SBPAT: MODELING OPTIONS IN SUPPORT OF REASONABLE ASSURANCE ANALYSES (RAA) COMPLIANT WITH R4-2012-0175 (LOS ANGELES MS4 PERMIT)

September 17, 2013 (Presented at the request of the City of Los Angeles)

DISCLAIMER

This presentation is provided for informational purposes, and does not advocate or promote a specific approach to conducting Reasonable Assurance Analyses (RAAs). No warranty is implied or expressed. Geosyntec shall not be held responsible for any unauthorized use or redistribution. Note that the information presented herein is subject to change.

AGENDA

- Introduction to SBPAT for RAA
- Input types and inputting processes
- Target loading estimates/other implicit assumptions
- Format for information sharing, presentation, and use for decision support
- Quantified results
- Use of SBPAT results
- Target load reduction discussion
- Examples
- Potential Integration of multiple models

(ENHANCED) WATERSHED MANAGEMENT PROGRAM

PERMIT PROVISION C.5.B.IV(5)

(5) Permittees shall conduct a Reasonable Assurance Analysis for each water body-pollutant combination addressed by the WatershedManagement Program, A Reasonable Assurance Analysis (RAA) shall be quantitative and performed using a peer-reviewed model in the public domain. Models to be considered for the RAA, without exclusion, are the Watershed Management Modeling System (WMMS), Hydrologic Simulation Program-FORTRAN (HSPF), and the Structural BMP Prioritization and Analysis Tool (SBPAT). The RAA shall commence with assembly of all available, relevant subwatershed data collected within the last 10 years, including land use and pollutant loading data, establishment of quality assurance/quality control (QA/QC) criteria, QA/QC checks of the data, and identification of the data set meeting the criteria for use in the analysis. Data on performance of watershed control measures needed as model input shall be drawn only from peer-reviewed sources. These data shall be statistically analyzed to determine the best estimate of performance and the <u>confidence limits</u> on that estimate for the pollutants to be evaluated. The objective of the RAA shall be to demonstrate the ability of Watershed Management Programs and EWMPs to ensure that Permittees' MS4 discharges achieve applicable water quality based effluent limitations and do not cause or contribute to exceedances of receiving water limitations.

STRUCTURAL BMP PRIORITIZATION AND ANALYSIS TOOL (SBPAT)

- SBPAT is:
 - Public domain, "open source" GIS-based water quality analysis tool
- Two major components:
 - Selection and Siting of BMPs
 - user-defined priorities
 - multiple pollutants
 - Quantification of pollutant reduction
 - Establishment of target load reductions (TLR)
 - Land use storm event pollutant concentrations
 - EPA-SWMM
 - USEPA/ASCE International BMP Database
 - Site and watershed-specific data
 - Monte Carlo approach

www.sbpat.net

Original funding by agencies, SWRCB and RWQCB

1. IDENTIFY PRIORITY AREAS FOR BMP IMPLEMENTATION

Permit Requirement

Based On

- Defined catchment areas
- Pollutant loading from catchments
- Pollutant priorities
 - severity and cause of impairments of receiving waters
 - TMDLs/303(d) listings
 - Stakeholder input

Result

 Catchment Priority Index (CPI) built from multiple pollutant loading model analyses

PRIORITIZATION DATA

©Geosyntec Consultants 2013

*Updated through efforts in San Diego and Orange County **TMDL = Category 1; 303(d) = Category 2; etc. 9

Regularly Updated with New Data*

2. IDENTIFY OPPORTUNITIES

- BMP Types (Regional, Distributed, Institutional)
- Opportunity Screening Process
 - Parcels, Roadways, Storm Drains
 - BMP Opportunity Maps
 - Available Space
 - Ownership
 - Slopes, Liquefaction Zones
 - Environmental Priority
 - Link Priority to Opportunity

Stakeholder Driven Inputs (Supports Opportunity Development)

REGIONAL BMPS

Different Infrastructure/Retrofit Conditions than Distributed BMPs Multiple Types of Regional BMPs (such as Wetlands) Analyzed

4. EVALUATE BMP EFFECTIVENESS FOR REASONABLE ASSURANCE ANALYSIS

BMP DATABASE STATISTICS (2012 UPDATE)

STORMWATER MODELING ELEMENTS

- EPA SWMM4.4h (modified) accounts for:
 - Continuous hydrologic response and hydrologic performance of BMPs
 - Antecedent moisture conditions
 - Transient storage conditions
- Monte Carlo event simulation accounts for:
 - Tributary area properties
 - Interdependence of selected distributed/regional BMP types
 - Antecedent conditions
 - BMP volume, treatment rates, volume reduction processes and transient storage conditions
 - Observed variability in runoff quality
 - Observed variability in BMP effluent quality

WHAT IS MONTE CARLO?

HOW TO USE SBPAT OUTPUT

- Establish target load reductions
- Build menu of structural BMPs
 - Performance, costs, uncertainties quantified
 - Provide transparent understanding of role" of each menu item in phased compliance strategy
- Demonstrate target load reductions have been met (event, annual, and long term basis)
 - Describe variability and associated uncertainty

EXAMPLE SELECTED STUDY AREA

EXAMPLE CATCHMENT LAND USES

Land Use Group	Acreage
Commercial	55.4
Education	20.9
Industrial	103.2
MF Residential	39.4
Transportation	16.1
Vacant/Open Space	2.7
Total	237.6

EXAMPLE DISTRIBUTED BMP ASSIGNMENTS

			Perm.		Media					
Land Use Group	Cisterns	Bioretention	Paveme	nt	Filters		Defau	lt, but can		
Commercial	0%	0%	0% 20%		20%		20%		be mo	odified for
Education	20%	30%	0%		0%		site-specific			
Industrial	0%	0%	30%	6 50%			constraints			
MF Residential	30%	20%	0%		0%		0011	Strumts		
Transportation	0%	0%	0%		80%					
	•									
					creage		Default			
Distributed BMP					reated	De	esign Size			
Cisterns					10.8		0.75 in			
Bioretention					10.0		0.75 in			
Permeable Pavement					38.6	3	8.6 acres			
Media Filters					69.1	().2 in/hr			
Total Impervious Area Treated By Distributed BMPs				-	118.1					
% of Total Impervious Area in Study Area					58%					

EXAMPLE REGIONAL BMP* SIZING

- Infiltration basin
- Total study area properties:
 - 7 catchments,
 - 238 acres,

Total Runoff from

Study Area (includes effect of distributed BMPs

if applied)

• 85% impervious

Diversion Structure Online or offline?

If offline: Diversion Q is

specified

Total Runoff

 Example design storm sizing approach:

- 0.75-inch storm runoff
- 7.9 ac-ft
- 4 ft storage depth @ 1.2 in/hr design infiltration rate = 40 hour drawdown

<u>Underlying Infiltation Rate</u> user-specified or adjusted from study area average, computed per area computed in stage-area relationships 85th Percentile to meet regional proj. def'n.*

Flexible inputs to analyze surface or sub-surface infiltration system

* Could include functionally regional projects that do not meet regulatory definition at time of construction

nfiltration Basin

Bypass Flow

Overflow Structure

Depth above bottom

EXAMPLE SWMM CONTINUOUS SIMULATION AND STORM EVENT TRACKING

- Tracks inflow, treated discharge, bypass, evaporation and infiltration at each 10 minute time step
- Discretizes runoff events by 6 hour minimum interevent time in rainfall record
- Tracks volume through BMP; summarizes by storm event
- Produces table of BMP hydrologic performance by storm event

		Storm Event Volumes, cu-ft						
	Event No.	Inflow	Infiltration	Evaporation	Bypass	Outflow	% Capture	% Lost
Input to	486	48,600	16,300	136	0	34,000	100	33.5
Monto Carlo	487	185,000	28,500	237	0	157,000	100	15.4
	488	34,700	15,400	129	0	19,200	100	44.3
WQ Analysis	489	54,600	17,900	239	0	36,500	100	32.8
	490	774,000	59,500	793	52,700	663,000	93.2	7.7
©Geosyntec Consultants 2013	491	444,000	42,600	568	0	399,000	100	9.6

EXAMPLE DETAILED MONTE CARLO RESULTS (EVENT TIME STEP)

EXAMPLE MODEL OUTPUT – ANNUAL AVERAGES

Average Annual Volume and Load Summary for Entire Study						
Area						
		Avera	ge Annual I Volumes	Loads and s	% R	emoved
Pollutant	Units	Pre-BMP	w/ Dist. BMPs	w/ Dist. + Reg. BMPs	M Dist. BMPs	w/ Dist. + Reg. BMP
Total Runoff Volume	ac-ft	220	172	172	22%	
DCu	lbs	8.8	6.9	6.8	22%	23%
DP	lbs	170	125	118	27%	30%
DZn	lbs	163	73	63	55%	62%
FC	10^12MPN	52.8	35.4	24.3	33%	54%
NH3	lbs	435	276	190	37%	56%
NO3	lbs	500	384	378	23%	25%
TCu	lbs	18.9	10.7	8.1	43%	57%
тки	lbs	1645	1257	1194	24%	27%
TPb	lbs	7.63	4.18	3.54	45%	54%
ТР	lbs	235	140	98	41%	58%
TSS	Tons	42	19	12	54%	71%
TZn	lbs	218	101	66	54%	70%

Compare to Target Load Reductions to Establish RAA

EXAMPLE MODEL OUTPUT - PLANNING LEVEL COST ESTIMATES*

BMP Capital, Maintenance and Land Costs								
	Capital Costs (\$) Maintenance Costs (\$/yr)			Land Cost (\$)				
BMPs	Low	High	Low	High	Low	High		
Dry Detention Basin	586,874	981,207	3,036	5,058	3,718,940	4,648,676		
Perm. Pavement	3,150,968	5,251,617	5,253	9,454	0	0		
Media Filters	781,309	1,296,637	108,053	181,196	0	0		
Cisterns	100,317	167,556	1,154	1,898	0	0		
Bioretention	125,741	208,466	2,480	4,136	1,699,490	2,124,363		

*Includes Retrofit Factor

EXAMPLE PHASED IMPLEMENTATION APPROACH

Demonstration that selected control measures have reasonable assurance to meet interim and final WQBELs and RWL milestones.

TARGET LOAD REDUCTION DISCUSSION (BACTERIA)

Note: The following method assumes utilization of SBPAT to establish the target load reductions; other methods include utilizing monitoring data to establish ultimate objectives.

SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT (BACTERIA)

1) Determine Comp	oliance Metric		•	
17 Annual Exceedance Days (AED)	2) Calculate Correspond Pick target year = assume "average" is reasonable	ling Target Load Reduc 3) Analyze Proposed I	ction (TLR) BMPs	
FIB concentration criteria	Estimate FIB Loads all events: Total and MS4 Estimate MS4 load reduction needed so that small storm days are compliant with TMDL Numeric Targets Conduct storm-by-storm analysis Determine load reduction to achieve AED	Calculate total load reduction range Evaluate BMP performance Remove overlapping benefits Determine percentage of total BMP load reduction that is considered effective for AED compliance	 4) Compare Effective Load Reduction to TLR Calculate total load reduction that is considered effective for bringing smaller storms into compliance Compare this effective load reduction to TLR developed in Step 2 	

SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT

SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT

SBPAT-BASED METHOD FOR BMP QUANTITATIVE ASSESSMENT

1) Determine Complia	nce Metric 2) Calculate Corresponding Target	Load Reduction (TLR)
CALCULATE TOTAL I FROM E	LOAD REDUCTION BMPS	ze Proposed BMPs 4) Compare Effective Load Reduction to TLR
 SBPAT Structural BMPs Regional Distributed Institutional 	Non- Structural BMPs • Street Cleaning • LID Ordinances • Incentive Programs • True Source Control	 Total BMP Load Reductions: Exclude Non-MS4 Loads Typical Year Central Tendencies Range of Outcomes Consider Natural Sources

SAMPLE RESULTS DEMONSTRATING REASONABLE ASSURANCE

EXAMPLES OF USES

GLAC IRWMP DATA DEVELOPED COUNTY-WIDE

OCTA MEASURE M2

OCTA MEASURE M2 GOOGLE EARTH APPLICATIONS DEVELOPED

BALLONA CREEK (LOS ANGELES COUNTY)

BALLONA CREEK (LOS ANGELES COUNTY)

EXAMPLE: SAN DIEGO COUNTY COMPREHENSIVE LOAD REDUCTION PLANS (CLRPS)

New land use and receiving water monitoring data considered in both models

San Luis Rey River

- Area downstream of reservoir analyzed
- Larger Land Area Studied (~350 sq. miles study area)
- More Agriculture LU
- More Rural Residential LU
- More Septic Influence
- 3 Jurisdictions + Caltrans

San Diego River

- Area downstream of reservoirs analyzed (~180 sq. miles total study area)
- More Urban Area
- Larger Population
- Large Homeless
 Population
- 5 Jurisdictions + Caltrans
- More 303(d) Listings

SAN DIEGO RIVER & SAN LUIS REY CATCHMENT PRIORITIZATION INDICES (CPI)

SAN LUIS REY WATERSHED PRELIMINARY PLANNING LEVEL – RANGE OF EFFECTIVENESS

BMP CATEGORY	FC Load Reduction (10 ¹² MPN/YEAR) 1993 WY Load ¹ [Low-High Range]
Non-Structural BMPs	1,000 [260 – 1,700]
Regional Structural BMPs	700 [550 -790]
Wetland Mitigation Projects	100 [0 -240]
Distributed Structural BMPs	370 [200 – 430]
Subtotal	2,200 <u>-3 200</u>
Load Reduction Adjustment	-210 [-633 Analyzed by
Load Reduction Effective Fraction	0.35 SBPAT
Load Reduction Sum	690 [330 - 990]
TARGET LOAD REDUCTION	670

CONSIDERATION OF MODELS TOGETHER

(provided for information an discussion only)

MODELING CONTINUUM

MANY POSSIBLE COMBINATIONS

INFORMATION FLOW (DEPENDS ON CONDITIONS)

SUMMARY

- Introduction to SBPAT for RAA
- Input types and inputting processes
- Target loading estimates/other implicit assumptions
- Format for information sharing, presentation, and use for decision support
- Final quantified and presented results
- Use of SBPAT results
- Target load reduction discussion
- Examples
- Potential Integration of multiple models

ksusilo@geosyntec.com

ENE

QUESTIONS