CONDITIONAL WAIVER OF WASTE DISCHARGE REQUIREMENTS FOR DISCHARGES FROM IRRIGATED AGRICULTURAL LANDS ORDER NO. R4-2016 – XXXX

APPENDIX 5

WATER QUALITY BENCHMARKS BASED UPON TMDL LOAD ALLOCATIONS

Interim Sedi	iment LAs	(ng/g)					
			Subw	atershed			
Constituent	Mugu Lagoon ¹	Calleguas Creek	Revolon Slough	Arroyo Las Posas	Arroyo Simi	Conejo Creek	
Chlordane	25.0	17.0	48.0	3.3	3.3	3.4	March 24
4,4-DDD	69.0	66.0	400.0	290.0	14.0	5.3	2006
4,4- DDE	300.0	470.0	1,600.0	950.0	170.0	20.0	2000
4,4-DDT	39.0	110.0	690.0	670.0	25.0	2.0	
Dieldrin	19.0	3.0	5.7	1.1	1.1	3.0	
			7,600.0	25,700.0	25,700.0	3,800.0	
	180.0	3,800.0	7,000.0	20,100.0	20,100.0	0,000.0	
PCBs Toxaphene	180.0 22,900.0	260.0	790.0	Agricultural Drain	230.0	260.0	
PCBs Toxaphene The Mugu Lago	180.0 22,900.0	260.0 shed includes	790.0	230.0	230.0	260.0	1
PCBs Toxaphene The Mugu Lago Final Sedime	180.0 22,900.0 on subwater	260.0 rshed includes /g)	790.0 Duck Pond/A	230.0 Agricultural Drain	230.0 i/Mugu/Oxnard	260.0 d Drain #2.]
PCBs Toxaphene The Mugu Lago Final Sedime	180.0 22,900.0 on subwater ont LAs (ng Mugu	260.0 shed includes	790.0 Duck Pond/A Subw Revolon	230.0	230.0	260.0	
PCBs Toxaphene The Mugu Lago Final Sedime Constituent	180.0 22,900.0 on subwater	260.0 rshed includes /g) Calleguas	790.0 Duck Pond/A	230.0 Agricultural Drain vatershed Arroyo Las	230.0 n/Mugu/Oxnaro Arroyo Simi	260.0 d Drain #2. Conejo	March 24
PCBs Toxaphene The Mugu Lago Final Sedime Constituent	180.0 22,900.0 on subwater ont LAs (ng Mugu Lagoon ¹	260.0 rshed includes /g) Calleguas Creek	790.0 Duck Pond/A Subw Revolon Slough	Agricultural Drain Agricultural Drain Vatershed Arroyo Las Posas	230.0 n/Mugu/Oxnard	260.0 d Drain #2. Conejo Creek	March 24
PCBs Toxaphene The Mugu Lago Final Sedime Constituent Chlordane ,4-DDD	180.0 22,900.0 oon subwater ont LAs (ng Mugu Lagoon ¹ 3.3	260.0 rshed includes /g) Calleguas Creek 3.3	790.0 5 Duck Pond/A Subw Revolon Slough 0.9	Agricultural Drain Agricultural Drain Vatershed Arroyo Las Posas 3.3	230.0 n/Mugu/Oxnard Arroyo Simi 3.3	260.0 d Drain #2. Conejo Creek 3.3	March 24 2026
PCBs Toxaphene The Mugu Lago Final Sedime Constituent Chlordane ,4-DDD ,4-DDE	180.0 22,900.0 on subwater ont LAs (ng Mugu Lagoon ¹ 3.3 2.0	260.0 Tshed includes /g) Calleguas Creek 3.3 2.0	790.0 S Duck Pond/# Subw Revolon Slough 0.9 2.0	230.0 Agricultural Drain vatershed Arroyo Las Posas 3.3 2.0	230.0 //Mugu/Oxnard Arroyo Simi 3.3 2.0	260.0 d Drain #2. Conejo Creek 3.3 2.0	
PCBs Toxaphene The Mugu Lago Final Sedime Constituent Chlordane ,4-DDD ,4-DDE ,4-DDE	180.0 22,900.0 on subwater ont LAs (ng Mugu Lagoon ¹ 3.3 2.0 2.2	260.0 Tshed includes /g) Calleguas Creek 3.3 2.0 1.4	790.0 S Duck Pond/A Subw Revolon Slough 0.9 2.0 1.4	230.0 Agricultural Drain Arroyo Las Posas 3.3 2.0 1.4	230.0 //Mugu/Oxnard Arroyo Simi 3.3 2.0 1.4	260.0 d Drain #2. Conejo Creek 3.3 2.0 1.4	
PCBs Toxaphene The Mugu Lago Final Sedime Constituent Chlordane ,4-DDD ,4-DDE ,4-DDT Dieldrin	180.0 22,900.0 on subwater ont LAs (ng Mugu Lagoon ¹ 3.3 2.0 2.2 0.3 4.3 180.0	260.0 Tshed includes /g) Calleguas Creek 3.3 2.0 1.4 0.3 0.2 120.0	790.0 5 Duck Pond/A 8 Subw 8 Revolon 8 Slough 0.9 2.0 1.4 0.3 0.1 130.0	Agricultural Drain Agricultural Drain Arroyo Las Posas 3.3 2.0 1.4 0.3	230.0 h/Mugu/Oxnard Simi 3.3 2.0 1.4 0.3 0.2 120.0	260.0 d Drain #2. d Drain #2. Conejo Creek 3.3 2.0 1.4 0.3	
PCBs Toxaphene The Mugu Lago Final Sedime Constituent Chlordane ,4-DDD ,4-DDE ,4-DDT Dieldrin PCBs Toxaphene	180.0 22,900.0 on subwater ont LAs (ng Mugu Lagoon ¹ 3.3 2.0 2.2 0.3 4.3 180.0 360.0	260.0 Tshed includes /g) Calleguas Creek 3.3 2.0 1.4 0.3 0.2 120.0 0.6	790.0 5 Duck Pond/A 8 Duck Pond/A 8 Subw Revolon 8 Slough 0.9 2.0 1.4 0.3 0.1 130.0 1.0	Agricultural Drain Agricultural Drain Arroyo Las Posas 3.3 2.0 1.4 0.3 0.2	230.0 h/Mugu/Oxnard Simi 3.3 2.0 1.4 0.3 0.2 120.0 0.6	260.0 d Drain #2. d Drain #2. Conejo Creek 3.3 2.0 1.4 0.3 0.2 120.0 0.6	

Calleguas C	Compliance Date			
Interim Chlorpy	rifos Load Allocat	tions (ug/L) apply	watershed-wide	
	Acute (1hour) 2.57	Chronic (4 day) 0.810		
Interim Diazin	on Load Allocatic	ons (ug/L) apply w	atershed-wide	March 24, 2006
	Acute (1hour)	Chronic (4 day)		March 24, 2000
	0.278	0.138		
A load allocation of	1.0 TUc applies	watershed-wide.		March 24, 2006
Fin	al Chlorpyrifos Lo	oad Allocations (u	g/L)	
	Subwatershed	Acute & Chron	ic	
	rroyo Simi	0.01		
	as Posas	0.01		March 24, 2016
	onejo alleguas	0.01		
	evolon	0.013		
	ugu Lagoon	0.0		
	on Load Allocation	ns (ug/L) apply wa • Chronic •.1	itershed-wide	

Calleguas Cree	k Watershed	Boron, Chlori TMDL	de, Sulfate an	d TDS (Salts)	Compliance Date		
	Interim Dry	Weather Load	Allocations				
C	onstituent	Interim L	.imit (mg/L)		Dec. 2, 2008		
Bord	on Total		1.8				
Chlo	oride Total		230				
	ate Total		962				
TDS	S Total	3	995				
Interim dry weath averages at the b measured as an i Dry weather LAs there was no mea The 86 th percentil hydrologic year (0							
	(lb/day)	(lb/day)	(lb/day)	(lb/day)			
Simi	641	3,631	1,068	4	Dec. 23, 2023		
Las Posas	2,109	11,952	3,515	N/A			
Conejo	743	4,212	1,239	N/A			
Camarillo	59	336	99	N/A			
Pleasant Valley	305	1,730	509	N/A			
Revolon	7,238	41,015	12,063	48			
subwatershed wh no measurable pr	Revolon7,23841,01512,06348Dry weather LAs apply in the receiving water at the base of each subwatershed when flow rates are below the 86 th percentile and there was no measurable precipitation in the previous 24 hour period.48						

Callegu	Calleguas Creek Watershed and Mugu Lagoon Metals and Selenium TMDL						
Interim L	nterim Load Allocations for total recoverable metals						
		(Calleguas and	Conejo Creek		March 26, 2007	
	Constituent	Dry Dail Maximur (ug/L)					
	Copper	24	19	1390			
	Nickel	43	42				
	Selenium						
-							
			Revolon SI				
	Constituent	Dry Dail Maximui (ug/L)					
	Copper	24	19	1390			
	Nickel	43	42				
	Selenium	6.7 (c)	6 (c)				
86 th perce days whe subwater The 86 th	Dry weather LAs apply to days when flows in the stream are less than the 36 th percentile flow rate for each subwatershed. Wet weather LAs apply to days when flows in the stream exceed the 86 th percentile flow rate for each subwatershed. The 86 th percentile flow rate shall be calculated based on flow in the hydrologic year (Oct. 1 st – Sept. 30 th) that the sample was collected.						
Interim L	oad allocations				os/year)	March 26, 2007	
	Flow Rar million gallor	ige	Calleguas Creek	Revolon Slough	-		
	0-15,000		3.9	2	1		
	15,000-25,00	0	12.6	4.8	1		
	Above 25,00		77.5	12.2	1		
	ad allocations and Calleguas C		red in-stream	at the based of	Revolon		

Callegu	uas Cree	ek Wat	ershed and N TM	lugu La DL	goon N	letals a	and Sel	enium	Compliance Date
Drv Wea	ther - Fir	nalloa	ad allocations ((lbs/dav)	for tota	l recov	erable	metals	
2.9				(100, 00)			010010	inotalo	
			(Callegua	s Creek				
	Constit	uent	Low Flow	Avg. F	low	Eleva Flo ^r			
	Copper*	•	0.07 x	0.12		0.31			
	Nickel		(WER – 0.03) 0.420	<u>(WER –</u> 0.26	,	<u>(WER –</u> 0.97	,		
	Seleniur	n					Ŭ		
		ance with	ved by the Regiona the approved WER						
			juas Creek						
	ŀ		w Category	Flow	Rate (c	ts)			
			no		<u>0 - 5</u> 5 - 21				
	-	Avera			<u>3 - 2 1</u> 21 - 30				
	L	Lievat	cu		21 00				
Г				Revolon	Slough				
	Constitu	ient	Low Flow	Avg.		Eleva			
-		ioni				Flo			
	Copper*		0.07 x (WER – 0.03)	0.14 - WER)		0.35 x - 0.	(WER 07)		March 26, 2022
	Nickel		0.390	0.6		1.6			
	Selenium	า	0.008	0.0	07	0.0	18		
		ance with Revol	ved by the Regiona the approved WER on Slough	s using the	equations	set forth			
			w Category		Rate (c	fs)			
	-	Low	~~		<u>0 - 10</u> 10 - 17				
	_	Averag Elevat			17 - 22				
Vet Wea	ather Fina		d Allocations (I			l recove	erable r	netals	
Constit	uent	С	alleguas Creek	(Revolon			
Copper	* (0		x Q ² x 0.01 x Q – WER – 0.02	,	(0.001	23 x Q ² - WE		x Q) x	
Nickel		0.01	$4 \times Q^2 + 0.82 \times Q^2$	Q		27 x Q ²			
Seleniu	m				0	.1 x Q ²	+1.8 x C	2	
		ance with	ved by the Regiona the approved WER						

Callegua	Calleguas Creek Watershed and Mugu Lagoon Metals and Selenium TMDL						
Final Load	Final Load allocations for Mercury in Suspended Sediment (lbs/year)						
		Calleguas Creek	Revolon Slough		March 26, 2022		
	Flow Range MGY	Agriculture	Agriculture				
	0-15,000	0.5	0.2				
	15,000-25,000	1.9	0.8				
	Above 25,000	11.2	2.2				

Calleguas Creek Nitrogen Compounds and Related Ef	fects TMDL Compliance Date
Nitrate-N + Nitrite-N (mg/L)	July 16, 2010
9.0	

Revolon Slough and Beardsley Wash Trash TMDL	Compliance Date
LAs are zero trash. Dischargers may achieve compliance with the LAs by implementing a minimum frequency of assessment and collection/best management practice (MFAC/BMP) program. By March 6, 2010, agricultural dischargers must demonstrate full compliance and attainment of the zero trash target's requirement that trash is not accumulating in deleterious amounts between the required trash assessment and collection events.	March 6, 2010

ide LA (mg/L)	April 28, 2015
100	
'	

Santa Clara River Nit	rogen Compounds TMDL		Compliance Date
Reach	NH ₃ -N + NO ₂ -N + NO ₃ -N (mg-N/L)	1	
7	8.5		March 23, 2004
Mint Canyon Reach 1 Wheeler Canyon/Todd Barranca Brown Barranca/Long Canyon Other Santa Clara River Reaches	10		

Malibu Creek W	Compliance Date		
Season	Total Nitrogen (Ibs/day)	Total Phosphorus (Ibs/day)	
mer (April 15 – November 15)	3	0.2	
			March 21, 2003
Season			
Winter (November 16 – April 1	4) 8	3	
	Season mer (April 15 – November 15) Season	Season Total Nitrogen (Ibs/day) mer (April 15 – November 15) 3 Season Nitrogen (nitrate-N	Season(Ibs/day)(Ibs/day)mer (April 15 – November 15)30.2SeasonNitrogen (mg/L) (nitrate-N + nitrite-N)

Ventura River Estuary Trash TMDL	Compliance Date
LAs are zero trash. Dischargers may achieve compliance with the LAs by implementing a minimum frequency of assessment and collection/best management practice (MFAC/BMP) program. By March 6, 2010, agricultural dischargers must demonstrate full compliance and attainment of the zero trash target's requirement that trash is not accumulating in deleterious amounts between the required trash assessment and collection events.	March 6, 2010

The Santa Clara I	River Estuary To	exaphene TMDL	Compliance Date
Reach	Toxaphene Fish Tissue Target	Toxaphene Allocation for Concentration in Suspended Sediment	October 7, 2010
Santa Clara River Estuary	6.1 (µg/kg)	0.1 (µg/kg)	
irs of the compliance uating such that it ap			

McGrath Lake P	IcGrath Lake PCBs, Pesticides and Sediment Toxicity TMDL				
Pollutant	Water Column Load Allocation (µg/L)	Load Allocation for Concentration in Suspended Sediment (µg/dry kg)			
Chlordane	0.00059	0.5	1		
Dieldrin	0.00014	0.02	7	June 30, 2021	
4,4'-DDT	0.00059	1]		
4,4'-DDE	0.00059	2.2	7		
4,4'-DDD	0.00084	2]		
Total DDT		1.58]		
Total PCBs	0.000107	22.7			

Constituents	Water Allocations, chronic (ug/L)	Sediment ^{1,2}	Alternate Sediment ^{1,3}	
Bifenthrin4	0.0006	-	-	
Chlordane, total	0.00059	0.5	3.3	
Chlorpyrifos ⁴	0.0056	-	-	
4,4'-DDT	0.00059	1	0.3	
4,4'-DDE	0.00059	2.2	2.2	October 6, 20
4,4'-DDD	0.00084	2	2	
Dieldrin	0.00014	0.02	4.3	
PCBs, total	0.00017	22.7	180	
Sediment Toxicity	-	No significant chronic sediment toxicity (See below and Section 3 for more details)	-	
Toxaphene	0.0002	0.1	360	
	sociated with suspended sed	· · · · · · · · · · · · · · · · · · ·		

allocation are achieved in Oxnard Drain 3. The alternate sediment allocation concentrations match the Mugu Lagoon TMDL allocations.

4: Bifenthrin and chlorpyrifos allocations included to address the sediment toxicity impairment.

Mal		d Lagoon TMDLs t dress Benthic Cor			Compliance Date
	otal Nitrogen g/L) Summer	Total Nitrogen (mg/L) Winter	Total Phosphorus (mg/L) Summer	Total Phosphorus (mg/L) Winter	March 26, 2012
	0.65	1.00	0.10	0.10	

	Ve	ntura River Algae	ſMDL		Compliance Date
•	•	re are expressed as tys per year as follo	•	ased on an	
	Reach	Total Nitrogen (Ib/day)	Total Phos (Ib/da	-	
	All Reaches	16	0.12		
Wet-weathe	er allocations are a	Nitrate-	N + Nitrite-N mg/L)		
	Estuary		*		
	Reach 1		*		June 28, 2019
	Reach 2		10		
	Cañada La	rga	10		
	Reach 3		5		
	San Antoni	o Creek	5		
	Reach 4		5		
	Reach 5		5		
		f LAs, area-weighte ay/acre TN and 6.3			if

	Santa Clara River Ba	cteria TMDL	Compliance Date
erim Allowable	exceedance days:		
Time Period	Santa Clara River Reaches 3, 5, 6, & 7	Santa Clara River Estuary	
Dry Weather	17 allowable exceedance days of single sample objectives	Not Applicable	January 31, 2012
Wet Weather	61 allowable exceedance days of single sample objectives	62 allowable exceedance days of single sample objectives	
Summer Dry Weather (April 1 – October 31)	Not Applicable	150 allowable exceedance days of single sample objectives	
Time Period	Santa Clara River Reaches 3, 5, 6, & 7	Santa Clara River Estuary	
Winter Dry Weather (November 1 – March 31)	Not Applicable	49 allowable exceedance days of single sample objectives	

Ce Not Applicable Ce 25 allowable exceedance days of single sample objectives	March 21, 202 dry weather
25 allowable exceedance days of	
single sample objectives	March 21, 202 wet weather
es 0 allowable exceedances of geometric mean objectives	
10 allowable exceedance days of single sample objectives 0 allowable exceedances of geometric mean objectives	
12 allowable exceedance days of single sample objectives 0 allowable exceedances of geometric mean objectives	
,	0 allowable exceedances of geometric mean objectives 10 allowable exceedance days of single sample objectives 0 allowable exceedances of geometric mean objectives 12 allowable exceedance days of single sample objectives 0 allowable exceedances of geometric mean objectives 12 allowable exceedance days of single sample objectives 0 allowable exceedance days of single sample objectives