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Introduction
Below I review the scientific basis for the draft Microplastics in Drinking Water Policy 
Handbook, adopted definition of `microplastics in drinking water`, proposed analytical 
methods to be used during required monitoring, and proposed health effects guidance 
language. As I noted in the response to the request, “I feel confident, given my 
expertise, experience and training, I can evaluate the quality of the statistical evidence 
for conclusion #41 based upon the design and analysis of studies considered in the 
evidence.” The specific conclusion refers to the health-based guidance language being 
appropriate with respect to hazard knowledge and gaps. The recommendation by the 
SCCWRP was for the State Water Resources Board to “not adopt a notification level or 
other health-based level that would require water systems to inform consumers of 
contamination outside of their annual consumer confidence report or perform additional 
actions.” Instead, the expert workgroup developed a brief health-based guidance 
language statement that is to be recommended for use by public utilities in informing 
consumers regarding findings of microplastics in drinking water in the annual consumer 
confidence reports, as included in the draft handbook.2 The language of the focus of 
my review within the draft handbook is:

1 See Peer Review Request for Microplastics in Drinking Water_signed document, page 9-10.
2 Proposed rule-policy handbook_11-10-2021 document, section 4.1.

• “4.1. A principal research finding relevant to monitoring is that microplastics 
smaller than 10 μm in length have an increased likelihood of causing adverse 
health effects in mammals and should be prioritized for monitoring when 
possible. There is insufficient evidence at the time of writing this Policy to issue a 
notification level or other numerical guidance for microplastics.”

• “4.1.1. Studies of rodents exposed to some types of microplastics through 
drinking water indicate potentially adverse effects, including on the reproductive 
system. However, more research is needed to understand potential human 
health implications and at what concentrations adverse effects may occur. 
Therefore, California is monitoring microplastics in drinking water to understand 
its occurrence and is supporting ongoing research.”

Also relevant is the language in the document “Peer Review Request for Microplastics 
in Drinking Water_signed” which specified the goal of my review (Conclusion #4 in 
Appendix 2):



• “Peer reviewers should review the proposed health-based guidance language for 
its scientific basis and potential impacts to health and wellbeing (intentional and 
unintentional), including the validity of the underlying review of the science 
(Coffin et al. Submitted).”

The main issue for my review is whether the state of current research of the health 
impacts of exposure to microplastics in drinking water warrants a lack of numerical 
guidance or notification level for microplastic concentrations in drinking water and 
whether the language regarding health and wellbeing is consistent with the science.

Note, that I have no expertise in the general exposure science of microplastics (MP), 
including meaningful definitions, measurement, chemistry, and biologic response of MP. 
I am an expert in general biostatistics and more specifically their application to studies 
of human health, particularly population-based studies of health (epidemiology).

Evidence examined regarding health effects of human microplastic exposure in drinking 
water
The main document supporting the proposed approach comes from a submitted 
manuscript thoroughly reviewing the evidence and existing literature regarding 
microplastics in drinking water and health (Coffin et al., 2022), with additional 
information from a World Health Organization report (2019) , and an existing study on 
human health effects of occupational exposure to MP (Zarus et al., 2021). I reviewed 
several other publications provided to me at the review request.

I think a quote from Rahman et al., 2021 is an accurate summary of the state of 
scientific knowledge about the impacts of microplastics on human health -

“The ubiquitous presence of MPs in food products, water and air has led to their 
inevitable exposure to humans. However, the routes of exposure and the implications 
for human health have not yet explicitly been documented in the literature. Therefore, a 
scoping review of existing evidence and synthesis of the current knowledge on potential 
routes and effects of MPs exposure on human health and the mechanism of toxicity can 
serve as a foundation for future research.”

I have found in the materials provided (as well as independent literature searches) no 
significant population epidemiological studies on direct human health impacts of MP’s in 
drinking water. Though there are studies that measure the uptake and absorption of 
MP’s in humans, there is little to no direct linking of the drinking water exposure of MP’s 
and human health impacts. Though there are studies of occupational exposure of MP 
in air, most of the information on the health impacts in humans must be extrapolated 
from the limited exposure studies in people, and animal studies of controlled MP 
ingestion. Zarus et al., 2021 has a list of the relevant literature available for human 
exposure studies and experimental animal data, though only a subset of them are 
directly relevant for exposure through drinking water (e.g., exposures of humans 
through ingestion/drinking water and animal experiments with ingested MP’s).



Coffin, et al., 2022
The most important evidence for the resulting recommendations comes from a 
submitted paper (Coffin et al., 2022), which conducted a screening process of the 
existing studies starting with 41 in vitro and 31 in vivo studies. Studies quality and 
relevance were determined largely based on reporting of dose-response relationships. 
They also made the sensible choice to only use oral exposure in vivo studies, which is 
based upon the lack of existing methods for extrapolating between in vitro and in vivo 
systems. They came to the conclusion that it was not possible to extrapolate a human– 
health-based threshold value for microplastic, largely due the relative quality and 
reliability of current data. Additionally, there exists no reliable methodology for 
extrapolating data from studies using monodisperse plastic particles, such as 
polystyrene spheres, to an environmentally relevant exposure of microplastics in 
drinking water.

The two-tiered process used to select studies for use in calculation of screening levels 
was described in great detail and appeared rigorous (I note that some of the criteria 
used to select require expertise outside of statistics). Screening levels were estimated 
for several physiological endpoints for 7 out of the 12 studies that passed the tier 2 
screening, because 5 of the studies did not report adverse effects on both male and 
female reproductive systems. Then a standard of care methodology was used to 
estimate screening levels from the dose-response data reported for each 
outcome/study.

Methodology
BMD
The part of the report that is most relevant to my expertise was the method of 
translating the dose-response information available into a number relevant to human 
health that could be compared across different data. Specifically, the information 
provided from the expert panel for the studies deemed appropriate were used to 
estimate “points of departure” (e.g., benchmark doses [BMDs]). BMDs are doses (or 
concentrations) that elicit a predetermined change in response of an adverse effect 
based on a modelled dose-response curve. In short, a dose response curve is a 
function defined by, for outcome Y and exposure X, E(Y|X=x)=m(x), or the conditional 
mean function of the physiological outcome given a particular level of the exposure, X. 
The BMD of endpoints, along with their respective upper and lower 95% confidence 
intervals were estimated based on modelled output using existing (US EPA) benchmark 
dose software (US EPA, 2012); these were compared and interpreted using the RIVM 
PROAST tool (Slob, 2018).

BMR
As stated in US EPA, 2012 the calculation of a BMD is directly determined by the 
selection of the benchmark response (BMR), the biologic response relative to controls 
that would be used to assess the magnitude of exposure associated with potential 
health risk. Selecting BMRs involves making judgments about the biological 
characteristics of the dataset about which the resulting BMD (and the reported



confidence limits) will be used. The US EPA (2012) report recommends, for continuous 
data, defining a BMR based on the level of change in the endpoint at which the effect is 
considered to become biologically significant (as determined by expert judgment or 
relevant guidance documents). They recommend, in the absence of any other idea of 
what level of response to consider adverse, a change in the mean equal to one control 
standard deviation (SD) from the control mean can be used; if warranted by statistical 
and biological considerations, a lower or higher increment of the control SD might be 
used. The authors calculations of screening levels used this last definition (a change in 
the predicted outcome via the fitted dose-response model if MP concentration increased 
by 1 sample SD (as measured in the controls) of the predicted outcome based upon the 
model or BRM = m-1(m(0)+1SD), or the dose at which the predicted outcome (by the 
estimated dose-response model) is equal to an increase of 1 SD (controls) above the 
estimated mean value of the outcome when exposure is 0 (or m(0)). Given my lack of 
expertise in choosing these values, I am assuming in review of the methodology, that 
the BMR have been chosen conservatively (that is chosen in a way that tends to favor 
lower screening levels).

The estimated BDM (benchmark dose) is thus a simple function of the estimated dose 
response curve, f(x) and the BMR, specifically BMD= m-1(BMR), or the value of x such 
that the m(x)=BMR. Thus, the choice of the BMR is critical to meaningful inferences 
about the BMD. Finally, the BMD and confidence limits are fed then into the following 
equation to derive potential screening levels:

_ . i i z /.s RfD (mg/кд-day) x RSC (unitless fraction)Equation 1 Screening level (ma L) = —— ----—■— -------- --------- -M a v J DWI (L/kg-day)

where RfD (reference dose) is a function of the BMDL (lower confidence bound of BMD 
when available by estimation using the dose-response data) and DWI (drinking water 
intake).

Overall Algorithm for determining the Rfd for the screening level
The estimate of the screening level for each study/outcome required several steps: 1) 

fitting a suite of parametric dose-response curves, 2) choosing the best fitting model for 
the dose-response using fit statistics (Akaike information criterion or AIC), and 3) using 
the chosen model to calculate the estimated BMD using the transformation discussed 
above, and 4) conducting a parametric bootstrap to estimate the sampling distribution of 
the estimated BMD by randomly generating data from an equivalent design based upon 
the model chosen and the study generating the data, 5) using this bootstrap distribution 
to derive a 95% confidence interval (CI) for the BMD, 6) conservatively selecting the 
BMD as the lower 95% CI limit of this confidence interval (BMDL) to feed into the 
equation 1 above. If the data in the study were not sufficient to compute the BMDL 
using the algorithm, then a conservative approach was used directly from observed data 
points in the study. Specifically, the lowest observable adverse effect level (LOAEL)



divided by 10 was used or the non-observable adverse effect level (NOAEL) depending 
on availability.

This methodology was applied one study/endpoint at a time to derive potential 
screening levels for MP. The final chosen screening level for MP was the minimum 
screening level for the combination of study and endponts in table 3 in Coffin et al., 
2022. Though a sensitivity analysis was done to incorporate the uncertainty in RSC 
and DWI above, the screening level was based upon best estimates of these quantities 
(not the most extreme resulting in the lowest screening level) and without a correction 
factor for other sources of uncertainty (e.g., conservative reduction of the Rfd based 
upon inter-species variability, intra-species variability, and database deficiencies, which 
would divide the BMDL by 300 as stated in Coffin et al., 2022).

The specific study that provided data for the minimum BMDL was from Hou et al., 2021, 
a study of biological outcomes of rats (n=32) to exposure to 3 concentrations of 0.5 μm 
polystyrene MPs (and unexposed controls). I am assuming the authors of the Coffin 
paper were able to access the raw data from the Hou study, but they could also fit it with 
the mean outcome for the four different exposure groups and reported standard errors. 
The fitting of the dose response curve and the calculation of the lower 95% confidence 
bound are pertinent to my expertise in general statistical inference in finite samples. 
Since the results of the repeated application to the estimation/inference algorithm used 
by the authors is one piece of the evidence provided for the screening level 
recommendation, I will comment in more detail below on the validity of the approach.

Comments on the statistical methodology used to estimate the BMDL
The language provided in the Handbook3 and quoted above is consistent with the 
scarcity of the evidence provided within and referenced by the Coffin, et al., 2021 report 
on the impact of human health of exposure to MP’s. The Coffin report made a good 
faith effort to attempt to translate the few relevant toxicological animal studies available 
into an evidence-based screening level by using the limited dose-response information 
available and propagating the uncertainty of the estimation of these curves estimates in 
the calculation of the RfD, and by choosing the lowest estimated BMDL for any endpoint 
available across the available studies/endpoints. They also acknowledge that the MP 
exposures used in these studies (e.g., the polystyrene MP’s in Hou et al., 2021) is a 
nonoptimal proxy for the complex chemistry of MP’s likely in environmental human 
exposures. There is thus, a suite of non-statistical issues to consider in making the 
screening policy that must rely on expert judgement for translating the limited data into 
policy.

Proposed rule-policy handbook_11-10-2021 document, section 4.1

Given the inherent limitations of the data, the approach to estimate the BMD using the 
described methodology (US EPA, 2012) was proper. The general approach, so-called 
ensemble learning, is particularly well-suited to situations where there is no a priori 
reason to limit the estimation to a single dose-response model. Though the chosen 
model for each study/endpoint was based upon optimizing the AIC, a similar approach

3



using cross-validated error to choose the best model has shown to be asymptotically 
equivalent to the so-called Oracle Selector, that is, the estimated model one would 
choose among candidates based upon knowing the true dose-response curve (van der 
Laan et al., 2007). Thus, one can make an argument that such a method, if combined 
with a large number of candidate dose-response curves, should asymptotically choose 
the best (among the list of models) for a particular endpoint. However, there are 
considerable limitations in interpreting the resulting estimated curve and functions of it, 
such as the estimated BMD. The procedure is fitting non-linear curves generally with 
very few design points (that is, very few doses per study used to expose the animals) 
and a limited number of animals per dose. Optimally, one would have a very large 
number of doses as well as a large number of rats exposed at each dose, conditions 
typically impractical for the type of studies on which (Coffin et al., 2022) relied, so that 
the asymptotic results would be relevant to the actual analyses. In this case properly 
characterizing the finite sample inference (e.g., getting consistent estimates of the BMD 
as defined relative to the BMR with confidence intervals with proper coverage) with such 
small data sets and so few design points is near impossible. In addition, because of the 
small sample sizes (small number of rats and doses), reliance of the inference on the 
central limit theorem is dubious and so the derived inference is based upon strong 
normality assumptions. Departures from normality in the true data-generating 
distribution can lead to bias in the CI’s (improper coverage probabilities, possibly anti­
conservative). Even though the BMD relies on estimating the dose response curve and 
the available data make estimation and inference regarding the dose-response curves 
and functions of it in a realistic statistical model (unknown specific dose-response 
model) problematic, there is no alternative procedure that would have guarantees of 
optimal performance. Thus, though there are robustness issues to the methodology 
used to provide estimates and inference, the approach is reasonable and appropriate 
given the limitations of the information available. I note that Coffin et al., 2022 are 
transparent about the limitations of the existing data available for MP ingestion 
exposure.

However, given the inherent limitations of making robust inferences about the impact on 
human health from the available relevant studies, the approach is much preferable to 
one that would use an arbitrary low dimensional dose-response model (model defined 
by very few parameters, e.g., exponential with two parameters) that could be fit to every 
study, versus only a more flexible model (exponential with 4 parameters) that might 
reduce bias, but would result in an unacceptable increase in variance. Thus, the 
method used does an appropriate bias-variance trade-off to try to glean as much 
information as possible, without overfitting, the dose-response data.

The only choice for deriving inference for the BMD that would not rely on strong 
assumptions would be to derive so-called bounds based on inequalities, such as 
Bernstein’s inequality (Rosenblum and Van Der Laan, 2009). However, such 
approaches, in order to guarantee a minimum of the advertised coverage (95%) are 
highly conservative and in this situation would most likely result in lower bounds of 0 for 
most if not all of the mammalian studies used. Thus, given the nature of the data and



the parameter being estimated (BMD), they are impractical and would offer little to no 
guidance.

In short, I believe the statistical analyses underlying the screening value are appropriate 
for a situation where no perfect statistical approach is available.

Conclusions
In this report, I concentrated on the statistical evidence for the proposed screening 
value. As the authors of the report on which the screening values are based (Coffin et 
al., 2022) have noted, the evidence for making such recommendations is not extensive 
and the mammalian animal experiments conducted do not reflect the potential 
complexity of the chemistry of MP’s in the environment. However, the authors 
attempted to use the animal data to inform the screening value and they did so using a 
conservative approach that balanced caution with providing practical information for 
guidance. To quote Coffin, et al, 2022: The screening value “…represents the most 
conservative estimate derived from the mammalian effects data considered in this study 
towards characterizing a potential human-health effect, which we suggest should only 
be used for helping to guide monitoring activities.” No perfect methodology exists for 
the statistical inference problem of calculating the screening level from the limited 
existing data. However, given the limitations of the information available, the methods 
used are reasonable and justify the language in the draft handbook4 quoted above.

Proposed rule-policy handbook_11-10-2021 document, section 4.1.

Finally, the provided guidance should be re-evaluated as more extensive microplastic 
exposure data, in the form of experimental animal, human exposure and human health 
impact data, become available.
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