Workshop and Project Scoping Meeting on Plans to Reduce Nitrogen, Phosphorus, and Sediment in Lake Tahoe

California Regional Water Quality Control Board Lahontan Region

Robert Larsen Environmental Scientist

Agenda

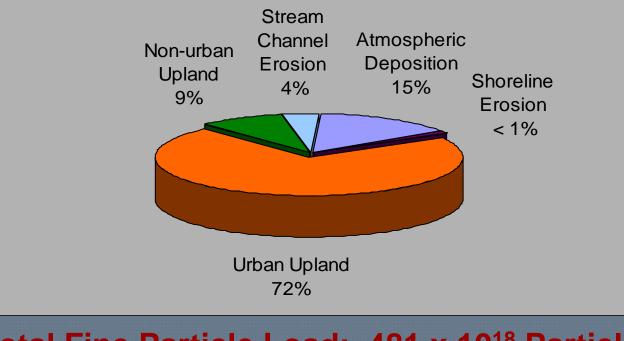
- 1. Lake Tahoe TMDL Program Update
 - TMDL Overview
 - Implementation Tools

2. CEQA Scoping Meeting

- Stormwater Regulatory Approach
- Comments, questions, discussion

What is the Lake Tahoe TMDL?

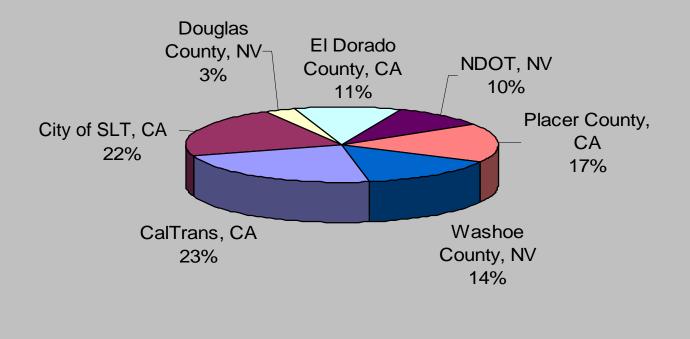
A sciencebased plan to restore Lake Tahoe's deep water clarity

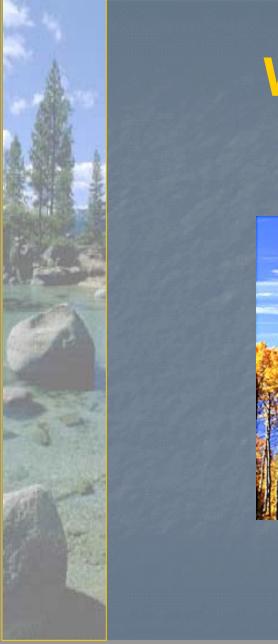

What pollutants are causing Lake Tahoe's clarity loss?

- Suspended fine sediment particles
- Floating algae fed by nutrients

Fine sediment particles (<16 micrometers) account for ~2/3 of the clarity condition

How much of each pollutant is reaching Lake Tahoe?

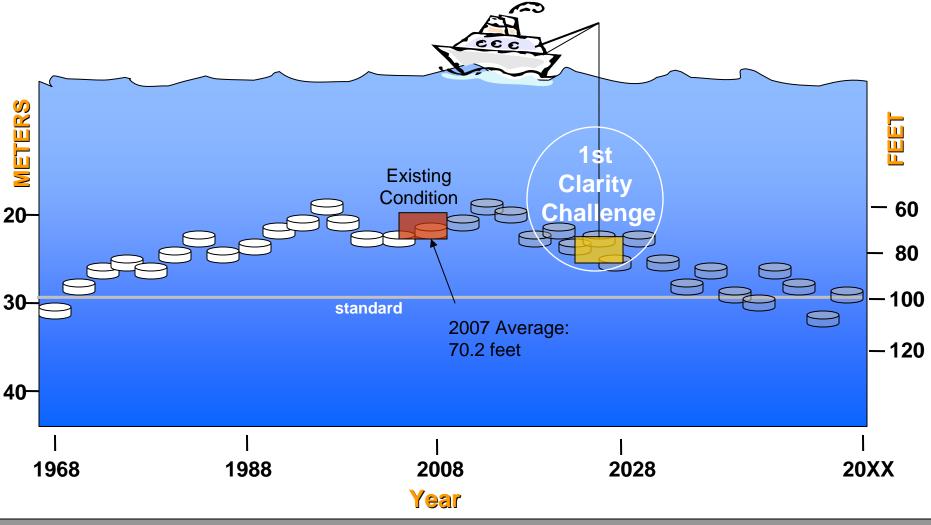

Fine Sediment Particle Number Estimates (particles less than 16 micrometers) Percent Contribution per Source Category



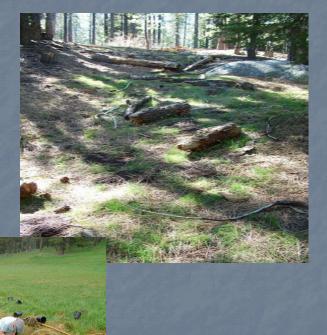
Total Fine Particle Load: 481 x 10¹⁸ Particles

Urban Particle Load – How the 72% is Distributed

Urban Fine Sediment Particle Number Estimates - Percent by Jurisdiction

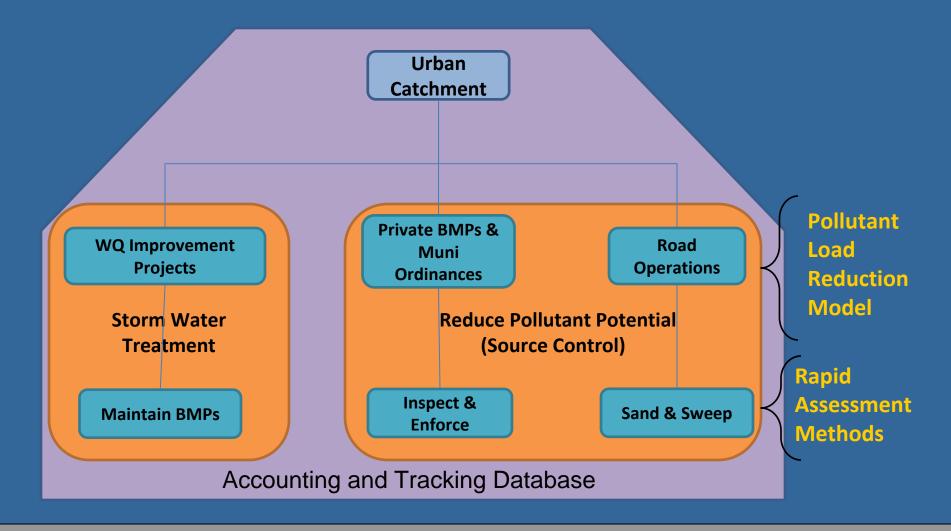


What is a reasonable interim target?



The Clarity Challenge: Reverse clarity decline and measurably improve clarity

What are the options for reducing pollutant inputs to Lake Tahoe?



Recommended Strategy

Percent Reduction of **Basin-wide** Particle Load

Pollutant Source Category	Recommended Strategy Load Reduction
Forest Uplands	1.0%
Stream Channel Erosion	1.8%
Atmospheric Deposition	4.6%
Urban Uplands	24.5%
Clarity Challenge	32%

Lake Clarity Crediting Program & Implementation Tools

Transition to TMDL Implementation

One year "Beta" testing period: Fall 2009-Fall 2010

- Lake Clarity Crediting Program
- Pollutant Load Reduction Model
- Rapid Assessment Methodologies
- Accounting and Tracking System

Schedule

TMDL Peer Review Posting – September
Agency and Public Review Draft – Winter 2009/10
TMDL adoption – Spring 2010
Municipal NPDES Permit & MOA – Fall 2010

California Environmental Quality Act (CEQA)

California law guarantees public involvement in government decision making

Requires evaluation and disclosure of possible adverse environmental impacts

What is "The Project"?

Amending the Water Quality Control Plan for the Lahontan Region (Basin Plan) to:

- Incorporate the Lake Tahoe TMDL
- Adjust Basin Plan language to facilitate TMDL implementation

The project is NOT on-the-ground actions to reduce pollutant loads

Why Scope for CEQA?

Obtain public feedback to help guide environmental analysis of our Basin Plan Amendment

Identify reasonably foreseeable significant adverse environmental impacts from this Basin Plan amendment

Supplemental Scoping

Previous scoping meetings described TMDL findings

This meeting focuses on changes to support implementation

Current Basin Plan Stormwater Language

20 year, 1-hour design storm

Concentration-Based Numeric Effluent Limits Turbidity, Nitrogen, Phosphorus, Iron, Oil & Grease

20 year implementation schedule (ending in 2008)

New TMDL Stormwater Approach

Emphasize average annual mass-based load reductions

Identify and target actions in highpolluting watersheds

Link proposed actions to expected pollutant load reductions

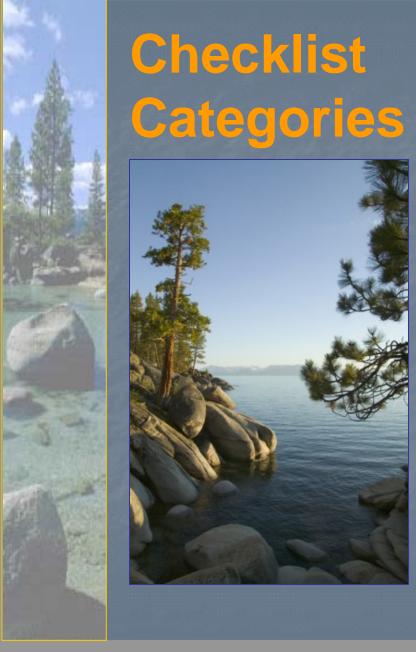
Hold municipalities responsible for meeting TMDL load reduction targets

Stormwater Regulation Approach

Existing Policy

Regulatory Focus	Concentration limits – everywhere, all the time
Compliance Prospects	Not reasonable – even advanced measures may not meet effluent limits
Linkage between actions/benefits	Poor - hard to link projects/actions to lake clarity response
Comparability	Little ability to compare results across different implementers

Stormwater Regulation Approach


	Existing Policy	Proposed Approach	
Regulatory Focus	Concentration limits – everywhere, all the time	Load limits – average annual	
Compliance Prospects	Not reasonable – even advanced measures may not meet effluent limits	Reasonable – possible demonstrate progress toward achieving stated goals	
Linkage between actions/benefits	Poor - hard to link projects/actions to lake clarity response	Strong – TMDL load reductions directly related to clarity response	
Comparability	Little ability to compare results across different implementers	Direct performance comparisons, transparent through reporting	

What Will Change?

Intensify erosion control and stormwater treatment actions

- Innovative treatment measures
- Enhanced operations and maintenance

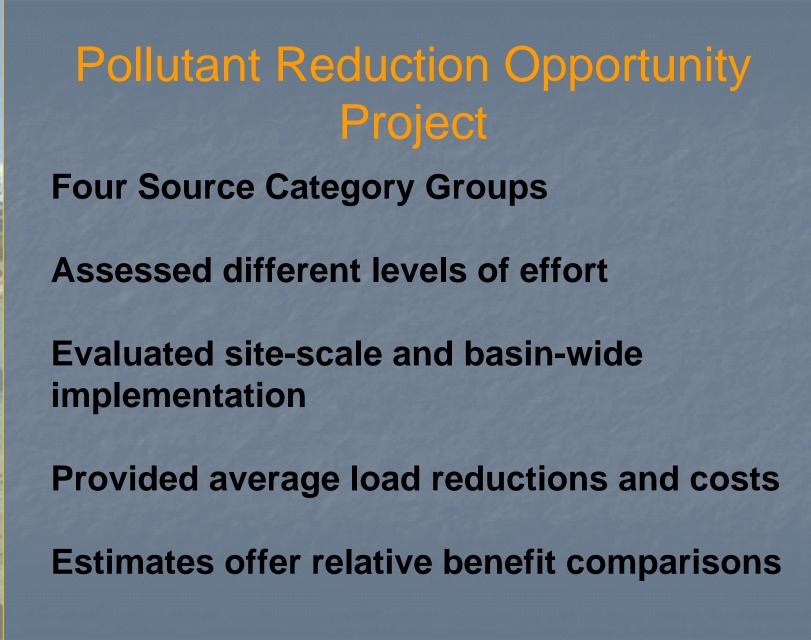
Target areas of highest pollutant loading

AESTHETICS

Ι.

- II. AGRICULTURE RESOURCES
- III. AIR QUALITY
- IV. BIOLOGICAL RESOURCES
- V. CULTURAL RESOURCES
- VI. GEOLOGY AND SOILS
- VII. HAZARDS AND HAZARDOUS MATERIALS
- VIII. HYDROLOGY AND WATER QUALITY
- IX. LAND USE AND PLANNING
- X. MINERAL RESOURCES
- XI. NOISE
- XII. POPULATION AND HOUSING
- XIII. PUBLIC SERVICES
- XIV. RECREATION
- XV. TRANSPORTATION/TRAFFIC
- XVI. UTILITIES AND SERVICE SYSTEMS

Checklist Example


ISSUES

	Potentially Significant Impact	Less Than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
I. AESTHETICS Would the project:				
a) Have a substantial adverse effect on a scenic vista?				
b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				
c) Substantially degrade the existing visual character or quality of the site and its surroundings?				
d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?				

Analyze Potential Impacts

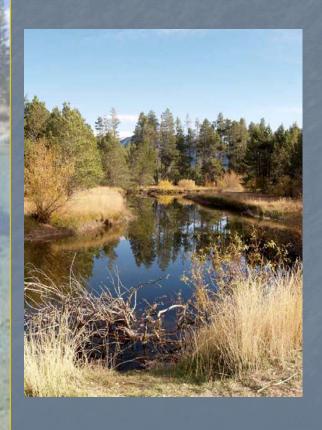
CEQA Will Consider: Direct physical changes in the environment Reasonable foreseeable compliance measures Reasonably foreseeable indirect changes Mill not consider:
Speculative changes
Changes with effects already considered
Changes that would occur regardless of the amendment

Questions?

Forest Uplands Recommended Strategy

Restore/maintain roads as planned

Revegetate/treat disturbed lands


Treat forest fuels

Achieve ~1% reduction in total fine particle budget (12% of Forest load)

Estimated Cost: \$120M Capital, \$4.5M Annual O&M

Stream Channel Restoration Recommended Strategy

Continue current restoration activities on the UTR, Blackwood and Ward Creeks

Support monitoring and research

Achieve ~2% reduction in total fine particle budget (53% of Stream source)

Estimated Cost: \$40M Capital

Atmospheric Deposition Recommended Strategy

Focus on dust control measures

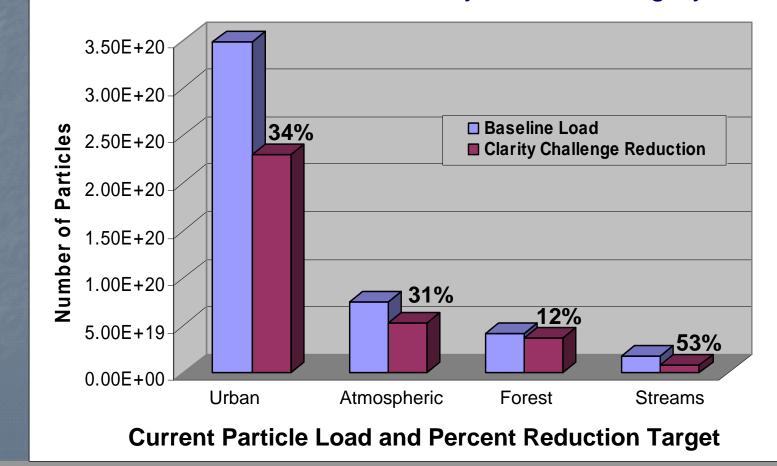
Continue VMT reduction efforts

Achieve ~5% reduction in total fine particle budget (31% of Atmospheric source)

Estimated Cost: \$45M Capital, \$0.4M Annual O&M

Urban Uplands Recommended Strategy

Continue to implement known technologies


Move toward more innovative practices and intensive operations and maintenance

Achieve ~25% reduction in total fine particle budget (34% of Urban Source)

Estimated Cost: \$1.3B Capital, \$6M Annual O&M

Recommended Strategy Particle Load Reductions by Source Category

