1-Dichloroethane	0.0278	0.0050	**	0.0312		89.1	74-121			
1,2-Dichloroethane	0.0288	0.0050	Ħ	0.0312		92.3	73-116			
1,1-Dichloroethene	0.0298	0.0050	**	0.0312		95.5	60-124			
cis-1,2-Dichloroethene	0.0276	0.0050	**	0.0312		88.5	77-117			
trans-1,2-Dichloroethene	0.0276	0.0050	"	0.0312		88.5	61-120			
1,2-Dichloropropane	0.0281	0.0050	11	0.0312		90.1	79-120			
1,3-Dichloropropane	0.0311	0.0050	11	0.0312		99.7	80-116			
2,2-Dichloropropane	0.0326	0.0050	11	0.0312		104	27-151			
1,1-Dichloropropene	0.0294	0.0050	11	0.0312		94.2	57-119			
cis-1,3-Dichloropropene	0.0266	0.0050	**	0.0312		85.3	81-119			
trans-1,3-Dichloropropene	0.0274	0.0050	**	0.0312		87.8	86-128			
Ethylbenzene	0.0256	0.0050	**	0.0312		82.1	79-114			
Hexachlorobutadiene	0.0280	0.0050	"	0.0312		89.7	64-112			
Isopropylbenzene	0.0278	0.0050	Ħ	0.0312		89.1	77-113			
p-Isopropyltoluene	0.0232	0.0050	"	0.0312		74.4	74-115			
Methyl ethyl ketone	0.0644	0.015	**	0.0627		103	19-150			
Methyl isobutyl ketone	0.0556	0.010	н	0.0624		89.1	53-137			
Methyl tert-butyl ether	0.0282	0.0050	**	0.0312		90.4	59-128			
Methylene chloride	0.0340	0.0050	*1	0.0312		109	72-114			
Naphthalene	0.0284	0.0050	11	0.0312		91.0	75-118			
n-Propylbenzene	0.0252	0.0050	11	0.0312		80.8	75-114			
Styrene	0.0253	0.0050	11	0.0312		81.1	65-126			
1,1,1,2-Tetrachloroethane	0.0286	0.0050	11	0.0312		91.7	84-118			
1,1,2,2-Tetrachloroethane	0.0286	0.0050		0.0312		91.7	81-121			
Tetrachloroethene	0.0411	0.0050	**	0.0312		132	52-138			
Toluene	0.0294	0.0050	н	0.0312		94.2	73-124			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be

MAY 2 3 ZUUJ

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 29 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Batch AD32511 - EPA 5030 Soil MS LCS (AD32511-BS1)	0.0277									
LCS (AD32511-BS1)	0.0277									
	0.0277			Prepared:	04/21/03	Analyzed	: 04/23/03			
1,2,3-Trichlorobenzene	0.0277	0.0050	#1	0.0312		88.8	68-119			
1,2,4-Trichlorobenzene	0.0254	0.0050	H	0.0312		81.4	58-120			
1,1,1-Trichloroethane	0.0291	0.0050	11	0.0312		93.3	69-114			
1,1,2-Trichloroethane	0.0302	0.0050	**	0.0312		96.8	84-119			
Trichloroethene	0.0304	0.0050	**	0.0312		97.4	77-118			
Trichlorofluoromethane	0.0273	0.0050	**	0.0312		87.5	63-115			
Trichlorotrifluoroethane	0.0277	0.0050	н	0.0308		89.9	61-119			
1,2,3-Trichloropropane	0.0310	0.0050	H	0.0312		99.4	86-123			
1,2,4-Trimethylbenzene	0.0254	0.0050	**	0.0312		81.4	75-111			
1,3,5-Trimethylbenzene	0.0241	0.0050	11	0.0312		77.2	77-114			
Vinyl chloride	0.0292	0.0050	**	0.0312		93.6	47-142			
m,p-Xylene	0.0542	0.0050	*1	0.0625		86.7	75-113			
o-Xylene	0.0264	0.0050	**	0.0312		84.6	79-112			
Xylenes (total)	0.0806	0.0050	tr	0.0938		85.9	75-113			
Surrogate: Dibromofluoromethane	0.144		n	0.125		115	70-130			
Surrogate: Toluene-d8	0.147		m	0.125		118	70-130			
Surrogate: Bromofluorobenzene	0.136		a.	0.125		109	70-130			
LCS Dup (AD32511-BSD1)				Prepared:	04/21/03	Analyzed	l: 04/23/03			
Acetone	0.154	0.020	mg/kg	0.123		125	3-147	3.19	25	
Benzene	0.0286	0.0050	**	0.0312		91.7	71-116	2.48	25	
Bromobenzene	0.0256	0.0050	"	0.0312		82.1	71-127	11.1	25	
Bromochloromethane	0.0286	0.0050	"	0.0312		91.7	77-113	2.08	25	
Bromodichloromethane	0.0278	0.0050	**	0.0312		89.1	85-121	2.18	25	
Bromoform	0.0233	0.0050	"	0.0312		74.7	57-138	16.9	25	
Bromomethane	0.0254	0.0050	**	0.0312		81.4	47-128	2.72	25	
n-Butylbenzene	0.0222	0.0050	"	0.0312		71.2	66-113	9.44	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 30 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS										
LCS Dup (AD32511-BSD1)				Prepared:	04/21/03	Analyzed	: 04/23/03			
sec-Butylbenzene	0.0244	0.0050	11	0.0312		78.2	76-115	6.35	25	
tert-Butylbenzene	0.0240	0.0050	#	0.0312		76.9	66-124	3.68	25	
Carbon tetrachloride	0.0271	0.0050	11	0.0312		86.9	67-118	0.370	25	
Chlorobenzene	0.0260	0.0050	**	0.0312		83.3	79-114	7.76	25	
Chloroethane	0.0282	0.0050	**	0.0312		90.4	57-121	4.35	25	
Chloroform	0.0298	0.0050	"	0.0312		95.5	75-115	2.72	25	
Chloromethane	0.0300	0.0050	**	0.0312		96.2	60-110	0.00	25	
2-Chlorotoluene	0.0270	0.0050	"	0.0312		86.5	75-113	1.83	25	
4-Chlorotoluene	0.0239	0.0050	"	0.0312		76.6	73-110	4.90	25	
Dibromochloromethane	0.0245	0.0050	Ħ	0.0312		78.5	56-141	2.82	25	
1,2-Dibromo-3-chloropropane	0.0284	0.0050	н	0.0312		91.0	70-120	8.11	25	
1,2-Dibromoethane (EDB)	0.0292	0.0050	n	0.0312		93.6	82-122	2.03	25	
Dibromomethane	0.0280	0.0050	**	0.0312		89.7	75-117	3.27	25	
1,2-Dichlorobenzene	0.0242	0.0050	11	0.0312		77.6	67-117	7.94	25	
1,3-Dichlorobenzene	0.0238	0.0050	11	0.0312		76.3	65-124	8.06	25	
1,4-Dichlorobenzene	0.0236	0.0050	"	0.0312		75.6	66-116	9.29	25	
Dichlorodifluoromethane	0.0336	0.0050	11	0.0312		108	52-145	3.02	25	
1,1-Dichloroethane	0.0286	0.0050	11	0.0312		91.7	74-121	2.84	25	
1,2-Dichloroethane	0.0290	0.0050	ŧı	0.0312		92.9	73-116	0.692	25	
1,1-Dichloroethene	0.0290	0.0050	"	0.0312		92.9	60-124	2.72	25	
cis-1,2-Dichloroethene	0.0276	0.0050	11	0.0312		88.5	77-117	0.00	25	
trans-1,2-Dichloroethene	0.0244	0.0050	"	0.0312		78.2	61-120	12.3	25	
1,2-Dichloropropane	0.0300	0.0050	н	0.0312		96.2	79-120	6.54	25	
1,3-Dichloropropane	0.0292	0.0050	u u	0.0312		93.6	80-116	6.30	25	
2,2-Dichloropropane	0.0328	0.0050	"	0.0312		105	27-151	0.612	25	
1,1-Dichloropropene	0.0288	0.0050	н	0.0312		92.3	57-119	2.06	25	
cis-1,3-Dichloropropene	0.0280	0.0050	u	0.0312		89.7	81-119	5.13	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 31 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS										
LCS Dup (AD32511-BSD1)				Prepared:	04/21/03	Analyzed	: 04/23/03			
trans-1,3-Dichloropropene	0.0260	0.0050	11	0.0312		83.3	55-133	5.24	25	
Ethylbenzene	0.0248	0.0050	н	0.0312		79.5	79-114	3.17	25	
Hexachlorobutadiene	0.0261	0.0050	**	0.0312		83.7	64-112	7.02	25	
Isopropylbenzene	0.0257	0.0050	**	0.0312		82.4	77-113	7.85	25	
p-Isopropyltoluene	0.0220	0.0050	11	0.0312		70.5	62-120	5.31	25	
Methyl ethyl ketone	0.0680	0.015	11	0.0627		108	19-150	5.44	25	
Methyl isobutyl ketone	0.0560	0.010	11	0.0624		89.7	53-137	0.717	25	
Methyl tert-butyl ether	0.0289	0.0050	н	0.0312		92.6	59-128	2.45	25	
Methylene chloride	0.0326	0.0050	11	0.0312		104	72-114	4.20	25	
Naphthalene	0.0274	0.0050	11	0.0312		87.8	75-118	3.58	25	
n-Propylbenzene	0.0256	0.0050	H	0.0312		82.1	75-114	1.57	25	
Styrene	0.0249	0.0050	"	0.0312		79.8	65-126	1.59	25	
1,1,1,2-Tetrachloroethane	0.0268	0.0050	**	0.0312		85.9	84-118	6.50	25	
1,1,2,2-Tetrachloroethane	0.0252	0.0050	**	0.0312		80.8	65-136	12.6	25	
Tetrachloroethene	0.0388	0.0050	**	0.0312		124	66-124	5.76	25	
Toluene	0.0276	0.0050	**	0.0312		88.5	73-124	6.32	25	
1,2,3-Trichlorobenzene	0.0262	0.0050	"	0.0312		84.0	68-119	5.57	25	
1,2,4-Trichlorobenzene	0.0248	0.0050	**	0.0312		79.5	58-120	2.39	25	
1,1,1-Trichloroethane	0.0274	0.0050	"	0.0312		87.8	69-114	6.02	25	
1,1,2-Trichloroethane	0.0284	0.0050	**	0.0312		91.0	84-119	6.14	25	
Trichloroethene	0.0307	0.0050	11	0.0312		98.4	77-118	0.982	25	
Trichlorofluoromethane	0.0272	0.0050	**	0.0312		87.2	63-115	0.367	25	
Trichlorotrifluoroethane	0.0269	0.0050	n	0.0308		87.3	61-119	2.93	25	
1,2,3-Trichloropropane	0.0278	0.0050		0.0312		89.1	86-123	10.9	25	
1,2,4-Trimethylbenzene	0.0237	0.0050	**	0.0312		76.0	75-111	6.92	25	
1,3,5-Trimethylbenzene	0.0227	0.0050	0	0.0312		72.8	65-123	5.98	25	
Vinyl chloride	0.0293	0.0050	#	0.0312		93.9	47-142	0.342	25	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 32 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS	S									
LCS Dup (AD32511-BSD1)				Prepared:	04/21/03	Analyzed	1: 04/23/03			
m,p-Xylene	0.0498	0.0050	u.	0.0625		79.7	75-113	8.46	25	
o-Xylene	0.0244	0.0050	"	0.0312		78.2	67-126	7.87	25	
Xylenes (total)	0.0742	0.0050	**	0.0938		79.1	75-113	8.27	25	
Surrogate: Dibromofluoromethane	0.148		#	0.125		118	70-130	Martin () ()		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Surrogate: Toluene-d8	0.140		н	0.125		112	70-130			
Surrogate: Bromofluorobenzene	0.129		"	0.125		103	70-130			
Matrix Spike (AD32511-MS1)	Sou	ırce: A304	264-01	Prepared:	04/21/03	Analyzed	1: 04/23/03			
Acetone	0.123	0.020	mg/kg	0.123	ND	100	3-147			
Benzene	0.0240	0.0050	**	0.0312	ND	76.9	71-116			
Bromobenzene	0.0171	0.0050	"	0.0312	ND	54.8	55-136			QM-07
Bromochloromethane	0.0224	0.0050	**	0.0312	ND	71.8	58-133			
Bromodichloromethane	0.0236	0.0050	11	0.0312	ND	75.6	51-126			
Bromoform	0.0201	0.0050	11	0.0312	ND	64.4	47-138			
Bromomethane	0.0171	0.0050	**	0.0312	ND	54.8	47-128			
n-Butylbenzene	0.00725	0.0050	**	0.0312	ND	23.2	29-153			QM-07
sec-Butylbenzene	0.00970	0.0050	**	0.0312	ND	31.1	44-148			QM-07
tert-Butylbenzene	0.0114	0.0050	#1	0.0312	ND	36.5	49-141			QM-07
Carbon tetrachloride	0.0231	0.0050	n	0.0312	ND	74.0	67-118			
Chlorobenzene	0.0190	0.0050	"	0.0312	ND	60.9	54-130			
Chloroethane	0.0250	0.0050	11	0.0312	ND	80.1	57-121			
Chloroform	0.0254	0.0050	tt	0.0312	ND	81.4	75-115			
Chloromethane	0.0186	0.0050	**	0.0312	ND	59.6	57-130			
2-Chlorotoluene	0.0144	0.0050	**	0.0312	ND	46.2	52-140			QM-07
4-Chlorotoluene	0.0140	0.0050	**	0.0312	ND	44.9	49-139			QM-07
Dibromochloromethane	0.0200	0.0050	m .	0.0312	ND	64.1	48-135			
1,2-Dibromo-3-chloropropane	0.0230	0.0050	"	0.0312	ND	73.7	70-120			

The results in this report apply to the sample conalized in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 33 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS										
Matrix Spike (AD32511-MS1)	Sou	ırce: A3042	264-01	Prepared:	04/21/03	Analyzed	1: 04/23/03			
1,2-Dibromoethane (EDB)	0.0225	0.0050	Ħ	0.0312	ND	72.1	36-156			
Dibromomethane	0.0232	0.0050	**	0.0312	ND	74.4	53-137			
1,2-Dichlorobenzene	0.0142	0.0050	n .	0.0312	ND	45.5	44-137			
1,3-Dichlorobenzene	0.0120	0.0050	11	0.0312	ND	38.5	44-137			QM-07
1,4-Dichlorobenzene	0.0140	0.0050	"	0.0312	ND	44.9	44-137			
Dichlorodifluoromethane	0.0305	0.0050	н	0.0312	ND	97.8	54-107			
1,1-Dichloroethane	0.0264	0.0050	Ħ	0.0312	ND	84.6	74-121			
1,2-Dichloroethane	0.0250	0.0050	Ħ	0.0312	ND	80.1	73-116			
1,1-Dichloroethene	0.0262	0.0050	11	0.0312	ND	84.0	60-124			
cis-1,2-Dichloroethene	0.0222	0.0050	11	0.0312	ND	71.2	54-129			
trans-1,2-Dichloroethene	0.0178	0.0050	11	0.0312	ND	57.1	61-120			QM-07
1,2-Dichloropropane	0.0258	0.0050	"	0.0312	ND	82.7	79-120			
1,3-Dichloropropane	0.0251	0.0050	**	0.0312	ND	80.4	80-116			
2,2-Dichloropropane	0.0284	0.0050	17	0.0312	ND	91.0	27-151			
1,1-Dichloropropene	0.0222	0.0050	11	0.0312	ND	71.2	57-119			
cis-1,3-Dichloropropene	0.0206	0.0050	Ħ	0.0312	ND	66.0	55-129			
trans-1,3-Dichloropropene	0.0196	0.0050	11	0.0312	ND	62.8	34-139			
Ethylbenzene	0.0164	0.0050	**	0.0312	ND	52.6	55-138			QM-07
Hexachlorobutadiene	0.00500	0.0050	11	0.0312	ND	16.0	16-172			
Isopropylbenzene	0.0152	0.0050	"	0.0312	ND	48.7	51-137			QM-07
p-Isopropyltoluene	0.00720	0.0050	U	0.0312	ND	23.1	37-143			QM-07
Methyl ethyl ketone	0.0429	0.015	11	0.0627	ND	68.4	19-150			•
Methyl isobutyl ketone	0.0247	0.010	**	0.0624	ND	39.6	29-155			
Methyl tert-butyl ether	0.0255	0.0050	11	0.0312	ND	81.7	59-128			
Methylene chloride	0.0209	0.0050	**	0.0312	ND	67.0	53-137			
Naphthalene	0.0120	0.0050	Ħ	0.0312	ND	38.5	26-152			
n-Propylbenzene	0.0132	0.0050	**	0.0312	ND	42.3	47-143			QM-07

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be eproduced in security

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 34 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32511 - EPA 5030 Soil MS										
Matrix Spike (AD32511-MS1)	Sou	ırce: A3042	264-01	Prepared:	04/21/03	Analyzed	1: 04/23/03			
Styrene	0.0149	0.0050	"	0.0312	ND	47.8	32-150			
1,1,1,2-Tetrachloroethane	0.0209	0.0050	**	0.0312	ND	67.0	39-153			
1,1,2,2-Tetrachloroethane	0.0218	0.0050	11	0.0312	ND	69.9	42-140			
Tetrachloroethene	0.0219	0.0050	11	0.0312	ND	70.2	66-124			
Toluene	0.0214	0.0050	11	0.0312	ND	68.6	50-148			
1,2,3-Trichlorobenzene	0.00990	0.0050	ŧr	0.0312	ND	31.7	31-148			
1,2,4-Trichlorobenzene	0.00880	0.0050	н	0.0312	ND	28.2	30-148			QM-07
1,1,1-Trichloroethane	0.0250	0.0050	Ħ	0.0312	ND	80.1	69-114			
1,1,2-Trichloroethane	0.0240	0.0050	**	0.0312	ND	76.9	39-152			
Trichloroethene	0.0223	0.0050	**	0.0312	ND	71.5	50-146			
Trichlorofluoromethane	0.0246	0.0050	*1	0.0312	ND	78.8	63-115			
Trichlorotrifluoroethane	0.0206	0.0050	n	0.0308	ND	66.9	61-119			
1,2,3-Trichloropropane	0.0240	0.0050	**	0.0312	ND	76.9	38-152			
1,2,4-Trimethylbenzene	0.0114	0.0050	#1	0.0312	ND	36.5	43-150			QM-07
1,3,5-Trimethylbenzene	0.0117	0.0050	11	0.0312	ND	37.5	47-140			QM-07
Vinyl chloride	0.0208	0.0050	11	0.0312	ND	66.7	47-142			
m,p-Xylene	0.0312	0.0050	11	0.0625	ND	49.9	54-139			QM-07
o-Xylene	0.0167	0.0050	"	0.0312	ND	53.5	58-136			QM-07
Xylenes (total)	0.0480	0.0050	Ħ	0.0938	ND	51.2	54-139			QM-07
Surrogate: Dibromofluoromethane	0.138		n	0.125		110	70-130			
Surrogate: Toluene-d8	0.125		"	0.125		100	70-130			
Surrogate: Bromofluorobenzene	0.118		"	0.125		94.4	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report missing in footnet did its durrety.

MAY 2 3 2003

Tetra Tech/MFG, Inc.

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 35 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Chlorinated Phenols by Canadian Pulp Method - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD31611 - Solvent Extraction										
Blank (AD31611-BLK1)				Prepared:	04/10/03	Analyzed	l: 04/14/03			
2,4,6-Trichlorophenol	ND	1.0	mg/kg	,						
2,3,5,6-Tetrachlorophenol	ND	1.0	**							
2,3,4,6-Tetrachlorophenol	ND	1.0	**							
2,3,4,5-Tetrachlorophenol	ND	1.0	#							
Pentachlorophenol	ND	1.0	**							
Surrogate: Tribromophenol	0.0840		#	0.124	n y gan a y yyaga a yanna yan mayana a a an	67.7	23-140			
LCS (AD31611-BS1)				Prepared:	: 04/10/03	Analyzed	1: 04/14/03			
2,4,6-Trichlorophenol	0.0226	1.0	mg/kg	0.0250		90.4	20-99			
2,3,5,6-Tetrachlorophenol	0.0126	1.0	"	0.0250		50.4	23-110			
2,3,4,6-Tetrachlorophenol	0.0157	1.0	**	0.0250		62.8	21-97			
2,3,4,5-Tetrachlorophenol	0.0181	1.0	"	0.0250		72.4	14-151			
Pentachlorophenol	0.0130	1.0	**	0.0250		52.0	10-168			
Surrogate: Tribromophenol	0.100		"	0.124		80.6	23-140			
LCS Dup (AD31611-BSD1)				Prepared	: 04/10/03	Analyzed	i: 04/14/03			
2,4,6-Trichlorophenol	0.0231	1.0	mg/kg	0.0250		92,4	20-99	2.19	50	
2,3,5,6-Tetrachlorophenol	0.0131	1.0	**	0.0250		52.4	23-110	3.89	50	
2,3,4,6-Tetrachlorophenol	0.0166	1.0	"	0.0250		66.4	21-97	5.57	50	
2,3,4,5-Tetrachlorophenol	0.0174	1.0	0	0.0250		69.6	14-151	3.94	50	
Pentachlorophenol	0.0132	1.0	"	0.0250		52.8	10-168	1.53	50	
Surrogate: Tribromophenol	0.103		n	0.124		83.1	23-140			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 36 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD32307 - General Preparation	n									
Blank (AD32307-BLK1)				Prepared:	04/18/03	Analyzed	l: 04/22/03			
Oil & Grease (HEM-SG)	ND	50	mg/kg							5/4, 7 - 1/4, 14 - 14 - 14 - 14
LCS (AD32307-BS1)				Prepared	04/18/03	Analyzed	1: 04/22/03			
Oil & Grease (HEM-SG)	2920	50	mg/kg	3000		97.3	80-120			
LCS Dup (AD32307-BSD1)				Prepared	04/18/03	Analyzed	1: 04/22/03			
Oil & Grease (HEM-SG)	3000	50	mg/kg	3000		100	80-120	2.70	20	
Duplicate (AD32307-DUP1)	Sou	rce: A304	264-04	Prepared	: 04/17/03	Analyzeo	i: 04/22/03			
Oil & Grease (HEM-SG)	7940	50	mg/kg		8200			3.22	200	
Matrix Spike (AD32307-MS1)	Sou	rce: A304	264-04	Prepared	: 04/18/03	Analyzeo	1: 04/22/03			
Oil & Grease (HEM-SG)	10300	50	mg/kg	2500	8200	84.0	80-120			
Matrix Spike Dup (AD32307-MSD1)	Sou	rce: A304	264-04	Prepared	: 04/18/03	Analyzed	1: 04/22/03			
Oil & Grease (HEM-SG)	12400	50	mg/kg	2500	8200	168	80-120	18.5	20	QM-05

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MAY 2 2 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 37 of 38

MFG, Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

TPH as Diesel and Motor Oil by EPA Method 8015 Modified - Quality Control

Analyte(s)	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch AD31615 - CA LUFT - orb s	shaker									
Blank (AD31615-BLK1)				Prepared:	04/16/03	Analyzed	l: 04/17/03			
TPH as Diesel	ND	1.0	mg/kg							
TPH as Motor Oil	ND	2.0	**							
Surrogate: 1,4-Bromofluorobenzene	4.80		n	13.7		35.0	25-132			
LCS (AD31615-BS1)				Prepared:	04/16/03	Analyzed	1: 04/17/03			
TPH as Diesel	37.3	1.0	mg/kg	40.5		92.1	70-130			
TPH as Motor Oil	41.1	2.0	11	40.6		101	70-130			
Surrogate: 1,4-Bromofluorobenzene	7.84		n	13.7		57.2	25-132			
LCS Dup (AD31615-BSD1)				Prepared	: 04/16/03	Analyzed	1: 04/17/03			
TPH as Diesel	40.0	1.0	mg/kg	40.5		98.8	70-130	6.99	20	
TPH as Motor Oil	40.9	2.0	n	40.6		101	70-130	0.488	20	
Surrogate: 1,4-Bromofluorobenzene	9.26	The second secon	"	13.7	,	67.6	25-132			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RECEIVED

MAY 2 3 2003

Cheryl Watson For Sheri L. Speaks Project Manager

5/19/03

Tach/MFG, Inc.

208 Mason St. Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 38 of 38

MFG. Inc - Arcata 1165 G. Street, Suite E Arcata, CA 95521 Attn: Matt Hillyard

Report Date: 05/19/03 09:29

Project No: 030229

Project ID: SPI Arcata Sawmill

Order Number

Receipt Date/Time

Client Code

Client PO/Reference

A304264

04/09/2003 15:30

MFGARC

Notes and Definitions

D-09 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

acceptable LCS recovery.

R-06 The Reporting Limits for this analysis have been raised to account for matrix interference.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis drv

RPD Relative Percent Difference

PQL Practical Quantitation Limit

RECEIVED

MAY 2 3 2003

Tetra Teen/MFG, IRE:

6.1.2.0.1:D19 DM(41.12)

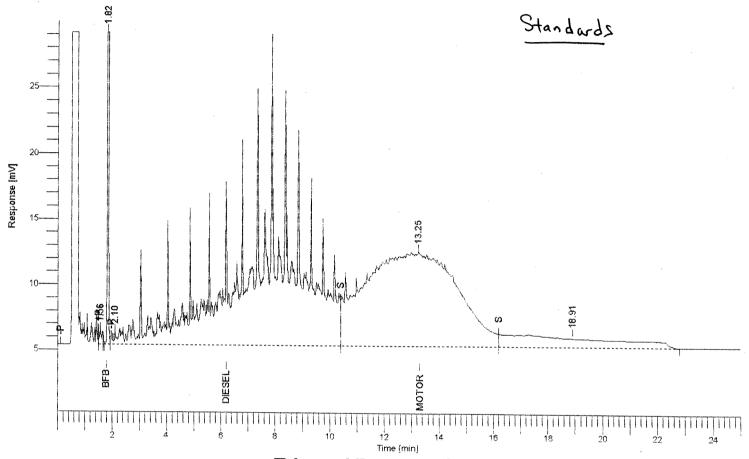
Date Data Acquisition Time 4/17/03 2:37:1 4/17/03 2:12:12 PM

Instrument Name Rack/Vial

DsMo

Channel

A manager


Sample Amount Cycle

0/0 1.000000 117

Operator Dilution Factor

1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT956.rst Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_041403.seq

Diesel/Motor Oil

Peak #	Time [min]	Component Name	Raw Amount	Area [uV*sec]	Height [uV]	
1	1.56		0.007	6809	953	RECEIVED
2 3 4	1.82 2.10 13.25	BFB Diesel Motor Oil	8.732 40.985 43.026	238950 1931500 1721194	85715 841 7279	JUN - 6 2003
5	18.91		0.249	249327	648	MFG, Inc.
			92.998	4147780	95436	***************************************

6.1.2.0.1:D19 A304264-01@10

Date Data Acquisition Time

4/17/03 11:19: : 4/17/03 10:54:3 AM

Instrument Name Rack/Vial

DsMo2

Channel

Α

Sample Amount Cycle

1.000000 112

Operator Dilution Factor

manager 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT951.rst
Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_041403.seq

Peak	Time [min]	Component	Raw	Area	Height
#		Name	Amount	[uV*sec]	[uV]
1	1.82	BFB	0.782	13703	3990
2	2.86	Diesel	1.691	87569	76
3	12.47	Motor Oil	15.622	627154	3539
			18.096	728426	7605

RECEIVED

JUN - 6 2003

MFG, Inc.

Instrument Name Rack/Vial

Sample Amount Cycle

6.1.2.0.1:D19 A304264-02@10

DsMo2 0/0 1.000000

113

Date Data Acquisition Time


4/17/03 11:59 4/17/03 11:34:(

AM

Channel Operator Dilution Factor A

manager 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT952.rst
Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_041403.seq

Diesel/Motor Oil

Peak #	Time [min]	Component Name	Raw Amount	Area [uV*sec]	Height [uV]	
1 2	1.55 1.65		0.002	1670 2297	338 546	RECEIVED
2 3 4 5	1.82	BFB Diesel	0.676 32.524	10662 1535987	3414 616	JUN - 6 2003
6	13.02 18.03	Motor Oil	126.189	5001560 1394919	20866 4745	MFG, Inc.
			160.788	7947095	30526	

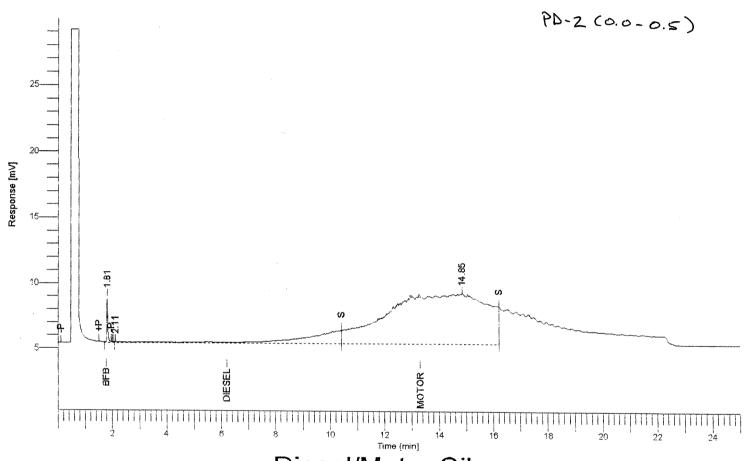
6.1.2.0.1:D19 A304764-03@10 DsMo2

Date Data Acquisition Time 4/17/03 12:38: 4/17/03 12:13:3

ΡM

Instrument Name Rack/Vial

Channel


Sample Amount Cycle

0/0 1.000000 114

Operator Dilution Factor

manager 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT953.rst
Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_041403.seq

Diesel/Motor Oil

Peak	Time	Component	Raw	Area	Height	DECERTE
#	[min]	Name	Amount	[uV*sec]	[uV]	
1	1.81	BFB	0.665	10330	3089	RECEIVED JUN - 6 2003
2	2.11	Diesel	2.034	103741	68	
3	14.85	Motor Oil	24.604	986438	3867	
			27.303	1100509	7024	MFG, Inc.

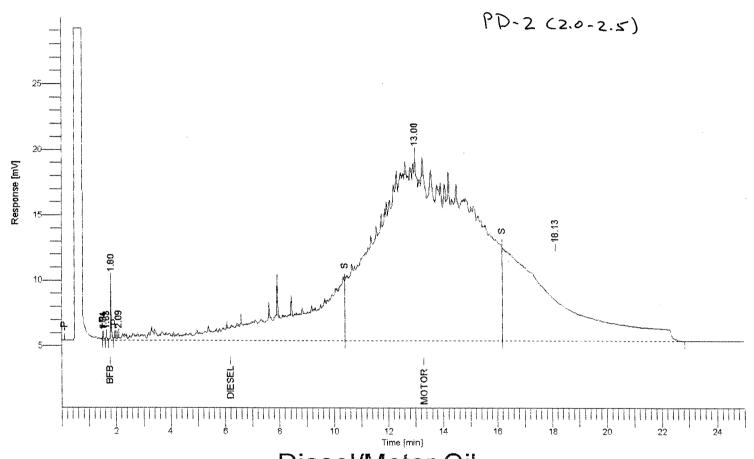
Software Version

6.1.2.0.1:D19 A304264-04@10 DsMo 2

Date Data Acquisition Time 4/17/03 1:18:3 4/17/03 12:53:0

PM

Sample Name Instrument Name Rack/Vial Sample Amount Cycle


0/0 1.000000 115

Channel Operator

Dilution Factor

A manager 1.000000

Result File : C:\PenExe\TcWS\Stats\Data\ATDAT954.rst
Sequence File : C:\PenExe\TcWS\Stats\Sequences\Seq_DsMo_041403.seq

Diesel/Motor Oil

Peak #	Time [min]	Component Name	Raw Amount	Area [uV*sec]	Height [uV]	There are many and a second and a second are a second as a second
1 2 3 4	1.54 1.63 1.80 2.09	BFB Diesel	0.001 0.001 0.678 14.174	863 1182 10721 675316	186 255 3572 273	JUN - 6 2003
5 6	13.00 18.13	Motor Oil	84.672	3371417 991448	14232	MFG, Inc.
			100.518	5050946	21621	

MFG, Inc. CHAIN-OF-CUSTODY RECORD AND REQUEST FOR ANALYSIS

TArcata Office 1165 G Street, Suite E Arcata, CA 95521-5817 Tel: (707) 826-8430 Fax: (707) 826-8437

☐ Boulder Office 4900 Pearl East Circle Suite 300W Boulder, CO 80301-6118 Tel: (303) 447-1823 Fax: (303) 447-1836 ☐ Irvine Office 17770 Cartwright Road Suite 500 Irvine, CA 92614-5850 Tel: (949) 253-2951 Fax: (949) 253-2954 Osburn Office
P.O. Box 30
Wallace, ID
83873-0030
Tel: (208) 556-6811
Fax: (208) 556-7271

☐ San Francisco Office

180 Howard Street, Suite 200

San Francisco, CA 94105-1617

Phone (415) 495-7110 – Fax (415) 495-7107

☐ Seattle Office 19203 36th Avenue W. Suite 101 Lynnwood, WA 98036-5707 Tel: (425) 921-4000 Fax: (425) 921-4040

COC No. 43288

PROJECT NO: 030229 PROJECT NAME: SPI Arcata Sawnill PAGE: 1 OF: 2												: 2												
SAMPLER (Signature): PROJECT MANAGER: Ed Conti DA										DATE: 4803														
SAMPLER (Signature): PROJECT MANAGER: Ed Conti DATE: 4803 METHOD OF SHIPMENT: CULTICAL CARRIER/WAYBILL NO: DESTINATION: Alpha Analytica (
F.																								
SAMPLES													0 -	L				ANA	IS R	REQUEST				
	Sample			Preservation				Containers			کار وار			nts/Method			Handling			Remarks				
Field Sample				Matrix*	HCI	HNO ₃	H ₂ SO ₄	COLD	FILTRATION*	VOLUME (ml/oz)	TYPE*	Э.	TEPH Diesey BOISM, SIlic	011/6 rease	505/203 505/60B	두굄	30	HOLD	RUSH	STANDARD				
Identific	DATE	TIME	2		主	ヹ	8	匝	<u> </u>	F	ž	F 88	őz	122	57	⊏ଜ	エ	В	<u> </u>					
PD-1 (05)		4/8/03		SO				\vee	<u> </u>	4-02	6		V	V		V					A30	7A5	<u> 64-</u>	<u> </u>
PD-1 (2-2.5	<u>s)</u>	7/8/03		છ				V		4-02	6	١	V	V		V								3
PP-2(0-,5)		4/8/03		50				v		4-02	6		1	V		v								3
PD-2(2-2.5	5)	7/8/03		50				V		4-6Z	6	١	\checkmark	v		V								4
WO-1		4/8/03		Ag				V		IL	G	ہ	V	\checkmark							-5			5
WO-1		7/2/03		Ag	V			V		Youl	G	6			$\sqrt{}$								(φ
									T															
							$\neg \dagger$		1															
The state of the s								TOTAL NUMBER OF CONTAINERS LAE						LABORATORY COMMENTS/CONDITION OF SAMPLES Cooler Temp:										
RELINQUISHED BY:										REC						CIEV	VED BY:							
SIGNATURE	COMPANY			\exists	DATE			TIME			SJG	SIGNATURE)				PRI	NTE	D NA	AME COMPANY					
	MFG					4/9/03			10:15			mulafor				John TA								
Smaryor John Taylor		, ,			L	419103			1530			Shon St			Exiks			C	15	fecit	5 1	Alòt	A	
1111						1,1,1,2						441								,		LABORA	TORY	
KEY Matrix: AQ - aqueous NA - nonaqueous SQ - soil SL - sludge P - petroleum A - air OT - other Containers: P - plastic G - glass T - tellon B - brass OT - other Filtration: F - filtered U - unfiltered DISTRIBUTION: PINK: Field Copy YELLOW: Laboratory Copy WHITE: Return to Originator																								