CONDITIONAL WAIVER OF WASTE DISCHARGE REQUIREMENTS FOR DISCHARGES FROM IRRIGATED AGRICULTURAL LANDS ORDER NO. R4-2016 – 0143

APPENDIX 5

WATER QUALITY BENCHMARKS BASED UPON TMDL LOAD ALLOCATIONS

Interim Sed	iment LAs	(ng/g)					
				atershed			
Constituent	Mugu Lagoon ¹	Calleguas Creek	Revolon Slough	Arroyo Las Posas	Arroyo Simi	Conejo Creek	
Chlordane	25.0	17.0	48.0	3.3	3.3	3.4	March 24
4,4-DDD	69.0	66.0	400.0	290.0	14.0	5.3	2006
4,4- DDE	300.0	470.0	1,600.0	950.0	170.0	20.0	2000
4,4-DDT	39.0	110.0	690.0	670.0	25.0	2.0	
Dieldrin	19.0	3.0	5.7	1.1	1.1	3.0	
	100.0	3,800.0	7,600.0	25,700.0	25,700.0	3,800.0	
PCBs	180.0	-,					
Toxaphene	22,900.0	260.0	790.0 Duck Pond/#	230.0	230.0 n/Mugu/Oxnar	260.0 d Drain #2.	
Toxaphene he Mugu Lago	22,900.0	260.0 shed includes	Duck Pond/#	230.0			
Final Sedime	22,900.0 oon subwater o nt LAs (ng	260.0 shed includes	Duck Pond/A	230.0 Agricultural Drain	n/Mugu/Oxnaro	d Drain #2.]
Toxaphene he Mugu Lago Final Sedime	22,900.0 oon subwater ent LAs (ng Mugu	260.0 shed includes /g) Calleguas	Duck Pond/A	230.0 Agricultural Drain vatershed Arroyo Las	n/Mugu/Oxnaro	d Drain #2. Conejo	
Toxaphene he Mugu Lago Final Sedime	22,900.0 oon subwater ent LAs (ng Mugu Lagoon ¹	260.0 rshed includes /g) Calleguas Creek	S Duck Pond/A Subw Revolon Slough	Agricultural Drain Agricultural Drain Vatershed Arroyo Las Posas	n/Mugu/Oxnaro Arroyo Simi	d Drain #2. Conejo Creek	March 24
Toxaphene he Mugu Lago Final Sedime Constituent	22,900.0 oon subwater ent LAs (ng Mugu Lagoon ¹ 3.3	260.0 rshed includes /g) Calleguas Creek 3.3	Subw Revolon Slough 0.9	Agricultural Drain Agricultural Drain Vatershed Arroyo Las Posas 3.3	Mugu/Oxnaro Arroyo Simi 3.3	d Drain #2. Conejo Creek 3.3	
Toxaphene he Mugu Lago Final Sedime Constituent hlordane ,4-DDD	22,900.0 oon subwater ent LAs (ng Mugu Lagoon ¹	260.0 rshed includes /g) Calleguas Creek	S Duck Pond/A Subw Revolon Slough	Agricultural Drain Agricultural Drain Vatershed Arroyo Las Posas	n/Mugu/Oxnaro Arroyo Simi	d Drain #2. Conejo Creek	March 24 2026
Toxaphene Toxaph	22,900.0 Forn subwater Ent LAs (ng Mugu Lagoon ¹ 3.3 2.0	260.0 shed includes /g) Calleguas Creek 3.3 2.0	Duck Pond/A Subw Revolon Slough 0.9 2.0	Agricultural Drain Agricultural Drain Arroyo Las Posas 3.3 2.0	Mugu/Oxnaro Arroyo Simi 3.3 2.0	d Drain #2. Conejo Creek 3.3 2.0	
Toxaphene Toxaph	22,900.0 oon subwater ent LAs (ng <u>Mugu</u> <u>Lagoon¹ 3.3 2.0 2.2</u>	260.0 Tshed includes /g) Calleguas Creek 3.3 2.0 1.4	S Duck Pond/A Subw Revolon Slough 0.9 2.0 1.4	Agricultural Drain Agricultural Drain Arroyo Las Posas 3.3 2.0 1.4	Arroyo Simi 3.3 2.0 1.4	d Drain #2. Conejo Creek 3.3 2.0 1.4	March 24. 2026
Toxaphene he Mugu Lago	22,900.0 oon subwater ent LAs (ng <u>Mugu</u> Lagoon ¹ 3.3 2.0 2.2 0.3	260.0 Tshed includes /g) Calleguas Creek 3.3 2.0 1.4 0.3	S Duck Pond/A Subw Revolon Slough 0.9 2.0 1.4 0.3	Agricultural Drain Agricultural Drain Arroyo Las Posas 3.3 2.0 1.4 0.3	Arroyo Simi 3.3 2.0 1.4 0.3	d Drain #2. Conejo Creek 3.3 2.0 1.4 0.3	

		l and Mugu Lago d Diazinon TMDL		Compliance Date
Interim Chlorpy	rifos Load Allocat	tions (ug/L) apply	watershed-wide	
	Acute (1hour) 2.57	Chronic (4 day) 0.810		
Interim Diazin	on Load Allocatic	ons (ug/L) apply w	atershed-wide	March 24, 2006
	Acute (1hour)	Chronic (4 day)		Warch 24, 2000
	0.278	0.138		
A load allocation of	1.0 TUc applies	watershed-wide.		March 24, 2006
Fina	al Chlorpyrifos Lo	bad Allocations (ug	g/L)	
	Subwatershed	Acute & Chron	ic	
A	rroyo Simi	0.0	14	
	as Posas	0.02		March 24, 2016
	onejo	0.01		Waltin 24, 2010
	alleguas	0.013		
	evolon ugu Lagoon	0.013		
	ugu Lagoon	0.0	14	
Final Diazino	on Load Allocation	ns (ug/L) apply wa	tershed-wide	
		a Chronic 0.1		

Calleguas Cree	ek Watershed	Boron, Chlori TMDL	de, Sulfate an	d TDS (Salts)	Compliance Date	
	Interim Dry	Weather Load	Allocations			
	Constituent	Interim L	.imit (mg/L)		Dec. 2, 2008	
Bor	on Total		1.8			
Chl	oride Total		230			
Sul	ate Total	1	962			
TD	S Total	3	995			
averages at the to measured as an Dry weather LAs there was no me The 86 th percenti	Interim dry weather load allocations are measured as in-stream monthly averages at the based of each subwatershed, except for chloride which is measured as an instantaneous maximum. Dry weather LAs apply when flow rates are below the 86 th percentile and there was no measurable precipitation in the previous 24 hour period. The 86 th percentile flow rate shall be calculated based on flow in the hydrologic year (Oct. 1 st – Sept. 30 th) that the sample was collected.					
	Final Dry V	Veather Load A	llocations			
Subwatershed	Boron Allocation (lb/day)	Chloride Allocation (lb/day)	TDS Allocation (Ib/day)	Sulfate Allocation (Ib/day)		
Simi	641	3,631	1,068	4	Dec. 23, 2023	
Las Posas	2,109	11,952	3,515	N/A		
Conejo	743	4,212	1,239	N/A		
Camarillo	59	336	99	N/A		
Pleasant Valley	305	1,730	509	N/A		
Revolon	7,238	41,015	12,063	48		
Dry weather LAs subwatershed wh no measurable p						

Callegu	Calleguas Creek Watershed and Mugu Lagoon Metals and Selenium TMDL						
Interim L	terim Load Allocations for total recoverable metals						
		Ca	lleguas and Co	nejo Creek		March 26, 2007	
	Constituent	Dry Daily Maximum (ug/L)	Dry Monthly Average (ug/L)	Wet Daily Maximum (ug/L)			
	Copper	24	19	1390			
	Nickel	43	42				
	Selenium						
F				-			
			Revolon Slou	-			
	Constituent	Dry Daily Maximum (ug/L)	Dry Monthly Average (ug/L)	Wet Daily Maximum (ug/L)			
Ē	Copper	24	19	1390			
F	Nickel	43	42				
F	Selenium	6.7 (c)	6 (c)				
86 th perc days whe subwater The 86 th	Dry weather LAs apply to days when flows in the stream are less than the 36 th percentile flow rate for each subwatershed. Wet weather LAs apply to days when flows in the stream exceed the 86 th percentile flow rate for each subwatershed. Subwatershed. The 86 th percentile flow rate shall be calculated based on flow in the hydrologic year (Oct. 1 st – Sept. 30 th) that the sample was collected.						
Interim L	oad allocations	for Mercury	in Suspended	Sediment (lbs	/year)	March 26, 2007	
	Flow Rar million gallor	ige	alleguas Creek	Revolon Slough			
	0-15,000		3.9	2			
	15,000-25,00	0	12.6	4.8			
	Above 25,000		77.5	12.2			
	oad allocations a Ind Calleguas C		d in-stream at	the based of F	Revolon		

	tituent		(lbs/day) for (total recoverable m	letals
Cons Coppe Nickel	tituent		• •		ielais
Coppe			Calleguas Cre		
Coppe Nickel				eek	
Nickel	ər*		Avg. Flow	Elevated Flow	
		0.07 x	0.12 x	0.31 x	
		(WER – 0.03) 0.420	(WER – 0.02) 0.260	(WER – 0.05) 0.970	
001011			0.200		
site-specific WER	s are appro rdance with	ved by the Regiona the approved WER	l Board, TMDL lo s using the equa	ad allocations shall be tions set forth above.	
	Calleg	juas Creek	_		
	Flo	w Category	Flow Rate		
	Low		0 - 5		
	Averag		5 - 2		
	Elevat	ed	21 - 3	30	
			Revolon Slo		
Consti	ituent	Low Flow	Avg. Flow	Elevated Flow	
Coppe	r*	0.07 x	0.14 x	0.35 x (WER	March 26, 20
Nickel		(WER – 0.03) 0.390	(WER – 0.07 0.690) - 0.07) 1.600	,
Seleniu	Im				
		0.008	0.007	0.018	
	s are approridance with	ved by the Regiona the approved WER	l Board, TMDL lo	ad allocations shall be tions set forth above.	
	s are appror rdance with	ved by the Regiona	I Board, TMDL lo s using the equa	ad allocations shall be tions set forth above.	
	s are approvindence with Revolution Revoluti Revolution Revolution Revolution Revolutio	ved by the Regiona the approved WER on Slough w Category	l Board, TMDL lc s using the equa	ad allocations shall be tions set forth above. e (cfs) 0	
	s are approvidence with Revolution Flow Average	ved by the Regiona the approved WER on Slough w Category ge	I Board, TMDL lc s using the equa Flow Rate 0 - 1 10 - 1	ad allocations shall be tions set forth above. e (cfs) 0	
	s are approvindence with Revolution Revoluti Revolution Revolution Revolution Revolutio	ved by the Regiona the approved WER on Slough w Category ge	l Board, TMDL lc s using the equa	ad allocations shall be tions set forth above. e (cfs) 0	
et Weather F	Revolution Revolution Flow Low Average Elevate	ved by the Regiona the approved WER on Slough w Category ge ed d Allocations (I	l Board, TMDL lc s using the equa Flow Rate 0 - 1 10 - 1 17 - 2 bs/day) for te	ad allocations shall be tions set forth above. e (cfs) 0 17 22 otal recoverable me	etals
et Weather Fi	s are approvindance with Revolution Revoluti	ved by the Regiona the approved WER on Slough w Category ge ed d Allocations (I alleguas Creek	I Board, TMDL lc s using the equa Flow Rate 0 - 1 10 - 1 17 - 2 bs/day) for t	ad allocations shall be tions set forth above. e (cfs) 0 17 22 otal recoverable me Revolon Slough	
lemented in accor et Weather Fi	Revolution Revolution Flow Low Average Elevate inal Load (0.00017	ved by the Regiona the approved WER on Slough w Category ge ed d Allocations (I alleguas Creek x Q ² x 0.01 x Q – WER – 0.02	I Board, TMDL lc s using the equa Flow Rate 0 - 1 10 - 1 17 - 2 bs/day) for t 0.05) x (0.	ad allocations shall be tions set forth above. e (cfs) 0 17 22 otal recoverable me Revolon Slough 00123 x Q ² +0.0034 x Q WER	Q) x
plemented in accor	Revolution Revolution Flow Low Average Elevate inal Load (0.00017	ved by the Regiona the approved WER on Slough w Category ge ed d Allocations (I alleguas Creek x Q ² x 0.01 x Q –	I Board, TMDL lc s using the equa Flow Rate 0 - 1 10 - 1 17 - 2 bs/day) for t 0.05) x (0.	ad allocations shall be tions set forth above. e (cfs) 0 17 22 otal recoverable me <u>Revolon Slough</u> 00123 x Q ² +0.0034 x 0	Q) x

Callegua	Calleguas Creek Watershed and Mugu Lagoon Metals and Selenium TMDL					
Final Load	l allocations for Mercu	ary in Suspende	d Sediment (lbs/	year)		
		Calleguas Creek	Revolon Slough		March 26, 2022	
	Flow Range MGY	Agriculture	Agriculture			
	0-15,000	0.5	0.2			
	15,000-25,000	1.9	0.8			
	Above 25,000	11.2	2.2			

Calleguas Creek Nitrogen Compounds and Related Effects TMI	DL Compliance Date
Nitrate-N + Nitrite-N (mg/L)	July 16, 2010
9.0	

Revolon Slough and Beardsley Wash Trash TMDL	Compliance Date
LAs are zero trash. Dischargers may achieve compliance with the LAs by implementing a minimum frequency of assessment and collection/best management practice (MFAC/BMP) program. By March 6, 2010, agricultural dischargers must demonstrate full compliance and attainment of the zero trash target's requirement that trash is not accumulating in deleterious amounts between the required trash assessment and collection events.	March 6, 2010

ide LA (mg/L)	April 28, 2015
100	
'	

Santa Clara River Nite	rogen Compounds TMDL		Compliance Date
Reach	NH ₃ -N + NO ₂ -N + NO ₃ -N (mg-N/L)	1	
7	8.5		March 23, 2004
Mint Canyon Reach 1 Wheeler Canyon/Todd Barranca Brown Barranca/Long Canyon Other Santa Clara River Reaches	10		

Malibu Creek W	Compliance Date		
Season	Total Nitrogen (Ibs/day)	Total Phosphorus (Ibs/day)	
mer (April 15 – November 15)	3	0.2	
			March 21, 2003
Season			
Winter (November 16 – April 1	4) 8	3	
	Season mer (April 15 – November 15) Season	Season Total Nitrogen (Ibs/day) mer (April 15 – November 15) 3 Season Nitrogen (nitrate-N	Season(Ibs/day)(Ibs/day)mer (April 15 – November 15)30.2SeasonNitrogen (mg/L) (nitrate-N + nitrite-N)

Ventura River Estuary Trash TMDL	Compliance Date
LAs are zero trash. Dischargers may achieve compliance with the LAs by implementing a minimum frequency of assessment and collection/best management practice (MFAC/BMP) program. By March 6, 2010, agricultural dischargers must demonstrate full compliance and attainment of the zero trash target's requirement that trash is not accumulating in deleterious amounts between the required trash assessment and collection events.	March 6, 2010

	Compliance Date				
	Reach	Toxaphene Fish Tissue Target	Toxaphene Allocation for Concentration in Suspended Sediment		October 7, 2010
	Santa Clara River Estuary	6.1 (µg/kg)	0.1 (µg/kg)		
	irs of the compliance uating such that it ap				

Grath Lake PCBs, Pesticides and Sediment Toxicity TMDL				Compliance Date
Pollutant	Water Column Load Allocation (µg/L)	Load Allocation for Concentration in Suspended Sediment (µg/dry kg)		
Chlordane	0.00059	0.5		
Dieldrin	0.00014	0.02		June 30, 202
4,4'-DDT	0.00059	1		00110 00, 202
4,4'-DDE	0.00059	2.2		
4,4'-DDD	0.00084	2		
Total DDT		1.58		
Total PCBs	0.00017	22.7	1	

Constituents	Water Allocations, chronic (ug/L)	Sediment ^{1,2}	Alternate Sediment ^{1,3}	
Bifenthrin4	0.0006	-	-	
Chlordane, total	0.00059	0.5	3.3	
Chlorpyrifos ⁴	0.0056	-	-	
4,4'-DDT	0.00059	1	0.3	
4,4'-DDE	0.00059	2.2	2.2	October 6, 20
4,4'-DDD	0.00084	2	2	
Dieldrin	0.00014	0.02	4.3	
PCBs, total	0.00017	22.7	180	
Sediment Toxicity	-	No significant chronic sediment toxicity (See below and Section 3 for more details)	-	
Toxaphene	0.0002	0.1	360	
	sociated with suspended sed	· · · · · · · · · · · · · · · · · · ·		

allocation are achieved in Oxnard Drain 3. The alternate sediment allocation concentrations match the Mugu Lagoon TMDL allocations.

4: Bifenthrin and chlorpyrifos allocations included to address the sediment toxicity impairment.

Malibu Creek an Ade	Compliance Date			
Total Nitrogen (mg/L) Summer	Total Nitrogen (mg/L) Winter	Total Phosphorus (mg/L) Summer	Total Phosphorus (mg/L) Winter	March 26, 2012
0.65	1.00	0.10	0.10	

Ventura River Algae TMDL					Compliance Date
		re are expressed a lys per year as foll		ased on an	
	Reach	Total Nitrogen (Ib/day)	Total Phos (lb/da		
	All Reaches		16 0.12		
Wet weather	allocations are a		e-N + Nitrite-N (mg/L)		
	Estuary		*		
	Reach 1		*		June 28, 2019
	Reach 2		10		
	Cañada La	rga	10		
	Reach 3		5		
	San Antoni	o Creek	5		
	Reach 4		5		
	Reach 5		5	J	
		LAs, area-weight			if

	Compliance Date		
erim Allowable	exceedance days:		
Time Period	Santa Clara River Reaches 3, 5, 6, & 7	Santa Clara River Estuary	
Dry Weather	17 allowable exceedance days of single sample objectives	Not Applicable	January 31, 2012
Wet Weather	61 allowable exceedance days of single sample objectives	62 allowable exceedance days of single sample objectives	· · · · · · · · · · · · · · · · · · ·
Summer Dry Weather (April 1 – October 31)	Not Applicable	150 allowable exceedance days of single sample objectives	
Time Period	Santa Clara River Reaches 3, 5, 6, & 7	Santa Clara River Estuary	
Winter Dry Weather (November 1 – March 31)	Not Applicable	49 allowable exceedance days of single sample objectives	

aches 3, 5, 6, & 7 wable exceedance s of single sample objectives wable exceedances		
geometric mean objectives	Not Applicable	March 21, 202 dry weather
owable exceedance s of single sample objectives	25 allowable exceedance days of single sample objectives	March 21, 202 wet weather
wable exceedances geometric mean objectives	0 allowable exceedances of geometric mean objectives	
Not Applicable	10 allowable exceedance days of single sample objectives 0 allowable exceedances of geometric mean objectives	
Not Applicable	12 allowable exceedance days of single sample objectives 0 allowable exceedances of geometric mean objectives	
	s of single sample objectives wable exceedances geometric mean objectives Not Applicable Not Applicable exceedance days a	s of single sample 25 allowable exceedance days of single sample objectives vable exceedances 0 allowable exceedances of geometric mean objectives vot Applicable 10 allowable exceedance days of single sample objectives Not Applicable 10 allowable exceedances of geometric mean objectives Not Applicable 12 allowable exceedance days of single sample objectives Not Applicable 12 allowable exceedance days of single sample objectives 0 allowable exceedances of geometric mean objectives 12 allowable exceedance days of single sample objectives 0 allowable exceedance days of single sample objectives 12 allowable exceedance days of single sample objectives