December 2013

City of Brawley

# Local Limits Study

Prepared by

LEE & RO, Inc.



## **Table of Contents**

| 1. | Introduction                                       |    |
|----|----------------------------------------------------|----|
|    | 1.1 Background                                     | 1  |
|    | 1.2 Scope of Work                                  | 1  |
|    | 1.3 Wastewater Treatment and Collection System     | 2  |
|    | 1.3.1 Brawley WWTP                                 | 2  |
|    | 1.3.2 Industrial Users                             | 7  |
|    | 1.4 Project Methodology                            |    |
| 2. | Identification of Pollutants of Concern            | 10 |
|    | 2.1 Introduction                                   | 10 |
|    | 2.2 Criteria for Potential Pollutants of Concern   | 10 |
|    | 2.2.1 Regulatory Review                            | 10 |
|    | 2.3 Screening                                      | 16 |
|    | 2.3.1 Methodology                                  | 16 |
|    | 2.3.2 Results                                      | 18 |
|    | 2.3.3 Selection of POCs                            | 19 |
| 3. | Flow and Load Analysis                             | 20 |
|    | 3.1 Introduction                                   | 20 |
|    | 3.2 Flow Analyses                                  | 20 |
|    | 3.2.1 Influent Flow                                | 20 |
|    | 3.2.2 Controlled Flow                              | 20 |
|    | 3.2.3 Uncontrolled Flow                            | 21 |
|    | 3.2.4 Summary of Flow                              | 22 |
|    | 3.3 Load Analyses                                  | 22 |
| 4. | Removal Efficiencies                               | 24 |
|    | 4.1 Introduction                                   | 24 |
|    | 4.2 Sources of Removal Efficiency Data             | 26 |
|    | 4.3 Selection of Representative Removal Efficiency | 26 |
| 5. | MAHL Analyses                                      |    |
|    | 5.1 Introduction                                   |    |
|    | 5.2 MAHL Analysis Method                           |    |
|    | 5.2.1 Select AHL Equations                         | 28 |

|    | 5.2.2 Calculate AHLs                                               | 29 |
|----|--------------------------------------------------------------------|----|
|    | 5.3 MAHL Analysis Results                                          | 34 |
|    | 5.4 Comparison of Influent Loadings and MAHLs for the Brawley WWTP | 34 |
| 6. | Designating and Implementing Local Limits                          | 38 |
|    | 6.1 Introduction                                                   | 38 |
|    | 6.2 Control Strategies for Pollutants                              | 38 |
|    | 6.2.1 MAIL Analyses                                                | 38 |
|    | 6.2.2 Numeric Limits                                               | 41 |
|    | 6.2.3 Slug Discharges                                              | 42 |
| 7. | Collection System-Based Limits                                     | 44 |
|    | 7.1 Introduction                                                   | 44 |
|    | 7.2 Fire and Explosions                                            | 44 |
|    | 7.3 Corrosion                                                      | 44 |
|    | 7.4 Flow Obstruction                                               | 45 |
|    | 7.5 Temperature                                                    | 45 |
|    | 7.6 Toxic Gases, Vapors and Fumes                                  | 45 |
| 8. | Conclusions and Recommendations                                    | 46 |
| 9. | References                                                         | 50 |

### **List of Tables**

- Table 1.1Brawley WWTP Design Criteria
- Table 1.2
   Wastewater Collection Line Summary
- Table 1.3 Lift Station Design Data
- Table 1.4National Beef Wastewater Flow
- Table 2.1
   Summary of NPDES Effluent Limitations
- Table 2.2
   Summary of Pertinent Water Quality-Based Effluent Limitations
- Table 2.3
   Sludge Land Application Limits
- Table 2.4Literature Inhibition Values (Most Stringent Values)
- Table 3.1 WWTP Influent Flow Rate
- Table 3.2Controlled Wastewater Flow (2012)
- Table 3.3Uncontrolled Wastewater Flow
- Table 3.4Wastewater Flow Summary
- Table 3.5
   Pollutant Concentration and Loading Summary Uncontrolled Sources
- Table 4.1Final Effluent Removal Efficiency Summary
- Table 5.1
   Activated Sludge Inhibition Threshold Level
- Table 5.2
   Nitrification Inhibition Threshold Levels
- Table 5.3Summary of AHLs and MAHLs
- Table 5.4 Comparison of WWTP Influent Loadings to MAHLs
- Table 6.1
   Summary of Uncontrolled Source Loadings and MAILs
- Table 6.2Uniform Concentration Limit Analysis
- Table 8.1Summary of Local Limits

# **List of Figures**

Figure 1.1 Brawley WWTP Process Flow Diagram

# **Appendices**

- I. Local Limit Sampling Plan
- II. WWTP Influent and Effluent, Sludge, and Priority Pollutants Analysis Data
- III. Sample Analyses Data
- IV. Flow and Loading Data
- V. Removal Efficiency
- VI. Allowable Headworks Loading Calculations
- VII. MAILs and Local Limits Calculations
- VIII. Fume Toxicity

# Acronyms and Abbreviations

| ACGIH    | American Conference of Governmental Industrial Hygienists |
|----------|-----------------------------------------------------------|
| ADRE     | Average Daily Removal Efficiency                          |
| AHL      | Allowable Headworks Loading                               |
| BOD₅     | 5-day Biochemical Oxygen Demand                           |
| CFR      | Code of Federal Regulations                               |
| COD      | Chemical Oxygen Demand                                    |
| CWA      | Clean Water Act                                           |
| DAF      | Dissolved Air Floatation                                  |
| gpd      | Gallons per Day                                           |
| IPP      | Industrial Pretreatment Program                           |
| IU(s)    | Industrial User(s)                                        |
| MAHL(s)  | Maximum Allowable Headworks Loading(s)                    |
| MAIL(s)  | Maximum Allowable Industrial Loading(s)                   |
| MGD      | Million Gallons per Day                                   |
| MRE      | Mean Removal Efficiency                                   |
| NIOSH    | National Institute for occupational Safety and Health     |
| NPDES    | National Pollutant Discharge Elimination System           |
| OSHA     | Occupational Safety and Health Administration             |
| PMH      | Pioneers Memorial Hospital                                |
| POC(s)   | Pollutant(s) of Concern                                   |
| POTW     | Publicly Owned Treatment Works                            |
| RWQCB    | Regional Water Quality Control Board                      |
| SAF      | Suspended Air Floatation                                  |
| SIU(s)   | Significant Industrial User(s)                            |
| STEL(s)  | Short-Term Exposure Limit(s)                              |
| SUO      | Sewer Use Ordinance                                       |
| TKN      | Total Kjehldahl Nitrogen                                  |
| TSS      | Total Suspended Solid                                     |
| TOC      | Total Organic Carbon                                      |
| TWA-TLV  | Time-Weighted Average Threshold Limit Value               |
| UCL(s)   | Uniform Concentration Limit(s)                            |
| USEPA    | U.S. Environmental Protection Agency                      |
| UV       | Ultraviolet                                               |
| VOC      | Volatile Organic Compound                                 |
| WQBEL(s) | Water Quality-Based Effluent Limitation(s)                |
| WQS(s)   | Water Quality Standard(s)                                 |
| WWTP     | Wastewater Treatment Plant                                |
|          |                                                           |

# 1. Introduction

## 1.1 Background

The U.S. Environmental Protection Agency (USEPA) developed the National Pretreatment Program to protect water quality by reducing the level of pollutants discharged by industry and other nondomestic wastewater sources to Publicly Owned Treatment Works (POTWs). The statutory authority for the National Pretreatment Program lies in the Clean Water Act (CWA). Under Section 307(b) of CWA, the USEPA developed the National Pretreatment Program, as a core part of the National Pollutant Discharge Elimination System (NPDES) Pretreatment Standards. The objectives of the Program are to prevent the introduction of pollutants into POTWs that could pass through or interfere with POTW operation, resulting in adverse receiving water quality impacts; to improve opportunities to recycle and reclaim wastewaters and sludge; and to prevent worker health and safety problems. To meet the requirements of the 1977 amendment of the CWA, USEPA promulgated its General Pretreatment Regulations in June 1978 (40 Code of Federal Regulations (CFR) Part 403 – General Pretreatment Regulations for Existing and New Sources of Pollutants). These regulations are used for development and implementation of local and state pretreatment programs.

The General Pretreatment Regulations require that POTWs develop and implement their local limits based on site-specific conditions. POTWs should consider the following factors in developing local limits: POTW treatability; NPDES compliance history; condition of the receiving water body; water quality of the receiving water body; POTW's retention, use, and disposal of sewage sludge; and worker health and safety concerns.

The City of Brawley must develop an Industrial Pretreatment Program (IPP) as required by the Regional Water Quality Control Board (RWQCB), Colorado River Basin Region, and specified in Section VI.C.5.b of the City's NPDES Permit No. CA0104523 for the City of Brawley Wastewater Treatment Plant (WWTP). As a prerequisite to implementation of the IPP, the City needs to develop local limits to protect their treatment plant, the sewer system, sludge, and receiving water from potentially harmful pollutants in industrial and commercial discharges. Local limits will enforce the specific and general prohibitions based upon the maximum loading of pollutants that can be accepted by WWTP.

# 1.2 Scope of Work

The purpose of this *Local Limits Study* report is to develop and recommend local limits for the City of Brawley in accordance with RWQCB's requirements and bring the City of Brawley into compliance with their NPDES discharge permit. This report will focus on the identification of pollutants of concern (POCs), flow and load analysis, maximum allowable headworks loadings (MAHL) analysis, and local limits development. Additionally, the City's current sewer use ordinance (SUO) will be reviewed and updated to incorporate local limits.

# **1.3 Wastewater Treatment and Collection System**

### 1.3.1 Brawley WWTP

The City of Brawley collects and treats wastewater from approximately 5,400 commercial and residential wastewater accounts. The City owns and operates a wastewater collection system and treatment facility that receives wastewater from the entire city. Significant upgrades of the WWTP were conducted in 2011.

The City's WWTP provides a full secondary level of wastewater treatment. The facility consists of preliminary screening, three Biolac<sup>®</sup> activated sludge treatment units equipped with diffusers, three secondary clarifiers, and ultraviolet (UV) disinfection. The treated effluent is discharged to the New River. The wasted activated sludge is thickened in a sludge thickening units and dewatered in a centrifuge sludge dewatering unit, and then dried using solar greenhouse sludge drying structures. No primary sludge is produced since the Biolac<sup>®</sup> process operates without primary treatment. **Figure 1.1** presents a process flow diagram of Brawley WWTP, and **Table 1.1** summarizes the WWTP design criteria.

The WWTP conducts self-monitoring activities. Influent samples are collected at the headworks before the mechanical bar screen, and effluent samples are collected immediately after UV disinfection and before the effluent weir. All samples are composite samples and are analyzed at either the on-site laboratory or at a contract laboratory.

Brawley's WWTP design capacity is 5.9 mgd. The average annual flow between 2010 and 2011 was 3.8 mgd. The maximum monthly flow for these periods was 4.5 mgd.

| Description                 | Units | Criteria |  |  |  |  |  |
|-----------------------------|-------|----------|--|--|--|--|--|
| Preliminary Treatment       |       |          |  |  |  |  |  |
| Bar Screen                  |       |          |  |  |  |  |  |
| Number                      |       | 1        |  |  |  |  |  |
| Capacity                    | mgd   | 16       |  |  |  |  |  |
| Screenings Washer/Compacted | or    |          |  |  |  |  |  |
| Number                      |       | 1        |  |  |  |  |  |
| Capacity                    | mgd   | 70       |  |  |  |  |  |
| Vortex Grit Tank            |       |          |  |  |  |  |  |
| Number                      |       | 1        |  |  |  |  |  |
| Capacity                    | mgd   | 16       |  |  |  |  |  |
| Grit Pump                   |       |          |  |  |  |  |  |
| Number                      |       | 1        |  |  |  |  |  |
| Capacity                    | gpm   | 250      |  |  |  |  |  |
| Grit Separator/Washer       |       |          |  |  |  |  |  |
| Number                      |       | 1        |  |  |  |  |  |
|                             |       |          |  |  |  |  |  |

#### Table 1.1 Brawley WWTP Design Criteria

| Description                     | Units               | Criteria                 |
|---------------------------------|---------------------|--------------------------|
| Capacity                        | gpm                 | 250                      |
| Activated Sludge Aeration       |                     |                          |
| Number                          |                     | 3                        |
| Dimension (top), per basin      | ft                  | 220 x 180                |
| Dimension (bottom), per basin   | ft                  | 169 x 129                |
| Water Depth                     | ft                  | 14                       |
| Volume, per basin               | 10 <sup>6</sup> gal | 2.9                      |
| Aeration Blower                 |                     |                          |
| Number                          |                     | 4                        |
| Capacity, each                  | cfm                 | 2,200                    |
| Horsepower, each                | hp                  | 150                      |
| Secondary Clarifiers            |                     |                          |
| Number                          |                     | 3                        |
| Diameter, each                  | ft                  | 80                       |
| Surface Area, each              | ft <sup>2</sup>     | 5,027                    |
| Side Water Depth                | ft                  | 14.85                    |
| Return Activated Sludge (RAS) P | Pump                |                          |
| Number                          |                     | 5 (3 duty and 2 standby) |
| Capacity, each                  | gpm                 | 4,950                    |
| Horsepower, each                | hp                  | 25                       |
| Waste Activated Sludge (WAS) P  | ump                 |                          |
| Number                          |                     | 2 (1 duty and 1 standby) |
| Capacity, each                  | gpm                 | 250                      |
| Horsepower                      | hp/each             | 3                        |
| Gravity Thickener               |                     |                          |
| Number                          |                     | 1                        |
| Diameter                        | ft                  | 50                       |
| Side Water Depth                | ft                  | 12                       |
| Sludge Holding Tank             |                     |                          |
| Number                          |                     | 1                        |
| Diameter                        | ft                  | 50                       |
| Side Water Depth                | ft                  | 12                       |
| Sludge Holding Tank Blower      |                     | 2 (530 cfm, each)        |
| Centrifuge Sludge Dewatering    |                     |                          |
| Number                          |                     | 1                        |
| Capacity                        | gpm                 | 200                      |

| Description          | Units | Criteria            |
|----------------------|-------|---------------------|
| Solar Green House    |       |                     |
| Number               |       | 2                   |
| Dimension            | ft    | 204 x 42            |
| UV Disinfection      |       |                     |
| Number               |       | 1                   |
| Capacity             | mgd   | 16                  |
| Chemical Feed System |       |                     |
| Ferric Facility      |       | 1                   |
| Storage Tank         |       | 1 (1,000 gallon)    |
| Metering Pump        |       | 2 (0 – 1.0 gph)     |
| Polymer Facility     |       |                     |
| Storage Tank         |       | 1 (1,000 gallon)    |
| Metering Pump        |       | 4 ( 0.15 – 7.5 gph) |

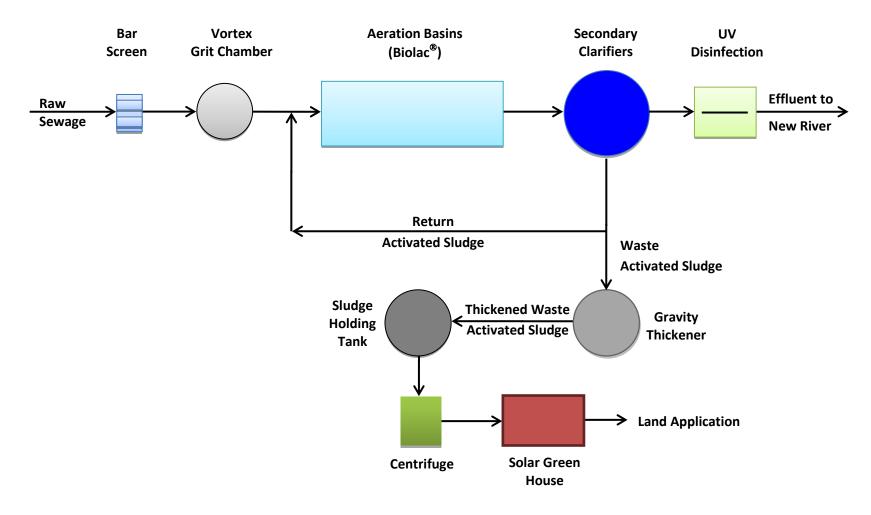



Figure 1.1: Brawley WWTP Process Flow Diagram

The City's wastewater collection system was established over 70 years ago. The system includes two lift stations, approximately 65 miles of wastewater collection lines ranging from 6 to 30 inches, and 1.5 miles of 10-inch force main. The City's WWTP serves approximately 5,400 connections. Among these, approximately 4,900 are single and multiple family residential units. The remaining connections are industrial and commercial. **Table 1.2** presents a summary of the collection system lines.

| Line Size<br>(inches) | Total Length<br>(feet) |
|-----------------------|------------------------|
| 6                     | 7,696                  |
| 8                     | 224,040                |
| 10                    | 14,398                 |
| 12                    | 10,998                 |
| 14                    | 1,763                  |
| 15                    | 31,741                 |
| 18                    | 21,008                 |
| 21                    | 29,838                 |
| 30                    | 398                    |
| Total Linear Footage  | 341,880                |
| 10-inch force main    | 7,998                  |

Table 1.2 Wastewater Collection Line Summary

The City's wastewater collection system is a gravity flow system and generally follows the major drainage features of the service area. The majority of the system is a combined sanitary and storm sewer system. All of the collectors and the force main flow to the City's WWTP, which ultimately discharges to the New River.

The City operates two lift stations that pump wastewater into nearby gravity sewers. They are the Citrus View Sewage Lift Station No. 2 and the South Brawley Sewage Lift Station No. 1. **Table 1.3** lists these lift stations and their rated capacities and design details.

| Items               | Unit    | Citrus View<br>Lift Station No. 2 | South Brawley<br>Lift Station No. 1 |
|---------------------|---------|-----------------------------------|-------------------------------------|
| Wet Well Volume     | Gallons | 3,170                             | 6,830                               |
| Number of Pump      |         | 2                                 | 2                                   |
| Pump Discharge Flow | gpm     | 200                               | 1,200                               |
| Pump Type           |         | Constant Speed                    | Constant Speed                      |

#### Table 1.3 Lift Station Design Data

### **1.3.2 Industrial Users**

The City of Brawley WWTP receives wastewater from two significant dischargers, National Beef and Pioneers Memorial Hospital. These dischargers discharge wastewater into sewer system at a constant flow. Significant industrial users (SIUs) are defined in 40 CFR 403.4 as follows:

- All users subject to Categorical Pretreatment Standards under 40 CFR 403.6 and 40 CRF chapter I, subchapter N.
- Any other industrial user that:
  - discharges an average of 25,000 gpd or more of process wastewater to the WWTP (excluding sanitary, non-contact cooling and boiler blowdown wastewater)
  - contributes a process waste stream that makes up 5 percent or more of the average dry weather hydraulic or organic capacity of the WWTP; or
  - is designated as such by the City, as defined in 40 CFR 403.12(a), on the basis that the industrial user has a reasonable potential for adversely affecting the WWTP's operation or for violating any pretreatment standard or requirement.

National Beef (formerly known as Brawley Beef) owns and operates a meat packing facility that processes approximately 2,400 head of cattle per day. The National Beef plant discharges approximately 1.61 mgd of partially treated wastewater from its beef processing and livestock operations. National Beef has an agreement with the City of Brawley which allows it to discharge up to 2.1 mgd of flow to the City's collection system.

National Beef currently operates a pretreatment facility that was intended to remove a substantial amount of BOD, TSS, ammonia, and oil & grease. The treated wastewater is discharged to the Brawley WWTP. The pretreatment facility consists of the following unit processes:

- 1) Two Dissolved Air Floatation units (DAF) Remove fats, grease and suspended solids.
- 2) One covered anaerobic pond (Pond No. 1) Hydrolyze fats and protein into simpler organic material with production of methane and carbon dioxide.
- One aerobic pond (Pond No. 2) Remove organic material and oxidize ammonia to nitrate.

- 4) One clarifier at Pond No. 3 inlet Settle mixed liquor flowing from Pond No. 2 to allow return of solids to Pond No. 2 inlet and wasting of solids to the belt press.
- 5) One suspended air floatation (SAF<sup>™</sup>) flotation cell Remove solids before discharge to the sanitary sewer.
- 6) One belt press Thicken WAS to 20% solids.

**Table 1.4** presents the monthly wastewater flow discharged from the National Beef pretreatment facility from January through July 2012.

| Month                | Wastewater Flow<br>(mgd) |
|----------------------|--------------------------|
| January, 2012        | 1.68                     |
| February, 2012       | 1.55                     |
| March, 2012          | 1.52                     |
| April, 2012          | 1.66                     |
| May, 2012            | 1.63                     |
| June, 2012           | 1.63                     |
| July, 2012           | 1.63                     |
| Monthly Average Flow | 1.61                     |

#### Table 1.4 Nation Beef Wastewater Flow

Pioneers Memorial Hospital (PMH) is an acute care facility which has approximately 110 beds. The average water use in PMH is approximately 68,000 gpd. The wastewater flow is estimated using the assumption that 80 percent of water used flows back into City's sewer system. The wastewater generated in PMH may contain a variety of toxic organic substances such as pharmaceuticals, radionuclides, solvents, and disinfectants for medical purposes.

# 1.4 Project Methodology

To determine the appropriate local limit implementation procedures, the MAHL is calculated for each pollutant of concern. A MAHL is the estimated maximum loading of a pollutant that can be received at a WWTP's headworks without causing pass through or interference. An allowable headworks loading (AHL) is the estimated maximum loading of a pollutant that can be received at a WWTP's headworks that should not cause a WWTP to violate a particular operational restriction or environmental criterion. A pollutant's MAHL is determined by first calculating its AHL for each environmental criterion. The most stringent AHL is the MAHL. AHLs are developed to prevent interference or pass through.

Developing and implementing local limits using the MAHL approach will be accomplished by the following five steps recommended in *2004 USEPA Local Limits Development Guidance*.

- <u>Determine the Pollutants of Concern (POCs)</u>: As a first step, the pollutants to be evaluated to determine the need for local limits will be identified. The known environmental criteria (e.g. NPDES limits, water quality criteria, sludge quality criteria, etc.) will be applied to screening pollutants.
- 2) <u>Collect and Analyze Data</u>: After identifying the POCs, the data used in MAHL calculations will be collected by sampling and analysis of selected wastewater streams, sludge, commercial and domestic discharge (Refer to Appendix I).
- <u>Calculate MAHLs for each POC</u>: AHLs for each POC will be calculated based on WWTP removal efficiency and on environmental criteria for pass through and interference. The most stringent AHL will determine the MAHL.
- 4) <u>Designate and Implement Local Limits</u>: The MAHLs will be compared with the actual and potential loadings for determination of local limits. If needed, appropriate local limits will be developed. The process includes determining the amount of each pollutant that can be allocated to industrial users (IUs), submitting a development package to the Approval Authority for review and approval, incorporating the local limits into local law, and applying the local limits to the IUs.
- 5) <u>Address Collection System Concerns</u>: Collection system concerns such as fires and explosions, corrosion, flow obstructions, high temperature, and toxic gases, vapor or fumes will be addressed, and limits set as necessary.

# 2. Identification of Pollutants of Concern

# 2.1 Introduction

A pollutant of concern (POC) is defined as any pollutant that might reasonably be expected to be discharged to the wastewater treatment plant in sufficient amounts to cause pass through or interfere with the treatment process; cause problems in the collection system; jeopardize its workers; cause operational problems; or exceed the California Water Quality Standard (WQS) or National Pollutant Discharge Elimination System (NPDES) permit effluent limitations. POCs are identified in accordance with 2004 USEPA Local Limits Development Guidance.

## 2.2 Criteria for Potential Pollutants of Concern

To develop potential POCs, the following regulatory standards were reviewed:

- Brawley WWTP NPDES Permit (2010)
- 40 CFR Part 131, Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California (2000)
- Federal Sewage Sludge Standards (1995)
- Process Inhibition Threshold Values for Activated Sludge and Nitrification
- Discharge Screening Levels based on Explosivity and Fume Toxicity (2002)
- OSHA, ACGIH and NIOSH Exposure Levels (2002 and 2003)

### 2.2.1 Regulatory Review

#### NPDES Permit

The current NPDES permit for the City of Brawley regulates the treatment plant discharge effluent for flow,  $BOD_5$ , pH, TSS, oil and grease, total ammonia (as nitrogen), copper (total recoverable), selenium (total recoverable), cyanide, and bis(2-ethylhexyl)phthalate. The effluent limitations for both  $BOD_5$  and TSS are 30 mg/L as an average monthly and 45 mg/L as an average weekly. The average monthly percent removal of  $BOD_5$  and TSS should be more than 85 percent. The effluent limitation for total ammonia is 2.1 mg/L as a monthly average and 3.2 mg/L as a weekly average. The oil and grease in the effluent must not exceed a daily maximum of 25 mg/L. In addition, the NPDES permit contains limits for copper, selenium, cyanide and bis(2-ethylhexyl)phthalate which are determined by the Water Quality-Based Effluent Limitations (WQBELs) required by Section 301(b) of the CWA and Section 122.44(d). The effluent limitations for copper are 52 µg/L daily maximum and 21 µg/L monthly average. The effluent limitations for selenium are 8.2 µg/L daily maximum and 4.1 µg/L monthly average.

limitations for cyanide are 9.2  $\mu$ g/L daily maximum and 3.0  $\mu$ g/L monthly average. The effluent limitations for bis(2-ethylhexyl)phthalate are 12  $\mu$ g/L daily maximum and 5.9  $\mu$ g/L monthly average. **Table 2.1** presents current NPDES final effluent limitations expressed as concentration and daily mass limits.

|                      | Effluent Limitations |                    |                   |                  |                          |                          |  |
|----------------------|----------------------|--------------------|-------------------|------------------|--------------------------|--------------------------|--|
| Parameters           | Units                | Average<br>Monthly | Average<br>Weekly | Maximum<br>Daily | Instantaneous<br>Minimum | Instantaneous<br>Maximum |  |
| Flow                 | mgd                  | 5.9                | -                 | -                | -                        | -                        |  |
| BOD at 20°C          | mg/L                 | 30                 | 45                | -                | -                        | -                        |  |
| BOD₅ at 20°C         | lb/day <sup>1</sup>  | 1,476              | 2,214             | -                | -                        | -                        |  |
| TSS                  | mg/L                 | 30                 | 45                | -                | -                        | -                        |  |
| 135                  | lb/day <sup>1</sup>  | 1,476              | 2,214             | -                | -                        | -                        |  |
|                      | mg/L                 | -                  | -                 | 25               | -                        | -                        |  |
| Oil and Grease       | lb/day <sup>1</sup>  | -                  | -                 | 1,230            | -                        | -                        |  |
| рН                   | Standard<br>units    | -                  | -                 | -                | 6.0                      | 9.0                      |  |
| Total Ammonia as     | mg/L                 | 2.1                | -                 | 3.2              | -                        | -                        |  |
| Nitrogen             | lb/day <sup>1</sup>  | 103                | -                 | 157              | -                        | -                        |  |
| Copper, total        | µg/L                 | 21                 | -                 | 52               | -                        | -                        |  |
| recoverable          | lb/day <sup>1</sup>  | 1                  | -                 | 2.6              | -                        | -                        |  |
| Selenium, total      | µg/L                 | 4.1                | -                 | 8.2              | -                        | -                        |  |
| recoverable          | lb/day <sup>1</sup>  | 0.20               | -                 | 0.40             | -                        | -                        |  |
| $\Omega_{\rm rec}$   | µg/L                 | 3.0                | -                 | 9.2              | -                        | -                        |  |
| Cyanide <sup>2</sup> | lb/day <sup>1</sup>  | 0.15               | -                 | 0.45             | -                        | -                        |  |
| Bis(2-               | µg/L                 | 5.9                | -                 | 12               | -                        | -                        |  |
| Ethylhexyl)Phthalate | lb/day <sup>1</sup>  | 0.29               | -                 | 0.59             | -                        | -                        |  |

#### **Table 2.1 Summary of NPDES Effluent Limitations**

<sup>1</sup> The mass-based effluent limitations are based on a design capacity of 5.9 mgd.

<sup>2</sup> Expressed as free cyanide.

#### Water Quality-Based Effluent Limitations (WQBELs)

The current NPDES permit does not contain effluent limitations for toxic pollutants other than copper, selenium, cyanide and bis(2-ethylhexyl)phthalate. However, the final effluent quality is governed by the California Surface WQSs and should meet WQBELs applicable to the New River, which is the ultimate discharge point of treatment plant effluent. WQS have been established for protection of freshwater aquatic life, human health, and wildlife. For all parameters that have the reasonable potential to cause or contribute to an excursion above a WQS, numeric WQBELs are established. **Table 2.2** summarizes the water quality criteria established for priority pollutants that have been detected in the effluent of the WWTP.

|                           | Most<br>Stringent | Fres  | h Water | Human Health for<br>Consumption of |
|---------------------------|-------------------|-------|---------|------------------------------------|
| Parameter                 | Criteria          | Acute | Chronic | Organisms Only                     |
|                           | µg/L              | μg/L  | μg/L    | µg/L                               |
| Arsenic                   | 150               | 340   | 150     | -                                  |
| Cadmium                   | 2.2               | 4.3   | 2.2     | -                                  |
| Copper                    | 31                | 52    | 31      | -                                  |
| Lead                      | 19                | 477   | 19      | -                                  |
| Mercury                   | 0.051             | -     | -       | 0.051                              |
| Nickel                    | 169               | 1,516 | 169     | 4,600                              |
| Selenium                  | 5                 | 20    | 5       | -                                  |
| Silver                    | 44                | 44    | -       | -                                  |
| Zinc                      | 388               | 388   | 388     | -                                  |
| Bis(2-Ethylhexyl)Phtalate | 5.9               | -     | -       | 5.9                                |

#### Table 2.2 Summary of Pertinent Water Quality-Based Effluent Limitations

Reference: Brawley NPDES Permit, Attachment F, Table F-10 and California CTR (2000)

#### Sludge Quality Standards

The sludge generated at the Brawley WWTP will be hauled off by a private contractor and applied to farmland or applied by the City on parks and public green areas in the future. The sludge quality standards for land application are established by federal sludge regulations (40 CFR Part 503, Standards for the Use or Disposal of Sewage Sludge), as presented in **Table 2.3**. Each state can establish its own sludge use and disposal standards as long as they are at least as stringent or are as protective as the federal requirement. USEPA recommends that the wastewater treatment facility consider the attainment of the "Clean Sludge" standards from 40 CFR 503, and that achievement of these standards is consistent with the objectives of the National Pretreatment Program.

| Pollutant  | Ceiling<br>Concentration | Monthly<br>Average<br>Pollutant<br>Concentration<br>(Clean Sludge) | Cumulative<br>Pollutant<br>Loading Rate | Annual Pollutant<br>Loading Rate |
|------------|--------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------------------------|
|            | mg/kg                    | mg/kg                                                              | kg/hectare                              | kg/hectare/365 days              |
| Arsenic    | 75                       | 41                                                                 | 41                                      | 2                                |
| Cadmium    | 85                       | 39                                                                 | 39                                      | 1.9                              |
| Copper     | 4,300                    | 1,500                                                              | 1,500                                   | 75                               |
| Lead       | 840                      | 300                                                                | 300                                     | 15                               |
| Mercury    | 57                       | 17                                                                 | 17                                      | 0.85                             |
| Molybdenum | 75                       | -                                                                  | -                                       | -                                |
| Nickel     | 420                      | 420                                                                | 420                                     | 21                               |
| Selenium   | 100                      | 100                                                                | 100                                     | 5                                |
| Zinc       | 7,500                    | 2,800                                                              | 2,800                                   | 140                              |

#### Table 2.3 Sludge Land Application Limits

#### Process Inhibition Criteria

In addition to pollutants with NPDES effluent limitations, USEPA recommends that a WWTP consider pollutants that may interfere with POTW operation to be potential POCs. The Brawley WWTP operates an extended aeration activated sludge process (i.e. Biolac<sup>®</sup>) to remove organics, solids, and ammonia (i.e. nitrification) in the wastewater. Inhibition threshold levels for activated sludge, and nitrification were obtained from *2004 USEPA Local Limits Development Guidance*. **Table 2.4** summarizes inhibition threshold levels.

| Pollutants                | Activated Sludge<br>Inhibition Threshold<br>(mg/L) | Nitrification Inhibition<br>Threshold<br>(mg/L) |
|---------------------------|----------------------------------------------------|-------------------------------------------------|
| Metal/Nonmetal Inorganics | S                                                  |                                                 |
| Ammonia                   | 480                                                | -                                               |
| Arsenic                   | 0.1                                                | 1.5                                             |
| Cadmium                   | 1 - 10                                             | 5.2                                             |
| Chloride                  | -                                                  | 180                                             |
| Chromium (VI)             | 1                                                  | 1 - 10                                          |
| Chromium (III)            | 10 - 50                                            | -                                               |
| Chromium (Total)          | 1 - 100                                            | 0.25 - 1.9                                      |
| Copper                    | 1                                                  | 0.05 - 0.48                                     |
| Cyanide                   | 0.1 - 5                                            | 0.34 - 0.5                                      |
| lodine                    | 10                                                 | -                                               |
| Lead                      | 1 - 5                                              | 0.5                                             |
| Mercury                   | 0.1 - 1                                            | -                                               |
| Nickel                    | 1.0 - 2.5                                          | 0.25 - 0.5                                      |
| Silver                    | -                                                  | -                                               |
| Sulfate                   | -                                                  | -                                               |
| Sulfide                   | 25 - 30                                            | -                                               |
| Zinc                      | 0.3 - 5                                            | 0.08-0.5                                        |
| Organics                  |                                                    |                                                 |
| Acrylonitrile             | -                                                  | -                                               |
| Anthracene                | 500                                                | -                                               |
| Benzene                   | 100 - 500                                          | -                                               |
| Carbon Tetrachloride      | -                                                  | -                                               |
| Chlorobenzene             | -                                                  | -                                               |
| Chloroform                | -                                                  | 10                                              |
| 2-Chlorophenol            | 5                                                  | -                                               |

### Table 2.4 Literature Inhibition Values (Most Stringent Values)

| Pollutants            | Activated Sludge<br>Inhibition Threshold<br>(mg/L) | Nitrification Inhibition<br>Threshold<br>(mg/L) |
|-----------------------|----------------------------------------------------|-------------------------------------------------|
| 1,2 Dichlorobenzene   | 5                                                  | -                                               |
| 1,3 Dichlorobenzene   | 5                                                  | -                                               |
| 1,4 Dichlorobenzene   | 5                                                  | -                                               |
| 2,4 Dichlorophenol    | 64                                                 | 64                                              |
| 2,4 Dimethylphenol    | 40 - 200                                           | -                                               |
| 2,4 Dinitrophenol     | -                                                  | 150                                             |
| 2,4 Dinitrotoluene    | 5                                                  | -                                               |
| 2,4 Diphenylhydrazine | 5                                                  | -                                               |
| Ethylbenzene          | 200                                                | -                                               |
| Hexachlorobenzene     | 5                                                  | -                                               |
| Methylchloride        | -                                                  | -                                               |
| Naphthalene           | 500                                                | -                                               |
| Nitrobenzene          | 30 - 500                                           | -                                               |
| Pentachlorophenol     | 0.95                                               | -                                               |
| Phenanthrene          | 500                                                | -                                               |
| Phenol                | 50 - 200                                           | 4                                               |
| Tetrachloroethylene   | -                                                  | -                                               |
| Toluene               | 200                                                | -                                               |
| Trichloroethylene     | -                                                  | -                                               |
| 2,4,6 Trichlorophenol | 50 - 100                                           | -                                               |
| Surfactants           | 100 - 500                                          | -                                               |

#### Collection System Criteria

Explosive and flammable pollutants discharged to the WWTP can accumulate and threaten the collection system, as well as the health and safety of plant workers. Therefore, local limits should regulate the discharge of these pollutants. In the *2004 USEPA Local Limits Development Guidance, Appendix I,* discharge screening levels for explosivity and fume toxicity are evaluated.

The fume toxicity of pollutants discharged to the WWTP can cause an adverse health effect when the plant worker is exposed to these pollutants. The time-weighted average threshold limit value (TWA-TLV) and short-term exposure limits (STELs) for gases that pose the threat of acute or chronic health effects in people can be found in the *2004 USEPA Local Limits Development Guidance, Appendix I.* 

Volatile organic compound (VOC) vapors can be toxic and carcinogenic, and may produce acute and chronic health effects when plant workers are exposed to these VOC vapors. Also, acidic discharges can combine with nonvolatile substances which then produce toxic gases and vapors (e.g. sulfide and cyanide to hydrogen sulfide and hydrogen cyanide). To respond to this, local limits based on the maximum recommended levels of these POCs should be established. A list of pollutants and the NIOSH, OSHA, and ACGIH guidelines and exposure levels can be found in *2004 USEPA Local Limits Development Guidance, Appendix J.* 

## 2.3 Screening

A POC is any pollutant that might be expected to be discharged to the sewer system in sufficient amounts to pass through or interfere with the treatment works, contaminate sludge, cause problems in the collection system, or jeopardize workers. Screening of potential POCs is in accordance with USEPA guidelines and all pollutants categorized as POCs will be used for determination of local limits.

### 2.3.1 Methodology

To identify POCs, various types of pollutant information were reviewed. Most of the data provided by the City for review were readily available from monitoring data collected by the City for regulatory compliance. The following data were compiled and reviewed to identify the pollutants that should be evaluated to determine the need for local limits:

- Monthly WWTP influent and effluent concentration data for 2010 and 2011
- Yearly sludge monitoring data for 2011 and 2012
- Yearly priority pollutants analysis data (effluent and receiving water) for 2010 and 2011

The summary of monthly WWTP influent and effluent, yearly sludge monitoring data and yearly priority pollutants analysis data is presented in Appendix II.

The data were also reviewed to ensure that the influent and/or effluent priority pollutant scans contained the following pollutants:

- Toxic pollutants designated in the NPDES permit and/or State WQSs that apply to the WWTP effluent or receiving water stream segment (i.e. New River)
- Organic toxic pollutants and toxic metals listed in 40 CFR Part 122, Appendix D, Table II and Table III
- Any toxic pollutants and hazardous substances required to be identified by existing dischargers if expected to be present, as listed in 40 CFR Part 122, Appendix D, Table V
- Any pollutants that are present and may cause a potential impact to the collection system, treatment works, worker health and safety or air quality
- Any pollutants that may impact treatment performance (i.e. process inhibition criteria)
- Any pollutants in sludge listed in 40 CFR 503 Standards for the Use or Disposal of Sewage Sludge.
- Any pollutants that are recommended by the Regional Water Quality Control Board (RWQCB)

USEPA recommends that the POTW conduct screening for any pollutant found in the priority pollutant scans of influent, effluent, or sludge to determine whether the pollutant should be listed as a POC. Although a pollutant is considered as a potential POC, the POTW may determine, based on the pollutant's concentration and on other data from industrial users and commercial dischargers, that the pollutant need not be selected as a POC for the full headworks analysis.

The USEPA provides guidance for identifying POCs, which is described in 2004 USEPA Local Limits Development Guidance. A pollutant is considered a potential POC if it meets any of the following screening criteria.

- 1) A pollutant is on USEPA's list of 15 pollutants that a WWTP should assume to be of concern.
- 2) A pollutant has a pre-existing local limit.
- 3) A pollutant is limited by a permit or applicable environmental criteria.
- 4) A pollutant has caused operational problems in the past.
- 5) A pollutant has important implications for the protection of the treatment works, collection system, or the health and safety of WWTP workers.

The POCs were examined by evaluating industrial discharge, influent, effluent, and sludge concentrations for regulatory compliance. Using the screening criteria above, 19 POCs were identified, as described in the following section.

### 2.3.2 Results

#### 1) National POCs

The USEPA has identified 15 pollutants often found in WWTP sludge and effluent that it considers potential POCs. The following are national POCs listed in *2004 USEPA Local Limits Development Guidance*.

| <u>10 Origina</u>             | I POCs                        | <u>5 New POCs</u>              |
|-------------------------------|-------------------------------|--------------------------------|
| <ul> <li>○ Arsenic</li> </ul> | <ul> <li>○ Cadmium</li> </ul> | <ul> <li>Molybdenum</li> </ul> |
| • Chromium                    | <ul> <li>Copper</li> </ul>    | ○ Selenium                     |
| <ul> <li>Cyanide</li> </ul>   | ∘ Lead                        | $\circ$ BOD <sub>5</sub>       |
| <ul> <li>Mercury</li> </ul>   | ○ Nickel                      | ∘ TSS                          |
| ○ Silver                      | ∘ Zinc                        | <ul> <li>Ammonia</li> </ul>    |

The USEPA recommends that each WWTP, at a minimum, screen for the presence of the 15 national pollutants using data on industrial user discharges and collected from samples of WWTP influent, effluent, and sludge.

All 15 pollutants were detected one or more times in the industrial discharge, influent, effluent, and/or sludge samples from 2010 through 2011 and will be carried forward for determination of local limits.

#### 2) Pre-existing Local Limits

In 2005, the City of Brawley established local limits for the various pollutants in the City's SUO (Section 22.18). However, these limits were based on instantaneous maximum concentration. Limits based on daily maximum concentration or on monthly average concentration were not established for pollutants. In this report, new limits for pollutants will be evaluated and established based on daily maximum and/or monthly average concentration.

#### 3) Pollutants Limited by Permit or Other Environmental Criteria

The Brawley NPDES permit contains effluent limitations for BOD<sub>5</sub>, TSS, oil and grease, ammonia, copper, selenium, cyanide, and bis(2-ethylhexyl)phthalate. BOD<sub>5</sub>, TSS, ammonia, copper, selenium, and cyanide are national POCs and therefore already included. From local limits sampling analysis data conducted in August 2012, Bis(2-ethylhexyl)phthalate was detected in industrial discharge (i.e. National Beef pretreated wastewater discharge), WWTP influent and effluent, or sludge samples. The average concentration was ranged from 0.05 mg/L to 0.16 mg/L. Therefore, bis(2-ethylhexyl)phthalate was included in potential POCs.

California WQSs have been established for several pollutants that have been detected in the plant influent or effluent. **Table 2.2** summarized WQS for specific pollutants which were detected in WWTP effluent monitoring data. Most of pollutants except bis(2-ethylhexyl)phthalate

are already included in national POCs. Bis(2-ethylhexyl)phthalate will be included in potential POCs.

o Bis(2-ethylhexyl)phthalate

#### 4) Sludge Quality Standards

Pollutants regulated by 40 CFR 503 include arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc. All of these pollutants are national POCs and have already been selected to be analyzed for local limits.

#### 5) Process Inhibition Criteria

All metal and organic compounds detected in recent plant monitoring have been selected as POCs. The threshold inhibition concentrations of these pollutants will be used to develop AHLs based on inhibition criteria.

#### 6) Collection System Criteria

Collection system criteria, including those to protect worker health and safety, are not amenable to MAHL analyses. Collection system-based limits are discussed in Chapter 7.

#### 7) Operational Considerations

Because of its potential to cause obstructions of the flow in the collection system, oil and grease was included as a POC.

### 2.3.3 Selection of POCs

Based on the pollutant screening analysis, the following 18 pollutants were identified as potential POCs and selected for further evaluation.

| ∘ Arsenic                      | ○ Nickel                           |
|--------------------------------|------------------------------------|
| ○ Cadmium                      | ∘ Selenium                         |
| • Chromium                     | ○ Silver                           |
| ∘ Copper                       | ∘ Zinc                             |
| ○ Cyanide (total)              | $\circ$ BOD <sub>5</sub>           |
| ○ Cyanide (free)               | ○ TSS                              |
| ∘ Lead                         | o Ammonia                          |
| ○ Mercury                      | o Bis(2-ethylhexyl)phthalate       |
| <ul> <li>Molybdenum</li> </ul> | <ul> <li>Oil and Grease</li> </ul> |

# 3. Flow and Load Analysis

### 3.1 Introduction

This section will discuss the flow and loading evaluation to determinate the pollutant load distribution by residential, commercial, and industrial dischargers. Current wastewater flow and loading were estimated from the last two years of water consumption data and WWTP influent flow data (*2009 Wastewater Rate Study*, and 2010 to 2011NPDES monthly monitoring reports).

### 3.2 Flow Analyses

### 3.2.1 Influent Flow

Brawley WWTP influent flow has been determined from measurement of the total wastewater flow into the treatment works. The measurement of wastewater flow includes all sources: residential, commercial, and industrial. Hauled waste is not allowed into the Brawley WWTP. **Table 3.1** presents the total wastewater flow at Brawley WWTP.

| Year | Average<br>Daily Flow | Max Daily Flow |  |
|------|-----------------------|----------------|--|
|      | (mgd)                 | (mgd)          |  |
| 2010 | 3.9                   | 4.2            |  |
| 2011 | 3.5                   | 3.8            |  |

#### Table 3.1 WWTP Influent Flow Rate

### **3.2.2 Controlled Flow**

The controlled flow includes industrial dischargers, hauled waste, and specific commercial users that the POTW intends to regulate with numerical local limits. As discussed earlier, hauled waste is not allowed into the WWTP and there are no commercial users discharging high-strength wastewater to the collection system except small auto shop and radiator repair shop. Therefore, the wastewater flow generated by industrial users is considered the controlled flow.

The City's current water billing system identifies customers by categories so that accounts can be classified by use class and used to identify each customer by sector and usage category. According to the City's water billing system, there is one industrial water user in Brawley. The only industrial user is a meat processing company, National Beef. National Beef discharges approximately 1.61 mgd of the meat process wastewater to the WWTP and has an agreement with the City to discharge up to 2.1 mgd. Another discharger, Pioneers Memorial Hospital, can

be classified as a significant discharger due to its wastewater flow and characteristics. The estimated wastewater flow is approximated 95,000 gpd and may contain toxic organic substances. **Table 3.2** summarizes the estimated wastewater flow from the two major dischargers.

| Dischargers                | Estimated<br>Wastewater Flow<br>(gpd) |
|----------------------------|---------------------------------------|
| National Beef              | 1,614,000                             |
| Pioneers Memorial Hospital | 95,000 <sup>1</sup>                   |
| Total                      | 1,709,000<br>(= 1.71 mgd)             |

#### Table 3.2 Controlled Wastewater Flow (2012)

### **3.2.3 Uncontrolled Flow**

Uncontrolled flow includes the flow from sources that the POTW does not control, such as residential sources, commercial sites, infiltration and inflow, storm water, and waste haulers. Although Brawley has a combined storm water and sewer pipe system, only a very small amount of storm flow is expected to flow into WWTP due to rare rainfall events. Waste haulers are not allowed to dispose waste at the Brawley WWTP.

The uncontrolled flows from residential (single family and multi-family), commercial, and other institutional/governmental sources are approximately 2.09 mgd. The estimated wastewater flow for each discharger category was calculated from total uncontrolled flow (i.e. 2.09 mgd) by multiplying percentage of discharger wastewater flow indicated in City's sewer rate study (2009). **Table 3.3** presents estimated wastewater by uncontrolled flow dischargers.

| Dischargers                | Estimated<br>Wastewater Flow |
|----------------------------|------------------------------|
|                            | (mgd)                        |
| Single Family              | 1.22                         |
| Multi Family               | 0.63                         |
| Commercial                 | 0.20                         |
| Institutional/governmental | 0.04                         |
| Total                      | 2.09                         |

#### **Table 3.3 Uncontrolled Wastewater Flow**

### 3.2.4 Summary of Flow

The following table summarizes the total influent flow, comprising flow from controlled and uncontrolled sources, for Brawley WWTP.

| Discharger              | Wastewater Flow |
|-------------------------|-----------------|
| Dischargers             | (mgd)           |
| Uncontrolled Wastewater | 2.09            |
| Controlled Wastewater   | 1.71            |
| Total                   | 3.80            |

#### **Table 3.4 Wastewater Flow Summary**

## 3.3 Load Analyses

The pollutant loadings for uncontrolled wastewater were calculated for use in determining the maximum allowable industrial loading (MAIL), which is the maximum loading that can be received at the POTW's headworks from all permitted industrial users. To estimate the MAIL, pollutant loadings from uncontrolled sources need to be subtracted from the MAHL. **Table 3.5** presents the uncontrolled source loadings for the Brawley WWTP. Residential and commercial loadings were calculated by multiplying the average residential and commercial pollutant concentrations obtained from sampling and analysis at residential and commercial sampling locations, by estimated wastewater flow (see **Table 3.3**).

The sampling for local limits was conducted to collect data required to determine POCs and to calculate local limits for these pollutants. Sampling was conducted at 7 different sampling locations. Sampling frequencies, procedures, and analytical methods followed the recommendations of the *2004 USEPA Local Limits Development Guidance*, 40 CFR Part 136 and Guidelines Establishing Test Procedures for the Analysis of Pollutants. The Local Limits Sampling Plan is presented in Appendix I.

In commercial wastewater, relatively high concentrations of toxic metals such as copper, lead, and zinc were detected. The sampling for commercial wastewater was conducted at a manhole that receives wastewater from various commercial dischargers such as restaurants, a flower shop, eye doctor offices, an auto shop, and a radiator repair shop. The high metal content in the samples may be discharged from the auto shop and/or the radiator repair shop. Therefore, it is recommended that the City investigate the wastewater discharge from the auto shop and radiator repair shop and prohibit the wastewater discharge to City's sewer system.

High BOD<sub>5</sub> and TSS contents were also detected in commercial wastewater. Commercial garbage grinders are suspected of being a source of high BOD<sub>5</sub> and TSS in restaurant dischargers. It is suggested that the City must educate the users to reduce these high BOD<sub>5</sub> and

TSS loadings not flowing into existing sewer system. The City may also elect to prohibit the use of commercial garbage grinders.

WWTP influent loadings are also presented in **Table 3.5**. WWTP influent loadings will be compared to the MAHL for each POC in order to determine the need for local limits. When the average influent loading of pollutants exceeds 60 percent of the MAHL or when the maximum daily influent loading of pollutants exceeds 80 percent of the MAHL, local limits are needed. The detail will be discussed in Chapter 5.

The concentrations of BOD and TSS in some of the commercial samples taken on 8/4/2012, 8/6/2012 and 8/7/2012 were unusually high. These samples skewed the TSS and BOD results for the commercial sources. In calculating the pollutant concentration and loading summary in Table 3.5 below, the BOD for commercial sources for the days 8/4/2012 and 8/7/2012 was disregarded, since the sample values were 2-3 times the average. The TSS samples for 8/4, 8/6 and 8/7/2012 were also disregarded since they were more than three times the average and are not considered typical. Upon correction of the commercial BOD and TSS concentrations and loads, the calculated headworks loads for the treatment plant based on contributions from the various sources were within 10% of the measured plant influent concentrations. The data for the residential sources was more consistent and was used directly.

|                 | Uncontrolled Sources |                     |                 |                     | WWTP Influent   |                     |
|-----------------|----------------------|---------------------|-----------------|---------------------|-----------------|---------------------|
| Pollutants      | Residential          |                     | Commercial      |                     | wwwiri innident |                     |
|                 | Conc.<br>(mg/L)      | Loading<br>(lb/day) | Conc.<br>(mg/L) | Loading<br>(lb/day) | Conc.<br>(mg/L) | Loading<br>(lb/day) |
| Arsenic         | ND                   | -                   | ND              | -                   | ND              | -                   |
| Cadmium         | 0.001                | 0.015               | 0.0008          | 0.0016              | ND              | -                   |
| Chromium        | 0.0042               | 0.065               | 0.0077          | 0.015               | 0.0047          | 0.15                |
| Copper          | 0.09                 | 1.4                 | 0.29            | 0.57                | 0.065           | 2                   |
| Cyanide (total) | ND                   | -                   | ND              | -                   | ND              | -                   |
| Cyanide (free)  | ND                   | -                   | ND              | -                   | ND              | -                   |
| Lead            | 0.001                | 0.016               | 0.34            | 0.66                | 0.0039          | 0.12                |
| Mercury         | ND                   | -                   | 0.00028         | 0.0006              | ND              | -                   |
| Molybdenum      | 0.0056               | 0.087               | 0.011           | 0.021               | 0.02            | 0.63                |
| Nickel          | 0.0043               | 0.067               | 0.008           | 0.017               | 0.0078          | 0.25                |
| Selenium        | ND                   | -                   | ND              | -                   | ND              | -                   |
| Silver          | 0.00055              | 0.0085              | 0.003           | 0.006               | ND              | -                   |

#### Table 3.5 Pollutant Concentration and Loading Summary – Uncontrolled Sources

Brawley Local Limits Study 2013

|                                | Uncontrolled Sources |                     |                 |                     | WWTP Influent   |                     |
|--------------------------------|----------------------|---------------------|-----------------|---------------------|-----------------|---------------------|
| Pollutants                     | Residential          |                     | Commercial      |                     | www.rr mindent  |                     |
|                                | Conc.<br>(mg/L)      | Loading<br>(Ib/day) | Conc.<br>(mg/L) | Loading<br>(Ib/day) | Conc.<br>(mg/L) | Loading<br>(Ib/day) |
| Zinc                           | 0.14                 | 2.2                 | 0.29            | 0.6                 | 0.2             | 6.4                 |
| BOD <sub>5</sub>               | 236                  | 3,637               | 418             | 822                 | 162             | 5,136               |
| TSS                            | 163                  | 2,508               | 488             | 958                 | 397             | 12,570              |
| Ammonia                        | 27                   | 414                 | 18              | 36                  | 57              | 1,818               |
| Oil and Grease (Total)         | 22                   | 332                 | 30              | 60                  | 10              | 319                 |
| Bis(2-<br>ethylhexyl)phthalate | 0.071                | 1.1                 | 0.089           | 0.18                | 0.18            | 5.2                 |

# 4. Removal Efficiencies

## 4.1 Introduction

The removal efficiency is the fraction or percentage of the influent pollutant loading that is removed from the waste stream across an entire wastewater treatment works or specific wastewater treatment unit within the works. To calculate MAHLs, the removal efficiency values for each POC must be determined. There are three main types of removal efficiency calculation methodologies: 1) Average Daily Removal Efficiency (ADRE), 2) Mean Removal Efficiency (MRE), and 3) Decile Method. The appropriate removal efficiency methodology depends upon data quantity and quality.

#### Average Daily Removal Efficiency (ADRE)

The ADRE is calculated by first determining the daily removal efficiency for each pair of influent and effluent values (i.e., an influent value and an effluent value from the same sampling day). These sets of daily removal efficiencies are then averaged to determine the ADRE for a pollutant. To use the ADRE method, both an influent and an effluent data point for each specific sampling day are required, and the influent value must be greater than zero.

$$R_{WWTP} = \frac{\sum (I_N - E_{WWTP,N})/I_N}{N}$$
$$R_{PRIM} = \frac{\sum (I_N - E_{PRIM,N})/I_N}{N}$$
$$R_{SEC} = \frac{\sum (I_N - E_{SEC,N})/I_N}{N}$$

| Where, | $R_{WWTP}$           | = | Plant removal efficiency from headworks to plant effluent, as a decimal         |
|--------|----------------------|---|---------------------------------------------------------------------------------|
|        | $R_{\text{PRIM}}$    | = | Removal efficiency from headworks to primary treatment effluent, as a decimal   |
|        | $R_{SEC}$            | = | Removal efficiency from headworks to secondary treatment effluent, as a decimal |
|        | I <sub>N</sub>       | = | WWTP influent pollutant concentration at the headworks, mg/L                    |
|        | E <sub>WWTP, N</sub> | = | WWTP effluent pollutant concentration, mg/L                                     |
|        | E <sub>PRIM, N</sub> | = | Primary treatment effluent pollutant concentration, mg/L                        |
|        | $E_{SEC,N}$          | = | Secondary treatment effluent pollutant concentration, mg/L                      |
|        | Ν                    | = | Paired observations, numbered 1 to N                                            |

#### Mean Removal Efficiency (MRE)

The MRE is calculated by using the same formula as for the ADRE, but instead of using individual influent and effluent values, the average of all influent values and the average of all effluent values are used in the equation. Unlike the ADRE method, the MRE method does not require paired influent and effluent values.

$$R_{WWTP} = \frac{\overline{I_r} - \overline{E_{WWTP,t}}}{\overline{I_r}}$$
$$R_{SEC} = \frac{\overline{I_r} - \overline{E_{SEC,y}}}{\overline{I_r}}$$

$$R_{PRIM} = \frac{\overline{I_r} - \overline{E_{PRIM,x}}}{\overline{I_r}}$$

Where,

| $R_{WWTP}$           | = | Plant removal efficiency from headworks to plant effluent, as a decimal         |
|----------------------|---|---------------------------------------------------------------------------------|
| R <sub>PRIM</sub>    | = | Removal efficiency from headworks to primary treatment effluent, as a decimal   |
| $R_{SEC}$            | = | Removal efficiency from headworks to secondary treatment effluent, as a decimal |
| l <sub>r</sub>       | = | WWTP influent pollutant concentration at headworks, mg/L                        |
| Ewwtp, t             | = | WWTP effluent pollutant concentration, mg/L                                     |
| E <sub>PRIM, x</sub> | = | Primary treatment effluent pollutant concentration, mg/L                        |
| $E_{SEC,y}$          | = | Secondary treatment effluent pollutant concentration, mg/L                      |
| t                    | = | Plant effluent samples, numbered 1 to t                                         |
| r                    | = | Plant influent samples, numbered 1 to r                                         |
| х                    | = | Primary treatment effluent samples, numbered 1 to x                             |
| у                    | = | Secondary treatment effluent samples, numbered 1 to y                           |

#### Decile Method

Unlike the above methods, the decile method considers how often the actual daily removal efficiency will be above or below a specified removal rate. The decile method requires at least nine daily removal efficiency values based on paired sets of influent and effluent data. By sorting daily removal efficiency from highest to lowest, it calculates the percentage of the daily removal efficiency. The decile method is similar to a data set median but it divides the ordered data set into 10 equal parts. 10 percent of the data set is below the first decile; 20 percent of the data is below the second decile, etc. The fifth decile is equivalent to the data set medium. The USEPA recommends using the seventh decile removal for calculating sludge quality-based AHLs and third decile removal for calculating water quality-based AHLs.

## 4.2 Sources of Removal Efficiency Data

Sample analysis data for influent and final effluent were utilized to calculate site-specific removal efficiencies using the mean removal efficiency (MRE) methodology. For pollutants that were detected in influent but not in the effluent, ½ of the value of the method detection level was substituted for effluent results reported as non-detected. In the absence of sufficient site-specific performance data for certain pollutants, removal efficiencies reported by USEPA (i.e. 2004 USEPA Local Limits Development Guidance, Appendix R) were used. These literature values represent median removal efficiencies from a database of 40 wastewater treatment plants. Removal efficiency calculations for POCs are shown in Appendix V.

## 4.3 Selection of Representative Removal Efficiency

The removal efficiencies for each pollutant are included in the following **Table 4.1**. Because the Brawley WWTP consists of the Biolac<sup>®</sup> activated sludge process without a separate primary treatment process, the primary removal efficiency was not applied to calculate AHLs based on process inhibition (i.e. nitrification and activated sludge). The final effluent removal efficiency was applied to AHLs calculations based on NPDES permit limits and sludge quality standards.

Where possible, removal efficiencies for the POCs were calculated from site-specific data. Removal efficiencies for arsenic, cadmium, cyanide (total and free), lead, mercury, and molybdenum, which had insufficient data to calculate site-specific values, were cited from 2004 USEPA Local Limits Development Guidance.

In addition to sample analysis data of bis(2-ethylhexyl)phthalate, 2011 - 2012 monthly WWTP effluent concentration data were reviewed for removal efficiency calculation. During local limits sampling, the WWTP effluent concentration of bis(2-ethylhexyl)phthalate showed much higher levels than the composite sample data of the 2011 - 2012 WWTP effluent monitoring data. This might be that the sample contacted plastic tubing, gloves or other PVC based material resulting

in high bis(2-ethylhexyl)phthalate concentrations during sample collection. Therefore, the first five pairs of data were not used for removal efficiency calculation.

The historical bis(2-ethylhexyl)phthalate concentration in WWTP effluent is presented in Appendix II.

| POCs                           | Removal<br>Efficiency | Source                           |
|--------------------------------|-----------------------|----------------------------------|
| Arsenic                        | 45%                   | 2004 USEPA Local Limits Guidance |
| Cadmium                        | 67%                   | 2004 USEPA Local Limits Guidance |
| Chromium                       | 88%                   | Sampling Data (MRE)              |
| Copper                         | 82%                   | Sampling Data (MRE)              |
| Cyanide (total)                | 69%                   | 2004 USEPA Local Limits Guidance |
| Cyanide (free)                 | 69%                   | 2004 USEPA Local Limits Guidance |
| Lead                           | 61%                   | 2004 USEPA Local Limits Guidance |
| Mercury                        | 60%                   | 2004 USEPA Local Limits Guidance |
| Molybdenum                     | 63%                   | 2004 USEPA Local Limits Guidance |
| Nickel                         | 64%                   | Sampling Data (MRE)              |
| Selenium                       | 39%                   | Sampling Data (MRE)              |
| Silver                         | 58%                   | Sampling Data (MRE)              |
| Zinc                           | 88%                   | Sampling Data (MRE)              |
| BOD <sub>5</sub>               | 97%                   | Sampling Data (MRE)              |
| TSS                            | 98%                   | Sampling Data (MRE)              |
| Ammonia-N                      | 99.8%                 | Sampling Data (MRE)              |
| Oil and Grease                 | 67%                   | Sampling Data (MRE)              |
| Bis(2-<br>ethylhexyl)phthalate | 98%                   | Sampling Data (MRE)              |

#### Table 4.1 Final Effluent Removal Efficiency Summary

# 5. MAHL Analyses

## 5.1 Introduction

The MAHL is an estimate of the upper limit of pollutant loading to a WWTP and is intended to prevent pass through or interference. The MAHL is the maximum pollutant load in pounds per day that the WWTP can receive without exceeding regulatory criteria or experiencing plant operation upset. The MAHL analysis for a single POC is basically calculated in following three steps:

- Determine WWTP removal efficiency for the POC (Section 4)
- Calculate the allowable headworks loading (AHL) for each environmental criterion (Section 5)
- Designate as the MAHL the most stringent AHL for the POC (Section 5)

## 5.2 MAHL Analysis Method

### **5.2.1 Select AHL Equations**

An AHL is the estimated maximum loading of a pollutant that can be received at the WWTP headworks. The maximum loading of a pollutant should not cause violation of WWTP discharge limits or other environmental criteria. An AHL is calculated for each applicable criterion: water quality, sludge quality, and the various forms of interference. The AHLs for each POC are calculated based on the applicable environmental criteria, plant flow rates, and plant removal efficiencies. After calculating a series of AHLs for each POC, the lowest AHL is typically chosen as the MAHL.

AHLs were calculated based on the following applicable criteria:

- Brawley WWTP NPDES Permit (No. CA0104523, expire on May 19, 2015)
- WWTP Design Capacity (for conventional pollutants)
- California Water Quality Standards (WQS, May 2000))
- Plant Inhibition: 1) Activated Sludge Inhibition, and 2) Nitrification Inhibition
- Sludge Quality Standards

### 5.2.2 Calculate AHLs

Local limits development uses a mass-balance approach to determine the AHLs and calculates the amount of loading received at the POTW headworks that will still meet the environmental or treatment plant criteria that apply to each pollutant. In calculating AHLs, steady-state equations were used for conservative pollutants such as metals because the amount of pollutant loading was conserved throughout the treatment process.

#### 1) NPDES Permit AHL

The NPDES permit limit is the most effective means of restricting the discharge of toxic substances. The AHL based on the NPDES permit limit was calculated for each POC using the following equation:

(834) (Cupped) (Ourset)

|        |                      | AHL <sub>N</sub> | $_{PDES} = \frac{(0.51)(0_{NPDES})(Q_{WWTP})}{(1 - R_{WWTP})}$         |
|--------|----------------------|------------------|------------------------------------------------------------------------|
| Where, | AHL <sub>NPDES</sub> | =                | AHL based on NPDES permit limit, lb/day                                |
|        | $C_{\text{NPDES}}$   | =                | NPDES permit limit, mg/L                                               |
|        | $Q_{WWTP}$           | =                | WWTP average flow rate, MGD                                            |
|        | $R_{WWTP}$           | =                | WWTP removal efficiency from headworks to plant effluent, as a decimal |
|        | 8.34                 | =                | Conversion factor                                                      |

The AHL calculations based on NPDES permit limits are presented in Appendix VI.

#### 2) WWTP Design Capacity

For conventional pollutants, particularly BOD<sub>5</sub>, TSS, and ammonia, USEPA recommends considering design capacity of the WWTP in formulating the AHLs. The design capacity of BOD<sub>5</sub> and TSS were based upon a design concentration of 175 mg/L and 190 mg/L in WWTP influent and an influent flow rate of 3.8 mgd (average monthly flow from 2010 to 2012). The design capacity of ammonia was based upon a design concentration of 37 mg/L.

The AHL based on design capacity was calculated using the following equation:

 $AHL_{DESIGN} = (8.34) (C_{DESIGN}) (Q_{WWTP})$ 

| Where, | AHLDESIGN           | = | AHL based on WWTP design capacity, lb/day |
|--------|---------------------|---|-------------------------------------------|
|        | $C_{\text{DESIGN}}$ | = | Design capacity for $BOD_5$ and TSS, mg/L |
|        | Q <sub>WWTP</sub>   | = | WWTP average flow rate, MGD               |
|        | 8.34                | = | Conversion factor                         |

The AHL calculations based on WWTP design capacity are presented in Appendix VI.

#### 3) Water Quality Standards AHL

The Brawley NPDES permit does not have effluent discharge limits for all of the POCs established during the local limits study. For these pollutants, USEPA recommends basing the AHL on California WQS. California WQS provide allowable water quality criteria to protect the public health and particular water bodies. By using the equation below and maximum pollutant level in the California WQS, the AHL based on WQS was calculated for each POC:

$$AHL_{WQS} = \frac{(8.34) (C_{WQS})(Q_{WWTP})}{(1 - R_{WWTP})}$$

Where,

| AHL <sub>WQS</sub> | = | AHL based on water quality criteria, lb/day                            |
|--------------------|---|------------------------------------------------------------------------|
| $C_{WQS}$          | = | California WQS, mg/L                                                   |
| Q <sub>WWTP</sub>  | = | WWTP average flow rate, MGD                                            |
| $R_{WWTP}$         | = | WWTP removal efficiency from headworks to plant effluent, as a decimal |
| 8.34               | = | Conversion factor                                                      |

The AHL calculations based on WQS are presented in Appendix VI.

#### 4) Plant Process Inhibition AHL

Certain pollutant levels in wastewater or sludge can cause operational problems for biological treatment processes. Disruption or inhibition by pollutants (especially metals) can interfere with a plant's ability to remove  $BOD_5$  and other pollutants. Although the Brawley WWTP has not experienced any past inhibition problems, the determination of AHLs based on biological process inhibition criteria can prevent future loadings that may cause inhibition.

The 2004 USEPA Local Limits Development Guidance provides literature-based inhibition data for activated sludge and nitrification. Inhibition-based AHLs were calculated for secondary treatment processes, including activated sludge and nitrification, using these values. Where ranges of values were given, the most stringent was selected. However, when influent pollutant concentrations were higher than literature-based inhibition values (e.g. copper and zinc), influent pollutant concentration was used for AHLs calculation.

The AHL calculations based on inhibition threshold values are presented in Appendix VI.

#### Activated Sludge Inhibition

The equation below was used to calculate AHLs based on activated sludge inhibition. The equation calculates the AHL for conservative pollutants such as metals. **Table 5.1** presents the threshold concentration of activated sludge inhibition from 2004 USEPA Local Limits Development Guidance Appendix G. As discussed in earlier section, City operates Biolac<sup>®</sup> process without separate primary clarifiers. Therefore, removal efficiency ( $R_{PRIM}$ ) through primary process is considered as zero.

$$AHL_{AS} = \frac{(8.34) \left(C_{AS\_INHIBI}\right) \left(Q_{WWTP}\right)}{\left(1 - R_{PRIM}\right)}$$

Where,

| AHL <sub>AS</sub>              | = | AHL based on activated sludge inhibition, lb/day                              |
|--------------------------------|---|-------------------------------------------------------------------------------|
| $C_{\text{AS}\_\text{INHIBI}}$ | = | Activated sludge inhibition criteria, mg/L                                    |
| Q <sub>WWTP</sub>              | = | WWTP average flow rate, MGD                                                   |
| R <sub>PRIM</sub>              | = | Removal efficiency from headworks to primary treatment effluent, as a decimal |
| 8.34                           | = | Conversion factor                                                             |

#### Table 5.1 Activated Sludge Inhibition Threshold Levels

| Pollutants      | Inhibition Threshold Level<br>(mg/L) |
|-----------------|--------------------------------------|
| Ammonia         | 480                                  |
| Arsenic         | 0.1                                  |
| Cadmium         | 1                                    |
| Chromium        | 1                                    |
| Copper          | 1                                    |
| Cyanide (total) | 0.1                                  |
| Lead            | 1                                    |
| Mercury         | 0.1                                  |
| Nickel          | 1.0                                  |
| Zinc            | 0.3                                  |

#### Nitrification Inhibition

The equation below was used to calculate AHLs based on nitrification inhibition. The equation calculates the AHL for conservative pollutants such as metals. **Table 5.2** presents the threshold concentration of nitrification inhibition from 2004 USEPA Local Limits Development Guidance Appendix G. As discussed in earlier section, City operates Biolac<sup>®</sup> process without separate primary clarifiers. Therefore, removal efficiency ( $R_{PRIM}$ ) through primary process is considered as zero.

$$AHL_{NITRI} = \frac{(8.34) \left(C_{NITRI\_INHIBI}\right) \left(Q_{WWTP}\right)}{\left(1 - R_{PRIM}\right)}$$

| Where, | AHL <sub>NITRI</sub>      | = | AHL based on nitrification inhibition, lb/day                                 |
|--------|---------------------------|---|-------------------------------------------------------------------------------|
|        | C <sub>NITRI_INHIBI</sub> | = | Nitrification inhibition criteria, mg/L                                       |
|        | Q <sub>WWTP</sub>         | = | WWTP average flow rate, MGD                                                   |
|        | R <sub>PRIM</sub>         | = | Removal efficiency from headworks to primary treatment effluent, as a decimal |
|        | 8.34                      | = | Conversion factor                                                             |

#### **Table 5.2 Nitrification Inhibition Threshold Levels**

| Pollutants | Inhibition Threshold Level<br>(mg/L) |
|------------|--------------------------------------|
| Arsenic    | 1.5                                  |
| Cadmium    | 5.2                                  |
| Chromium   | 0.25                                 |
| Copper     | 0.5 <sup>1</sup>                     |
| Cyanide    | 0.34                                 |
| Lead       | 0.5                                  |
| Nickel     | 0.25                                 |
| Zinc       | 0.4 <sup>2</sup>                     |

1. Cited from Skinner and Parker (1961) and Russell and et al. (1982)

2. Maximum WWTP influent zinc concentration without nitrification inhibition. Also, cited from John T. Fox and et al. (2006) and Kelly II, R. T. and et al. (2004)

#### 5) Sludge AHL

According to 40 CFR 503, Standards for the Use or Disposal of Sewage Sludge, pollutant levels are established for three disposal alternatives: land application, surface disposal, and incineration. The current Brawley NPDES permit specifies that all sludge and/or solids generated at the treatment plant are to be disposed, treated, or applied to land in accordance with 40 CFR Part 503. Regardless of how the WWTP disposes of sludge, *2004 USEPA Local Limits Development Guidance* recommends considering use of land application "clean sludge" values from 40 CFR 503.13 in AHL calculations. Use of these criteria can improve a plant's beneficial use options for disposal of sludge. Furthermore, these standards are consistent with the objectives of the National Pretreatment Program listed at 40 CFR 403.2.

40 CFR 503 establishes limitations for nine common metals (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc). Additionally, the Brawley NPDES permit requires other constituents (TKN, ammonia, nitrate, phosphorus, potassium, total solids, fecal coliform, total petroleum hydrocarbons, cyanide, and bis(2-ethylhexyl)phthalate) to be sampled and analyzed from sludge prior to disposal.

The equation below was used to calculate the AHLs based on sludge land application:

$$AHL_{SLDG} = \frac{(8.34) (C_{SLGSTD})(\frac{PS}{100}) (Q_{SLDG})(G_{SLDG})}{R_{WWTP}}$$

| Where, | AHL <sub>SLDG</sub> | = | AHL based on sludge, lb/day                                       |
|--------|---------------------|---|-------------------------------------------------------------------|
|        | $C_{\text{SLGTD}}$  | = | Sludge standard – "Clean Sludge" at 40 CFR Part 503,<br>mg/L      |
|        | PS                  | = | Percent solids of sludge to disposal                              |
|        | $Q_{SLDG}$          | = | Total sludge flow rate to disposal, mgd                           |
|        | $R_{WWTP}$          | = | Removal efficiency from headworks to plant effluent, as a decimal |
|        | G <sub>SLDG</sub>   | = | Specific gravity of sludge, kg/L                                  |
|        | 8.34                | = | Conversion factor                                                 |
|        |                     |   |                                                                   |

The AHL calculations based on biosolids criteria are presented in Appendix VI.

## 5.3 MAHL Analysis Results

Protecting water quality (NPDES permit standard and WQS), sludge quality, and plant processes typically requires selection of the lowest AHL value for each potential POC for use as the MAHL. **Table 5.3** presents the summary of the calculated AHLs that will serve as MAHLs for this evaluation.

# 5.4 Comparison of Influent Loadings and MAHLs for the Brawley WWTP

The summaries of influent loadings and the calculated MAHLs for the Brawley WWTP are presented in **Table 5.4**. MAHLs for all POCs were higher than WWTP influent loadings. *2004 USEPA Local Limits Development Guidance* suggests that local limits are needed when the following criteria are satisfied:

- Average influent loading of a toxic pollutant exceeds 60 percent of the MAHL
- Maximum daily influent loading of a toxic pollutant exceeds 80 percent of the MAHL any time in the 12-month period preceding the analysis
- Monthly average influent loading reaches 80 percent of average design capacity for BOD, TSS, and ammonia during any one month in the 12-month period preceding the analysis

**Table 5.4** summarizes the comparison of WWTP influent loadings to MAHLs recommended by 2004 USEPA Local Limits Development Guidance. Most of the influent pollutant loadings at the WWTP were far below the calculated MAHLs and did not meet the stated criteria for local limit implementation. However, molybdenum, BOD<sub>5</sub>, TSS, ammonia and bis(2-ethylhexyl)phthalate satisfied the criteria for local limit implementation. The average influent loading and maximum daily influent loading of these pollutants exceeded 60 percent and 80 percent of the MAHL, respectively. Especially, BOD<sub>5</sub>, TSS and ammonia reached 80 percent of average design capacity suggesting that local limits are needed.

Except for molybdenum, BOD<sub>5</sub>, TSS, ammonia and bis(2-ethylhexyl)phthalate, other pollutants are unlikely to cause problems for the plant performance at current loadings. However, it is recommended that the City establish local limits for the specified set of pollutants, with the exception of silver, to prevent increases in loadings from current industrial users and/or loadings from new industrial users from reaching levels that could jeopardize plant performance. The specified set of pollutants include 1) pollutants that qualified for local limits implementation (i.e. copper, molybdenum, BOD<sub>5</sub>, TSS, ammonia, and bis(2-ethylhexyl)phthalate), 2) other national POCs (i.e., arsenic, cadmium, chromium, cyanide (total), lead, mercury, nickel, selenium, zinc), and 3) other site specific pollutants (i.e. cyanide (free), oil and grease).

Among the pollutants, the ratio of influent silver loading to the calculated MAHL was very low (the maximum influent loading-to-MAHL ratio was 2.5%) and it does not appear that control of industrial discharges for this pollutant is required.

|                            |                 |                    |          | AHLs                              |                             |                   |          |                             |
|----------------------------|-----------------|--------------------|----------|-----------------------------------|-----------------------------|-------------------|----------|-----------------------------|
| POCs                       | NPDES<br>Permit | Design<br>Criteria | WQS      | Activated<br>Sludge<br>Inhibition | Nitrification<br>Inhibition | Sludge<br>Quality | MAHLs    | Controlling<br>Criteria     |
|                            | (lb/day)        | (lb/day)           | (lb/day) | (lb/day)                          | (lb/day)                    | (lb/day)          | (lb/day) |                             |
| Arsenic                    | -               | -                  | 0.86     | 3.2                               | 47                          | 0.62              | 0.62     | Sludge Quality              |
| Cadmium                    | -               | -                  | 0.21     | 32                                | 165                         | 0.40              | 0.21     | WQS                         |
| Chromium                   | -               | -                  | -        | 32                                | 7.9                         | -                 | 7.9      | Nitrification Inhibition    |
| Copper                     | 3.8             | -                  | -        | 32                                | 16                          | 12                | 3.8      | NPDES Permit                |
| Cyanide (total)            | -               | -                  | -        | 3.2                               | 11                          | -                 | 3.2      | Activated Sludge Inhibition |
| Cyanide (free)             | 0.31            | -                  | -        | -                                 | -                           | -                 | 0.31     | NPDES Permit                |
| Lead                       | -               | -                  | 1.5      | 32                                | 16                          | 3.3               | 1.5      | WQS                         |
| Mercury                    | -               | -                  | 0.004    | 3.2                               | -                           | 0.19              | 0.004    | WQS                         |
| Molybdenum                 | -               | -                  | -        | -                                 | -                           | 0.81              | 0.81     | Sludge Quality              |
| Nickel                     | -               | -                  | 15       | 32                                | 7.9                         | 4.4               | 4.4      | Sludge Quality              |
| Selenium                   | 0.21            | -                  | -        | -                                 | -                           | 1.7               | 0.21     | NPDES Permit                |
| Silver                     | -               | -                  | 3.3      | -                                 | -                           | -                 | 3.3      | WQS                         |
| Zinc                       | -               | -                  | 101      | 9.5                               | 13                          | 22                | 9.5      | Activated Sludge Inhibition |
| BOD <sub>5</sub>           | -               | 5,539              | -        | -                                 | -                           | -                 | 5, 539   | Design Criteria             |
| TSS                        | -               | 6,014              | -        | -                                 | -                           | -                 | 6,014    | Design Criteria             |
| Ammonia-N                  | -               | 1,171              | -        | 15,192                            | -                           | -                 | 1,171    | Design Criteria             |
| Oil and Grease             | 2,384           | -                  | -        | -                                 | -                           | -                 | 2,384    | NPDES Permit                |
| Bis(2-ethylhexyl)phthalate | 10              | -                  | -        | -                                 | -                           | -                 | 10       | NPDES Permit                |

### Table 5.3 Summary of AHLs and MAHLs

| POCs                       | MAHL     | 60% of<br>MAHL | Average<br>Influent<br>Loading | New Local<br>Limits<br>Required? | 80% of<br>MAHL | Maximum<br>Influent<br>Loading | New Local<br>Limits<br>Required? | 80% of<br>Design<br>Capacity | Monthly<br>Average<br>Influent<br>Loading | New Local<br>Limits<br>Required? |
|----------------------------|----------|----------------|--------------------------------|----------------------------------|----------------|--------------------------------|----------------------------------|------------------------------|-------------------------------------------|----------------------------------|
|                            | (lb/day) | (lb/day)       | (lb/day)                       |                                  | (lb/day)       | (lb/day)                       |                                  | (lb/day)                     | (lb/day)                                  |                                  |
|                            |          | (A)            | (B)                            | (B) > (A)                        | (C)            | (D)                            | (D) > (C)                        | (E)                          | (F)                                       | (F) > (E)                        |
| Arsenic                    | 0.62     | 0.37           | -                              | No                               | 0.50           | -                              | No                               | -                            | -                                         | -                                |
| Cadmium                    | 0.21     | 0.13           | -                              | No                               | 0.17           | -                              | No                               | -                            | -                                         | -                                |
| Chromium                   | 7.9      | 4.7            | 0.15                           | No                               | 6.3            | 0.21                           | No                               | -                            | -                                         | -                                |
| Copper                     | 3.8      | 2.3            | 2.0                            | No                               | 3.0            | 2.8                            | No                               | -                            | -                                         | -                                |
| Cyanide (total)            | 3.2      | 1.9            | -                              | No                               | 2.5            | -                              | No                               | -                            | -                                         | -                                |
| Cyanide (free)             | 0.31     | 0.18           | -                              | No                               | 0.25           | -                              | No                               | -                            | -                                         | -                                |
| Lead                       | 1.5      | 0.93           | 0.12                           | No                               | 1.2            | 0.16                           | No                               | -                            | -                                         | -                                |
| Mercury                    | 0.004    | 0.0024         | -                              | No                               | 0.0032         | -                              | No                               | -                            | -                                         | -                                |
| Molybdenum                 | 0.81     | 0.49           | 0.63                           | Yes                              | 0.65           | 0.79                           | Yes                              | -                            | -                                         | -                                |
| Nickel                     | 4.4      | 2.7            | 0.25                           | No                               | 3.6            | 0.31                           | No                               | -                            | -                                         | -                                |
| Selenium                   | 0.21     | 0.13           | -                              | No                               | 0.17           | 0.06                           | No                               | -                            | -                                         | -                                |
| Silver                     | 3.3      | 1.98           | -                              | No                               | 2.6            | 0.012                          | No                               | -                            | -                                         | -                                |
| Zinc                       | 9.5      | 5.7            | 6.4                            | Yes                              | 7.6            | 12.3                           | Yes                              | -                            | -                                         | -                                |
| BOD <sub>5</sub>           | 5,539    | 3,323          | 5,136                          | Yes                              | 4,431          | 8,862                          | Yes                              | -                            | -                                         | -                                |
| TSS                        | 6,014    | 3,608          | 12,570                         | Yes                              | 4,811          | 17,091                         | Yes                              | 4,431                        | 5,507                                     | Yes                              |
| Ammonia-N                  | 1,171    | 703            | 1,818                          | Yes                              | 937            | 2,247                          | Yes                              | 4,811                        | 6,900                                     | Yes                              |
| Oil and Grease             | 2,384    | 1,430          | 319                            | No                               | 1,907          | 475                            | No                               | 937                          | 950                                       | Yes                              |
| Bis(2-ethylhexyl)phthalate | 10       | 6.0            | 5.7                            | No                               | 8.0            | 8.2                            | Yes                              | -                            | -                                         | -                                |

### Table 5.4 Comparison of WWTP Influent Loadings to MAHLs

## 6. Designating and Implementing Local Limits

## 6.1 Introduction

This section describes control strategies for pollutants including Maximum Allowable Industrial Loadings (MAILs) and numeric local limits. MAILs were calculated using estimates of loadings from uncontrolled sources and hauled waste, a safety factor, and a growth allowance.

## 6.2 Control Strategies for Pollutants

### 6.2.1 MAIL Analyses

MAHLs are estimates of the maximum combined loadings that can be received at the POTW's headworks from all sources. MAILs represent the pollutant loadings the POTW can receive from controlled sources including industrial users as well as any other users that the POTW chooses to control through local limits. The MAIL was calculated from the MAHL by subtracting estimate of loadings from uncontrolled sources, loadings from hauled waste, and growth allowance. The MAHL is further adjusted with a safety factor. The estimated MAHLs for pollutants are presented in **Table 5.3**. The MAIL was calculated for each POC using the following equation:

 $MAIL = MAHL (1 - SF) - (L_{UNC} + HW + GA)$ 

| Where, | MAIL             | = | Maximum allowable industrial loading, lb/day                         |
|--------|------------------|---|----------------------------------------------------------------------|
|        | MAHL             | = | Maximum allowable headworks loading, lb/day                          |
|        | SF               | = | Safety factor                                                        |
|        | L <sub>UNC</sub> | = | Loadings from uncontrolled sources, lb/day                           |
|        | HW               | = | Loadings from hauled waste, lb/day (No hauled waste to Brawley WWTP) |
|        | GA               | = | Growth allowance                                                     |

As noted, the Brawley WWTP does not accept hauled waste, nor does it anticipate doing so in the future.

#### Uncontrolled Source Loadings

Uncontrolled sources include residential sources and commercial dischargers. As discussed in Section 3.2.3, uncontrolled flow from these sources was estimated at 2.09 mgd. The uncontrolled source loadings were calculated by multiplying the average residential and commercial pollutant concentrations obtained through sampling and analysis at residential and

commercial sampling locations, by the estimated wastewater flow from each of these groups of users. The following equation was used for the uncontrolled loading calculation:

 $L_{UNC} = (C_{UNC})(Q_{UNC})(8.34)$ 

| Where, | L <sub>UNC</sub> | = | Uncontrolled loading, lb/day               |
|--------|------------------|---|--------------------------------------------|
|        | C <sub>UNC</sub> | = | Uncontrolled pollutant concentration, mg/L |
|        | $Q_{UNC}$        | = | Uncontrolled flow rate, mgd                |
|        | 8.34             | = | Unit conversion factor                     |

Table 6.1 summarizes the uncontrolled source loadings of POCs.

#### Safety Factor

The magnitude of the safety factor is site-specific, depending on local conditions. *2004 USEPA Local Limits Development Guidance* recommends a minimum 10 percent safety factor in order to address data uncertainties that can affect the ability of the POTW to calculate accurate local limits. A safety factor of zero is assumed for BOD<sub>5</sub>, TSS, and ammonia because the WWTP design incorporates max month and peak day safety factors.

#### Expansion/Growth Allowance

United States Census data show that the population of Brawley increased 9.7% during the period from 2000 to 2010, an annual rate of less than 0.93%. Recent data for housing starts show that few building permits have been issued in the past few years during the current downturn in the housing market. Under current economic conditions, it is assumed that City of Brawley will not have any significant amount of growth in the near future, therefore, it will not hold in any reserve a portion of its MAHLs calculated on the current plant flow for growth.

The wastewater treatment plant flow at the time of this analysis was an average of 3.8 mgd. Allowable loadings for BOD<sub>5</sub>, TSS, ammonia and total nitrogen have been calculated based in the design influent concentration and the current flow. The treatment plant has a design flow of 5.9 mgd. Therefore, as the City grows and the influent flows increase, additional capacity for industrial flows will increase as well in proportion to the flow increases associated with them. In the event that population growth remains stagnant, the City may elect to dedicate more of its existing plant capacity to industrial users, provided that it does not exceed the design capacity. The City may evaluate future SIU's based on the proposed flows at the time of permit application. Such discretion should be incorporated into the SUO. **Table 6.1** summarizes the calculated uncontrolled source loadings and MAILs for the POCs. Except for copper, lead, zinc, and the conventional pollutants (i.e. BOD<sub>5</sub>, TSS, and ammonia), approximately 70 to 90 percent of the MAHL can be allocated into the MAIL after accounting for uncontrolled source loadings and the safety factor. MAILs for copper, lead, zinc, BOD<sub>5</sub>, TSS, and ammonia ranged from 20 to 61 percent of MAHLs, due to relatively high uncontrolled source loadings.

| Pollutants                 | MAHL<br>(Ib/day) | L <sub>UNC</sub><br>(Ib/day) | MAIL<br>(Ib/day) | MAIL/MAHL<br>(%) |
|----------------------------|------------------|------------------------------|------------------|------------------|
| Arsenic                    | 0.62             | -                            | 0.56             | 90%              |
| Cadmium                    | 0.21             | 0.017                        | 0.17             | 82%              |
| Chromium                   | 7.9              | 0.08                         | 7.0              | 89%              |
| Copper                     | 3.8              | 2.0                          | 1.4              | 38%              |
| Cyanide (total)            | 3.2              | -                            | 2.8              | 90%              |
| Cyanide (free)             | 0.31             | -                            | 0.28             | 90%              |
| Lead                       | 1.5              | 0.68                         | 0.71             | 46%              |
| Mercury                    | 0.004            | 0.00056                      | 0.0031           | 76%              |
| Molybdenum                 | 0.81             | 0.11                         | 0.62             | 77%              |
| Nickel                     | 4.4              | 0.083                        | 3.9              | 88%              |
| Selenium                   | 0.21             | -                            | 0.19             | 90%              |
| Silver                     | 3.3              | 0.015                        | 3.0              | 90%              |
| Zinc                       | 9.5              | 2.7                          | 5.8              | 61%              |
| BOD <sub>5</sub>           | 5,539            | 4,459                        | 1,080            | 20%              |
| TSS                        | 6,014            | 3,467                        | 2,547            | 42%              |
| Ammonia-N                  | 1,171            | 451                          | 720              | 62%              |
| Oil and Grease             | 2,384            | 392                          | 1,754            | 74%              |
| Bis(2-ethylhexyl)phthalate | 10               | 1.3                          | 7.7              | 77%              |

#### Table 6.1 Summary of Uncontrolled Source Loadings and MAILs

### 6.2.2 Numeric Limits

CIM

MAIL

Q<sub>CONT</sub>

8.34

The uniform concentration limit (UCL) method was adopted for allocating MAILs for conservative pollutants. The UCL method generates individual pollutant limits which apply to all industrial users. It requires that the MAIL for each pollutant be divided by the total flows from all controlled dischargers. In general, this method is the most stringent allocation approach, but easiest to administer.

$$C_{LIM} = \frac{MAIL}{(Q_{CONT})(8.34)}$$

Uniform concentration limit, mg/L

Where,

Maximum allowable industrial loading, lb/day
 Total flow rate from industrial and other controlled sources, MGD
 Conversion factor

=

The UCLs for toxic metals were implemented as daily maximum because the short-term nature of the event that the UCL is protecting against and the infrequency of IU sampling for these metals. However, UCLs for conventional pollutants (i.e. BOD<sub>5</sub>, TSS, and Ammonia) were implemented as monthly averages because the calculated UCLs are based upon monthly average design criteria and the existing activated sludge process (i.e. Biolac<sup>®</sup>) has high stability for load variations. And, the frequent sampling by IU (i.e. National Beef) which is two or three times per week can generate a true monthly average of pollutant concentration.

 Table 6.2 presents the calculated UCLs for the pollutants.

| Pollutants                     | Uniform<br>Concentration Limit <sup>1</sup><br>(mg/L) | MAHL-Based Local Limits<br>Required? |
|--------------------------------|-------------------------------------------------------|--------------------------------------|
| Arsenic                        | 0.04                                                  | Yes                                  |
| Cadmium                        | 0.012                                                 | Yes                                  |
| Chromium                       | 0.5                                                   | Yes                                  |
| Copper                         | 0.1                                                   | Yes                                  |
| Cyanide (total)                | 0.2                                                   | Yes                                  |
| Cyanide (free)                 | 0.02                                                  | Yes                                  |
| Lead                           | 0.05                                                  | Yes                                  |
| Mercury                        | 0.0002                                                | Yes                                  |
| Molybdenum                     | 0.04                                                  | Yes                                  |
| Nickel                         | 0.3                                                   | Yes                                  |
| Selenium                       | 0.01                                                  | Yes                                  |
| Silver                         | 0.2                                                   | Yes                                  |
| Zinc                           | 0.4                                                   | Yes                                  |
| BOD₅                           | 76                                                    | Yes                                  |
| TSS                            | 180                                                   | Yes                                  |
| Ammonia-N                      | 50                                                    | Yes                                  |
| Oil and Grease                 | 123                                                   | Yes                                  |
| Bis(2-<br>ethylhexyl)phthalate | 0.5                                                   | Yes                                  |

#### Table 6.2 Uniform Concentration Limit Analysis

<sup>1.</sup> Daily Maximum Limits except BOD<sub>5</sub>, TSS, and Ammonia.

### 6.2.3 Slug Discharges

Slug discharges are short term discharges which may exceed longer term average limits and have the potential to disrupt the treatment process or impact effluent quality. 2004 USEPA Local Limits Development Guidance recommends the adoption of maximum limits for slug discharges in the event that an industrial discharger to control potential process upsets from short-term discharges which may exceed longer term average limits. This is especially important for those POCs which are near the MAHL and which may be discharged in sufficient amounts over the short term by an industrial user to exceed the MAHL and potentially create

operational problems at the WWTP. BOD<sub>5</sub>, TSS, and ammonia in discharges from the National Beef plant fit these criteria due to the large potential flow from the plant (up to 2.1 mgd, which is more than one-third of the treatment capacity) and historical experience where high concentrations of these pollutants discharged from the National Beef pretreatment facility have caused operational upsets at the treatment plant. It is possible to have a single day discharge from the National Beef facility which would cause operational problems at the WWTP and which would not result in violation of a 30-day average limit.

The current contract between the City and National Beef contains maximum limits for  $BOD_5$  and TSS of 250 mg/l. Upsets of the National Beef pretreatment process which exceed these limits have historically resulted in operational problems at the treatment plant. Operational problems have been associated with an inability to maintain adequate oxygen concentrations in the aeration basins. High  $BOD_5$  and TSS loadings have been associated with rapid oxygen depletion in the aeration basins. They have also resulted in extended problems with maintaining oxygen concentrations due to the demand from organic solids which overwhelm the solids wasting capability of the system, resulting in high MLVSS levels which continue to exert demand until they can be wasted from the system. To protect the treatment plant from operational problems that could result in poor effluent quality, it is recommended that the instantaneous maximum discharge concentration limit for slug loading be retained at 250 mg/l for both  $BOD_5$  and TSS, as set by the existing Brawley SUO.

High ammonia levels in National Beef pretreatment effluent may result in rapid depletion of dissolved oxygen levels in the aeration basins because the Biolac® basins contain large populations of nitrifiers which can rapidly oxidize ammonia to nitrate. While this may help prevent pass through of ammonia under some conditions, the rapid oxidation of ammonia to nitrite and nitrate consumes significant dissolved oxygen and can result in difficulty in maintaining dissolved oxygen levels in the aeration basins, causing rapid increases in required air flow to the basins and resulting in short-term overload of the blowers and aeration equipment. The existing contract with National Beef has an instantaneous maximum limit of 30 mg/l for ammonia for discharges to the City sewer system. It is recommended that the instantaneous maximum discharge concentration limit for ammonia be increased to 50 mg/l and monthly average concentration limit for ammonia be retained as 30 mg/L, as set by the existing Brawley SUO.

Alternative measurement techniques for pollutants from National Beef which have historically caused plant upsets were investigated during the sampling phase to identify indicators of National Beef pre-treatment plant upset which would provide real time or much more rapid detection of operational problems. The intent was to determine limits of a surrogate analyte which would serve to protect the WWTP from slug loadings. Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) were both analyzed in parallel with BOD<sub>5</sub>, TSS, and ammonia. TOC was not found to be an appropriate predictor of plant upset.

COD, may be determined rapidly with on-line analyzers and was found to be a good predictor of the potential for plant upset. COD levels were found to be roughly 3.6 times the sampled  $BOD_5$ . Influent data from 8/8/12 was considered not representative and was not used in the analysis.

High COD levels have been observed to be associated with high TSS septic discharges from National Beef, which may be associated with over pumping of basins and discharge of septic solids. These discharges have impacted the plant operation by rapidly depleting dissolved oxygen concentrations in the aeration basin, often in less than one hour. The aeration blowers then ramp up to maximum capacity, and are still unable to maintain measurable dissolved oxygen levels in the basins. Such an incident occurred on 8/5/2012, during the local limits sampling. It is proposed to add a maximum limit of 900 mg/l of COD to the National Beef discharge to further protect the treatment plant from slug load upset. This limit correlates to a BOD limit of 250 mg/l. COD results may be used to rapidly identify a slug load to the plant.

## 7. Collection System-Based Limits

## 7.1 Introduction

Collection system-based limits protect the POTW from fire and explosions, corrosion, flow obstructions, high temperature, and toxic gases, vapors, or fumes. *2004 USEPA Local Limits Development Guidance* recommends that POTWs may need to develop local limits for their collection system to meet the requirements found at 40 CFR 403.5(b), which include protecting the health and safety of workers at the POTW.

## 7.2 Fire and Explosions

The General Pretreatment Regulations prohibit the discharge of pollutants that will cause a fire or explosion hazard in the POTW. To protect against fires and explosions, the City's existing SUO (Section 22.15 (b) 1) prohibits discharge of pollutants with a fire or explosive hazard.

Brawley SUO Section 22.15 (b) 1 prohibits: Pollutants which create a fire or explosive hazard in the POTW, including, but not limited to, waste streams with a closed-cup flashpoint of less than 140 degree Fahrenheit or 60 degrees Celsius using the test methods specified in 40 CFR 261.21.

## 7.3 Corrosion

The General Pretreatment Regulations prohibit discharges of pollutants that will cause corrosive structural damage to a POTW. The regulations prohibit discharges with pH lower than 5.0. Federal regulation, 40 CFR 261, 22(a)(1) specifies that the maximum discharge pH should be less than 12.5 to prevent wastewater from being considered a hazardous waste. The City's existing SUO contains a specific prohibition against discharge of wastewater with a pH less than 6.0 or more than 9.0 (Section 22.15, (b) 2).

Brawley SUO Section 22.15 (b) 2 prohibits: Wastewater having a pH less than 6.0 or more than 9.0 or otherwise causing corrosive structural damage to the POTW or equipment.

## 7.4 Flow Obstruction

The General Pretreatment Regulations prohibit discharge of solid or viscous pollutants that obstruct wastewater flow to WWTP. The greatest threat of obstruction comes from polar fats, oils, and grease of animal and vegetable origin. These pollutants can accumulate and congeal in the collection system, pump stations, and WWTP, obstructing influent flow, reducing pipe and pump capacities, interfering with the POTW instruments, reducing treatment capacity, and increasing operations and maintenance cost. Although the calculated AHL-based local limit of oil and grease is 126 mg/L, the existing oil and grease limit (i.e. 40 mg/L) has proven effective in preventing accumulation of oil and grease in the collection system and at the treatment plant that could create blockages and other maintenance issues. Therefore, it is recommended that 40 mg/L of limit be retained.

## 7.5 Temperature

The City's existing SUO contains a specific prohibition against discharges having a temperature greater than 140 degrees Fahrenheit (or 60 degrees Celsius) or which will inhibit biological activity in the WWTP resulting in interference. Any discharge that causes the temperature at the WWTP headworks to exceed 104 degree Fahrenheit (or 40 degrees Celsius) is also prohibited.

Brawley SUO Section 22.15 (b) 5 prohibits: Wastewater having a temperature greater than 140°F (60°C), or which will inhibit biological activity in the treatment plant resulting in interference, but in no case wastewater which causes the temperature at the introduction into the treatment plant to exceed 104°F (40°C).

## 7.6 Toxic Gases, Vapors and Fumes

The General Pretreatment Regulations prohibit the discharge of pollutants that lead to the accumulation of toxic gases, vapors, or fumes in the POTW in sufficient quantity to cause worker health and safety problems. *2004 USEPA Local Limits Development Guidance, Appendix I* lists discharge screening levels based on fume toxicity, and *Appendix J* lists exposure limits for volatile organic priority pollutants. The exposure limits for hydrogen cyanide and hydrogen sulfide are 1.15 mg/L and 0.034 mg/L for fume toxicity based on the lowest criterion for acute toxicity. The calculations for these limits are presented in Appendix VIII.

## 8. Conclusions and Recommendations

Eighteen pollutants were identified as POCs in developing local limits for the Brawley WWTP. MAHL and MAIL analyses were conducted for 12 inorganic compounds and metals, one volatile organic carbon (VOC), and three conventional pollutants. Local limits for oil and grease and pH were also evaluated. The proposed MAHL-based local limits for pollutants except BOD<sub>5</sub>, TSS, and ammonia were established as daily maximum concentrations due to potential impact of events on plant performance (i.e. biological inhibition) and the infrequency of IU sampling. The proposed MAHL-based local limits for BOD<sub>5</sub>, TSS, and ammonia were established as monthly average concentrations due to frequent IU sampling. It is recommended that the City be authorized in its Sewer Use Ordinance the option to establish mass limits in addition to or in lieu of the recommended concentration limits. The recommended local limits for pollutants are described below and apply to all industrial users. Local limits for Arsenic, Molybdenum and Nickel are based on sludge produced prior the plant upgrade; more samples will be taken and the local limits and SUO will be revised, if required. **Table 8.1** summarizes the recommended instantaneous maximum limits, daily maximum limits, and monthly average limits for the pollutants.

- Arsenic. The average influent loading was less than 5 percent of the MAHL. The recommended UCL for arsenic was 0.04 mg/L based on sludge quality criteria of 41 mg/kg. This limitation would be implemented as a daily maximum allowable concentration limit for all industrial dischargers.
- **Cadmium.** The recommended UCL for cadmium was 0.012 mg/L as daily maximum allowable concentration limit and was controlled by the water quality standard of 0.0022 mg/L.
- **Chromium.** The average influent loadings for chromium accounted for 2 percent of the MAHL. The recommended UCL for chromium was 0.5 mg/L as daily maximum allowable concentration limit and was controlled by nitrification inhibition threshold level of 0.25 mg/L.
- **Copper.** The average influent loading accounted for 54 percent of the MAHL. It is recommended that the UCL for copper of 0.1 mg/L be established and implemented as a daily maximum. The UCL for copper was controlled by current NPDES permit limit of 0.021 mg/L.
- Total Cyanide and Free Cyanide. The recommended UCL for total cyanide and free cyanide were 0.2 mg/L and 0.02 mg/L. These limitations would be implemented as a daily maximum allowable concentration limit for all industrial dischargers. Total Cyanide was highest toxic limit protective of Brawley WWTP. The UCLs for both cyanides were calculated with estimated concentration as well as literature removal efficiency in secondary process. The City will continue to monitor periodically for Cyanide (free) in domestic and commercial waste streams and may reevaluate its local limits based on those results in the future.

- Lead. The average influent loading for lead was less than 8 percent of the MAHL. It was recommended that the UCL for lead of 0.05 mg/L be established and implemented as a daily maximum allowable concentration. The UCL for lead was controlled by the water quality standard of 0.019 mg/L.
- **Mercury.** The recommended UCL of mercury was 0.0002 mg/L as daily maximum allowable concentration. The UCL of mercury was controlled by the water quality standard of 0.000051 mg/L.
- **Molybdenum.** The highest average influent loading to MAHL (78 percent) was detected. The recommended UCL of molybdenum was 0.04 mg/L as a daily maximum allowable concentration. The UCL of molybdenum was controlled by sludge quality criteria of 75 mg/kg.
- **Nickel.** The average influent loading for nickel accounted for 6 percent of the MAHL. It is recommended that the UCL for nickel of 0.3 mg/L be established and implemented as a daily maximum allowable concentration limit for all industrial dischargers.
- Selenium. The average influent loading for nickel accounted for 21 percent of the MAHL. It is recommended that the UCL for selenium of 0.01 mg/L be established and implemented as a daily maximum allowable concentration limit for all industrial dischargers. The UCL for selenium was controlled by current NPDES permit limit of 0.0041 mg/L.
- Silver. The recommended UCL of silver was 0.2 mg/L as daily maximum allowable concentration. The UCL of silver was controlled by the water quality standard of 0.044 mg/L.
- **Zinc.** The second highest influent loading to MAHL (67 percent) was detected. The recommended UCL of zinc was 0.4 mg/L. The UCL for zinc was controlled by activated sludge inhibition threshold level of 0.3 mg/L.
- Bis(2-Ethylhexyl)phthalate. The average influent loading for bis(2ethylhexyl)phthalate accounted for 57 percent of the MAHL. It is recommended that the UCL for bis(2-ethylhexyl)phthalate of 0.5 mg/L be established and implemented as a daily maximum allowable concentration limit for all industrial dischargers. The UCL for bis(2-ethylhexyl)phthalate was controlled by current NPDES permit limit of 0.0059 mg/L. The City will continue to monitor influent and effluent Bis(2ethylhexyl)phthalate and calculate the removal efficiency to determine NDPES permit compliance after additional sampling has been performed, since only two samples were used to set the local limits. If necessary, local limits and the Sewer Use Ordinance will be revised to assure NPDES compliance.
- **Oil and Grease.** The recommended UCL of oil and grease is 40 mg/L as a daily maximum allowable concentration. This is the current prohibition for oil and grease (as an instantaneous maximum concentration) in Brawley SUO which has proven effective in preventing accumulation in the collection system and WWTP.

Restaurants should be required in a modification to the Brawley SUO to provide and maintain grease traps as a best management practice for reducing oil and grease loadings to the sewer system.

- **pH.** It is recommended that the current prohibition of discharge pH of less than 6.0 or greater than 9.0 be maintained and established as the UCL.
- BOD<sub>5</sub>, TSS, and Ammonia, Monthly Average Limit. The calculated UCLs for these pollutants were based on WWTP design criteria, i.e. 175 mg/L of BOD<sub>5</sub>, 190 mg/L of TSS, and 37 mg/L of ammonia. The recommended UCLs for BOD<sub>5</sub>, TSS, and ammonia are 76 mg/L, 180 mg/L, and 30 mg/L, respectively. These limitations will be implemented as a monthly average allowable concentration limit for all industrial dischargers. An instantaneous maximum limit will be implemented in lieu of a daily maximum limit for these discharges.
- BOD<sub>5</sub>, TSS, and Ammonia, Instantaneous Maximum Limit. Slug loadings from National Beef have historically caused operational problems at the WWTP. Recommended instantaneous maximum limits for National Beef discharge are 250 mg/I BOD<sub>5</sub>, 250 mg/I TSS, and 50 mg/I ammonia. An instantaneous maximum limit of 900 mg/I COD should be implemented as well. These limits will be applied to all significant industrial users. National Beef should be required to have a slug loading prevention plan to demonstrate how it will achieve and assure compliance with these limits.
- **Total Nitrogen.** With an instantaneous maximum limit for ammonia (i.e. 50 mg/L), the recommended instantaneous maximum limit of total nitrogen is 73 mg/L. This total nitrogen limit is based on the ratio of the sampled ammonia and total nitrogen concentration (i.e. 1.46). Total nitrogen is the sum of organic and ammonia nitrogen (TKN) plus nitrates and nitrites. Nitrates and nitrites were not detected in the WWTP influent, so that TKN is a reasonable measure of total nitrogen in this case. A limit on total nitrogen is necessary to account for potential nitrate and nitrate discharges from National Beef in the future when nitrification pre-treatment facilities are enabled.

|                             | Recommended Local Limits |                  |                    |  |  |  |
|-----------------------------|--------------------------|------------------|--------------------|--|--|--|
| Pollutants                  | Instantaneous<br>Maximum | Daily<br>Maximum | Monthly<br>Average |  |  |  |
|                             | (mg/L)                   | (mg/L)           | (mg/L)             |  |  |  |
| Inorganic Metals            |                          |                  |                    |  |  |  |
| Arsenic                     | -                        | 0.04             | -                  |  |  |  |
| Cadmium                     | -                        | 0.012            | -                  |  |  |  |
| Chromium                    | -                        | 0.5              | -                  |  |  |  |
| Copper                      | -                        | 0.1              | -                  |  |  |  |
| Cyanide (Total)             | -                        | 0.2              | -                  |  |  |  |
| Cyanide (Free)              | -                        | 0.02             | -                  |  |  |  |
| Lead                        | -                        | 0.05             | -                  |  |  |  |
| Mercury                     | -                        | 0.0002           | -                  |  |  |  |
| Molybdenum                  | -                        | 0.04             | -                  |  |  |  |
| Nickel                      | -                        | 0.3              | -                  |  |  |  |
| Selenium                    | -                        | 0.01             | -                  |  |  |  |
| Silver                      | -                        | 0.2              | -                  |  |  |  |
| Zinc                        | -                        | 0.4              | -                  |  |  |  |
| Organic Compound and Others |                          |                  |                    |  |  |  |
| Bis(2-ethylhexyl)phthalate  | -                        | 0.5              | -                  |  |  |  |
| Conventional Pollutants     |                          |                  |                    |  |  |  |
| BOD <sub>5</sub>            | 250                      | -                | 76                 |  |  |  |
| TSS                         | 250                      | -                | 180                |  |  |  |
| COD                         | 900                      | -                | -                  |  |  |  |
| Ammonia as Nitrogen         | 50                       | -                | 30                 |  |  |  |
| Total Nitrogen              | 73                       | -                | -                  |  |  |  |
| Oil and Grease              | -                        | 40               | -                  |  |  |  |
| рН                          | 6.0 - 9.0                | 6.0 - 9.0        | -                  |  |  |  |
| Temp (°F)                   | 140                      | -                | -                  |  |  |  |

### Table 8.1 Summary of Local Limits

## 9. References

USEPA (2004), *Local Limits Development Guidance*, Washington, D.C., U.S. Environmental Protection Agency

USEPA (2004), *Local Limits Development Guidance Appendices*, Washington, D.C., U.S. Environmental Protection Agency

USEPA (2007), National Pretreatment Program (40 CFR 403) – Controlling Fats, Oils, and Grease Discharges from Food Service Establishments, Washington, D.C., U.S. Environmental Protection Agency

City of Brawley, Sewer Ordinance - Section 22, Revised in 2008

City of Brawley (2009), *Summary of Analysis – Wastewater Rates*, California, Bartle Wells Associates

City of Brawley (2008), *Wastewater Treatment Plant Improvements Preliminary Design Report*, California, Lee & Ro, Inc.

John T. Fox, Christopher J. Brandriff, and Charles B. Bott (2006), Assessing the Potential for Nitrification at Wastewater Treatment Facilities as a Result of Zinc Orthophosphate Addition to Potable Water Distribution Systems, 2006 WEFTEC, Water Environment Foundation, 6593-6622

Kelly II, R. T., Henriques, I. D. S, and Love, N. G. (2004a), *Chemical Inhibition of Nitrification in Activated Sludge*, Biotechnology and Bioengineering, 85 (6), 638-694

Reid, G. N., R. Y. Nelson, C. Hall, U. Bonilla and R. Reid (1968), *Effects of Metallic Ions on Biological Waste Treatment*, Water Sew. Works

Russell, L. L., C. b. Cain, and D. I. Jenkins. (1984), *Impacts of Priority Pollutants on Publicly Owned Treated Works Processes: A Literature Review,* 1984 Purdue Industrial Waste Conference

Skinner and Walker (1961), *Growth of Nitrosomonas Europaea in Water and Continuous Culture*, Archs. Mikrobiol. 38, 339-349

## Appendices

- I. Local Limit Sampling Plan
- II. WWTP Influent and Effluent, Sludge, and Priority Pollutants Analysis Data
- III. Sample Analyses Data
- IV. Flow and Loading Data
- V. Removal Efficiency
- VI. Allowable Headworks Loading Calculations
- VII. MAILs and Local Limits Calculations
- VIII. Fume Toxicity

Appendix I

Local Limit Sampling Plan





## **Local Limits Sampling Plan**

July 23 2012



## Local Limits Sampling Plan

To develop a sampling plan for local limits, various types of pollutant information were reviewed. Most of the data provided by the City for review were readily available from monitoring data collected by the City for regulatory compliance. The following data were compiled and reviewed to identify the pollutants that should be evaluated to determine the need for local limits:

- Monthly influent and effluent concentration data for 2010 and 2011
- Quarterly sludge monitoring data for 2010 and 2011
- Yearly priority pollutants analysis data (effluent and receiving water) for 2011 and 2012
- Priority pollutants analysis data from Lift Station

The sampling plan will address: (1) the pollutants to be evaluated, (2) the sampling locations, (3) the sampling frequency and procedures, and (4) the analytical methods. All sampling for local limits will be conducted by City of Brawley (David Arvizu, Water Distribution/Sewage Collections Operations Supervisor, (760) 351 -7183, darvizu@brawley-ca.gov).

## 1. Pollutants to Be Evaluated

The US Environmental Protection Agency (USEPA) guidance document for local limits development (2004) has identified 15 national pollutants of concern (POCs); arsenic, cadmium, chromium, copper, cyanide, lead, mercury, molybdenum, nickel, selenium, silver, zinc, biochemical oxygen demand (BOD), total suspended solids (TSS), and ammonia. 2004 USEPA Guidance also recommends sampling for organic priority pollutants.

The data were reviewed to ensure that the influent and/or effluent priority pollutant scan contained the following pollutants:

- Toxic pollutants designated in NPDES permits and/or State Water Quality Standards that apply to WWTP effluent or stream segment (i.e. New River)
- Organic toxic pollutants and toxic metals listed in 40 CFR Part 122, Appendix D, Table II and Table III
- Any toxic pollutants and hazardous substances required to be identified by existing dischargers if expected to be present listed in 40 CFR Part 122, Appendix D, Table V
- Any pollutants that are present and may cause a potential impact to the collection system, treatment works, worker health and safety or air quality
- Any pollutants that impact the treatment performance (i.e. process inhibition criteria)
- Any pollutants in biosolids listed in 40 CFR 503 Standards for the Use or Disposal of Sewage Sludge.
- Any pollutants that are recommended by Regional Water Quality Control Board (RWQCB)



Preliminary evaluation of the influent, effluent, and sludge data identified the 15 national POCs as site-specific POCs. Chemical Oxygen Demand (COD), Bis(2-ethylhexyl)phthalate and Oil and Grease (O&G) were also identified as a site-specific POCs. **Table 1** summarizes the list of POCs along with the listing criteria.

| Parameters                                | Selection Criteria |
|-------------------------------------------|--------------------|
| National POCs                             |                    |
| Arsenic                                   | B, I, IU, W        |
| Cadmium                                   | B, I, IU, W        |
| Chromium                                  | B, I, IU, W        |
| Copper                                    | B, I, IU, W        |
| Cyanide (Total & Free Cyanide)            | B, I, W            |
| Lead                                      | B, I, IU, W        |
| Mercury                                   | B, I, W            |
| Molybdenum                                | В                  |
| Nickel                                    | B, I, IU, W        |
| Selenium                                  | B, IU, W           |
| Silver                                    | I, W               |
| Zinc                                      | B, I, IU, W        |
| Biochemical Oxygen Demand (BOD)           | Ν                  |
| Total Suspended Solids (TSS)              | N, IU              |
| Ammonia, TKN, Nitrate, and Nitrate (as N) | I, N               |
| Other Site Specific Pollutants            |                    |
| Chemical Oxygen Demand (COD)              | IU                 |
| Oil and Grease                            | N, IU              |
| Bis(2-ethylhexyl)phthalate                | N, W               |

Table 1 Pollutants of Concern (Pollutants to be sampled and evaluated)

Abbreviations - B: Biosolid Criteria, I: Process Inhibition, IU: Potential Industrial User Discharge, N: NPDES Permit, T: Fume Toxicity W: Water Quality Standard



### 2. Sampling Locations

Sampling locations include:

- Influent Sample (INF-001): Wastewater influent to the treatment facility. The sampling will be conducted upstream of any in-plant return flows (e.g. sludge digester decant and waste activated sludge).
- **Final Effluent Sample (EFF-001)**: Final effluent discharge from facility (same location as specified in NPDES permit).
- **Biosolids Sample (SLD-001):** Sampling location must be after all biosolids treatment, chemical addition, and dewatering processes. The sampling location for compliance determination is at the end of the treatment or last sludge handling process just prior to final use or disposal, which will be after the dewatered sludge is dried in the drying beds.
- Secondary Clarifier Sludge Sample (SLD-002): Waste activated sludge (WAS) sample before thickening process.
- Commercial Sample (CSC-001, North 8th Street between E Street & Main): Sampling the commercial wastewater contribution may be accomplished by isolating and sampling an area of the collection system that receives primarily commercial wastewater (Non-SIU).
- Residential Sample (CSR-001, Richard Street between Ronald Street & Steven Street Lift Station #2): Sampling the residential wastewater contribution may be accomplished by isolating and sampling an area of the collection system which only receives residential wastewater (Non-Commercial and Non-SIU).
- Industrial Sample (CSI-001, National Beef): National Beef discharge to the collection system.

The existing WWTP of Brawley has approximately 1.82 days of hydraulic retention time for 3.8 mgd of average effluent flow rate. Therefore, the sampling of each sampling location should take into account detention time. The effluent sample should be collected 48 hours after the influent sample.



### 3. Sampling Frequencies and Procedures

#### Sampling Frequencies

2004 EPA Guidance recommends 1 to 2 days of sampling for organic priority pollutants to determine potential POCs; and 1 to 2 days of sampling for sludge/biosolids, and 7 to 14 days of National POCs and POTW-specific POCs for POTW influent, primary effluent and final effluent, and the collection system to calculate local limits. Sampling days should be consecutive days for National POCs and POTW-specific POCs and should be 24-hour composite samples unless sampling methods only allow for grab samples (e.g. pH, cyanide, and temperature).

The minimum recommended sampling days for initial local limits development for POTWs of up to 5 MGD (Brawley) capacity is at least 7 consecutive sampling days. For a local limits study, wastewater samples should be collected during dry, normal operating conditions in the collection system, influent, effluent, and biosolids. **Table 2** presents a summary of sampling days for initial local limits development.

|                                       | Consecutive Sampling Days |                                         |                                           |  |  |  |
|---------------------------------------|---------------------------|-----------------------------------------|-------------------------------------------|--|--|--|
| Location                              | National<br>POCs          | Other Priority<br>Pollutants -<br>Metal | Other Priority<br>Pollutants -<br>Organic |  |  |  |
| Influent (INF-001)                    | 7                         | 7                                       | 7                                         |  |  |  |
| Final Effluent (EFF-001) <sup>1</sup> | 7                         | 7                                       | 7                                         |  |  |  |
| Biosolid (SLD-001)                    | 2                         | 2                                       | 2                                         |  |  |  |
| Secondary Clarifier Sludge (SLD-002)  | 2                         | 2                                       | 2                                         |  |  |  |
| Commercial (CSC-001)                  | 7                         | 7                                       | 7                                         |  |  |  |
| Residential (CSR-001)                 | 7                         | 7                                       | 7                                         |  |  |  |
| Industrial (CSI-001)                  | 7                         | 7                                       | 7                                         |  |  |  |

#### **Table 2 Sampling Location and Sampling Frequency**

<sup>1</sup> Due to hydraulic retention time, second day of effluent sample will be collected 48 hours after first day of influent sample.

#### Sampling Procedures

Where appropriate, 24-hour composite sampling will be conducted in accordance with standard procedures for flow-proportional sampling, with discrete samples (aliquots) collected over time based on the flow of the discharge being sampled, and then combined to form a single sample for analysis.



Grab sampling will be conducted for cyanide as specified by 40 CFR Part 136, Guidelines Establishing Test Procedures for the Analysis of Pollutants. Where grab samples are necessary, a series of grab samples over the course of a 24-hour period is recommended. Four grab samples are recommended at a minimum. The interval waste stream flow will be measured between each grab sample for a flow-proportioned grab composite sample. The grab sample will be analyzed separately and the results will be averaged according to flow weight.

At the time of grab sample collection, pH, and temperature will be measured and recorded.

Biosolid samples (SLD-001) require that a composite sample be taken of the sludge mass in drying beds. Several aliquots (minimum 4 aliquots) are taken from randomly selected locations within the sludge drying beds and the aliquots are composited to form a single sample for analysis.

#### Sampling Equipment

Samples can be collected with a Teflon bottle, HDPE bottle, or glass bottle (minimum 1 liter). Teflon and HDPE bottles can be interchangeable but BOD and organic priority pollutants require a glass sampling bottle. The examples of other sampling devices are provided in EPA Method 1669, Sampling Ambient Water for Determination of Metals at EPA Quality Criteria Levels. The sampling bottles must be pre-cleaned at the laboratory performing the analysis and scheduled for return shipping not later than one week prior to the sampling episode. Samples must be shipped on ice (below 4 °C and dark) by overnight courier and preservation completed on site or lab, as required. Clean, non-talc, polyethylene gloves must be worn during all operations involving handling of the sampling apparatus, samples and blanks.

**Table 3** presents a summary of sampling type, size, container, and preservation for pollutants for wet stream analysis.

For biosolids sampling (SLD-001), samples will be taken by dividing drying bed into quarters. For the center of each quarter, a single core sample will be collected through the entire depth of the sludge using a coring device. Samples from each quarter will be combined and thoroughly mixed and transferred to a 1 L HDPE bottle.

## Table 3 Sampling Type, Size, Container, and Preservation for Pollutants: Wet Stream Sample

| Parameters       | Sampling Type | Minimum<br>Sampling Size &<br>Container | Preservation                        |
|------------------|---------------|-----------------------------------------|-------------------------------------|
| National POCs    |               |                                         |                                     |
| Arsenic          | Composite     | 200 ml, HDPE                            | HNO₃ – pH<2, 4 °C, Dark             |
| Cadmium          | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark |
| Chromium (Total) | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark |



| Parameters                                  | Sampling Type | Minimum<br>Sampling Size &<br>Container | Preservation                                      |  |
|---------------------------------------------|---------------|-----------------------------------------|---------------------------------------------------|--|
| Copper                                      | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| Cyanide (Total & Free Cyanide)              | Grab          | 500 ml, HDPE                            | NaOH – pH>12, 4 °C,<br>Dark                       |  |
| Lead                                        | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| Mercury                                     | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| Molybdenum                                  | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| Nickel                                      | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| Selenium                                    | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| Silver                                      | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| Zinc                                        | Composite     | 200 ml, HDPE                            | HNO <sub>3</sub> – pH<2, 4 °C, Dark               |  |
| BOD                                         | Composite     | Glass BOD<br>Container                  | 4 °C, Dark                                        |  |
| TSS <sup>1</sup>                            | Composite     | 100 ml, HDPE                            | 4 °C, Dark                                        |  |
| Ammonia (as N)                              | Composite     | 400 ml, HDPE                            | $H_2SO_4 - pH<2, 4 °C, Dark$                      |  |
| TKN (as N)                                  | Composite     | 500 ml, HDPE                            | $H_2SO_4 - pH<2, 4 °C, Dark$                      |  |
| Nitrate (as N)                              | Composite     | 100 mL, HDPE                            | 4 °C, Dark                                        |  |
| Nitrite (as N)                              | Composite     | 100 mL, HDPE                            | 4 °C, Dark                                        |  |
| Other Site Specific Pollu                   | ıtants        |                                         |                                                   |  |
| COD                                         | Composite     | 200 ml, HDPE                            | H <sub>2</sub> SO <sub>4</sub> – pH<2, 4 °C, Dark |  |
| Bis(2-<br>ethylhexyl)phthalate <sup>2</sup> | Composite     | 200 ml, Glass                           | 4 °C, Dark                                        |  |
| Oil and Grease                              | Grab          | 1 L, Glass                              | H <sub>2</sub> SO <sub>4</sub> – pH<2, 4 °C, Dark |  |

<sup>1</sup> %Total Solids for Sludge and Biosolids
 <sup>2</sup> Prevent contamination from sampling equipment and gloves containing plastic.

All sample containers will be labeled with the following information:

- Project Name
- Sampling Date and Time
- Sampling Location
- Field Measurement (Temperature & pH)

#### Sampling Quality Assurance/Quality Control

The sampling program will include the following quality assurance/quality control sampling:



- One set of split samples collected at the WWTP influent for each group of analytes except VOCs.
- One set of duplicate samples collected at the WWTP influent for VOCs.
- Trip blanks for one set of VOC samples collected at the WWTP influent.
- One set of equipment blanks collected at the WWTP influent for each group of analytes collected by automatic sampler.

### Flow Data

Flow data will be collected as follows:

- Total POTW flow
- Sludge flow (WAS) to Dewatering Unit
- Sludge flow to disposal

## 4. Analytical Methods

All sampling and analysis of wastewater will be conducted in accordance with 40 CFR Part 136. All sampling and analysis of biosolids/sludge will be conducted in accordance with 40 CFR Part 503, Standards for the Use or Disposal of Sewage Sludge. To accurately detect trace levels of pollutants, an analytical method which has the most sensitive and lowest detection limit will be selected.

**Table 4** summarizes the recommended maximum reporting limits and analytical methods for pollutants.

| Parameters <sup>1</sup>                     | Maximum<br>Reporting<br>Limit | Units | Analytical Method |
|---------------------------------------------|-------------------------------|-------|-------------------|
| National POCs                               |                               |       |                   |
| Arsenic                                     | 0.5                           | µg/L  | EPA 200.8         |
| Cadmium                                     | 0.1                           | µg/L  | EPA 200.8         |
| Chromium (Total)                            | 0.5                           | µg/L  | EPA 200.8         |
| Copper                                      | 0.5                           | µg/L  | EPA 200.8         |
| Cyanide (Total & Free Cyanide) <sup>2</sup> | 3                             | µg/L  | SM 4500-CN E      |
| Lead                                        | 0.25                          | µg/L  | EPA 200.8         |
| Mercury                                     | 0.0005                        | µg/L  | EPA 245.1         |

 Table 4 Maximum Reporting Limits for Analytical Methods



| Parameters <sup>1</sup>        | Maximum<br>Reporting<br>Limit | Units | Analytical Method |
|--------------------------------|-------------------------------|-------|-------------------|
| Molybdenum                     | 1                             | µg/L  | EPA 200.8         |
| Nickel                         | 0.5                           | µg/L  | EPA 200.8         |
| Selenium                       | 1                             | µg/L  | EPA 200.8         |
| Silver                         | 1                             | µg/L  | EPA 200.8         |
| Zinc                           | 1                             | µg/L  | EPA 200.8         |
| BOD                            | 5                             | mg/L  | SM 5210B          |
| TSS <sup>3</sup>               | 3                             | mg/L  | EPA 160.2         |
| Ammonia (as N)                 | 0.1                           | mg/L  | SM 4500-NH₃ C     |
| TKN (as N)                     | l (as N) 0.25                 |       | EPA 350.1         |
| Nitrate (as N)                 | 0.1                           | mg/L  | EPA 300.0         |
| Nitrite (as N)                 | 0.1                           | mg/L  | EPA 300.0         |
| Other Site Specific Pol        | lutants                       |       |                   |
| COD                            | 5                             | mg/L  | SM 5220           |
| Bis(2-<br>ethylhexyl)phthalate | 5                             | µg/L  | EPA 625.0         |
| Oil and Grease <sup>4</sup>    | 5                             | mg/L  | EPA 1664          |

<sup>1</sup> Total recoverable metal analysis

<sup>2</sup> Non-distillation methods for available cyanide, such as UEPA OIA-1677 or ASTM D6888-04, shall be used to measure free cyanide.

<sup>3</sup> % total solids for Sludge and Biosolids sample

<sup>4</sup> Include polar and non-polar fraction of oil and grease.

The laboratory must be a USEPA-certified and licensed by the California Department of Public Health. The laboratory will perform internal quality control analyses (analytical blanks, duplicates, and matrix spikes) according to its quality assurance plans (QAPs) and as required by California Department of Public Health Laboratory Licensure.



## Appendix A

## Daily Sampling Activity Schedule



| 001y 2012 | July | 2012 |
|-----------|------|------|
|-----------|------|------|

| Appendix | <b>A</b> : | Daily | Sampling | Activity                              | Schedule |
|----------|------------|-------|----------|---------------------------------------|----------|
|          |            |       | - · · J  | · · · · · · · · · · · · · · · · · · · |          |

|                  |    | Sampling Locations |      |                      |    |               |          |                              |    |                   |               |    |                |    |
|------------------|----|--------------------|------|----------------------|----|---------------|----------|------------------------------|----|-------------------|---------------|----|----------------|----|
| Sampling<br>Days | -  | uent<br>•001)      | Effl | nal<br>uent<br>-001) |    | olid<br>-001) | Clarifie | ondary<br>r Sludge<br>D-002) |    | nercial<br>5-001) | Resid<br>(CSR |    | Indus<br>(CSI- |    |
|                  | CS | GS                 | CS   | GS                   | CS | GS            | CS       | GS                           | CS | GS                | CS            | GS | CS             | GS |
| Day 1            | V  | ٧                  |      |                      |    |               |          |                              | V  | ٧                 | ٧             | V  | V              | V  |
| Day 2            | V  | V                  |      |                      |    |               |          |                              | V  | V                 | V             | V  | V              | V  |
| Day 3            | V  | V                  | V    | V                    |    |               |          |                              | v  | V                 | V             | V  | V              | V  |
| Day 4            | V  | V                  | V    | V                    |    |               |          |                              | v  | V                 | V             | V  | V              | V  |
| Day 5            | V  | V                  | V    | V                    |    | V             |          | V                            | V  | V                 | V             | V  | V              | V  |
| Day 6            | V  | V                  | V    | V                    |    | v             |          | V                            | v  | V                 | V             | V  | V              | V  |
| Day 7            | V  | V                  | V    | V                    |    |               |          |                              | V  | ٧                 | ٧             | V  | V              | V  |
| Day 8            |    |                    | V    | V                    |    |               |          |                              |    |                   |               |    |                |    |
| Day 9            |    |                    | ٧    | V                    |    |               |          |                              |    |                   |               |    |                |    |

1. Abbreviations – CS: Composite Sampling, GS: Grab Sampling.

2. Due to hydraulic retention time, first day effluent sample will be collected 48 hours after first day influent sample.

3. Influent (INF-001), Final Effluent (EFF-001), Commercial (CSC-001), Residential (CSR-001), and Industrial (CSI-001) Sampling Parameters

| Composite Sampling Parameters                                                 | Grab Sampling Parameters                 |
|-------------------------------------------------------------------------------|------------------------------------------|
| Arsenic, Cadmium, Chromium (total), Copper, Lead, Mercury, Molybdenum,        | Cyanide (Total and Free), Oil and Grease |
| Nickel, Selenium, Silver, Zinc, BOD, TSS, Ammonia (as N), TKN (as N), Nitrate | (Polar and Non-polar)                    |
| (as N), Nitrite (as N), COD, Bis(2-ethylhexyl)phthalate,                      |                                          |

4. Biosolids (SLD-001) and Secondary Clarifier Sludge (SLD-002) Sampling Parameters

| Composite Sampling Parameters | Grab Sampling Parameters                                                                |
|-------------------------------|-----------------------------------------------------------------------------------------|
| Not Required.                 | Arsenic, Cadmium, Chromium (total), Copper, Cyanide (Total and Free), Lead,             |
|                               | Mercury, Molybdenum, Nickel, Selenium, Silver, Zinc, % Total Solids (TS), Ammonia       |
|                               | (as N), TKN (as N), Nitrate (as N), Nitrite (as N), Bis(2-ethylhexyl)phthalate, Oil and |
|                               | Grease (Polar and Non-polar)                                                            |





Appendix II

WWTP Influent and Effluent, Sludge, and Priority Pollutants Analysis Data

|        | BOD  | TSS  | Total<br>Ammonia | Oil and<br>Grease |
|--------|------|------|------------------|-------------------|
| DATE   | mg/L | mg/L | mg/L             | mg/L              |
| Jan-10 | 171  | 175  | 26.7             | 13.7              |
| Feb-10 | 128  | 204  | 24.6             | 7.3               |
| Mar-10 | 134  | 162  | 22.6             | 12.4              |
| Apr-10 | 176  | 130  | 32.8             | 21.3              |
| May-10 | 183  | 169  | 35.7             | 20.0              |
| Jul-10 | 128  | 471  | 30.0             | ND                |
| Aug-10 | 134  | 181  | 21.7             | ND                |
| Sep-10 | 140  | 170  | 22.8             | 7.6               |
| Oct-10 | 144  | 159  | 22.8             | ND                |
| Nov-10 | 120  | 197  | 22.0             | 12.4              |
| Dec-10 | 129  | 196  | 34.0             | 17.8              |
| Jan-11 | 122  | 717  | 31.4             | 9.0               |
| Feb-11 | 150  | 348  | 37.6             | 19.3              |
| Mar-11 | 378  | 366  | 32.0             | 16.0              |
| Apr-11 | 241  | 152  | 43.8             | 15.6              |
| May-11 | 259  | 152  | 37.8             | 9.0               |
| Jun-11 | 232  | 101  | 35.0             | 10.7              |
| Jul-11 | 204  | 98   | 27.4             | ND                |
| Aug-11 | 155  | 161  | 33.5             | ND                |
| Sep-11 | 168  | 217  | 35.4             | 25.7              |
| Oct-11 | 149  | 124  | 21.7             | 25.7              |
| Nov-11 | 190  | 163  | 24.2             | 40.8              |
| Dec-11 | 185  | 205  | 26.9             | 21.4              |

#### 2010 - 2011 Brawley WWTP NPDES Monitoring Data - Influent

|        | BOD  | TSS   | рН                | Temperature | E. Coli       | Fecal<br>Coliform | Enterococci |
|--------|------|-------|-------------------|-------------|---------------|-------------------|-------------|
| DATE   | mg/L | mg/L  | Standard<br>Units | Deg. F      | MPN/100<br>ml | MPN/100<br>ml     | MPN/100 ml  |
| Jan-10 | 26.4 | 15.81 | 7.9               | 59          | 56.6          | 56.0              | 12.7        |
| Feb-10 | 19.3 | 14.11 | 7.9               | 63          | 10.0          | 11.0              | 8.0         |
| Mar-10 | 29.2 | 13.97 | 7.9               | 65          | 9.1           | 36.6              | 17.4        |
| Apr-10 | 57.6 | 15.74 | 8.0               | 69          | 14.3          | 32.7              | 10.7        |
| May-10 | 36.6 | 17.52 | 8.0               | 73          | 58.3          | 164.3             | 77.6        |
| Jul-10 | 34.8 | 20.6  | 8.0               | 86          | 1.1           | 3.0               | 4.2         |
| Aug-10 | 37.9 | 20.6  | 7.8               | 85          | 1.6           | 3.5               | 3.8         |
| Sep-10 | 35.1 | 25.3  | 7.7               | 81          | 5.2           | 13.6              | 2.3         |
| Oct-10 | 36.3 | 13.3  | 7.8               | 75          | 12.0          | 25.6              | 2.6         |
| Nov-10 | 30.2 | 16.7  | 7.8               | 65          | 19.7          | 20.4              | 6.5         |
| Dec-10 | 23.0 | 22.7  | 7.8               | 61          | 91.2          | 147.9             | 77.6        |
| Jan-11 | 28.7 | 26.3  | 7.9               | 59          | 69.3          | 114.2             | 69.3        |
| Feb-11 | 28.8 | 27.9  | 7.9               | 60          | 299           | 281               | 465         |
| Mar-11 | 54.8 | 35.6  | 7.7               | 67          | 362           | 500               | 1,426       |
| Apr-11 | 36.6 | 33.3  | 7.9               | 72          | 1,758         | 1,600             | 1,600       |
| May-11 | 56.7 | 34.0  | 7.8               | 73          | 756           | 882               | 741         |
| Jun-11 | 60.8 | 22.3  | 7.9               | 78          | 2,263         | 1,600             | 1,426       |
| Jul-11 | 38.3 | 11.6  | 7.9               | 85          | 1.8           | 7.7               | 4.0         |
| Aug-11 | 11.1 | 8.7   | 7.7               | 88          | 4.3           | 18.8              | 9.5         |
| Sep-11 | 9.6  | 5.5   | 7.4               | 89          | 3.0           | 6.4               | 2.8         |
| Oct-11 | 11.3 | 4.7   | 7.5               | 80          | 7.0           | 24.5              | 7.1         |
| Nov-11 | 10.3 | 4.6   | 7.7               | 74          | 5.7           | 10.3              | 4.9         |
| Dec-11 | 11.0 | 6.6   | 7.3               | 67          | 12.7          | 28.8              | 15.1        |

#### 2010 - 2011 Brawley WWTP NPDES Monitoring Data - Effluent

|        | DO   | Nitrate | Nitrite | Ammonia | TN     | ТР    | TDS   | O&G  |
|--------|------|---------|---------|---------|--------|-------|-------|------|
| DATE   | mg/L | mg/L    | mg/L    | mg/L    | mg/L   | mg/L  | mg/L  | mg/L |
| Jan-10 | 4.3  | 3.65    | 0.22    | 22.82   | 28.77  | 9.27  | 1,490 | ND   |
| Feb-10 | 4.3  | 3.95    | 0.15    | 24.22   | 33.84  | 8.90  | 1,576 | ND   |
| Mar-10 | 4.8  | 8.36    | 1.37    | 23.86   | 37.77  | 8.53  | 1,572 | ND   |
| Apr-10 | 4.6  | 18.58   | 0.94    | 29.82   | 56.76  | 9.20  | 1,670 | ND   |
| May-10 | 3.7  | 6.71    | 0.10    | 34.02   | 45.57  | 11.32 | 1,646 | ND   |
| Jul-10 | 3.9  | 5.95    | 0.33    | 35.49   | 45.34  | 9.15  | 1,240 | ND   |
| Aug-10 | 3.5  | 25.21   | 6.59    | 18.34   | 53.32  | 8.64  | 1,308 | ND   |
| Sep-10 | 3.5  | 76.30   | 2.27    | 10.78   | 80.32  | 9.44  | 1,284 | ND   |
| Oct-10 | 3.3  | 16.60   | 2.18    | 20.58   | 40.39  | 9.38  | 1,344 | ND   |
| Nov-10 | 4.5  | 22.96   | 1.70    | 23.64   | 52.44  | 9.22  | 1,212 | ND   |
| Dec-10 | 4.5  | 4.29    | 0.45    | 26.88   | 39.08  | 8.79  | 1,124 | ND   |
| Jan-11 | 4.1  | 2.48    | 0.15    | 28.32   | 40.44  | 7.90  | 1,408 | ND   |
| Feb-11 | 4.3  | 3.08    | 0.13    | 28.84   | 45.72  | 8.14  | 1,344 | ND   |
| Mar-11 | 2.3  | 0.63    | 0.10    | 37.58   | 47.49  | 7.89  | 1,280 | ND   |
| Apr-11 | 2.3  | 1.39    | 0.22    | 49.00   | 60.33  | 8.79  | 1,316 | ND   |
| May-11 | 3.8  | 1.83    | 0.26    | 41.55   | 50.53  | 11.78 | 1,472 | ND   |
| Jun-11 | 3.1  | 2.50    | 0.14    | 35.99   | 43.90  | 0.80  | 1,240 | ND   |
| Jul-11 | 5.7  | 15.05   | 0.58    | 18.48   | 41.12  | 7.99  | 1,084 | ND   |
| Aug-11 | 5.8  | 117     | 0.44    | 1.12    | 120.33 | 7.23  | 1,232 | ND   |
| Sep-11 | 4.6  | 35.05   | 0.47    | 2.24    | 45.73  | 10.22 | 1,232 | ND   |
| Oct-11 | 4.3  | 23.73   | 0.53    | 0.84    | 26.50  | 6.00  | 1,268 | ND   |
| Nov-11 | 4.3  | 17.40   | ND      | 0.78    | 19.78  | 3.70  | 1,304 | ND   |
| Dec-11 | 3.6  | 18.23   | ND      | 2.38    | 23.51  | 2.08  | 1,348 | ND   |

#### 2010 - 2011 Brawley WWTP NPDES Monitoring Data - Effluent (Continued)

|        | Hardness | Copper | Selenium | Cyanide | Bis(2-<br>Ethylhexyl |
|--------|----------|--------|----------|---------|----------------------|
| DATE   | mg/L     | μg/L   | μg/L     | μg/L    | μg/L                 |
| Jan-10 | 376      | ND     | ND       | ND      | -                    |
| Feb-10 | 436      | ND     | ND       | ND      | -                    |
| Mar-10 | 368      | ND     | ND       | ND      | -                    |
| Apr-10 | 420      | ND     | ND       | ND      | -                    |
| May-10 | 376      | ND     | ND       | ND      | -                    |
| Jul-10 | 380      | ND     | ND       | ND      | ND                   |
| Aug-10 | 376      | 5.09   | ND       | ND      | ND                   |
| Sep-10 | 352      | ND     | ND       | ND      | ND                   |
| Oct-10 | 400      | ND     | ND       | 17.0    | ND                   |
| Nov-10 | 364      | 10.4   | ND       | 18.0    | ND                   |
| Dec-10 | 400      | 10.7   | ND       | ND      | ND                   |
| Jan-11 | 360      | 9.88   | ND       | ND      | ND                   |
| Feb-11 | 440      | 14.8   | ND       | ND      | ND                   |
| Mar-11 | 340      | 9.88   | ND       | ND      | ND                   |
| Apr-11 | 388      | 9.88   | ND       | ND      | ND                   |
| May-11 | 312      | 8.58   | ND       | ND      | ND                   |
| Jun-11 | 320      | 7.15   | ND       | ND      | ND                   |
| Jul-11 | 312      | ND     | ND       | ND      | ND                   |
| Aug-11 | 312      | 6.57   | ND       | ND      | ND                   |
| Sep-11 | 288      | 12.5   | ND       | ND      | ND                   |
| Oct-11 | 320      | 12.5   | ND       | ND      | ND                   |
| Nov-11 | 296      | ND     | ND       | 0.008   | 7.40                 |
| Dec-11 | 292      | ND     | ND       | 0.0075  | ND                   |

#### 2010 - 2011 Brawley WWTP NPDES Monitoring Data - Effluent (Continued)

### Brawley WWTP- Sludge-Metals, Semi-Voc, TPH

|                       |                     | Date                 | Date                            |                                          |                                                    |                                                      |                                                        |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
|-----------------------|---------------------|----------------------|---------------------------------|------------------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name of Constituent   | Monitoring Location | Sample               | Sample                          | USEPA Method                             |                                                    |                                                      |                                                        | Analytical                                                                                                                                                                                                                       | Comm                                                                                                                                                                                                                                                    | ents                                                                                                                                                                                                                                                                                 |
|                       |                     | Collected            | Analyzed                        |                                          | ML                                                 | RML                                                  | MDL                                                    | Results                                                                                                                                                                                                                          | official and the                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                      |
|                       |                     |                      |                                 |                                          | (mg/kg)                                            | (µg/kg)                                              | (µg/kg)                                                | (µg/kg)                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
| nics:                 |                     |                      |                                 | 1                                        |                                                    |                                                      |                                                        |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
| c                     | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 1                                                  | 1                                                    | 1                                                      | 2.1                                                                                                                                                                                                                              | Cludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| um                    | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 1                                                  | 1                                                    | 1                                                      | ND                                                                                                                                                                                                                               | Sludge<br>Sludge                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                      |
| r                     | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 2                                                  | 2                                                    | 2                                                      | 439                                                                                                                                                                                                                              | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
|                       | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 1                                                  | 1                                                    | 1                                                      | 18.3                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| denum                 | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 1                                                  | 1                                                    | 1                                                      | 15.6                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
|                       | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 1                                                  | 1                                                    | 1                                                      | 13.5                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| ium                   | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 10                                                 | 10                                                   | 10                                                     | 2100                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| um                    | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 2                                                  | 2                                                    | 2                                                      | 8.3                                                                                                                                                                                                                              | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
|                       | WWTP                | 12/28/2011           | 1/5/2012                        | EPA 6010B                                | 2                                                  | 2                                                    | 2                                                      | 443                                                                                                                                                                                                                              | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| e                     | WWTP                | 12/28/2011           | 1/3/2012                        | SM 4500CN E                              | 0.3                                                | 0.3                                                  | 0.3                                                    | 5.28                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| thylhexyl)phalate     | WWTP                | 12/28/2011           | 1/3/2012                        | EPA 8270C                                | 25                                                 | 25                                                   | 25                                                     | ND                                                                                                                                                                                                                               | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
|                       |                     |                      |                                 |                                          |                                                    |                                                      | 20                                                     | ND                                                                                                                                                                                                                               | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| jeldahl Nitrogen      | WWTP                | 12/28/2011           | 1/3/2012                        | EPA 351.2                                | 4000                                               | 4000                                                 | 4000                                                   | 28300                                                                                                                                                                                                                            | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| nia                   | WWTP                | 12/28/2011           | 12/30/2011                      | SM 4500-NH3                              | 25                                                 | 25                                                   | 25                                                     | 379                                                                                                                                                                                                                              | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
|                       | WWTP                | 12/28/2011           | 12/29/2011                      | EPA 300.0                                | 55                                                 | 55                                                   | 55                                                     | 1020                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| norus                 | WWTP                | 12/28/2011           | 12/30/2011                      | EPA 365.2                                | 100                                                | 100                                                  | 100                                                    | 215                                                                                                                                                                                                                              | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| olids                 | WWTP                | 12/28/2011           | 12/30/2011                      | % moisture                               | 0.1                                                | 0.1                                                  | 0.1                                                    | 89.6                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
| Coliform              | WWTP                | 12/28/2011           | 1/1/2012                        | SM 9221E                                 | 2                                                  | 2                                                    | 2                                                      | >1600                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
| ne range hydrocarbons | WWTP                | 12/28/2011           | 1/5/2012                        |                                          |                                                    | 1                                                    | 1                                                      |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
| re Content            | WWTP                |                      |                                 |                                          |                                                    | 0.1                                                  | 0.1                                                    |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
|                       |                     | Carleon a OTT        | 12/00/2011                      | 70 moisture                              | 0.1                                                | 0.1                                                  | 0.1                                                    | 10.4                                                                                                                                                                                                                             | Sludge                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |
|                       |                     | ge hydrocarbons WWTP | ge hydrocarbons WWTP 12/28/2011 | ge hydrocarbons WWTP 12/28/2011 1/5/2012 | ge hydrocarbons WWTP 12/28/2011 1/5/2012 EPA 8021B | ge hydrocarbons WWTP 12/28/2011 1/5/2012 EPA 8021B 1 | ge hydrocarbons WWTP 12/28/2011 1/5/2012 EPA 8021B 1 1 | ge hydrocarbons         WWTP         12/28/2011         1//2012         EPA 8021B         1         1         1           trent         WWTP         12/28/2011         1/5/2012         EPA 8021B         1         1         1 | ge hydrocarbons         WWTP         12/28/2011         1//2012         EPA 8021B         1         1         1         ND           trent         NMWTP         12/28/2011         1/5/2012         EPA 8021B         1         1         1         ND | ge hydrocarbons         WWTP         12/28/2011         1//2012         EPA 8021B         1         1         1         ND         Sludge           trent         WMTP         12/28/2011         1/5/2012         EPA 8021B         1         1         1         ND         Sludge |

### Brawley WWTP- Sludge-Metals, Semi-Voc, TPH

| No. | Name of Constituent<br>Lab ID- 4692 | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML<br>(mg/kg) | RML<br>(µg/kg) | MDL<br>(µg/kg) | Analytical<br>Results<br>(μg/kg) | Comments         |
|-----|-------------------------------------|---------------------|-----------------------------|----------------------------|--------------|---------------|----------------|----------------|----------------------------------|------------------|
|     | Inorganics:                         |                     |                             |                            |              |               |                |                |                                  |                  |
| 1   | Arsenic                             | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 1             | 1              | 1              | 2.3                              | Chudee           |
| 2   | Cadmium                             | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 1             | 1              | 1              | ND                               | Sludge           |
| 3   | Copper                              | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 2             | 2              | 2              | 488                              | Sludge           |
| 4   | Lead                                | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 1             | 4              | 1              | 20.9                             | Sludge           |
| 5   | Molybdenum                          | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 1             | 1              | 1              | 16.3                             | Sludge           |
| 6   | Nickel                              | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 1             | 1              | 1              | 14.5                             | Sludge<br>Sludge |
| 7   | Potassium                           | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 10            | 10             | 10             | 2240                             | Sludge           |
| 8   | Selenium                            | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 2             | 2              | 2              | 8.5                              |                  |
| 9   | Zinc                                | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 6010B    | 2             | 2              | 2              | 524                              | Sludge<br>Sludge |
| 10  | Cyanide                             | WWTP                | 1/11/2012                   | 1/19/2012                  | SM 4500CN E  | 0.3           | 0.3            | 0.3            | 10.2                             |                  |
| 11  | Mercury                             | WWTP                | 1/11/2012                   |                            | EPA 7471A    | 0.3           | 0.3            | 0.3            | 0.804                            | Sludge<br>Sludge |
|     |                                     |                     |                             |                            |              | 0.0           | 0.0            | 0.5            | 0.004                            | Sludge           |
| -   | Bis(2-ethylhexyl)phalate            | WWTP                | 1/11/2012                   | 1/16/2012                  | EPA 8270C    | 25            | 25             | 25             | ND                               | Sludge           |
|     | Total Kjeldahl Nitrogen             | WWTP                | 1/11/2012                   | 1/31/2012                  | EPA 351.2    | 4000          | 4000           | 4000           | 20200                            | 01.1             |
|     | Ammonia                             | WWTP                | 1/11/2012                   | 1/19/2012                  | SM 4500-NH3  | 25            | 25             | 25             | 29200                            | Sludge           |
|     | Nitrate                             | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 300.0    | 55            | 55             | 55             | 117<br>741                       | Sludge           |
|     | Phosphorus                          | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 365.2    | 100           |                |                |                                  | Sludge           |
|     | Total Solids                        | WWTP                | 1/11/2012                   | 1/16/2012                  |              |               | 100            | 100            | 365                              | Sludge           |
|     | Fecal Coliform                      | WWTP                |                             |                            | % moisture   | 0.1           | 0.1            | 0.1            | 93                               | Sludge           |
|     |                                     | WWWIF               | 1/11/2012                   | 1/19/2012                  | SM 9221E     | 2             | 2              | 2              | >1600                            | Sludge           |
|     | Gasoline range hydrocarbons         | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 8021B    | 1             | 1              | 1              | ND                               | Cludes           |
|     | Moisture Content                    | WWTP                | 1/11/2012                   | 1/16/2012                  | % moisture   | 0.1           | 0.1            | 0.1            | 0.00                             | Sludge           |
|     | TPH as Diesel                       | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 8015Mod  | 0.1           |                | 0.1            | 6.96                             | Sludge           |
|     | TPH as Motor Oil                    | WWTP                | 1/11/2012                   | 1/19/2012                  | EPA 8015Mod  | -             | 1              | 1              | ND                               | Sludge           |
|     | Flash point                         | WWTP                | 1/11/2012                   | 1/18/2012                  | EPA 8015Mod  | 1             | 1              | 1              | 257                              | Sludge           |
| -   |                                     |                     | 11112012                    | 1/10/2012                  | EPA 1010     |               |                |                | >60 celcius                      | Sludge           |

#### Brawley WWTP- Sludge-Metals, Semi-Voc,TPH

| No. | Name of Constituent<br>Lab ID- 4700 | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML<br>(mg/kg) | RML<br>(µg/kg) | MDL<br>(µg/kg) | Analytical<br>Results<br>(μg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments         |
|-----|-------------------------------------|---------------------|-----------------------------|----------------------------|--------------|---------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| -   | Inorganics:                         |                     |                             |                            | 1            |               |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 1   | Arsenic                             | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 1             | 1              | 1              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sludge           |
| 2   | Cadmium                             | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 1             | 1              | 1              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sludge           |
| 3   | Copper                              | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 2             | 2              | 2              | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sludge           |
| 4   | Lead                                | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 1             | 1              | 1              | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sludge           |
| 5   | Molybdenum                          | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 1             | 1              | 1              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sludge           |
| 6   | Nickel                              | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 1             | 1              | 1              | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sludge<br>Sludge |
| 7   | Potassium                           | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 10            | 10             | 10             | 614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sludge           |
| 8   | Selenium                            | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 2             | 2              | 2              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| 9   | Zinc                                | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 6010B    | 2             | 2              | 2              | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sludge<br>Sludge |
|     | Cyanide                             | WWTP                | 1/12/2012                   | 1/20/2012                  | SM 4500CN E  | 0.3           | 0.3            | 0.3            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sludge           |
| 11  | Mercury                             | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 7471A    | 0.3           | 0.3            | 0.3            | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sludge           |
|     |                                     |                     |                             |                            |              | 0.0           | 0.0            | 0.0            | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sludge           |
| _   | Bis(2-ethylhexyl)phalate            | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 8270C    | 25            | 25             | 25             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sludge           |
|     | Total Kjeldahl Nitrogen             | WWTP                | 1/12/2012                   | 1/26/2012                  | EPA 351.2    | 4000          | 4000           | 4000           | 0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01-1-            |
|     | Ammonia                             | WWTP                | 1/12/2012                   | 2/1/2012                   | SM 4500-NH3  | 25            | 25             | 25             | 8780<br>494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sludge           |
|     | Nitrate                             | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 300.0    | 55            | 55             | 55             | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sludge           |
|     | Phosphorus                          | WWTP                | 1/12/2012                   | 1/25/2012                  | EPA 365.2    | 100           |                |                | distance of the second s | Sludge           |
|     | Total Solids                        | WWTP                | 1/12/2012                   | 1/23/2012                  |              |               | 100            | 100            | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sludge           |
| 1   | Fecal Coliform                      | WWTP                |                             |                            | % moisture   | 0.1           | 0.1            | 0.1            | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sludge           |
| -   |                                     | VVVIP               | 1/12/2012                   | 1/22/2012                  | SM 9221E     | 2             | 2              | 2              | >1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sludge           |
|     | Gasoline range hydrocarbons         | WWTP                | 1/12/2012                   | 1/20/2012                  | EPA 8021B    | 1             | 1              | 1              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sludge           |
|     | Moisture Content                    | WWTP                | 1/12/2012                   | 1/23/2012                  | % moisture   | 0.1           | 0.1            | 0.1            | 81.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|     | TPH as Diesel                       | WWTP                | 1/12/2012                   | 1/24/2012                  | EPA 8015Mod  | 1             | 1              | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sludge           |
| 1   | TPH as Motor Oil                    | WWTP                | 1/12/2012                   | 1/24/2012                  | EPA 8015Mod  | 1             | 1              | 1              | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sludge           |
|     | Flash point                         | WWTP                | 1/12/2012                   | 1/24/2012                  | EPA 1010     | 1             |                | 1              | 160<br>>60 celcius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sludge<br>Sludge |

### Brawley WWTP- Sludge-Metals, Semi-Voc,TPH

| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Name of Constituent                   | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML<br>(mg/kg) | RML<br>(µg/kg) | MDL<br>(µg/kg) | Analytical<br>Results<br>(μg/kg) | Comments         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|-----------------------------|----------------------------|--------------|---------------|----------------|----------------|----------------------------------|------------------|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inorganics:                           |                     |                             |                            |              | (             | (46,46)        | (HE)(E)        | (µg/kg)                          |                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                               | MANTO               | 410710040                   |                            |              |               |                |                |                                  |                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cadmium                               | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 1             | 1              | 1              | ND                               | Sludge           |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Copper                                | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 1             | 1              | 1              | ND                               | Sludge           |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead                                  | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 2             | 2              | 2              | 51.8                             | Sludge           |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Molybdenum                            | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 1             | 1              | 1              | 2.2                              | Sludge           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nickel                                | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 1             | 1              | 1              | 2.1                              | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Potassium                             | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 1             | 1              | 1              | 1.5                              | Sludge           |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Selenium                              | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 10            | 10             | 10             | 236                              | Sludge           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zinc                                  | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 2             | 2              | 2              | ND                               | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cyanide                               | WWTP                | 1/27/2012                   | 2/13/2012                  | EPA 6010B    | 2             | 2              | 2              | 50.4                             | Sludge           |
| and the second se | Mercury                               | WWTP                | 1/27/2012                   | 2/13/2012                  | SM 4500CN E  | 0.3           | 0.3            | 0.3            | ND                               | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mercury                               | WWTP                | 1/27/2012                   | 2/14/2012                  | EPA 7471A    | 0.3           | 0.3            | 0.3            | 0.46                             | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bis(2-ethylhexyl)phalate              | WWTP                | 1/27/2012                   | 2/14/2012                  | EDA 00700    | 0.5           |                |                |                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , , , , , , , , , , , , , , , , , , , | wwir                | 1/2//2012                   | 2/14/2012                  | EPA 8270C    | 25            | 25             | 25             | ND                               | Sludge           |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Kjeldahl Nitrogen               | WWTP                | 1/27/2012                   | 2/9/2012                   | EPA 351.2    | 4000          | 4000           | 4000           | 9750                             | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ammonia                               | WWTP                | 1/27/2012                   | 2/9/2012                   | SM 4500-NH3  | 25            | 25             | 25             | 1130                             | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nitrate                               | WWTP                | 1/27/2012                   | 2/8/2012                   | EPA 300.0    | 55            | 55             | 55             | 11.8                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phosphorus                            | WWTP                | 1/27/2012                   | 2/6/2012                   | EPA 365.2    | 100           | 100            |                |                                  | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Solids                          | WWTP                | 1/27/2012                   | 2/8/2012                   | % moisture   |               |                | 100            | 98                               | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fecal Coliform                        | WWTP                | 1/27/2012                   |                            |              | 0.1           | 0.1            | 0.1            | 18.4                             | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                     | 1/2//2012                   | 2/10/2012                  | SM 9221E     | 2             | 2              | 2              | >1600                            | Sludge           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline range hydrocarbons           | WWTP                | 1/27/2012                   | 2/6/2012                   | EPA 8021B    | 1             | 1              | 1              | ND                               | Sludge           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Moisture Content                      | WWTP                | 1/27/2012                   | 2/8/2012                   | % moisture   | 0.1           | 0.1            | 0.1            | 81.6                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TPH as Diesel                         | WWTP                | 1/27/2012                   | 2/6/2012                   | EPA 8015Mod  | 1             | 1              | 1              | 24.9                             | Sludge           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TPH as Motor Oil                      | WWTP                | 1/27/2012                   | 2/6/2012                   | EPA 8015Mod  | 1             | 1              | 1              | 129                              | Sludge           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Flash point                           | WWTP                | 1/27/2012                   | 2/3/2012                   | EPA 1010     |               | 1              | 1              | >60 celcius                      | Sludge<br>Sludge |

### Brawley WWTP- Sludge-Metals, Semi-Voc, TPH

| No. | Name of Constituent         | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method               | ML      | RML     | MDL     | Analytical<br>Results | Comments |
|-----|-----------------------------|---------------------|-----------------------------|----------------------------|----------------------------|---------|---------|---------|-----------------------|----------|
|     | Lab ID- 4763                |                     |                             |                            |                            | (mg/kg) | (µg/kg) | (µg/kg) | (µg/kg)               |          |
|     | Inorganics:                 |                     | 1                           |                            |                            |         |         | 1       |                       |          |
| 1   | Arsenic                     | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 1       | 1       | 1       | ND                    | Sludge   |
| 2   | Cadmium                     | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 1       | 1       | 1       | ND                    | Sludge   |
| 3   | Copper                      | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 2       | 2       | 2       | 123                   | Sludge   |
| 4   | Lead                        | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 1       | 1       | 1       | 5                     | Sludge   |
| 5   | Molybdenum                  | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 1       | 1       | 1       | 4.9                   | Sludge   |
| 6   | Nickel                      | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 1       | 1       | 1       | 6.4                   | Sludge   |
| 7   | Potassium                   | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 10      | 10      | 10      | 621                   | Sludge   |
| 8   | Selenium                    | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 2       | 2       | 2       | 2.1                   | Sludge   |
| 9   | Zinc                        | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 6010B                  | 2       | 2       | 2       | 122                   | Sludge   |
| 10  | Cyanide                     | WWTP                | 2/8/2012                    | 2/14/2012                  | SM 4500CN E                | 0.3     | 0.3     | 0.3     | ND                    | Sludge   |
| 11  | Mercury                     | WWTP                | 2/8/2012                    | 2/16/2012                  | EPA 7471A                  | 0.3     | 0.3     | 0.3     | 0.23                  | Sludge   |
|     |                             |                     |                             |                            |                            |         |         |         |                       |          |
|     | Bis(2-ethylhexyl)phalate    | WWTP                | 2/8/2012                    | 2/14/2012                  | EPA 8270C                  | 25      | 25      | 25      | ND                    | Sludge   |
|     | Total Kjeldahl Nitrogen     | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 351.2                  | 4000    | 4000    | 4000    | 9690                  | Sludge   |
|     | Ammonia                     | WWTP                | 2/8/2012                    | 2/14/2012                  | SM 4500-NH3                | 25      | 25      | 25      | 387                   | Sludge   |
|     | Nitrate                     | WWTP                | 2/8/2012                    | 2/10/2012                  | EPA 300.0                  | 11      | 11      | 11      | 15.1                  | Sludge   |
|     | Phosphorus                  | WWTP                | 2/8/2012                    | 2/10/2012                  | EPA 365.2                  | 40      | 40      | 40      | 78                    | Sludge   |
|     | Total Solids                | WWTP                | 2/8/2012                    | 2/13/2012                  | % moisture                 | 0.1     | 0.1     | 0.1     | 22.3                  | Sludge   |
|     | Fecal Coliform              | WWTP                | 2/8/2012                    | 2/12/2012                  | SM 9221E                   | 2       | 2       | 2       | >1600                 |          |
|     | Gasoline range hydrocarbons | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 8021B                  | 1       | 1       | 1       | ND                    | Sludge   |
|     | Moisture Content            | WWTP                | 2/8/2012                    | 2/13/2012                  | % moisture                 | 0.1     | 0.1     | 0.4     | 77 7                  | Sludge   |
|     | TPH as Diesel               | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 8015Mod                |         |         | 0.1     | 77.7                  | Sludge   |
|     | TPH as Motor Oil            | WWTP                | 2/8/2012                    | 2/15/2012                  | EPA 8015Mod<br>EPA 8015Mod | 1       | 1       | 1       | 24.5                  | Sludge   |
|     | Flash point                 | WWTP                | 2/8/2012                    | 2/10/2012                  | EPA 1010                   | 1       | 1       | 1       | 177                   | Sludge   |
| _   |                             |                     | 2/0/2012                    | 2/10/2012                  | EPA IUIU                   |         |         |         | >60 celcius           | Sludge   |

# **City of Brawley WWTP- Effluent**

### VOC Semi-VOC's

Discharger: City of Brawley Wastewater Treatment Facility

NPDES Number:

WDID Number:

a Posiad:

Monitoring Period: Measured/Metered Flow (MGD):

Sampled 01-13-2010 9:48am

Name of Laboratory: ELAP Number: Laboratory Contact Name: Laboratory Phone Number: Report Number:

| No. | Name of Constituent       | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method                                                                                                    | ML<br>(µg/L) | RML<br>(µg/L) | MDL<br>(µg/L) | Analytical<br>Results<br>(μg/L)                                                                                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|---------------------------|---------------------|-----------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Volatile Substances:      |                     |                             |                            |                                                                                                                 |              |               |               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1   | Acrolein                  | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 5            | 5             | 5             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2   | Acrylonitrile             | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 2            | 2             | 2             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3   | Benzene                   | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4   | Bromobenzene              | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5   | Bromodichloromethane      | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6   | Bromoform                 | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7   | Bromomethane              | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8   | Carbon tetrachloride      | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent<br>Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9   | Chlorobenzene             | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10  | Chloroethane              | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | 2-Chloroethylvinyl ether  | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2   | Chloroform                | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3   | Chloromethane             | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | a second and the |
| 4   | Chlorodibromomethane      | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5   | 1,2-Dichlorobenzene       | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent<br>Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6   | 1,3-Dichlorobenzene       | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7   | 1,4-Dichlorobenzene       | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8   | 1,1-Dichloroethane        | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9   | 1,2-Dichloroethane        | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0   | cis-1,2-Dichloroethene    | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | in the second | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | trans-1,2- Dichloroethene | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2   | 1,2-Dichloropropane       | WWTP                | 1/13/2010                   |                            | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 1,1-Dichloropropene       | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | cis-1,3-Dichloroethene    | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 4             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | trans-1,3-Dichloropropene | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Ethylbenzene              | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             |               | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _   | Dichloromethane           | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | -             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| _   | Methylene bromide         | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| )   | 1,1-Dichloroethylene      | WWTP                | 1/13/2010                   | 1/18/2010                  | The second se | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 1,1,2,2-Tetrachloroethane | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | Tetrachloroethene         | WWTP                | 1/13/2010                   |                            | EPA 624                                                                                                         |              | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Toluene                   | WWTP                |                             | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -   | 1,1,1-Trichloroethane     | WWTP                | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                           |                     | 1/13/2010                   | 1/18/2010                  | EPA 624                                                                                                         | 1            | 1             | 1             | ND                                                                                                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### y: \_\_\_\_\_ IVE LABs/ Sierra Analytical

| ber: | IVE LAB-2524/ Sierra 2320 |  |
|------|---------------------------|--|
|      | TVE EAD-2024/ Sierra 2020 |  |
| me:  | Jorge Ortega              |  |
| ber: | 760-357-8764              |  |
| ber: | 3243-5 - Effluent         |  |
|      |                           |  |

# **City of Brawley WWTP- Effluent**

| Ma  |                         |                     | Date      | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |        |        |                       |          |
|-----|-------------------------|---------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|--------|--------|-----------------------|----------|
| lo. | Name of Constituent     | Monitoring Location | VOC       | Semi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 C S Method      | ML     | RML    | MDL    | Analytical<br>Results | Comments |
| -   | Volatile Substances:    |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | (µg/L) | (µg/L) | (µg/L) | (µg/L)                |          |
| 34  | 1,1,2-Trichloroethane   | WWTP                | 1/12/2010 | 4/40/0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EDA 004            |        |        |        |                       |          |
| 35  | Trichloroethene         |                     | 1/13/2010 | and the second se |                    | 1      | 1      | 1      | ND                    | Effluent |
| 36  | Trichlorofluoromethane  | WWTP<br>WWTP        | 1/13/2010 | 1/18/2010<br>1/18/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1      | 1      | 1      | ND                    | Effluent |
| _   | Vinyl Chloride          | WWTP                | 1/13/2010 | 1/18/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 624<br>EPA 624 | 1      | 1      | 1      | ND                    | Effluent |
| 38  | m,p-Xylene              | WWTP                | 1/13/2010 | 1/18/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 1      | 1      |        | ND                    | Effluent |
|     | o-Xylene                | WWTP                | 1/13/2010 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 1      | 1      |        | ND                    | Effluent |
| -   | Methyl tert-butyl ether | WWTP                | 1/13/2010 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA 624            | 1      | 1      |        | ND                    | Effluent |
|     | 1,1 Dichloroethene      |                     |           | 1/18/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 624            | 1      | 1      | 1      | ND                    | Effluent |
| 11  | r, i Dichioroethene     | WWTP                | 1/13/2010 | 1/18/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPA 624            | 1      | 1      | 1      | ND                    | Effluent |
| -   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
| -   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
| -   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
| -   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
| -   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
| -   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
| _   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
| _   |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |
|     |                         |                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |        |        |        |                       |          |

# City of Brawley WWTP- Effluent

### VOC Semi-VOC's

| No. | Name of Constituent              | Monitoring Location | Date<br>Sample | Date<br>Sample | USEPA Method | ML     | RML    | MDL    | Analytical<br>Results | Comments |
|-----|----------------------------------|---------------------|----------------|----------------|--------------|--------|--------|--------|-----------------------|----------|
| _   |                                  |                     | Collected      | Analyzed       |              | (ug/L) | (ug/L) | (ug/L) | (ug/L)                | Comments |
|     | Semi-Volatile Substances, Cont': |                     |                |                |              | (      |        | (ug/L) | (ug/L)                | 1        |
| 41  | Fluorene                         | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 42  | Hexachlorobenzene                | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 43  | Hexachlorobutadiene              | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 44  | Hexachlorocyclopentadiene        | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 45  | Hexachloroethane                 | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 46  | Indeno (1,2,3,cd)-pyrene         | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 47  | Isophorone                       | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 48  | 2-Methylnaphthalene              | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 49  | 2-Methylphenol                   | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 50  | 4-Methylphenol                   | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
|     | Naphthalene                      | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 52  | 2-Nitroaniline                   | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 53  | 3-Nitroaniline                   | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 54  | 4-Nitroaniline                   | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 55  | Nitrobenzene                     | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 56  | 2-Nitrophenol                    | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 57  | 4-Nitrophenol                    | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 1      | 1      | 1      | ND                    | Effluent |
| 58  | N-Nitrosodimiethylamine          | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 59  | N-Nitrosodi-n-propylamine        | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 1      | 1      | 1      | ND                    | Effluent |
| 60  | Pentachlorophenol                | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 61  | Phenanthrene                     | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 62  | Phenol                           | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 1      | 1      | 1      | ND                    | Effluent |
| 63  | Pyrene                           | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 64  | 1,2,4-Trichlorobenzene           | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 1      | 1      | 1      | ND                    | Effluent |
| 65  | 2,4,5-Trichlorophenol            | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
| 66  | 2,4,6-Trichlorophenol            | WWTP                | 1/13/2010      | 1/18/2010      | SM 8270C     | 5      | 5      | 5      | ND                    | Effluent |
|     |                                  |                     |                |                | 011102100    |        |        |        | ND                    | Lindent  |
| _   |                                  |                     |                |                |              |        |        |        |                       |          |
| -   |                                  |                     |                |                |              |        |        |        |                       |          |
|     |                                  |                     |                |                |              |        |        |        |                       |          |
|     |                                  |                     |                |                |              |        |        |        |                       |          |
|     |                                  |                     | + +            |                |              |        |        |        |                       |          |
|     |                                  |                     |                |                |              |        |        |        |                       |          |
|     |                                  |                     |                |                |              |        |        |        |                       |          |
|     |                                  |                     |                |                |              |        |        |        |                       |          |
|     |                                  |                     |                |                |              |        |        |        |                       |          |

<sup>2</sup> Phenol by colorimetric technique has a factor of 1

# <u>City of Brawley</u> <u>WWTP- Upstream</u> <u>VOC Semi-VOC's</u>

|     |                                                            |                     | Date      | Date      |              |        |        |        |             |          |
|-----|------------------------------------------------------------|---------------------|-----------|-----------|--------------|--------|--------|--------|-------------|----------|
| No. | Name of Constituent                                        | Monitoring Location | Sample    | Sample    | USEPA Method |        | DIAL   | ME     | Analytical  | Comments |
|     |                                                            |                     | Collected | Analyzed  |              | ML     | RML    | MDL    | Results     |          |
|     |                                                            |                     |           |           |              | (µg/L) | (µg/L) | (µg/L) | (µg/L)      |          |
|     | Inorganics:                                                |                     |           |           |              |        |        |        |             |          |
| 1   | Antimony                                                   | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 6      | 6      | 6      | ND          | Upstream |
| 2   | Arsenic                                                    | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 2      | 2      | 2      | 5.2         | Upstream |
| 3   | Beryllium                                                  | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 1      | 1      | 0.2    | ND          | Upstream |
| 4   | Cadmium                                                    | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 1      | 1      | 0.4    | ND          | Effluent |
| 5   | Chromium III                                               | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 6      | 6      | 1.1    | ND          | Effluent |
| 6   | Chromium VI                                                | WWTP                | 12/1/2010 | 12/2/2010 | EPA 218.6    | 1      | 1      | 1      | ND          | Effluent |
| 7   | Copper                                                     | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 10     | 10     | 2.3    | 15.5        | Upstream |
| 8   | Cyanide                                                    | WWTP                | 12/1/2010 | 12/3/2010 | EPA 335.2    | 5      | 5      | 5      | ND          | Upstream |
| 9   | Lead                                                       | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 4      | 4      | 4      | 8.9         | Upstream |
| 10  | Mercury                                                    | WWTP                | 12/1/2010 | 12/5/2010 | EPA 245.1    | 0.73   | 0.73   | 0.73   | ND          | Upstream |
| 11  | Nickel                                                     | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 9      | 9      | 1.8    | ND          | Upstream |
| 12  | Selenium                                                   | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 5      | 5      | 3.7    | 6.1         | Upstream |
| 13  | Silver                                                     | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 4      | 4      | 0.8    | ND          | Upstream |
| 14  | Thallium                                                   | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 4      | 4      | 1.5    | ND          | Upstream |
| 15  | Zinc                                                       | WWTP                | 12/1/2010 | 12/4/2010 | EPA 200.8    | 13     | 13     | 2.6    | ND          | Upstream |
|     |                                                            |                     |           |           |              |        |        |        |             |          |
|     | Other Constituents:                                        | WWTP                |           |           |              |        |        |        |             | ÷        |
| 1   | pH                                                         | WWTP                | 12/1/2010 | 12/1/2010 | SM4500HG     |        |        |        | 7.59        | Upstream |
| 2   | Hardness measured as CaCO <sub>3</sub> , mg/L              | WWTP                | 12/1/2010 | 12/1/2010 | SM2340B      |        |        |        | 840.0 mg/L  | Upstream |
| 3   | Salinity measured as Total Dissolved<br>Solids (TDS), mg/L | WWTP                | 12/1/2010 | 12/3/2010 | SM2540C      |        |        |        | 3274.0 mg/L | Upstream |
| 4   | Total Suspended Solids (TSS), mg/L                         | WWTP                | 12/1/2010 | 12/3/2010 | SM2540D      |        |        |        | 148.5 mg/L  | Upstream |

<sup>2</sup> Phenol by colorimetric technique has a factor of 1

City of Brawley WWTP- Upstream VOC Semi-VOC's

Discharger:

City of Brawley Wastewater Treatment Facility

NPDES Number:

WDID Number: Monitoring Period:

Sampled 12-01-2010 10:00am

Measured/Metered Flow (MGD):

Name of Labora ELAP Num Laboratory Contact Na Laboratory Phone Num Report Num

| No. | Name of Constituent                  | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML<br>(µg/L) | RML<br>(µg/L) | MDL<br>(µg/L) | Analytical<br>Results<br>(μg/L) | Comments |
|-----|--------------------------------------|---------------------|-----------------------------|----------------------------|--------------|--------------|---------------|---------------|---------------------------------|----------|
|     | Volatile Substances:                 |                     |                             |                            |              |              |               |               |                                 |          |
| 1   | Dichlorodifluoromethane (FC-12)      | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 2   | Chloromethane                        | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 3   | Vinyl chloride (chloroethylene)      | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 0.5          | 0.5           | 0.5           | ND                              | Upstream |
| 4   | Bromomethane                         | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 5   | Chloroethane                         | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 6   | Trichlorofluoromethane (FC-11)       | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 7   | Acetone                              | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 2            | 2             | 10            | ND                              | Upstream |
| 8   | Carbon Disulfide                     | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 5             | ND                              | Upstream |
| 9   | 1,1-Dichloroethene                   | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 10  | Methylene Chloride (dichloromethane) | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 2.5           | ND                              | Upstream |
| 11  | trans-1,2- Dichloroethene            | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 2   | 1,1-Dichloroethane                   | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 13  | Vinyl Acetate                        | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 5             | ND                              | Upstream |
| 4   | 2,2-Dichloropropane                  | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 15  | cis-1,2-Dichloroethene               | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 16  | 2-Butanone (MEK)                     | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 5             | ND                              | Upstream |
| 17  | Bromochloromethane                   | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 8   | Chloroform                           | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 9   | 1,1,1-Trichloroethane                | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 20  | Carbon Tetrachloride                 | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 0.5          | 0.5           | 0.5           | ND                              | Upstream |
| 21  | 1,1-Dichloropropene                  | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 22  | Benzene                              | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 23  | 1,2-Dichloroethane                   | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 0.5          | 0.5           | 0.5           | ND                              | Upstream |
| 4   | Trichloroethene (TCE)                | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 25  | 1,2-Dichloropropane                  | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 26  | Dibromomethane                       | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| .7  | Bromodichloromethane                 | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 8   | 2-Chloroethyl vinyl ether            | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 5             | ND                              | Upstream |
| _   | cis-1,3-Dichloropropene              | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| _   | 4-Methyl-2-pentanone (MIBK)          | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 5             | ND                              | Upstream |
| 31  | Toluene                              | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
|     | trans-1,3-Dichloropropene            | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             | ND                              | Upstream |
| 33  | 1,1,2-Trichloroethane                | WWTP                | 12/1/2010                   | 12/3/2010                  | SM 8260B     | 1            | 1             | 1             |                                 | Upstream |

| ositive Labs     |
|------------------|
| ositive Lab 1131 |
| Ortega           |
| 7-8764           |
| Upstream         |
|                  |

### **City of Brawley**

|     |                                    |                     | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P- Ups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        | Ameliation            | 0        |
|-----|------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|-----------------------|----------|
| No. | Name of Constituent                | Monitoring Location | and the second descent second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19PAS lethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.41   | DM     | MDI    | Analytical<br>Results | Comments |
|     |                                    |                     | Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ML     | RML    | MDL    |                       |          |
|     |                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (µg/L) | (µg/L) | (µg/L) | (µg/L)                |          |
| -   | Volatile Substances:               | MAACED              | 10/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/2/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SM 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      | 1      | 1      | ND                    | Upstream |
| 34  | Tetrachloroethylene                | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 35  | 1,3-Dichloropropane                | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 5      | ND                    | Upstream |
| 36  | 2-Hexanone (MBK)                   | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | 1      | 1      | ND                    | Upstream |
| 37  | Chlorodibromomethane               | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | 1      | 1      | ND                    | Upstream |
| 38  | 1,2-Dibromoethane (EDB)            | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 39  | Chlorobenzene                      | WWTP                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -      |        |                       |          |
| 40  | 1,1,1,2-Tetrachloroethane          | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 41  | Ethylbenzene                       | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 42  | m,p-Xylene                         | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 43  | o-Xylene                           | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SM 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      | 1      | 1      | ND                    | Upstream |
| 44  | Styrene                            | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SM 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      | 1      | 1      | ND                    | Upstream |
| 45  | Bromoform (Tribromomethane)        | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 46  | Isopropylbenzene                   | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | 1      | 1      | ND                    | Upstream |
| 47  | Bromobenzene                       | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 48  | 1,1,2,2-Tetrachloroethane          | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second s | 1      | 1      | 1      | ND                    | Upstream |
| 49  | 1,2,3-Trichloropropane             | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONTRACTOR OF A DESCRIPTION OF A DESCRIP | 1      | 1      | 1      | ND                    | Upstream |
| 50  | n-Propylbenzene                    | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 51  | 2-Chlorotoluene                    | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 52  | 4-Chlorotoluene                    | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second sec                                                                                                                                                                                                                                             | 1      | 1      | 1      | ND                    | Upstream |
| 53  | 1,3,5-Trimethylbenzene             | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 54  | tert-Butylbenzene                  | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SM 8260B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      | 1      | 1      | ND                    | Upstream |
| 55  | 1,2,4-Trimethylbenzene             | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second                                                                                                                                                                                                                                              | 1      | 1      | 1      | ND                    | Upstream |
| 56  | sec-Butylbenzene                   | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 57  | 1,3-Dichlorobenzene                | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 58  | 4-Isopropyltoluene                 | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | 1      | 1      | ND                    | Upstream |
| 59  | 1,4-Dichlorobenzene                | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | 1      | 1      | ND                    | Upstream |
| 60  | 1,2-Dichlorobenzene                | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second sec                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 61  | n-Butylbenzene                     | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 62  | 1,2-Dibromo-3-chloropropane (DBCP) | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1      | 1      | 1      | ND                    | Upstream |
| 63  | 1,2,4-Trichlorobenzene             | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 64  | Hexachlorobutadiene                | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 65  | Naphthalene                        | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second distance of the second distanc | 1      | 1      | 1      | ND                    | Upstream |
| 66  | 1,2,3-Trichlorobenzene             | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 67  | Methyl tert-butyl ether (MTBE)     | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 68  | 1,4-Dioxane                        | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second design of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5      | 1      | 20     | ND                    | Upstream |
| 69  | Tert-butyl alcohol                 | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 5      | ND                    | Upstream |
| 70  | Di-isopropyl ether                 | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 71  | Ethyl tert-butyl ether             | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 72  | Tert-amyl methyl ether             | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
| 73  | Acrolein                           | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12/3/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1      | 1      | ND                    | Upstream |
|     | Acrylonitrile                      | WWTP                | 12/1/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the statement of the st | 1      | 1      | 1      | ND                    | Upstream |

### <u>City of Brawley</u> <u>WWTP- Upstream</u> VOC Semi-VOC's

|     | VOC Semi-VOC's               |                     |                             |                            |              |              |               |               |                                 |             |  |  |  |
|-----|------------------------------|---------------------|-----------------------------|----------------------------|--------------|--------------|---------------|---------------|---------------------------------|-------------|--|--|--|
| No. | Name of Constituent          | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analvzed | USEPA Method | ML<br>(µg/L) | RML<br>(μg/L) | MDL<br>(µg/L) | Analytical<br>Results<br>(µg/L) | Comments    |  |  |  |
|     | Semi-Volatile Substances:    |                     |                             |                            |              | (45.2)       | (46/1)        | (HB/L)        | (µg/L)                          | 1           |  |  |  |
| 1   | N-Nitrosodimethylamine       | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | E             | E             | ND                              | Unatura and |  |  |  |
| 2   | Pyridine                     | WWTP                |                             |                            |              |              | 5             | 5             | ND                              | Upstream    |  |  |  |
| 3   | Aniline                      |                     | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 1   | Bis(2-chorotheyl) ether      | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 5   | Phenol                       | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 6   | 2-Chlorophenol               | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 7   | 1,3-Dichlorobezene           | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 8   | 1,4-Dichlorobenzene          | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
| 9   | 1,2-Dichlorobenzene          | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
|     | Benzyl alcohol               | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
|     | Bis(2-chloroisopropyl) ether | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
|     | 2-Methylphenol               | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 12  | Hexachloroethane             | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
| 14  |                              | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | N-Nitrosodi-n-propylamine    | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
|     | 4-Methylphenol               | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | Nitrobenzene                 | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | Isophorone                   | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | 2-Nitrophenol                | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
|     | 2,4-Dimethylphenol           | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | Bis(2-chloroethoxy) methane  | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | Benzoic Acid                 | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 4            | 4             | 20            | ND                              | Upstream    |  |  |  |
|     | 2,4-Dichlorophenol           | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | 1,2,4-Trichlorobenzene       | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| _   | Naphthalene                  | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | 4-Chloroaniline              | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | Hexachlorobutadiene          | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | 3-Methyl-4-Cholrophenol      | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| _   | 2-Methylnaphthalene          | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | Hexachlorocyclopentadiene    | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
|     | 2,4,6-Trichlorophenol        | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | 2,4,5-Trichlorophenol        | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
|     | 2-Chloronaphthalene          | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| _   | 2-Nitroaniline               | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| _   | Acenaphthylene               | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 1            | 1             | 5             | ND                              | Upstream    |  |  |  |
| _   | Dimethyl phthalate           | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| _   | 2,6-Dinitrotoluene           | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 7 / | Acenaphthene                 | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 8   | 3-Nitroaniline               | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
| 9   | 2,4-Dinitrophenol            | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |
|     | Dibenzofuran                 | WWTP                | 12/1/2010                   | 12/7/2010                  | SM 8270C     | 5            | 5             | 5             | ND                              | Upstream    |  |  |  |

Note: Items identified as upstream in the comments column are plant influent samples.

California Environmental Protection Agency

# <u>City of Brawley</u> <u>WWTP- Upstream</u> <u>VOC Semi-VOC's</u>

| Ma  | Name of Occurring                |                     | Date      | Date      |              |        |        |        | Analytical    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------------------------------|---------------------|-----------|-----------|--------------|--------|--------|--------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. | Name of Constituent              | Monitoring Location | Sample    | Sample    | USEPA Method | ML     | RML    | MDL    | Results       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _   |                                  |                     | Collected | Analyzed  |              | (ug/L) | (ug/L) | (ug/L) | (ug/L)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Semi-Volatile Substances, Cont': |                     |           |           |              |        |        |        | And Marine In |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 41  | 2,4-Dinitrotoluene               | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 42  | 4-Nitrophenol                    | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 43  | Fluorene                         | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 44  | 4-Chlorophenyl phenyl ether      | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 45  | Diethyl phthalate                | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 46  | 4-Nitroaniline                   | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 47  | 2-Methyl-4,6-Dinitrophenol       | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48  | N-Nitrosodiphenylamine           | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 49  | Azobenzene                       | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50  | 1,2-Diphenylhydrazine            | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 4-Bromophenyl phenyl ether       | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 52  | Hexachlorobenzene                | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 53  | Pentachlorophenol                | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 54  | Phenanthrene                     | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55  | Carbazole                        | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 56  | Anthracene                       | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 57  | Di-n-butyl phthalate             | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 58  | Fluoranthene                     | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Benzidine                        | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 8      | 8      | 40     | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Pyrene                           | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Butylbenzyl phthalate            | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 3,3-Dichlorobenzidine            | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 53  | Benzo(a)antharacene              | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      |               | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 64  | Chrysene                         | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55  | Bis (2-ethylhexyl) phthalate     | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6   | Di-n-octyl phthalate             | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 57  | Benzo(b)fluoranthene             | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8   | Benzo(k)fluoranthene             | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Contraction of the Contraction o |
| 69  | Benzo(a)pyrene                   | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0   | ndeno(1,2,3-cd) pyrene           | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1   | Dibenzo(a,h)anthracene           | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2   | Benzo(g,h,i)perylene             | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | n,p- Cresols                     | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      |               | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4 / | Acenapththene                    | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5 [ | Diethyl phthalate                | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      |        | ND            | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 2,6-Dinitrotoluene               | WWTP                | 12/1/2010 | 12/7/2010 | SM 8270C     | 5      | 5      | 5      |               | Upstream<br>Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# <u>City of Brawley</u> <u>WWTP- Upstream</u> <u>VOC Semi-VOC's</u>

|    | Pesticides - PCBs:  |      |           |           |     |       |       |       |    |          |
|----|---------------------|------|-----------|-----------|-----|-------|-------|-------|----|----------|
| 1  | Aldrin              | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.01  | 0.01  | 0.01  | ND | Upstream |
| 2  | HCH-alpha           | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.01  | 0.01  | 0.01  | ND | Upstream |
| 3  | HCH-beta            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.01  | 0.01  | 0.01  | ND | Upstream |
| 4  | HCH-delta           | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.02  | 0.02  | 0.02  | ND | Upstream |
| 5  | HCH-gamma (Lindane) | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.01  | 0.01  | 0.01  | ND | Upstream |
| 6  | Chlordane           | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.075 | 0.075 | 0.075 | ND | Upstream |
| 7  | 4,4-DDD             | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.05  | 0.05  | 0.05  | ND | Upstream |
| 8  | 4,4,-DDE            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.05  | 0.05  | 0.05  | ND | Upstream |
| 9  | 4,4-DDT             | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.05  | 0.05  | 0.05  | ND | Upstream |
| 10 | Dieldrin            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.1   | 0.1   | 0.1   | ND | Upstream |
| 11 | alpha Endosulfan    | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.02  | 0.02  | 0.02  | ND | Upstream |
| 12 | beta Endosulfan     | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.05  | 0.05  | 0.05  | ND | Upstream |
| 13 | Endosulfan sulfate  | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.1   | 0.1   | 0.1   | ND | Upstream |
| 14 | Endrin              | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.05  | 0.05  | 0.05  | ND | Upstream |
| 15 | Endrin aldehyde     | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.01  | 0.01  | 0.01  | ND | Upstream |
| 16 | Heptachlor          | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.01  | 0.01  | 0.01  | ND | Upstream |
| 17 | Heptachlor epoxide  | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.2   | 0.2   | 0.2   | ND | Upstream |
| 18 | Toxaphene           | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.5   | ND | Upstream |
| 19 | PCB-1061            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.4   | ND | Upstream |
| 20 | PCB 1221            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.4   | ND | Upstream |
| 21 | PCB 1232            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.4   | ND | Upstream |
| 22 | PCB 1242            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.4   | ND | Upstream |
| 23 | PCB 1248            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.4   | ND | Upstream |
| 24 | PCB 1254            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.4   | ND | Upstream |
| 25 | PCB 1260            | WWTP | 12/1/2010 | 12/3/2010 | 608 | 0.5   | 0.5   | 0.4   | ND | Upstream |

| No. | Name of Constituent          | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analvzed | USEPA Method | ML<br>(μg/L) | RML<br>(μg/L) | MDL<br>(µg/L) | Analytical<br>Results<br>(µg/L) | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|------------------------------|---------------------|-----------------------------|----------------------------|--------------|--------------|---------------|---------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Semi-Volatile Substances:    |                     |                             | 1                          |              | (10-)        | (PB D)        | (148-2)       | (46/2)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1   | N-Nitrosodimethylamine       | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2   | Aniline                      | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             |               | and the second second           | Landati da la companya |
| 3   | Bis (2-chloroethyl) ether    | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND<br>ND                        | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4   | Phenol                       | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent<br>Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5   | 2-Chlorophenol               | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6   | 1,4-Dichlorobenzene          | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | Benzyl alcohol               | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8   | Bis(2-chloroisopropyl) ether | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9   | 2-Methylphenol               | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10  | Nitrobenzene                 | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1   | Isophorone                   | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2   | 2-Nitrophenol                | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13  | 2,4-Dimethylphenol           | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4   | Bis(2-chloroethoxy)methane   | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5   | Benzoic acid                 | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 10           | 10            | 10            | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6   | 2,4-Dichlorophenol           | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | 1,2,4-Trichlorobenzene       | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8   | Naphthalene                  | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9   | 4-Chloroaniline              | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20  | Hexachlorobutadiene          | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21  | 4-Chloro-3-methylphenol      | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22  | 2-Methylnaphthalene          | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23  | Hexachlorocyclopentadiene    | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24  | 2,4,6-Trichlorophenol        | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5   | 2,4,5-Trichlorophenol        | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6   | 2-Chloronapthalene           | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | 2-Nitroaniline               | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Acenapthylene                | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Dimethyl phthalate           | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0   | 2,6-Dinitrotoluene           | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -   | Acenapthene                  | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 3-Nitroaniline               | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -   | 2,4-Dinitrophenol            | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -   | 2,4-Dinitrotoluene           | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Dibenzofuran                 | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 4-Nitrophenol                | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -   | Fluorene                     | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _   | 4-Chlorophenyl phenyl ether  | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _   | Diethyl phalate              | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0   | 4-Nitroaniline               | WWTP                | 12/6/2011                   | 12/14/2011                 | EPA 625      | 2            | 2             | 2             | ND                              | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|     |                                                            |                     | Date      | Date       |              |        |        |        | Analytical  |          |
|-----|------------------------------------------------------------|---------------------|-----------|------------|--------------|--------|--------|--------|-------------|----------|
| No. | Name of Constituent                                        | Monitoring Location | Sample    | Sample     | USEPA Method | ML     | RML    | MDL    | Results     | Comments |
| _   |                                                            |                     | Collected | Analyzed   |              | (ug/L) | (ug/L) | (ug/L) | (ug/L)      |          |
|     | Semi-Volatile Substances, Cont':                           |                     |           |            |              |        |        |        |             |          |
| 41  | Azobenzene                                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 42  | 4,6-Dinitro-2-methylphenol                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 43  | N-Nitrosodiphenylamine                                     | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 44  | 4-Bromophenyl phenly ether                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 45  | Hexachlorobenzene                                          | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 46  | Pentachlorophenol                                          | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 47  | Phenanthrene                                               | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 48  | Anthracene                                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 49  | Carbazole                                                  | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 50  | Di-n-butyl phthalate                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 4      | 4      | 4      | 4.4         | Effluent |
| 51  | Fluoranthene                                               | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 52  | Benzidine                                                  | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 53  | Pyrene                                                     | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 54  | Butyl benzyl phthalate                                     | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 55  | 3,3-Dichlorobenzidine                                      | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 56  | Benzo(a) anthracene                                        | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 57  | Chrysene                                                   | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 58  | Bis(2-ethylhexyl)phthalate                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 59  | Di-n-octyl phthalate                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 60  | Benzo(b)fluoranthene                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 61  | Benzo(k)fluoranthene                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 62  | Benzo(a) pyrene                                            | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 63  | Indeno (1,2,3-cd)pyrene                                    | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 64  | Dibenz(a,h)anthracene                                      | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
| 65  | Benzo(g,h,i)perylene                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Effluent |
|     |                                                            |                     |           |            |              |        |        |        |             |          |
|     | Other Constituents:                                        |                     |           |            |              |        |        |        |             |          |
| 1   | pH                                                         | WWTP                | 12/6/2011 | 12/6/2011  | SM4500HG     |        |        |        | 7.57        | Effluent |
| 2   | Hardness measured as CaCO <sub>3</sub> , mg/L              | WWTP                | 12/6/2011 | 12/6/2011  | SM2340B      | 4      | 4      | 4      | 308.0 mg/L  | Effluent |
| 3   | Salinity measured as Total Dissolved<br>Solids (TDS), mg/L | WWTP                | 12/6/2011 | 12/9/2011  | SM2540C      | 1      | 1      | 1      | 1368.0 mg/L | Effluent |
| 4   | Total Suspended Solids (TSS), mg/L                         | WWTP                | 12/6/2011 | 12/9/2011  | SM2540D      | 1      | 1      | 1      | 8.80 mg/L   | Effluent |
|     |                                                            |                     |           |            |              |        |        |        | 0.00 mg/L   |          |
|     |                                                            |                     |           |            |              |        |        |        |             |          |
| _   |                                                            |                     |           |            |              |        |        |        |             |          |

| No. | Name of Constituent | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML<br>(µg/L) | RML<br>(µg/L) | MDL<br>(µg/L) | Analytical<br>Results<br>(μg/L) | Comments |
|-----|---------------------|---------------------|-----------------------------|----------------------------|--------------|--------------|---------------|---------------|---------------------------------|----------|
|     | Inorganics:         |                     |                             |                            |              |              |               |               |                                 |          |
| 1   | Antimony            | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | ND                              | Effluent |
| 2   | Arsenic             | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | ND                              | Effluent |
| 3   | Beryllium           | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Effluent |
| 4   | Cadmium             | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Effluent |
| 5   | Chromium III        | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Effluent |
| 6   | Copper              | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | 11.7                            | Effluent |
| 7   | Lead                | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 7            | 7             | 7             | ND                              | Effluent |
| 8   | Mercury             | WWTP                | 12/6/2011                   | 12/13/2011                 | EPA 7470A    | 0.2          | 0.2           | 0.2           | ND                              | Effluent |
| 9   | Nickel              | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Effluent |
| 10  | Selenium            | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 20           | 20            | 20            | ND                              | Effluent |
| 11  | Silver              | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | ND                              | Effluent |
| 12  | Thallium            | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 20           | 20            | 20            | ND                              | Effluent |
| 13  | Zinc                | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | 32                              | Effluent |
| 14  | Cyanide             | WWTP                | 12/6/2011                   | 12/14/2011                 | SM 4500CN E  | 5            | 5             | 5             | 7                               | Effluent |
| 15  | Chromium VI         | WWTP                | 12/6/2011                   | 12/8/2011                  | EPA 7199     | 1            | 1             | 1             | ND                              | Effluent |
| _   |                     |                     |                             |                            |              |              |               |               |                                 |          |
|     |                     |                     |                             |                            |              |              |               |               |                                 |          |
| _   |                     |                     |                             |                            |              |              |               |               |                                 |          |

|    | Pesticides - PCBs:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | 1   | T  | TT |    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Heptachlor          | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2  | alpha-BHC           | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3  | beta-BHC            | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  |    | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4  | gamma-BHC (Lindane) | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  |    | ND | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5  | delta-BHC           | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  |    | ND | Effluent<br>Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6  | Aldrin              | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  |    | and the second se |
| 7  | Heptachloro epoxide | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8  | gamma-Chlordane     | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 |     | 1  |    | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9  | Endosulfan I        | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 | alpha-Chlordane     | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11 | 4,4-DDE             | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12 | Dieldrin            | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     | 1  |    | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13 | Endrin              | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | and the second se | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14 | Endosulfan II       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15 | 4,4-DDD             | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16 | Endrin Ketone       | and the second se |           | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17 | Methoxychlor        | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18 | Arochlor 1016       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 0.1 | 1  | 1  | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -  | Arochlor 1221       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 10  | 10 | 10 | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                     | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 10  | 10 | 10 | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | Arochlor 1232       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 10  | 10 | 10 | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21 | Arochlor 1242       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 10  | 10 | 10 | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22 | Arochlor 1248       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 10  | 10 | 10 | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23 | Arochlor 1254       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 10  | 10 | 10 | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24 | Arochlor 1260       | WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/6/2011 | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 608 | 10  | 10 | 10 | ND | Effluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| No. | Name of Constituent                                                                                             | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML     | RML    | MDL    | Analytical<br>Results | Comments |
|-----|-----------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|----------------------------|--------------|--------|--------|--------|-----------------------|----------|
|     | Volatile Substances:                                                                                            |                     | -                           |                            |              | (µg/L) | (µg/L) | (µg/L) | (µg/L)                |          |
| 34  | Tetrachloroethene                                                                                               | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 35  | Dibromochloromethane                                                                                            | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 36  | 1,2-Dibromoethane (EDB)                                                                                         | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 37  | Chlorobenzene                                                                                                   | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 38  | 1,1,2,2-Tetrachloroethane                                                                                       | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 39  | Ethylbenzene                                                                                                    | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 40  | Xylenes, total                                                                                                  | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 1      | 1      | 1      | ND                    | Effluent |
| 41  | m,p-Xylene                                                                                                      | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 42  | o-Xylene                                                                                                        | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 43  | Styrene                                                                                                         | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 44  | Bromoform (Tribromomethane)                                                                                     | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 45  | 1,3-Dichlorobenzene                                                                                             | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 46  | 1,4-Dichlorobenzene                                                                                             | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 47  | 1,2-Dichlorobenzene                                                                                             | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
| 48  | 1,2,4-Trichlorobenzene                                                                                          | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5    | 0.5    | 0.5    | ND                    | Effluent |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       | 1        |
| _   |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
| -   |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
| -   |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     | -                           |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              | -      |        |        |                       |          |
|     | The second se |                     |                             |                            |              | -      |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |
|     |                                                                                                                 |                     |                             |                            |              |        |        |        |                       |          |

## City of Brawley WWTP- Upstream-**Priority Pollutants**

| No. | Name of Constituent          | Monitoring Location            | Date<br>Sample<br>Collected | Date<br>Sample<br>Analvzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USEPA Method | ML     | RML    | MDL    | Analytical<br>Results | Comments |
|-----|------------------------------|--------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|--------|--------|-----------------------|----------|
|     | Semi-Volatile Substances:    |                                |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | (µg/L) | (µg/L) | (µg/L) | (µg/L)                |          |
| 1   | N-Nitrosodimethylamine       | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | -      | NIE                   |          |
| 2   | Aniline                      | WWTP                           |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 2      | 2      | 2      | ND                    | Upstream |
| 3   | Bis (2-chloroethyl) ether    |                                | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 4   | Phenol                       | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 5   | 2-Chlorophenol               | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 6   | 1,4-Dichlorobenzene          | WWTP<br>WWTP                   | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 7   | Benzyl alcohol               | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 8   | Bis(2-chloroisopropyl) ether | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 9   | 2-Methylphenol               | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 10  | Nitrobenzene                 | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 11  | Isophorone                   | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 12  | 2-Nitrophenol                |                                | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 13  | 2,4-Dimethylphenol           | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 14  | Bis(2-chloroethoxy)methane   | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 15  | Benzoic acid                 | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 16  | 2,4-Dichlorophenol           | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 10     | 10     | 10     | ND                    | Upstream |
| 17  | 1,2,4-Trichlorobenzene       | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 18  | Naphthalene                  | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 19  | 4-Chloroaniline              | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 20  | Hexachlorobutadiene          | WWTP                           |                             | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 21  | 4-Chloro-3-methylphenol      | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 22  | 2-Methylnaphthalene          | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 23  | Hexachlorocyclopentadiene    | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 24  | 2,4,6-Trichlorophenol        | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2,4,5-Trichlorophenol        | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 26  | 2-Chloronapthalene           | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 27  | 2-Nitroaniline               | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 28  | Acenapthylene                | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 29  | Dimethyl phthalate           | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 30  | 2,6-Dinitrotoluene           | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Acenapthene                  | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 3-Nitroaniline               | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| _   | 2,4-Dinitrophenol            | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2,4-Dinitrotoluene           | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Dibenzofuran                 | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 4-Nitrophenol                | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Fluorene                     | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 4-Chlorophenyl phenyl ether  | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Diethyl phalate              | WWTP                           | 12/6/2011                   | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 4-Nitroaniline               | WWTP                           |                             | and the second se | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     |                              | ments column are plant influen |                             | 12/14/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |

| Ma  |                                                            |                     | Date      | Date       |              |        |        |        | Analytical  |          |
|-----|------------------------------------------------------------|---------------------|-----------|------------|--------------|--------|--------|--------|-------------|----------|
| No. | Name of Constituent                                        | Monitoring Location | Sample    | Sample     | USEPA Method | ML     | RML    | MDL    | Results     | Comments |
| _   |                                                            |                     | Collected | Analyzed   |              | (ug/L) | (ug/L) | (ug/L) | (ug/L)      |          |
|     | Semi-Volatile Substances, Cont':                           |                     |           |            |              |        |        |        |             |          |
| 41  | Azobenzene                                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 42  | 4,6-Dinitro-2-methylphenol                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 43  | N-Nitrosodiphenylamine                                     | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 44  | 4-Bromophenyl phenly ether                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 45  | Hexachlorobenzene                                          | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 46  | Pentachlorophenol                                          | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 47  | Phenanthrene                                               | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 48  | Anthracene                                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 49  | Carbazole                                                  | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 50  | Di-n-butyl phthalate                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 4      | 4      | 4      | 4           | Upstream |
| 51  | Fluoranthene                                               | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 52  | Benzidine                                                  | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 53  | Pyrene                                                     | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 54  | Butyl benzyl phthalate                                     | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 55  | 3,3-Dichlorobenzidine                                      | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 56  | Benzo(a) anthracene                                        | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 57  | Chrysene                                                   | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 58  | Bis(2-ethylhexyl)phthalate                                 | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 59  | Di-n-octyl phthalate                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 60  | Benzo(b)fluoranthene                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 61  | Benzo(k)fluoranthene                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 62  | Benzo(a) pyrene                                            | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
| 63  | Indeno (1,2,3-cd)pyrene                                    | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          |          |
|     | Dibenz(a,h)anthracene                                      | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
|     | Benzo(g,h,i)perylene                                       | WWTP                | 12/6/2011 | 12/14/2011 | EPA 625      | 2      | 2      | 2      | ND          | Upstream |
|     |                                                            |                     |           |            | LITTOLO      | 2      | 2      | 2      | ND          | Upstream |
| 12  | Other Constituents:                                        |                     |           |            |              |        |        |        |             |          |
|     | рН                                                         | WWTP                | 12/6/2011 | 12/6/2011  | SM4500HG     |        |        |        | 7.3         | Upstream |
| 2   | Hardness measured as CaCO <sub>3</sub> , mg/L              | WWTP                | 12/6/2011 | 12/6/2011  | SM2340B      | 4      | 4      | 4      | 848.0 mg/L  | Upstream |
| 9   | Salinity measured as Total Dissolved<br>Solids (TDS), mg/L | WWTP                | 12/6/2011 | 12/9/2011  | SM2540C      | 1      | 1      | 1      | 3124.0 mg/L | Upstream |
|     | Total Suspended Solids (TSS), mg/L                         | WWTP                | 12/6/2011 | 12/9/2011  | SM2540D      | 1      | 1      | 1      |             | Upstream |
|     |                                                            |                     |           |            |              |        |        |        | TTO:O HIG/E | opstream |
| -   |                                                            |                     |           |            |              |        |        |        |             |          |

## City of Brawley WWTP- Upstream-**Priority Pollutants**

| No. | Name of Constituent               | Monitoring Location                    | Date<br>Sample<br>Collected                                                                                     | Date<br>Sample<br>Analvzed | USEPA Method | ML     | RML    | MDL    | Analytical<br>Results | Comments |
|-----|-----------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|--------------|--------|--------|--------|-----------------------|----------|
|     | Semi-Volatile Substances:         |                                        |                                                                                                                 |                            |              | (µg/L) | (µg/L) | (µg/L) | (µg/L)                |          |
| 1   |                                   |                                        |                                                                                                                 |                            |              |        |        |        |                       |          |
| 1   | N-Nitrosodimethylamine            | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 2   | Aniline                           | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 3   | Bis (2-chloroethyl) ether         | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 4   | Phenol                            | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 5   | 2-Chlorophenol                    | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 6   | 1,4-Dichlorobenzene               | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 1   | Benzyl alcohol                    | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 8   | Bis(2-chloroisopropyl) ether      | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 9   | 2-Methylphenol                    | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 10  | Nitrobenzene                      | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 11  | Isophorone                        | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 12  | 2-Nitrophenol                     | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 13  | 2,4-Dimethylphenol                | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 14  | Bis(2-chloroethoxy)methane        | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 15  | Benzoic acid                      | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 10     | 10     | 10     | ND                    | Upstream |
| 16  | 2,4-Dichlorophenol                | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 17  | 1,2,4-Trichlorobenzene            | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 18  | Naphthalene                       | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 4-Chloroaniline                   | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| 20  | Hexachlorobutadiene               | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 4-Chloro-3-methylphenol           | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2-Methylnaphthalene               | WWTP                                   | the second se | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Hexachlorocyclopentadiene         | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2,4,6-Trichlorophenol             | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2,4,5-Trichlorophenol             | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2-Chloronapthalene                | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2-Nitroaniline                    | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Acenapthylene                     | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Dimethyl phthalate                | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| _   | 2,6-Dinitrotoluene<br>Acenapthene | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 3-Nitroaniline                    | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| _   | 2,4-Dinitrophenol                 | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 2,4-Dinitrophenol                 | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Dibenzofuran                      | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
| -   | 4-Nitrophenol                     | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Fluorene                          | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 4-Chlorophenyl phenyl ether       | WWTP                                   | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | Diethyl phalate                   | WWTP WWWTP                             | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     | 4-Nitroaniline                    | WWTP WAATD                             | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |
|     |                                   | WWTP<br>ments column are plant influen | 12/6/2011                                                                                                       | 12/14/2011                 | EPA 625      | 2      | 2      | 2      | ND                    | Upstream |

## City of Brawley WWTP- Upstream-**Priority Pollutants**

|     | Discharger:<br>          | City of Brawley Wastev<br>8 Ce<br>Sampled 12-7-2 | lcius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Laborato     | ELAP<br>ory Conta<br>ry Phone | boratory:<br>Number:<br>ct Name:<br>Number:<br>Number: | IVE LAB-                        | LABs/ Excel Chem Labs<br>2524/ Excel Chem Lab 2119<br>Jorge Ortega<br>760-357-8764 |
|-----|--------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------------------|--------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------|
| No. | Name of Constituent      | Monitoring Location                              | Date<br>Sample<br>Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date<br>Sample<br>Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | USEPA Method | ML<br>(μg/L) | RML<br>(µg/L)                 | MDL<br>(µg/L)                                          | Analytical<br>Results<br>(μg/L) | 4629 - 2 Upstream<br>Comments                                                      |
|     | Volatile Substances:     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |                               |                                                        |                                 |                                                                                    |
| 1   | Methyl tert-Butyl Ether  | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EDA COL      | 0.5          | 0.5                           |                                                        |                                 |                                                                                    |
| 2   | ТВА                      | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| 3   | Di-isopropyl ether       | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 5            | 5                             | 5                                                      | ND                              | Upstream                                                                           |
|     | Ethyl tert-Butyl Ether   | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| 5   | Tert- Amyl Methyl Ether  | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| 6   | Dichlorodifluoromethane  | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
|     | Chloromethane            | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   | Vinyl Chloride           | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the second se | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
|     | Bromomethane             | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   | Chloroethane             | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   | Trichlorofluoromethane   | WWTP                                             | the second | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   | Acrolein                 | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   | Trichlorotrifluoroethane | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 15           | 15                            | 15                                                     | ND                              | Upstream                                                                           |
|     | 1,1-Dichloroethene       | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 1            | 1                             | 1                                                      | ND                              | Upstream                                                                           |
|     | Acrylonitrile            | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
|     | Methylene Chloride       | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 1.5          | 1.5                           | 1.5                                                    | ND                              | Upstream                                                                           |
|     | rans-1,2-Dichloroethene  | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 5            | 5                             | 5                                                      | ND                              | Upstream                                                                           |
| _   | ,1-Dichloroethane        | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| -   | cis-1,2-Dichloroethene   |                                                  | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| -   | Bromochloromethane       | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| -   | Chloroform               | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| 2 1 | ,1,1-Trichloroethane     | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| -   | Carbon Tetrachloride     | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   | Benzene                  | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
|     | ,2-dichloropropane       | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| -   | richloroethene           | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
|     | ,2-dichloropropane       | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
|     | Dibromomethane           | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   | romodichloromethane      | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    |                                 | Upstream                                                                           |
|     | is-1,3-Dichloropropene   | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| T   | oluene                   | WWTP                                             | and the second data was a second as a second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| _   |                          | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
|     | ans-1,3-Dichloropropene  | WWTP                                             | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |
| 11  | 1,2-Trichloroethane      | WWTP                                             | 12/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/12/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPA 624      | 0.5          | 0.5                           | 0.5                                                    | ND                              | Upstream                                                                           |

Note: Items identified as upstream in the comments column are plant influent samples.

California Environmental Protection Agency

| No. | Name of Constituent         | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML<br>(µg/L) | RML<br>(µg/L) | MDL<br>(µg/L) | Analytical<br>Results<br>(µg/L) | Comments             |
|-----|-----------------------------|---------------------|-----------------------------|----------------------------|--------------|--------------|---------------|---------------|---------------------------------|----------------------|
|     | Volatile Substances:        |                     |                             |                            |              | (HE/L)       | (µg/L)        | (µg/L)        | (µg/L)                          |                      |
| 34  | Tetrachloroethene           | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 35  | Dibromochloromethane        | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 36  | 1,2-Dibromoethane (EDB)     | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 37  | Chlorobenzene               | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 38  | 1,1,2,2-Tetrachloroethane   | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 39  | Ethylbenzene                | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 40  | Xylenes, total              | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 1            | 1             | 1             | ND                              | Upstream             |
| 41  | m,p-Xylene                  | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 42  | o-Xylene                    | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 43  | Styrene                     | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 44  | Bromoform (Tribromomethane) | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 45  | 1,3-Dichlorobenzene         | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              |                      |
| 46  | 1,4-Dichlorobenzene         | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
| 47  | 1,2-Dichlorobenzene         | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream<br>Upstream |
| 48  | 1,2,4-Trichlorobenzene      | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 624      | 0.5          | 0.5           | 0.5           | ND                              | Upstream             |
|     |                             |                     |                             |                            |              |              |               |               |                                 |                      |
|     |                             |                     |                             |                            |              |              |               |               |                                 |                      |

| No. | Name of Constituent | Monitoring Location | Date<br>Sample<br>Collected | Date<br>Sample<br>Analyzed | USEPA Method | ML<br>(μg/L) | RML<br>(µg/L) | MDL<br>(µg/L) | Analytical<br>Results<br>(μg/L) | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|---------------------|---------------------|-----------------------------|----------------------------|--------------|--------------|---------------|---------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Inorganics:         |                     |                             |                            |              | (MAR D)      | (MA) DJ       | 146/13/       | (µg/L)                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1   | Antimony            | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2   | Arsenic             | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3   | Beryllium           | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4   | Cadmium             | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5   | Chromium III        | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6   | Copper              | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            | ND                              | and the second se |
| 7   | Lead                | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 7            | 7             | 7             | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8   | Mercury             | WWTP                | 12/6/2011                   | 12/13/2011                 | EPA 7470A    | 0.2          | 0.2           | 0.2           | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9   | Nickel              | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 5            | 5             | 5             | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10  | Selenium            | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 20           | 20            | 20            | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11  | Silver              | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            | 10            |                                 | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12  | Thallium            | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 20           | 20            | 20            | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13  | Zinc                | WWTP                | 12/6/2011                   | 12/12/2011                 | EPA 200.7    | 10           | 10            |               | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14  | Cyanide             | WWTP                | 12/6/2011                   | 12/14/2011                 | SM 4500CN E  | 5            |               | 10            | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15  | Chromium VI         | WWTP                | 12/6/2011                   | 12/8/2011                  | EPA 7199     | 5            | 5             | 5             | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                     |                     | 12/0/2011                   | 12/0/2011                  | LFA / 199    | _            | 1             | 1             | ND                              | Upstream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                     |                     |                             |                            |              |              |               |               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _   |                     |                     |                             |                            |              |              |               |               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                     |                     |                             |                            |              |              |               |               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                     |                     |                             |                            |              |              |               |               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| <ol> <li>2 alpha</li> <li>3 beta-</li> <li>4 gamn</li> <li>5 delta-</li> <li>6 Aldrin</li> <li>7 Hepta</li> <li>8 gamn</li> <li>9 Endos</li> <li>10 alpha</li> <li>11 4,4-D</li> <li>12 Dieldrin</li> <li>13 Endrin</li> </ol> | tachloro epoxide<br>ma-Chlordane<br>osulfan I<br>a-Chlordane<br>DDE                                             | WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP | 12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011 | 12/14/2011<br>12/14/2011<br>12/14/2011<br>12/14/2011<br>12/14/2011<br>12/14/2011<br>12/14/2011<br>12/14/2011                 | 608<br>608<br>608<br>608<br>608<br>608<br>608<br>608<br>608 | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 1<br>1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1<br>1 | ND<br>ND<br>ND<br>ND<br>ND<br>ND | Effluent<br>Effluent<br>Effluent<br>Effluent<br>Effluent<br>Effluent |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------|---------------------------------|----------------------------------|----------------------------------------------------------------------|
| <ul> <li>3 beta-</li> <li>4 gamn</li> <li>5 delta-</li> <li>6 Aldrin</li> <li>7 Hepta</li> <li>8 gamn</li> <li>9 Endos</li> <li>10 alpha</li> <li>11 4,4-D</li> <li>12 Dieldrin</li> <li>13 Endrin</li> </ul>                  | a-BHC<br>ma-BHC (Lindane)<br>a-BHC<br>in<br>tachloro epoxide<br>ma-Chlordane<br>osulfan I<br>a-Chlordane<br>DDE | WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP         | 12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011                                        | 12/14/2011         12/14/2011         12/14/2011         12/14/2011         12/14/2011         12/14/2011         12/14/2011 | 608<br>608<br>608<br>608<br>608<br>608                      | 0.1<br>0.1<br>0.1<br>0.1<br>0.1                      | 1<br>1<br>1<br>1<br>1      | 1<br>1<br>1<br>1<br>1<br>1      | ND<br>ND<br>ND<br>ND             | Effluent<br>Effluent<br>Effluent<br>Effluent                         |
| 4 gamn<br>5 delta-<br>6 Aldrin<br>7 Hepta<br>8 gamn<br>9 Endos<br>10 alpha<br>11 4,4-D<br>12 Dieldr<br>13 Endrin                                                                                                               | ama-BHC (Lindane)<br>a-BHC<br>in<br>tachloro epoxide<br>ma-Chlordane<br>osulfan I<br>a-Chlordane<br>DDE         | WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP                 | 12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011                                        | 12/14/2011<br>12/14/2011<br>12/14/2011<br>12/14/2011                                                                         | 608<br>608<br>608<br>608<br>608                             | 0.1<br>0.1<br>0.1<br>0.1                             | 1<br>1<br>1<br>1           | 1<br>1<br>1<br>1                | ND<br>ND<br>ND                   | Effluent<br>Effluent<br>Effluent                                     |
| 5 delta-<br>6 Aldrin<br>7 Hepta<br>8 gamn<br>9 Endos<br>10 alpha<br>11 4,4-D<br>12 Dieldr<br>13 Endrin                                                                                                                         | a-BHC<br>in<br>tachloro epoxide<br>ma-Chlordane<br>osulfan I<br>a-Chlordane<br>DDE                              | WWTP<br>WWTP<br>WWTP<br>WWTP<br>WWTP                         | 12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011                                                                  | 12/14/2011<br>12/14/2011<br>12/14/2011<br>12/14/2011                                                                         | 608<br>608<br>608<br>608                                    | 0.1<br>0.1<br>0.1                                    | 1<br>1<br>1                | 1<br>1<br>1                     | ND<br>ND                         | Effluent<br>Effluent                                                 |
| 6 Aldrin<br>7 Hepta<br>8 gamm<br>9 Endos<br>10 alpha<br>11 4,4-D<br>12 Dieldr<br>13 Endrin                                                                                                                                     | in<br>tachloro epoxide<br>ma-Chlordane<br>osulfan I<br>a-Chlordane<br>DDE                                       | WWTP<br>WWTP<br>WWTP<br>WWTP                                 | 12/6/2011<br>12/6/2011<br>12/6/2011<br>12/6/2011                                                                  | 12/14/2011<br>12/14/2011<br>12/14/2011                                                                                       | 608<br>608<br>608                                           | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| <ul> <li>7 Hepta</li> <li>8 gamn</li> <li>9 Endos</li> <li>10 alpha</li> <li>11 4,4-D</li> <li>12 Dieldr</li> <li>13 Endrin</li> </ul>                                                                                         | tachloro epoxide<br>ma-Chlordane<br>osulfan I<br>a-Chlordane<br>DDE                                             | WWTP<br>WWTP<br>WWTP                                         | 12/6/2011<br>12/6/2011                                                                                            | 12/14/2011<br>12/14/2011                                                                                                     | 608<br>608                                                  | 0.1                                                  | 1                          | 1                               |                                  |                                                                      |
| 8 gamn<br>9 Endos<br>10 alpha<br>11 4,4-D<br>12 Dieldr<br>13 Endrir                                                                                                                                                            | ma-Chlordane<br>osulfan I<br>a-Chlordane<br>DDE                                                                 | WWTP<br>WWTP<br>WWTP                                         | 12/6/2011<br>12/6/2011                                                                                            | 12/14/2011                                                                                                                   | 608                                                         |                                                      |                            | 1                               | ND                               | Endent                                                               |
| 9 Endos<br>10 alpha<br>11 4,4-D<br>12 Dieldr<br>13 Endrir                                                                                                                                                                      | osulfan I<br>a-Chlordane<br>DDE                                                                                 | WWTP<br>WWTP                                                 | 12/6/2011                                                                                                         |                                                                                                                              |                                                             | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 10 alpha<br>11 4,4-D<br>12 Dieldr<br>13 Endrii                                                                                                                                                                                 | a-Chlordane<br>DDE                                                                                              | WWTP                                                         |                                                                                                                   | 16/14/2011                                                                                                                   | DUB                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 11 4,4-D<br>12 Dieldr<br>13 Endrii                                                                                                                                                                                             | DDE                                                                                                             |                                                              |                                                                                                                   | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 12 Dieldr<br>13 Endrir                                                                                                                                                                                                         |                                                                                                                 |                                                              | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 13 Endrii                                                                                                                                                                                                                      | 1.22                                                                                                            | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
|                                                                                                                                                                                                                                | arin                                                                                                            | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 14 Endos                                                                                                                                                                                                                       | rin                                                                                                             | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 14 LINUUS                                                                                                                                                                                                                      | osulfan II                                                                                                      | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 15 4,4-D                                                                                                                                                                                                                       | DDD                                                                                                             | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 16 Endrir                                                                                                                                                                                                                      | rin Ketone                                                                                                      | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 17 Metho                                                                                                                                                                                                                       | noxychlor                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 0.1                                                  | 1                          | 1                               | ND                               | Effluent                                                             |
| 18 Aroch                                                                                                                                                                                                                       | hlor 1016                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 10                                                   | 10                         | 10                              | ND                               |                                                                      |
| 19 Aroch                                                                                                                                                                                                                       | hlor 1221                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 10                                                   | 10                         | 10                              | ND                               | Effluent<br>Effluent                                                 |
| 20 Aroch                                                                                                                                                                                                                       | hlor 1232                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 10                                                   | 10                         | 10                              | ND                               | Effluent                                                             |
| 21 Aroch                                                                                                                                                                                                                       | hlor 1242                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 10                                                   | 10                         | 10                              |                                  |                                                                      |
| 22 Aroch                                                                                                                                                                                                                       | hlor 1248                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 10                                                   | 10                         | 10                              | ND<br>ND                         | Effluent                                                             |
| 23 Aroch                                                                                                                                                                                                                       | hlor 1254                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 10                                                   | 10                         | 10                              | ND                               | Effluent<br>Effluent                                                 |
| 4 Aroch                                                                                                                                                                                                                        | hlor 1260                                                                                                       | WWTP                                                         | 12/6/2011                                                                                                         | 12/14/2011                                                                                                                   | 608                                                         | 10                                                   | 10                         | 10                              | ND                               | Effluent                                                             |

Appendix III

Sample Analyses Data

#### Day 1 Sample Analysis (8/2/2012)

|                            |          |   |                |   |           | Sai | mpling Location | s         |    |             |   |            |   |
|----------------------------|----------|---|----------------|---|-----------|-----|-----------------|-----------|----|-------------|---|------------|---|
| Parameters                 | Influent |   | Final Effluent |   | Biosolids |     | Sec. Clarifier  | Commercia | al | Residential |   | Industrial |   |
|                            | INF-001  |   | EFF-001        |   | SLD-001   |     | Sludge, SLD-002 | CSC-001   |    | CSR-001     |   | CSI-001    |   |
|                            | (mg/L)   |   | (mg/L)         |   | (mg/Kg)   |     | (mg/Kg)         | (mg/L)    |    | (mg/L)      |   | (mg/L)     |   |
| Arsenic                    | ND       |   | 0.0011         |   |           |     |                 | ND        |    | ND          |   | 0.0014     | J |
| Cadmium                    | ND       |   | 0.00006        | J |           |     |                 | ND        |    | 0.0011      | J | ND         |   |
| Chromium                   | ND       |   | 0.0007         |   |           |     |                 | ND        |    | ND          |   | ND         |   |
| Copper                     | 0.06     |   | 0.01           |   |           |     |                 | 0.15      |    | 0.093       |   | 0.011      |   |
| Cyanide (Total)            | ND       |   | ND             |   |           |     |                 | ND        |    | ND          |   | ND         |   |
| Cyanide (Free)             | ND       |   | ND             |   |           |     |                 | ND        |    | ND          |   | ND         |   |
| Lead                       | 0.0042   | J | 0.0002         | J |           |     |                 | 0.86      |    | 0.0011      | J | 0.00034    | J |
| Mercury                    | ND       |   | ND             |   |           |     |                 | ND        |    | ND          |   | ND         |   |
| Molybdenum                 | 0.018    |   | 0.015          |   |           |     |                 | 0.01      |    | 0.0055      | J | 0.031      |   |
| Nickel                     | 0.008    | J | 0.0027         |   | No Sludge |     | No Sludge       | 0.01      | J  | 0.0064      | J | 0.008      | J |
| Selenium                   | 0.0019   | J | 0.0012         |   | Data      |     | Data            | ND        |    | 0.0019      | J | 0.0015     | J |
| Silver                     | 0.00038  | J | ND             |   | on Day 1  |     | on Day 1        | 0.0073    | J  | 0.0003      | J | ND         |   |
| Zinc                       | 0.091    |   | 0.024          |   |           |     |                 | 0.15      |    | 0.13        |   | 0.018      |   |
| BOD <sub>5</sub>           | 130      |   | ND             |   |           |     |                 | 360       |    | 260         |   | 54         |   |
| COD                        | 490      |   | 42             |   |           |     |                 | 550       |    | 640         |   | 190        |   |
| ТОС                        | 39       |   | 9.3            |   |           |     |                 | 140       |    | 59          |   | 27         |   |
| TSS                        | 340      |   | ND             |   |           |     |                 | 180       |    | 210         |   | 85         |   |
| Ammonia-N                  | 60       |   | ND             |   |           |     |                 | 19        |    | 25          |   | 99         |   |
| TKN                        | 76       |   | 0.25           |   |           |     |                 | 34        |    | 52          |   | 100        |   |
| Nitrite-N                  | ND       |   | 0.02           |   |           |     |                 | ND        |    | ND          |   | ND         |   |
| Nitrate-N                  | ND       |   | 35             |   |           |     |                 | ND        |    | 0.03        | J | ND         |   |
| Oil and Grease (Total)     | 4.1      | J | 1.8            |   |           |     |                 | 15        |    | 15          |   | ND         |   |
| Oil and Grease (Polar)     | 2.6      | J | ND             |   |           |     |                 | 13        |    | 13          |   | ND         |   |
| Bis(2-ethylhexyl)phthalate | 0.26     |   | 0.09           |   |           |     |                 | 0.096     |    | 0.064       |   | 0.11       |   |

ND: Not Detected or above the Maximum Detection Limit

J: Estimated (less than the RL, but greater than or equal to the lab MDL)

EFF sample: 48 hrs delayed due to WWTP HRT

#### Day 2 Sample Analysis (8/3/2012)

|                            |          |   |                |   |           | Sampling Location | 5          |   |             |   |            |   |
|----------------------------|----------|---|----------------|---|-----------|-------------------|------------|---|-------------|---|------------|---|
| Parameters                 | Influent |   | Final Effluent |   | Biosolids | Sec. Clarifier    | Commercial |   | Residential |   | Industrial |   |
|                            | INF-001  |   | EFF-001        |   | SLD-001   | Sludge, SLD-002   | CSC-001    |   | CSR-001     |   | CSI-001    |   |
|                            | (mg/L)   |   | (mg/L)         |   | (mg/Kg)   | (mg/Kg)           | (mg/L)     |   | (mg/L)      |   | (mg/L)     |   |
| Arsenic                    | ND       |   | 0.0011         |   |           |                   | ND         |   | ND          |   | ND         |   |
| Cadmium                    | ND       |   | 0.00006        | J |           |                   | 0.00067    | J | ND          |   | ND         |   |
| Chromium                   | 0.0038   | J | 0.0006         |   |           |                   | 0.0052     | J | ND          |   | ND         |   |
| Copper                     | 0.047    |   | 0.01           |   |           |                   | 0.2        |   | 0.077       |   | 0.019      |   |
| Cyanide (Total)            | ND       |   | ND             |   |           |                   | ND         |   | ND          |   | ND         |   |
| Cyanide (Free)             | ND       |   | ND             |   |           |                   | ND         |   | ND          |   | ND         |   |
| Lead                       | 0.0039   | J | 0.0001         | J |           |                   | 0.21       |   | 0.0007      | J | 0.0012     | J |
| Mercury                    | ND       |   | ND             |   |           |                   | ND         |   | ND          |   | ND         |   |
| Molybdenum                 | 0.019    |   | 0.017          |   |           |                   | 0.0075     | J | 0.0051      | J | 0.03       |   |
| Nickel                     | 0.0078   | J | 0.0028         |   | No Sludge | No Sludge         | 0.0057     | J | 0.0026      | J | 0.0071     | J |
| Selenium                   | ND       |   | 0.0011         |   | Data      | Data              | ND         |   | ND          |   | ND         |   |
| Silver                     | ND       |   | ND             |   | on Day 2  | on Day 2          | 0.0011     |   | ND          |   | ND         |   |
| Zinc                       | 0.2      |   | 0.024          |   |           |                   | 0.22       |   | 0.11        |   | 0.082      |   |
| BOD <sub>5</sub>           | 200      |   | 3              |   |           |                   | 540        |   | 260         |   | 260        |   |
| COD                        | 530      |   | 39             |   |           |                   | 700        |   | 500         |   | 330        |   |
| ТОС                        | 48       |   | 9.4            |   |           |                   | 80         |   | 84          |   | 27         |   |
| TSS                        | 410      |   | 4              |   |           |                   | 980        |   | 98          |   | 790        |   |
| Ammonia-N                  | 71       |   | ND             |   |           |                   | 8.8        |   | 23          |   | 96         |   |
| TKN                        | 87       |   | ND             |   |           |                   | 20         |   | 34          |   | 100        |   |
| Nitrite-N                  | ND       |   | ND             |   |           |                   | ND         |   | ND          |   | 0.11       |   |
| Nitrate-N                  | ND       |   | 38             |   |           |                   | ND         |   | ND          |   | ND         |   |
| Oil and Grease (Total)     | 15       |   | 2              |   |           |                   | 25         |   | 61          |   | 14         |   |
| Oil and Grease (Polar)     | 12       |   | ND             |   |           |                   | 21         |   | 54          |   | 9.5        |   |
| Bis(2-ethylhexyl)phthalate | 0.13     |   | 0.021          |   |           |                   | 0.059      |   | 0.075       |   | 0.037      |   |

ND: Not Detected or above the Maximum Detection Limit

J: Estimated (less than the RL, but greater than or equal to the lab MDL)

EFF sample: 48 hrs delayed due to WWTP HRT

#### Day 3 Sample Analysis (8/4/2012)

|                            |          |   |                |   |           | Sampling Location | S          |   |             |   |            |   |
|----------------------------|----------|---|----------------|---|-----------|-------------------|------------|---|-------------|---|------------|---|
| Parameters                 | Influent |   | Final Effluent |   | Biosolids | Sec. Clarifier    | Commercial |   | Residential |   | Industrial |   |
|                            | INF-001  |   | EFF-001        |   | SLD-001   | Sludge, SLD-002   | CSC-001    |   | CSR-001     |   | CSI-001    |   |
|                            | (mg/L)   |   | (mg/L)         |   | (mg/Kg)   | (mg/Kg)           | (mg/L)     |   | (mg/L)      |   | (mg/L)     |   |
| Arsenic                    | ND       |   | 0.0011         |   |           |                   | ND         |   | ND          |   | 0.0031     | J |
| Cadmium                    | ND       |   | 0.00007        | J |           |                   | 0.00088    | J | ND          |   | 0.00065    | J |
| Chromium                   | 0.0039   | J | 0.0006         |   |           |                   | 0.0066     | J | ND          |   | 0.0067     | J |
| Copper                     | 0.056    |   | 0.01           |   |           |                   | 0.17       |   | 0.077       |   | 0.054      |   |
| Cyanide (Total)            | ND       |   | ND             |   |           |                   | ND         |   | ND          |   | ND         |   |
| Cyanide (Free)             | ND       |   | ND             |   |           |                   | ND         |   | ND          |   | ND         |   |
| Lead                       | 0.0033   | J | 0.0001         | J |           |                   | 0.15       |   | 0.0012      | J | 0.0055     | J |
| Mercury                    | ND       |   | ND             |   |           |                   | ND         |   | ND          |   | ND         |   |
| Molybdenum                 | 0.019    |   | 0.018          |   |           |                   | 0.0067     | J | 0.0051      | J | 0.033      |   |
| Nickel                     | 0.0084   | J | 0.0029         |   | No Sludge | No Sludge         | 0.0067     | J | 0.0083      | J | 0.014      | J |
| Selenium                   | ND       |   | 0.0012         |   | Data      | Data              | ND         |   | ND          |   | 0.0034     | J |
| Silver                     | ND       |   | ND             |   | on Day 3  | on Day 3          | ND         |   | ND          |   | ND         |   |
| Zinc                       | 0.21     |   | 0.025          |   |           |                   | 0.32       |   | 0.15        |   | 0.41       |   |
| BOD <sub>5</sub>           | 140      |   | ND             |   |           |                   | 990        |   | 180         |   | 260        |   |
| COD                        | 680      |   | 39             |   |           |                   | 1600       |   | 510         |   | 990        |   |
| ТОС                        | 63       |   | 9.3            |   |           |                   | 270        |   | 65          |   | 53         |   |
| TSS                        | 390      |   | 7              |   |           |                   | 1500       |   | 160         |   | 700        |   |
| Ammonia-N                  | 69       |   | 0.076          | J |           |                   | 22         |   | 26          |   | 110        |   |
| TKN                        | 100      |   | ND             |   |           |                   | 81         |   | 43          |   | 170        |   |
| Nitrite-N                  | ND       |   | 0.07           |   |           |                   | ND         |   | ND          |   | ND         |   |
| Nitrate-N                  | ND       |   | 38             | J |           |                   | ND         |   | ND          |   | ND         |   |
| Oil and Grease (Total)     | 10       |   | 4.4            |   |           |                   | 89         |   | 22          |   | 15         |   |
| Oil and Grease (Polar)     | 8.2      |   | ND             |   |           |                   | 84         |   | 19          |   | 13         |   |
| Bis(2-ethylhexyl)phthalate | 0.18     |   | 0.026          |   |           |                   | 0.14       |   | 0.087       |   | 0.046      |   |

ND: Not Detected or above the Maximum Detection Limit

J: Estimated (less than the RL, but greater than or equal to the lab MDL)

EFF sample: 48 hrs delayed due to WWTP HRT

#### Day 4 Sample Analysis (8/5/2012)

|                            |          |   |                |   |           | Sai | mpling Locatio | ons |            |   |             |   |            |   |
|----------------------------|----------|---|----------------|---|-----------|-----|----------------|-----|------------|---|-------------|---|------------|---|
| Parameters                 | Influent |   | Final Effluent |   | Biosolids |     | Sec. Clarifier |     | Commercial |   | Residential |   | Industrial |   |
|                            | INF-001  |   | EFF-001        |   | SLD-001   |     | Sludge, SLD-0  | 02  | CSC-001    |   | CSR-001     |   | CSI-001    |   |
|                            | (mg/L)   |   | (mg/L)         |   | (mg/Kg)   |     | (mg/Kg)        |     | (mg/L)     |   | (mg/L)      |   | (mg/L)     |   |
| Arsenic                    | ND       |   | 0.0011         |   |           |     |                |     | ND         |   | ND          |   | 0.0026     | J |
| Cadmium                    | ND       |   | 0.0001         | J |           |     |                |     | 0.00064    | J | 0.00068     | J | 0.00086    | J |
| Chromium                   | 0.0065   | J | 0.0004         | J |           |     |                |     | 0.0065     | J | ND          |   | 0.0071     | J |
| Copper                     | 0.082    |   | 0.012          |   |           |     |                |     | 0.17       |   | 0.1         |   | 0.07       |   |
| Cyanide (Total)            | ND       |   | ND             |   |           |     |                |     | ND         |   | ND          |   | ND         |   |
| Cyanide (Free)             | ND       |   | ND             |   |           |     |                |     | ND         |   | ND          |   | ND         |   |
| Lead                       | 0.0052   | J | 0.0001         | J |           |     |                |     | 0.2        |   | 0.0012      | J | 0.0068     | J |
| Mercury                    | ND       |   | ND             |   |           |     |                |     | ND         |   | ND          |   | ND         |   |
| Molybdenum                 | 0.025    |   | 0.02           |   |           |     |                |     | 0.0059     | J | 0.0057      | J | 0.042      |   |
| Nickel                     | 0.0099   | J | 0.0027         |   | No Sludge |     | No Sludge      |     | 0.0068     | J | 0.0033      | J | 0.014      | J |
| Selenium                   | ND       |   | 0.0011         |   | Data      |     | Data           |     | ND         |   | ND          |   | 0.0032     | J |
| Silver                     | ND       |   | 0.00016        | J | on Day 4  |     | on Day 4       |     | ND         |   | ND          |   | ND         |   |
| Zinc                       | 0.39     |   | 0.024          |   |           |     |                |     | 0.2        |   | 0.17        |   | 0.57       |   |
| BOD <sub>5</sub>           | 280      |   | ND             |   |           |     |                |     | 210        |   | 250         |   | 300        |   |
| COD                        | 1100     |   | 35             |   |           |     |                |     | 750        |   | 610         |   | 1200       |   |
| тос                        | 68       |   | 8.9            |   |           |     |                |     | 81         |   | 67          |   | 43         |   |
| TSS                        | 540      |   | ND             |   |           |     |                |     | 250        |   | 160         |   | 880        |   |
| Ammonia-N                  | 63       |   | 0.22           |   |           |     |                |     | 8.1        |   | 27          |   | 100        |   |
| TKN                        | 110      |   | ND             |   |           |     |                |     | 29         |   | 44          |   | 260        |   |
| Nitrite-N                  | ND       |   | 0.1            |   |           |     |                |     | ND         |   | ND          |   | 0.21       |   |
| Nitrate-N                  | ND       |   | 36             |   |           |     |                |     | ND         |   | ND          |   | ND         |   |
| Oil and Grease (Total)     | 9.4      |   | 2.8            |   |           |     |                |     | 4.6        |   | 38          |   | 15         |   |
| Oil and Grease (Polar)     | 2.4      |   | ND             |   |           |     |                |     | ND         |   | 34          |   | 10         |   |
| Bis(2-ethylhexyl)phthalate | 0.19     |   | 0.046          |   |           |     |                |     | 0.03       |   | 0.074       |   | 0.038      |   |

ND: Not Detected or above the Maximum Detection Limit

J: Estimated (less than the RL, but greater than or equal to the lab MDL)

EFF sample: 48 hrs delayed due to WWTP HRT

#### Day 5 Sample Analysis (8/6/2012)

|                            |          |   |                |   |           | Sa | mpling Locati  | ons |            |   |             |   |            |   |
|----------------------------|----------|---|----------------|---|-----------|----|----------------|-----|------------|---|-------------|---|------------|---|
| Parameters                 | Influent |   | Final Effluent |   | Biosolids |    | Sec. Clarifier |     | Commercial |   | Residential |   | Industrial |   |
|                            | INF-001  |   | EFF-001        |   | SLD-001   |    | Sludge, SLD-0  | 02  | CSC-001    |   | CSR-001     |   | CSI-001    |   |
|                            | (mg/L)   |   | (mg/L)         |   | (mg/Kg)   |    | (mg/L)         |     | (mg/L)     |   | (mg/L)      |   | (mg/L)     |   |
| Arsenic                    | ND       |   | 0.0011         |   | 5.1       |    | 0.012          |     | ND         |   | ND          |   | 0.0025     | J |
| Cadmium                    | ND       |   | 0.00006        | J | 0.99      | J  | 0.0046         |     | 0.00059    | J | 0.00073     | J | 0.0011     | J |
| Chromium                   | ND       |   | 0.0005         |   | 2.8       |    | 0.058          |     | 0.0044     | J | ND          |   | ND         |   |
| Copper                     | 0.051    |   | 0.014          |   | 510       |    | 1.9            |     | 0.28       |   | 0.099       |   | 0.019      |   |
| Cyanide (Total)            | ND       |   | ND             |   | 1.7       |    | 0.015          |     | ND         |   | ND          |   | ND         |   |
| Cyanide (Free)             | ND       |   | ND             |   | 1.3       |    | 0.015          |     | ND         |   | ND          |   | ND         |   |
| Lead                       | 0.0028   | J | 0.0002         | J | 27        |    | 0.12           |     | 0.22       |   | 0.0011      | J | 0.0013     | J |
| Mercury                    | ND       |   | ND             |   | 0.17      | J  | 0.0021         |     | 0.0002     |   | ND          |   | ND         |   |
| Molybdenum                 | 0.017    |   | 0.02           |   | 21        |    | 0.061          |     | 0.011      |   | 0.0062      | J | 0.041      |   |
| Nickel                     | 0.0053   | J | 0.0029         |   | 24        |    | 0.084          |     | 0.0074     | J | 0.0034      | J | 0.0065     | J |
| Selenium                   | ND       |   | 0.0013         |   | 11        |    | 0.028          |     | ND         |   | ND          |   | ND         |   |
| Silver                     | ND       |   | ND             |   | 1.4       |    | 0.006          | J   | 0.0018     | J | ND          |   | ND         |   |
| Zinc                       | 0.13     |   | 0.026          |   | 610       |    | 3.1            |     | 0.23       |   | 0.14        |   | 0.11       |   |
| BOD <sub>5</sub>           | 130      |   | 6              |   |           |    |                |     | 620        |   | 280         |   | 74         |   |
| COD                        | 470      |   | 42             |   |           |    |                |     | 1300       |   | 540         |   | 310        |   |
| ТОС                        | 44       |   | 8.4            |   |           |    |                |     | 130        |   | 89          |   | 26         |   |
| TSS                        | 190      |   | 9              |   | 83        | %  | 8300           |     | 2300       |   | 160         |   | 170        |   |
| Ammonia-N                  | 47       |   | 0.2            |   | 3400      |    | 0.41           |     | 20         |   | 24          |   | 84         |   |
| TKN                        | 76       |   | 0.14           |   | 48000     |    | 390            |     | 51         |   | 39          |   | 200        |   |
| Nitrite-N                  | ND       |   | 0.04           | J | ND        |    | 2.6            |     | ND         |   | ND          |   | ND         |   |
| Nitrate-N                  | ND       |   | 34             |   | 7.3       |    | 23             |     | ND         |   | ND          |   | 0.88       |   |
| Oil and Grease (Total)     | 11       |   | 3              | J | ND        | %  | 12             |     | 230        |   | 22          |   | 4.3        |   |
| Oil and Grease (Polar)     | 8        |   | ND             |   | ND        | %  | 4              | J   | 220        |   | 19          |   | 2.7        |   |
| Bis(2-ethylhexyl)phthalate | 0.18     |   | 0.024          |   | ND        |    | 0.023          |     | 0.13       |   | 0.058       |   | 0.036      |   |

ND: Not Detected or above the Maximum Detection Limit

J: Estimated (less than the RL, but greater than or equal to the lab MDL)

EFF sample: 48 hrs delayed due to WWTP HRT

#### Day 6 Sample Analysis (8/7/2012)

| Parameters                 | Sampling Locations |   |                |   |           |   |                |    |            |   |             |   |            |   |
|----------------------------|--------------------|---|----------------|---|-----------|---|----------------|----|------------|---|-------------|---|------------|---|
|                            | Influent           |   | Final Effluent |   | Biosolids |   | Sec. Clarifier |    | Commercial |   | Residential |   | Industrial |   |
|                            | INF-001            |   | EFF-001        |   | SLD-001   |   | Sludge, SLD-00 | )2 | CSC-001    |   | CSR-001     |   | CSI-001    |   |
|                            | (mg/L)             |   | (mg/L)         |   | (mg/Kg)   |   | (mg/Kg)        |    | (mg/L)     |   | (mg/L)      |   | (mg/L)     |   |
| Arsenic                    | ND                 |   | 0.001          |   | 4.2       | J | 0.021          |    | ND         |   | ND          |   | ND         |   |
| Cadmium                    | ND                 |   | 0.00005        | J | 1.2       |   | 0.0058         |    | 0.0014     | J | 0.0014      | J | ND         |   |
| Chromium                   | ND                 |   | 0.0005         |   | 28        |   | 0.084          |    | 0.014      | J | ND          |   | ND         |   |
| Copper                     | 0.089              |   | 0.013          |   | 540       |   | 2.5            |    | 0.66       |   | 0.098       |   | 0.031      |   |
| Cyanide (Total)            | ND                 |   | ND             |   | 1.5       |   | ND             |    | ND         |   | ND          |   | ND         | J |
| Cyanide (Free)             | ND                 |   | ND             |   | 1.6       |   | ND             |    | ND         |   | ND          |   | ND         |   |
| Lead                       | 0.0039             | J | 0.0002         | J | 29        |   | 0.15           |    | 0.45       |   | 0.0011      | J | 0.0025     | J |
| Mercury                    | ND                 |   | ND             |   | 0.16      | J | 0.0036         |    | 0.00035    |   | ND          |   | ND         |   |
| Molybdenum                 | 0.021              |   | 0.02           |   | 22        |   | 0.11           |    | 0.02       |   | 0.0061      | J | 0.032      |   |
| Nickel                     | 0.0071             | J | 0.003          |   | 22        |   | 0.1            |    | 0.014      | J | 0.0033      | J | 0.0092     | J |
| Selenium                   | ND                 |   | 0.0012         |   | 11        |   | 0.038          |    | ND         |   | ND          |   | ND         |   |
| Silver                     | ND                 |   | ND             |   | 2.8       |   | 0.0098         |    | 0.0037     | J | ND          |   | ND         |   |
| Zinc                       | 0.15               |   | 0.025          |   | 610       |   | 3.5            |    | 0.57       |   | 0.17        |   | 0.22       |   |
| BOD <sub>5</sub>           | 170                |   | ND             |   |           |   |                |    | 1500       |   | 250         |   | 110        |   |
| COD                        | 530                |   | 31             |   |           |   |                |    | 1500       |   | 680         |   | 350        |   |
| ТОС                        | 46                 |   | 8.5            |   |           |   |                |    | 180        |   | 73          |   | 26         |   |
| TSS                        | 420                |   | 6              |   | 85        | % | 6700           |    | 2200       |   | 220         |   | 280        |   |
| Ammonia-N                  | 42                 |   | 0.067          | J | 2900      |   | 0.52           |    | 25         |   | 30          |   | 66         |   |
| TKN                        | 56                 |   | ND             |   | 49000     |   | 300            |    | 50         |   | 30          |   | 93         |   |
| Nitrite-N                  | ND                 |   | 0.08           | J | ND        |   | 0.94           |    | ND         |   | ND          |   | 0.02       | J |
| Nitrate-N                  | ND                 |   | 33             |   | ND        |   | 25             |    | ND         |   | ND          |   | ND         |   |
| Oil and Grease (Total)     | 9                  |   | 3.2            |   | 0.19      | % | 3.6            |    | 23         |   | 16          |   | 4.6        |   |
| Oil and Grease (Polar)     | 5.4                |   | ND             |   | 0.16      | % | ND             |    | 20         |   | 13          |   | ND         |   |
| Bis(2-ethylhexyl)phthalate | 0.18               |   | 0.0033         |   | 0.69      | J | 0.02           |    | 0.094      |   | 0.072       |   | 0.034      |   |

ND: Not Detected or above the Maximum Detection Limit

J: Estimated (less than the RL, but greater than or equal to the lab MDL)

EFF sample: 48 hrs delayed due to WWTP HRT

#### Day 7 Sample Analysis (8/8/2012)

|                            | Sampling Locations  |   |                           |   |                      |   |                                  |   |                       |   |                        |   |                       |   |
|----------------------------|---------------------|---|---------------------------|---|----------------------|---|----------------------------------|---|-----------------------|---|------------------------|---|-----------------------|---|
| Parameters                 | Influent<br>INF-001 |   | Final Effluent<br>EFF-001 |   | Biosolids<br>SLD-001 | - | Sec. Clarifier<br>Sludge, SLD-00 | 2 | Commercial<br>CSC-001 |   | Residential<br>CSR-001 |   | Industrial<br>CSI-001 |   |
|                            | (mg/L)              | - | (mg/L)                    | - | (mg/Kg)              |   | (mg/Kg)                          | _ | (mg/L)                |   | (mg/L)                 |   | (mg/L)                |   |
| Arsenic                    | ND                  |   | 0.001                     |   |                      |   |                                  |   | ND                    |   | ND                     |   | ND                    |   |
| Cadmium                    | ND                  |   | 0.00005                   | J |                      |   |                                  |   | 0.00082               | J | ND                     |   | ND                    |   |
| Chromium                   | ND                  |   | ND                        |   |                      |   |                                  |   | 0.0096                | J | 0.0042                 | J | ND                    |   |
| Copper                     | 0.067               |   | 0.011                     |   |                      |   |                                  |   | 0.39                  |   | 0.086                  |   | 0.069                 |   |
| Cyanide (Total)            | ND                  |   | ND                        |   |                      |   |                                  |   | ND                    |   | ND                     |   | ND                    |   |
| Cyanide (Free)             | ND                  |   | ND                        |   |                      |   |                                  |   | ND                    |   | ND                     |   | ND                    |   |
| Lead                       | 0.0038              | J | 0.0001                    | J |                      |   |                                  |   | 0.27                  |   | 0.00087                | J | 0.0061                | J |
| Mercury                    | ND                  |   | ND                        |   |                      |   |                                  |   | 0.0003                |   | ND                     |   | ND                    |   |
| Molybdenum                 | 0.02                |   | 0.018                     |   |                      |   |                                  |   | 0.013                 |   | 0.0058                 | J | 0.048                 |   |
| Nickel                     | 0.0084              |   | 0.0024                    |   | No Sludge            |   | No Sludge                        |   | 0.0087                | J | 0.003                  | J | 0.017                 | J |
| Selenium                   | ND                  |   | 0.001                     |   | Data                 |   | Data                             |   | ND                    |   | ND                     |   | 0.0029                | J |
| Silver                     | ND                  |   | ND                        |   | on Day 7             |   | on Day 7                         |   | 0.0014                | J | 0.0008                 | J | ND                    |   |
| Zinc                       | 0.24                |   | 0.024                     |   |                      |   |                                  |   | 0.32                  |   | 0.11                   |   | 0.49                  |   |
| BOD <sub>5</sub>           | 86                  |   | ND                        | * |                      |   |                                  |   | 360                   |   | 170                    |   | 56                    |   |
| COD                        | 680                 |   | 37                        |   |                      |   |                                  |   | 1100                  |   | 510                    |   | 710                   |   |
| ТОС                        | 54                  |   | 8.7                       |   |                      |   |                                  |   | 150                   |   | 77                     |   | 31                    |   |
| TSS                        | 490                 |   | 5                         |   |                      |   |                                  |   | 540                   |   | 130                    |   | 210                   |   |
| Ammonia-N                  | 50                  |   | ND                        |   |                      |   |                                  |   | 26                    |   | 33                     |   | 75                    |   |
| TKN                        | 77                  |   | ND                        |   |                      |   |                                  |   | 44                    |   | 55                     |   | 130                   |   |
| Nitrite-N                  | ND                  |   | 0.08                      | J |                      |   |                                  |   | ND                    |   | ND                     |   | 2                     |   |
| Nitrate-N                  | ND                  |   | 40                        |   |                      |   |                                  |   | ND                    |   | ND                     |   | ND                    |   |
| Oil and Grease (Total)     | 12                  |   | 6.2                       |   |                      |   |                                  |   | 26                    |   | 16                     |   | 2.8                   | J |
| Oil and Grease (Polar)     | ND                  |   | 3.4                       | J |                      |   |                                  |   | 21                    |   | 7.6                    |   | ND                    |   |
| Bis(2-ethylhexyl)phthalate | 0.14                |   | 0.0027                    | J |                      |   |                                  |   | 0.075                 |   | 0.064                  |   | 0.05                  |   |

ND: Not Detected or above the Maximum Detection Limit

J: Estimated (less than the RL, but greater than or equal to the lab MDL)

EFF sample: 48 hrs delayed due to WWTP HRT

Industrial sample (CSI-001): from National Beef discharge

\* Failed to analyze BOD<sub>5</sub>. Estimated as ND

Appendix IV

Flow and Loading Data

#### **Brawley WWTP**

### **Controlled Flow (Industrial Wastewater Flow)**

| Date         | WWTP Flow |
|--------------|-----------|
|              | (mgd)     |
| January-10   | 4.5       |
| February-10  | 4.5       |
| March-10     | 4.5       |
| April-10     | 3.8       |
| May-10       | 3.8       |
| June-10      |           |
| July-10      | 3.6       |
| August-10    | 3.6       |
| September-10 | 3.6       |
| October-10   | 3.8       |
| November-10  | 3.6       |
| December-10  | 3.8       |
| January-11   | 3.7       |
| February-11  | 3.9       |
| March-11     | 3.5       |
| April-11     | 3.6       |
| May-11       | 3.5       |
| June-11      | 3.6       |
| July-11      | 3.4       |
| August-11    | 3.6       |
| September-11 | 3.8       |
| October-11   | 3.7       |
| November-11  | 3.9       |
| December-11  | 4.1       |
|              |           |
| Average      | 3.80      |
| Max          | 4.54      |
| Average 2010 | 3.91      |
| Average 2011 | 3.69      |

| Dischargers                | Wastewater Flow |
|----------------------------|-----------------|
|                            | (mgd)           |
| National Beef              | 1.614           |
| Pioneers Memorial Hospital | 0.095           |
|                            |                 |
| Total                      | 1.71            |
|                            |                 |
| WWTP Flow                  | 3.80 r          |

| WWTP Flow         | 3.80 mgd |
|-------------------|----------|
| Controlled Flow   | 1.71 mgd |
| Uncontrolled Flow | 2.09 mgd |

| Wastewater Flow from Residential Dischargers |          |
|----------------------------------------------|----------|
|                                              | 1.85 mgd |
| Wastewater Flow from Commercial dischargers  |          |
|                                              | 0.24 mgd |
|                                              |          |

### Portion of Wastewater

88.7% Residential 11.3% Commercial Reference: 2009 Wastewater Rate Study - Brawley

| Date    | Water Use      | Water Use | Water Use | Wastewater Flov |
|---------|----------------|-----------|-----------|-----------------|
|         | (gallon/month) | (gpd)     | (mgd)     | (mgd)           |
| Jul-11  | 52910000       | 1763667   | 1.76      |                 |
| Aug-11  | 54360000       | 1812000   | 1.81      |                 |
| Sep-11  | 52840000       | 1761333   | 1.76      |                 |
| Oct-11  | 52950000       | 1765000   | 1.77      |                 |
| Nov-11  | 60180000       | 2006000   | 2.01      |                 |
| Dec-11  | 62770000       | 2092333   | 2.09      |                 |
| Jan-12  | 51150000       | 1705000   | 1.71      | 1.68            |
| Feb-12  | 55780000       | 1859333   | 1.86      | 1.55            |
| Mar-12  | 51460000       | 1715333   | 1.72      | 1.52            |
| Apr-12  | 68230000       | 2274333   | 2.27      | 1.66            |
| May-12  | 58720000       | 1957333   | 1.96      | 1.63            |
| Jun-12  | 58380000       | 1946000   | 1.95      | 1.63            |
| Jul-12  | 63550000       | 2118333   | 2.12      | 1.63            |
| Aug-12  | 57760000       | 1925333   | 1.93      |                 |
| Average |                | 1907238   | 1.91      | 1.61            |

### Loading Summary

| Parameters                 | Average Influent<br>Concentration<br>(mg/L) | WWTP Influent<br>Loading<br>(Ibs/day) | Residential<br>Loading<br>(Ibs/day) | Commercial<br>Loading<br>(Ibs/day) | Uncontrolled<br>Loading<br>(Ibs/day) | Controlled<br>Loading<br>(lbs/day) |
|----------------------------|---------------------------------------------|---------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|------------------------------------|
| Arsenic                    | -                                           | -                                     | -                                   | -                                  | -                                    | 0.032                              |
| Cadmium                    | -                                           | -                                     | 0.015                               | 0.0016                             | 0.017                                | 0.012                              |
| Chromium                   | 0.0047                                      | 0.15                                  | 0.065                               | 0.015                              | 0.080                                | 0.093                              |
| Copper                     | 0.065                                       | 2.0                                   | 1.4                                 | 0.6                                | 1.956                                | 0.53                               |
| Cyanide (Total)            | -                                           | -                                     | -                                   | -                                  | -                                    | -                                  |
| Cyanide (Free)             | -                                           | -                                     | -                                   | -                                  | -                                    | -                                  |
| Lead                       | 0.0039                                      | 0.12                                  | 0.016                               | 0.7                                | 0.68                                 | 0.046                              |
| Mercury                    | -                                           | -                                     | -                                   | 0.0006                             | 0.0006                               | -                                  |
| Molybdenum                 | 0.020                                       | 0.63                                  | 0.087                               | 0.021                              | 0.11                                 | 0.49                               |
| Nickel                     | 0.0078                                      | 0.25                                  | 0.067                               | 0.017                              | 0.08                                 | 0.15                               |
| Selenium                   | -                                           | -                                     | -                                   | -                                  | -                                    | 0.037                              |
| Silver                     | -                                           | -                                     | 0.008                               | 0.006                              | 0.015                                | -                                  |
| Zinc                       | 0.20                                        | 6.4                                   | 2.2                                 | 0.6                                | 2.7                                  | 3.7                                |
| BOD <sub>5</sub>           | 162                                         | 5,136                                 | 3,637                               | 822                                | 4,459                                | 2143                               |
| COD                        | 640                                         | 20,256                                | 8,795                               | 2,106                              | 10,901                               | 7847                               |
| тос                        | 52                                          | 1,637                                 | 1,133                               | 290                                | 1,422                                | 448                                |
| TSS                        | 397                                         | 12,570                                | 2,508                               | 958                                | 3,467                                | 5991                               |
| Ammonia-N                  | 57                                          | 1,818                                 | 414                                 | 36                                 | 451                                  | 1212                               |
| ТКМ                        | 83                                          | 2,632                                 | 655                                 | 87                                 | 741                                  | 2025                               |
| Nitrite-N                  | -                                           | -                                     | -                                   | -                                  | -                                    | 7.9                                |
| Nitrate-N                  | -                                           | -                                     | -                                   | -                                  | -                                    | 12                                 |
| Oil and Grease (Total)     | 10                                          | 319                                   | 332                                 | 60                                 | 392                                  | 125                                |
| Oil and Grease (Polar)     | 6.4                                         | 204                                   | 272                                 | 63                                 | 334                                  | 118                                |
| Bis(2-ethylhexyl)phthalate | 0.18                                        | 5.7                                   | 1.1                                 | 0.18                               | 1.3                                  | 0.7                                |

Appendix V

**Removal Efficiency** 

# **Removal Efficiency Calculation**

### Mean Removal Efficiency (MRE)

$$R_{WWTP} = \frac{\overline{I_r} - \overline{E_{WWTP,t}}}{\overline{I_r}}$$
$$R_{SEC} = \frac{\overline{I_r} - \overline{E_{SEC,y}}}{\overline{I_r}}$$

| Where, | R <sub>WWTP</sub>    | = | Plant removal efficiency from headworks to plant effluent, as decimal         |
|--------|----------------------|---|-------------------------------------------------------------------------------|
|        | R <sub>PRIM</sub>    | = | Removal efficiency from headworks to primary treatment effluent, as decimal   |
|        | $R_{SEC}$            | = | Removal efficiency from headworks to secondary treatment effluent, as decimal |
|        | l <sub>r</sub>       | = | WWTP influent pollutant concentration at headworks, mg/L                      |
|        | E <sub>WWTP, t</sub> | = | WWTP effluent pollutant concentration, mg/L                                   |
|        | E <sub>PRIM, x</sub> | = | Primary treatment effluent pollutant concentration, mg/L                      |
|        | E <sub>SEC, y</sub>  | = | Secondary treatment effluent pollutant concentration, mg/L                    |
|        | t                    | = | Plant effluent samples, numbered 1 to t                                       |
|        | r                    | = | Plant effluent samples, numbered 1 to r                                       |
|        | х                    | = | Primary treatment effluent samples, numbered 1 to x                           |
|        | У                    | = | Secondary treatment effluent samples, numbered 1 to y                         |

# Pollutant Concentation and MRE (WWTP Influent and Effluent)

| Arsenic |          |           |  |  |  |  |
|---------|----------|-----------|--|--|--|--|
| Sample  | Influent | Final Eff |  |  |  |  |
| Day     | (mg/L)   | (mg/L)    |  |  |  |  |
| 1       | ND       | 0.0011    |  |  |  |  |
| 2       | ND       | 0.0011    |  |  |  |  |
| 3       | ND       | 0.0011    |  |  |  |  |
| 4       | ND       | 0.0011    |  |  |  |  |
| 5       | ND       | 0.0011    |  |  |  |  |
| 6       | ND       | 0.001     |  |  |  |  |
| 7       | ND       | 0.001     |  |  |  |  |
| Average | -        | 0.00107   |  |  |  |  |

| Cadmium  |           |  |  |  |
|----------|-----------|--|--|--|
| Influent | Final Eff |  |  |  |
| (mg/L)   | (mg/L)    |  |  |  |
| ND       | 0.00006   |  |  |  |
| ND       | 0.00006   |  |  |  |
| ND       | 0.00007   |  |  |  |
| ND       | 0.00010   |  |  |  |
| ND       | 0.00006   |  |  |  |
| ND       | 0.00005   |  |  |  |
| ND       | 0.00005   |  |  |  |
| -        | 0.00006   |  |  |  |
| -        |           |  |  |  |

Cyanide (Total) Influent Fi

(mg/L)

ND

ND

ND

ND

ND

ND

ND

-

Mercury Influent

(mg/L)

ND

ND

ND

ND

ND

ND

ND

-

| Chromium |           |  |  |  |  |
|----------|-----------|--|--|--|--|
| Influent | Final Eff |  |  |  |  |
| (mg/L)   | (mg/L)    |  |  |  |  |
| ND       | 0.0007    |  |  |  |  |
| 0.0038   | 0.0006    |  |  |  |  |
| 0.0039   | 0.0006    |  |  |  |  |
| 0.0065   | 0.0004    |  |  |  |  |
| ND       | 0.0005    |  |  |  |  |
| ND       | 0.0005    |  |  |  |  |
| ND       | ND        |  |  |  |  |
| 0.00473  | 0.00055   |  |  |  |  |

Removal Efficiency

45% <sup>1</sup>

| 67% | 1 |
|-----|---|
|-----|---|

Final Eff

(mg/L)

ND

ND

ND

ND

ND

ND

ND

-

**Final Eff** 

(mg/L)

ND

ND

ND

ND

ND

ND

ND

-

| Copper  |          |           |
|---------|----------|-----------|
| Sample  | Influent | Final Eff |
| Day     | (mg/L)   | (mg/L)    |
| 1       | 0.06     | 0.01      |
| 2       | 0.047    | 0.01      |
| 3       | 0.056    | 0.01      |
| 4       | 0.082    | 0.012     |
| 5       | 0.051    | 0.014     |
| 6       | 0.089    | 0.013     |
| 7       | 0.067    | 0.011     |
| Average | 0.06457  | 0.01143   |

Removal Efficiency

82%

| Lead    |          |           |  |
|---------|----------|-----------|--|
| Sample  | Influent | Final Eff |  |
| Day     | (mg/L)   | (mg/L)    |  |
| 1       | 0.0042   | 0.0002    |  |
| 2       | 0.0039   | 0.0001    |  |
| 3       | 0.0033   | 0.0001    |  |
| 4       | 0.0052   | 0.0001    |  |
| 5       | 0.0028   | 0.0002    |  |
| 6       | 0.0039   | 0.0002    |  |
| 7       | 0.0038   | 0.0001    |  |
| Average | 0.00387  | 0.00014   |  |

**Removal Efficiency** 

61% <sup>1</sup>

| 60% | 1 |
|-----|---|
|-----|---|

| 63 | % | 1 |
|----|---|---|
| 63 | % | 1 |

| J:\PROJ\466\466-56\K Calcs\Brawley - Sampling Data and Local Limits Calculation (rev 3).xlsx |  |
|----------------------------------------------------------------------------------------------|--|

88%

| Cyanide (Free) |           |  |
|----------------|-----------|--|
| Influent       | Final Eff |  |
| (mg/L)         | (mg/L)    |  |
| ND             | ND        |  |
| -              | -         |  |

69% <sup>1</sup>

69% <sup>2</sup>

| Molybdenum |           |  |
|------------|-----------|--|
| Influent   | Final Eff |  |
| (mg/L)     | (mg/L)    |  |
| 0.018      | 0.015     |  |
| 0.019      | 0.017     |  |
| 0.019      | 0.018     |  |
| 0.025      | 0.02      |  |
| 0.017      | 0.02      |  |
| 0.021      | 0.02      |  |
| 0.0084     | 0.018     |  |
| 0.0182     | 0.0183    |  |

| Nickel  |          |           |
|---------|----------|-----------|
| Sample  | Influent | Final Eff |
| Day     | (mg/L)   | (mg/L)    |
| 1       | 0.008    | 0.0027    |
| 2       | 0.0078   | 0.0028    |
| 3       | 0.0084   | 0.0029    |
| 4       | 0.0099   | 0.0027    |
| 5       | 0.0053   | 0.0029    |
| 6       | 0.0071   | 0.003     |
| 7       | ND       | 0.0024    |
| Average | 0.0078   | 0.0028    |

| Selenium |           |
|----------|-----------|
| Influent | Final Eff |
| (mg/L)   | (mg/L)    |
| 0.0019   | 0.0012    |
| ND       | 0.0011    |
| ND       | 0.0012    |
| ND       | 0.0011    |
| ND       | 0.0013    |
| ND       | 0.0012    |
| ND       | 0.001     |
| 0.0019   | 0.0012    |

| Silver   |           |  |
|----------|-----------|--|
| Influent | Final Eff |  |
| (mg/L)   | (mg/L)    |  |
| 0.00038  | ND        |  |
| ND       | ND        |  |
| ND       | ND        |  |
| ND       | 0.00016   |  |
| ND       | ND        |  |
| ND       | ND        |  |
| ND       | ND        |  |
| 0.00038  | 0.00016   |  |

39%

97%

Final Eff

(mg/L)

ND

4

7

ND

9

6

5

6

58%

94% <sup>3</sup>

**Final Eff** 

(mg/L)

ND

ND

0.076

0.22

0.2

0.067

ND

0.14

| Zinc    |          |           |
|---------|----------|-----------|
| Sample  | Influent | Final Eff |
| Day     | (mg/L)   | (mg/L)    |
| 1       | 0.091    | 0.024     |
| 2       | 0.2      | 0.024     |
| 3       | 0.21     | 0.025     |
| 4       | 0.39     | 0.024     |
| 5       | 0.13     | 0.026     |
| 6       | 0.15     | 0.025     |
| 7       | 0.24     | 0.024     |
| Average | 0.20     | 0.025     |

| BOD₅     |           |  |
|----------|-----------|--|
| Influent | Final Eff |  |
| (mg/L)   | (mg/L)    |  |
| 130      | ND        |  |
| 200      | 3         |  |
| 140      | ND        |  |
| 280      | ND        |  |
| 130      | 6         |  |
| 170      | ND        |  |
| 86       | ND        |  |
| 162      | 4.5       |  |
|          |           |  |

TSS

Influent

(mg/L)

340

410

390

540

190

420

490

397

| COD      |           |  |
|----------|-----------|--|
| Influent | Final Eff |  |
| (mg/L)   | (mg/L)    |  |
| 490      | 42        |  |
| 530      | 39        |  |
| 680      | 39        |  |
| 1100     | 35        |  |
| 470      | 42        |  |
| 530      | 31        |  |
| 680      | 37        |  |
| 640      | 38        |  |
|          |           |  |

Ammonia-N

Influent

(mg/L)

60

71

69

63

47

42

50

57

Removal Efficiency

**Removal Efficiency** 

88%

64%

| тос     |          |           |
|---------|----------|-----------|
| Sample  | Influent | Final Eff |
| Day     | (mg/L)   | (mg/L)    |
| 1       | 39       | 9.3       |
| 2       | 48       | 9.4       |
| 3       | 63       | 9.3       |
| 4       | 68       | 8.9       |
| 5       | 44       | 8.4       |
| 6       | 46       | 8.5       |
| 7       | 54       | 8.7       |
| Average | 52       | 9         |

Removal Efficiency

83% <sup>3</sup>

98%

99.8%

| J:\PROJ\466\466-56\K Calcs\Brawley - Sampling Data and Local Limits Calculation (rev 3).xlsx |
|----------------------------------------------------------------------------------------------|

# R%1

|         | TKN      |           |  |
|---------|----------|-----------|--|
| Sample  | Influent | Final Eff |  |
| Day     | (mg/L)   | (mg/L)    |  |
| 1       | 76       | 0.25      |  |
| 2       | 87       | ND        |  |
| 3       | 100      | ND        |  |
| 4       | 110      | ND        |  |
| 5       | 76       | 0.14      |  |
| 6       | 56       | ND        |  |
| 7       | 77       | ND        |  |
| Average | 83       | 0.20      |  |

| Nitrite-N |           |  |
|-----------|-----------|--|
| Influent  | Final Eff |  |
| (mg/L)    | (mg/L)    |  |
| ND        | 0.02      |  |
| ND        | ND        |  |
| ND        | 0.07      |  |
| ND        | 0.1       |  |
| ND        | 0.04      |  |
| ND        | 0.08      |  |
| ND        | 0.08      |  |
| -         | 0.1       |  |

| Nitrate-N |           |  |
|-----------|-----------|--|
| Influent  | Final Eff |  |
| (mg/L)    | (mg/L)    |  |
| ND        | 35        |  |
| ND        | 38        |  |
| ND        | 38        |  |
| ND        | 36        |  |
| ND        | 34        |  |
| ND        | 33        |  |
| ND        | 40        |  |
| -         | 36.3      |  |

Removal Efficiency

100%<sup>3</sup>

Final Eff

(mg/L)

ND

ND

ND

ND

ND

ND

3.4

3.4

**Oil & Grease (Polar)** 

Influent

(mg/L)

2.6

12

8.2

2.4

8

5.4

ND

6.4

3

3

|         | Oil & Grease (Total) |           |  |
|---------|----------------------|-----------|--|
| Sample  | Influent             | Final Eff |  |
| Day     | (mg/L)               | (mg/L)    |  |
| 1       | 4.1                  | 1.8       |  |
| 2       | 15                   | 2         |  |
| 3       | 10                   | 4.4       |  |
| 4       | 9.4                  | 2.8       |  |
| 5       | 11                   | 3         |  |
| 6       | 9                    | 3.2       |  |
| 7       | 12                   | 6.2       |  |
| Average | 10.1                 | 3.3       |  |

**Removal Efficiency** 

67%

| Bisphthalate |           |  |
|--------------|-----------|--|
| Influent     | Final Eff |  |
| (mg/L)       | (mg/L)    |  |
| 0.26         | 0.09      |  |
| 0.13         | 0.021     |  |
| 0.18         | 0.026     |  |
| 0.19         | 0.046     |  |
| 0.18         | 0.024     |  |
| 0.18         | 0.0033    |  |
| 0.14         | 0.0027    |  |
| 0.16         | 0.003     |  |
|              |           |  |

47%<sup>3</sup>

98% <sup>4</sup>

- <sup>1</sup> Cited from 2004 USEPA Local Limits Guidance
- <sup>2</sup> Assumed that free cyanide and total cyanide have same removal efficiency
- 3 Not Required for Local Limit Calculation
- 4 Not used data pair from Day 1 to Day 5 due to high effluent bis(2-ethylhexy)phthalate concentration compared with last two year max effluent value (i.e. 0.0074 mg/L). Note that bis(2-ethylhexy)phthalate had detected one time for last two years. See Appendix II, Brawley NPDES Monitoring Data - Effluent

Appendix VI

Allowable Headworks Loading Calculations

# AHL based on WQBELs (Water Quality Standard)

Annual Average Flow

3.80 mgd (from 2010 to 2011)

$$AHL_{WQS} = \frac{(8.34) (C_{WQS})(Q_{WWTP})}{(1 - R_{WWTP})}$$

| where, $AHL_{WQ}$ | s = | AHL based on water quality criteria, lb/day               |
|-------------------|-----|-----------------------------------------------------------|
| C <sub>WQS</sub>  | =   | California WQS, mg/L                                      |
| R <sub>WWTP</sub> | =   | WWTP removal efficiency from headworks to plant effluent, |
|                   |     | as decimal                                                |
| 8.34              | =   | Conversion factor                                         |

### WQBELs Limits & Removal Efficiency

| Pollutants | C <sub>WQS</sub> | R <sub>WWTP</sub> |
|------------|------------------|-------------------|
| Arsenic    | 0.015 mg/L       | 45%               |
| Cadmium    | 0.0022 mg/L      | 67%               |
| Lead       | 0.019 mg/L       | 61%               |
| Mercury    | 0.000051 mg/L    | 60%               |
| Nickel     | 0.169 mg/L       | 64%               |
| Silver     | 0.044 mg/L       | 58%               |
| Zinc       | 0.388 mg/L       | 88%               |

C<sub>WQS</sub>: referenced from NPDES Permit

# Allowable Headworks Loading (AHL was) based on WQBELs Limits

| Pollutants | AHL (lbs/day) |
|------------|---------------|
| Arsenic    | 0.86          |
| Cadmium    | 0.21          |
| Lead       | 1.5           |
| Mercury    | 0.004         |
| Nickel     | 15            |
| Silver     | 3.3           |
| Zinc       | 101           |

### **AHL based on NPDES Permit Limits**

Annual Average Flow

3.80 mgd

(from 2010 to 2011)

$$AHL_{NPDES} = \frac{(8.34) (C_{NPDES}) (Q_{WWTP})}{(1 - R_{WWTP})}$$

| where, AH      | HL <sub>NPDES</sub> | = | AHL based on NPDES permit limit, lb/day                   |
|----------------|---------------------|---|-----------------------------------------------------------|
| C <sub>N</sub> | IPDES               | = | NPDES permit limit, mg/L                                  |
| Q              | WWTP                | = | WWTP average flow rate, MGD                               |
| Rw             | VWTP                | = | WWTP removal efficiency from headworks to plant effluent, |
|                |                     |   | as decimal                                                |
| 8.3            | 34                  | = | Conversion factor                                         |

#### NPDES Limits & Removal Efficiency

| Pollutants                 | C <sub>NPDES</sub> |      | R <sub>WWTP</sub>     |
|----------------------------|--------------------|------|-----------------------|
| BOD <sub>5</sub>           | 30                 | mg/L | 97% (not applicable)  |
| TSS                        | 30                 | mg/L | 98% (not applicable)  |
| Oil & Grease               | 25                 | mg/L | 67%                   |
| Total Ammonia-N            | 2.1                | mg/L | 100% (not applicable) |
| Copper                     | 0.021              | mg/L | 82%                   |
| Selenium                   | 0.0041             | mg/L | 39%                   |
| Cyanide (free)             | 0.003              | mg/L | 69%                   |
| Bis(2-ethylhexyl)phthalate | 0.0059             | mg/L | 98%                   |

## Allowable Headworks Loading (AHL NPDES ) based on NPDES Permit

| Pollutants                 | AHL (lbs/day) |                  |
|----------------------------|---------------|------------------|
| BOD <sub>5</sub>           | 34,243        | (not applicable) |
| TSS                        | 60,821        | (not applicable) |
| Oil & Grease               | 2,384         |                  |
| Total Ammonia-N            | 27,119        | (not applicable) |
| Copper                     | 3.8           |                  |
| Selenium                   | 0.21          |                  |
| Cyanide (free)             | 0.31          |                  |
| Bis(2-ethylhexyl)phthalate | 10            |                  |

# AHL based on Design Capacity

### Average Wastewater Flow

### 3.80 mgd (from 2010 to 2011)

# $AHL_{DESIGN} = (8.34) (C_{DESIGN}) (Q_{WWTP})$

| where, AHL <sub>DESIGN</sub> | = | AHL based on WWTP design capacity, lb/day                     |
|------------------------------|---|---------------------------------------------------------------|
| C <sub>DESIGN</sub>          | = | Design capacity for BOD <sub>5</sub> , TSS, and ammonia, mg/L |
| Q <sub>WWTP</sub>            | = | WWTP average flow rate, MGD                                   |
| 8.34                         | = | Conversion factor                                             |

| <u>Design Capacity</u> |                    |      |
|------------------------|--------------------|------|
| Pollutants             | C <sub>NPDES</sub> |      |
| BOD <sub>5</sub>       | 175                | mg/L |
| TSS                    | 190                | mg/L |
| Ammonia                | 37                 | mg/L |

Allowable Headworks Loading (AHL NPDES ) based on Design Capacity

| Pollutants       | AHL (lbs/day) |
|------------------|---------------|
| BOD <sub>5</sub> | 5,539         |
| TSS              | 6,014         |
| Ammonia          | 1,171         |

# AHL based on Activated Sludge Inhibition

Annual Average Flow

(from 2010 to 2011)

$$AHL_{AS} = \frac{(8.34) \left(C_{AS\_INHIBI}\right) \left(Q_{WWTP}\right)}{\left(1 - R_{PRIM}\right)}$$

| where, $AHL_{AS}$   | =      | AHL based on activated sludge inhibition, lb/day                 |
|---------------------|--------|------------------------------------------------------------------|
| C <sub>AS_INF</sub> | 11BI = | Activated sludge inhibition criteria, mg/L                       |
| Q <sub>WWTF</sub>   | , =    | WWTP average flow rate, MGD                                      |
| R <sub>PRIM</sub>   | =      | Removal efficiency from headworks to primary treatment effluent, |
|                     |        | as decimal                                                       |
| 8.34                | =      | Conversion factor                                                |

### Activated Sludge Inhibition Criterion

| Pollutants      | C <sub>AS_INHIBI</sub> | R <sub>PRIM</sub>       |
|-----------------|------------------------|-------------------------|
| America         | 0.1 m = //             |                         |
| Arsenic         | 0.1 mg/L               | 0% (No Primary Process) |
| Cadmium         | 1 mg/L                 | 0% (No Primary Process) |
| Chromium        | 1 mg/L                 | 0% (No Primary Process) |
| Copper          | 1 mg/L                 | 0% (No Primary Process) |
| Cyanide (total) | 0.1 mg/L               | 0% (No Primary Process) |
| Lead            | 1 mg/L                 | 0% (No Primary Process) |
| Mercury         | 0.1 mg/L               | 0% (No Primary Process) |
| Nickel          | 1 mg/L                 | 0% (No Primary Process) |
| Zinc            | 0.3 mg/L               | 0% (No Primary Process) |
| Ammonia         | 480 mg/L               | 0% (No Primary Process) |

 $C_{AS\_INHIBI}$ : Referenced from EPA 2004 Local Limits Development Guidance

| Pollutants      | AHL (lbs/day) |
|-----------------|---------------|
| Arsenic         | 3.2           |
| Cadmium         | 32            |
| Chromium        | 32            |
| Copper          | 32            |
| Cyanide (total) | 3.2           |
| Lead            | 32            |
| Mercury         | 3.2           |
| Nickel          | 32            |
| Zinc            | 9.5           |
| Ammonia         | 15,192        |

Allowable Headworks Loading (AHL AS ) based on Activated Sludge Inhibition

### **AHL based on Nitrification Inhibition**

Annual Average Flow

3.80 mgd (from 2010 to 2011)

$$AHL_{NITRI} = \frac{(8.34) \left( C_{NITRI \_INHIBI} \right) \left( Q_{WWTP} \right)}{\left( 1 - R_{PRIM} \right)}$$

| where, AHL <sub>NITR</sub> | RI =  | AHL based on nitrification inhibition, lb/day                    |
|----------------------------|-------|------------------------------------------------------------------|
| C <sub>NITRI_IN</sub>      | ныы = | Nitrification inhibition criteria, mg/L                          |
| Q <sub>WWTP</sub>          | =     | WWTP average flow rate, MGD                                      |
| R <sub>PRIM</sub>          | =     | Removal efficiency from headworks to primary treatment effluent, |
|                            |       | as decimal                                                       |
| 8.34                       | =     | Conversion factor                                                |

#### Nitrification Inhibition Criterion

| Pollutants      | C <sub>NITRI_INHIBI</sub> | R <sub>PRIM</sub>       |
|-----------------|---------------------------|-------------------------|
| Arsenic         | 1.5 mg/L                  | 0% (No Primary Process) |
| Cadmium         | 5.2 mg/L                  | 0% (No Primary Process) |
| Chromium        | 0.25 mg/L                 | 0% (No Primary Process) |
| Copper *        | 0.5 mg/L                  | 0% (No Primary Process) |
| Cyanide (total) | 0.34 mg/L                 | 0% (No Primary Process) |
| Lead            | 0.5 mg/L                  | 0% (No Primary Process) |
| Nickel          | 0.25 mg/L                 | 0% (No Primary Process) |
| Zinc**          | 0.4 mg/L                  | 0% (No Primary Process) |

C<sub>NITRI INHIBI</sub>: Referenced from EPA 2004 Local Limits Development Guidance

\* Referenced from Skinner and Walker (1961) and Reid and et al. (1968)

\*\* Maximum concentration that did not cause interference in Brawley WWTP and Referenced from John T. Fox and et al. (2006)

|  | Allowable Headworks Loading (AHL NITRI | ) based on Nitrification Inhibition |
|--|----------------------------------------|-------------------------------------|
|--|----------------------------------------|-------------------------------------|

| Pollutants      | AHL (lbs/day) |  |
|-----------------|---------------|--|
| Arsenic         | 47            |  |
| Cadmium         | 165           |  |
| Chromium        | 7.9           |  |
| Copper          | 15.8          |  |
| Cyanide (total) | 11            |  |
| Lead            | 16            |  |
| Nickel          | 7.9           |  |
| Zinc            | 12.7          |  |

### **Copper Inhibition to Nitrification (Reference)**

- Skinner and Walker (1961), Growth of Nitrosomonas Europaea in Water and Continuous Culture, Archs. Microbial. 38, 339-349.
   : 0.5 ppm of Copper inhibit growth of Nitrosomonas
- 2. Reid, G. N., R. Y. Nelson, C. Hall, U. Bonilla and R. Reid "Effects of Metallic Ions on Biological Waste Treatment" Water Sew. Works, July 1968
   : 0.5 mg/L Copper threshold concentration on Nitrification

### Zinc Inhibition to Nitrification (Reference)

- John T. Fox, Christopher J. Brandriff, and Charles B. Bott (2006), Assessing the Potential for Nitrification Inhibition at Wastewater Treatment Facilities as a Result of Zinc Orthophosphate Addition to Potable Water Distribution System, WEFTEC06, Water Environment Foundation, 6593-6622
  - : No significant inhibition at 0.5 mg/L Zinc, slight inhibition at 1.0 mg/L Zinc, significant inhibition at 10 mg/L of Zinc.
- 2. Kelly II, R. T., Henriques, I. D. S, and Love, N. G. (2004a), Chemical Inhibition of Nitrification in Activated Sludge, Biotechnology and Bioengineering, 85 (6), 638-694
  : No significant reactor performance or effluent quality at 2.5 mg/L of Zinc.

# AHL based on Sludge Quality (Clean Sludge Criteria - Table 3 of 40 CFR Part 503.13) (Recommended by EPA 2004 Local Limits Development Guidance)

Total Sludge Flow Rate to Disposal (i.e. to Centrifuge)

Percent Solids of Sludge to Disposal (i.e. to Centrifuge) 3.4 %

Assumed Specific Gravity of Sludge

1 kg/L

0.024 mgd

$$AHL_{SLDG} = \frac{(8.34) \left(C_{SLGSTD}\right) \left(\frac{PS}{100}\right) \left(Q_{SLDG}\right) \left(G_{SLDG}\right)}{R_{WWTP}}$$

| where, AHL <sub>SLDG</sub> | = | AHL based on sludge, lb/day                                        |
|----------------------------|---|--------------------------------------------------------------------|
|                            | = | Sludge standard – "Clean Sludge" at 40 CFR Part 503, mg/L          |
| PS                         | = | Percent solids of sludge to disposal                               |
| $Q_{SLDG}$                 | = | Total sludge flow rate to disposal, mgd                            |
| R <sub>WWTP</sub>          | = | Removal efficiency from headworks to plant effluent,<br>as decimal |
| G <sub>SLDG</sub>          | = | Specific gravity of sludge, kg/L                                   |
| 8.34                       | = | Conversion factor                                                  |

### Clean Sludge Criteria (Table 3, 40 CFR 503.13) & Removal Efficiency

| Pollutants   | C <sub>SLGTD</sub>    | R <sub>WWTP</sub> |
|--------------|-----------------------|-------------------|
| Arsenic      | 41 mg/Kg dry sludge   | 45%               |
| Cadmium      | 39 mg/Kg dry sludge   | 67%               |
| Copper       | 1500 mg/Kg dry sludge | 82%               |
| Lead         | 300 mg/Kg dry sludge  | 61%               |
| Mercury      | 17 mg/Kg dry sludge   | 60%               |
| Molybdenum * | 75 mg/Kg dry sludge   | 63%               |
| Nickel       | 420 mg/Kg dry sludge  | 64%               |
| Selenium     | 100 mg/Kg dry sludge  | 39%               |
| Zinc         | 2800 mg/Kg dry sludge | 88%               |

C<sub>SLGTD</sub>: Referenced from EPA 2004 Local Limits Development Guidance

\* Ceiling Concentration in Table 1, 40 CFR 503.13

### Allowable Headworks Loading (AHL<sub>SLDG</sub>) based on Sludge Quality

| Pollutants | AHL (lbs/day) |  |
|------------|---------------|--|
| Arsenic    | 0.62          |  |
| Cadmium    | 0.40          |  |
| Copper     | 12            |  |
| Lead       | 3.3           |  |
| Mercury    | 0.19          |  |
| Molybdenum | 0.81          |  |
| Nickel     | 4.4           |  |

J:\PROJ\466\466-56\K Calcs\Brawley - Sampling Data and Local Limits Calculation (rev 3).xlsx

| Selenium | 1.7 |
|----------|-----|
| Zinc     | 22  |

# Appendix VII

# MAILs and Local Limits Calculations

| Pollutants                 | MAHL<br>(lbs/day) | L <sub>UNC</sub><br>(Ibs/day) | MAIL<br>(Ibs/day) | Local Limits<br>(mg/L) | Local Limits<br>Required? |
|----------------------------|-------------------|-------------------------------|-------------------|------------------------|---------------------------|
| Arsenic                    | 0.62              | -                             | 0.56              | 0.04                   | Yes                       |
| Cadmium                    | 0.21              | 0.017                         | 0.17              | 0.012                  | Yes                       |
| Chromium                   | 7.9               | 0.080                         | 7.0               | 0.5                    | Yes                       |
| Copper                     | 3.8               | 2.0                           | 1.4               | 0.1                    | Yes                       |
| Cyanide (total)            | 3.2               | -                             | 2.8               | 0.2                    | Yes                       |
| Cyanide (free)             | 0.31              | -                             | 0.28              | 0.02                   | Yes                       |
| Lead                       | 1.5               | 0.68                          | 0.71              | 0.05                   | Yes                       |
| Mercury                    | 0.004             | 0.0006                        | 0.0031            | 0.0002                 | Yes                       |
| Molybdenum                 | 0.81              | 0.11                          | 0.62              | 0.04                   | Yes                       |
| Nickel                     | 4.4               | 0.083                         | 3.9               | 0.3                    | Yes                       |
| Selenium                   | 0.21              | -                             | 0.19              | 0.01                   | Yes                       |
| Silver                     | 3.3               | 0.015                         | 3.0               | 0.2                    | Yes                       |
| Zinc                       | 9.5               | 2.7                           | 5.8               | 0.4                    | Yes                       |
| BOD <sub>5</sub>           | 5,539             | 4,459                         | 1080              | 76                     | Yes                       |
| TSS                        | 6,014             | 3,467                         | 2,547             | 180                    | Yes                       |
| Ammonia-N                  | 1,171             | 451                           | 720               | 50                     | Yes                       |
| Oil and Grease             | 2,384             | 392                           | 1,754             | 123                    | Yes                       |
| Bis(2-ethylhexyl)phthalate | 10                | 1.3                           | 7.70              | 0.5                    | Yes                       |

 $MAIL = MAHL (1 - SF) - (L_{UNC} + HW + GA)$ 

| MAIL             | = | Maximum allowable industrial loading, lbs/day |                           |                   |
|------------------|---|-----------------------------------------------|---------------------------|-------------------|
| MAHL             | = | Maximum allowable headworks loading, lbs/day  |                           |                   |
| SF               | = | Safety factor                                 | 10%                       |                   |
| L <sub>UNC</sub> | = | Loadings from u                               | ncontrolled sources, lbs/ | ′day              |
| HW               | = | Loadings from h                               | auled waste (No hauled v  | waste in Brawley) |
| GA               | = | Growth allowan                                | ce                        |                   |

Appendix VIII

Fume Toxicity

# Discharge Screening Level for Hydrogen Cyanide

| <u>Pollutant</u>                                                                              | Hydrogen Cyanide            |                           |
|-----------------------------------------------------------------------------------------------|-----------------------------|---------------------------|
| Exposure Limits                                                                               |                             |                           |
| OSHA Permissible Exposure Limit                                                               | 10 ppm                      | (TWA)                     |
| ACGIH Threshold Limit                                                                         | 4.7 ppm                     | (STEL)                    |
| NOISH Recommended Exposure Limits                                                             | 4.7 ppm                     | (STEL)                    |
| Conversion Factor                                                                             | 1.1 (mg/m <sup>3</sup> )/(p | pm)                       |
| OSHA Permissible Exposure Limit<br>ACGIH Threshold Limit<br>NOISH Recommended Exposure Limits | $5 \text{ mg/m}^3$          | (TWA)<br>(STEL)<br>(STEL) |

### Discharge Screening Level

| =                                | Exposure Limit / Henry's Law Constant |  |  |
|----------------------------------|---------------------------------------|--|--|
| Henry's Law Constant             | 4.5 (mg/m <sup>3</sup> )/(mg/L)       |  |  |
| Lowest Acute Toxicity Data       | 5 mg/m <sup>3</sup>                   |  |  |
| Discharge Screening Level for Hy | drogen Cyanide<br>1.15 mg/L           |  |  |

# Discharge Screening Level for Hydrogen Sulfide

| Pollutant F                                                                                   | lydrogen Sulfide                                                                             |                 |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------|
| Exposure Limits                                                                               |                                                                                              |                 |
| OSHA Permissible Exposure Limit                                                               | 20 ppm                                                                                       | (STEL)          |
| ACGIH Threshold Limit                                                                         | 10 ppm<br>15 ppm                                                                             | (TWA)<br>(STEL) |
| NOISH Recommended Exposure Limits                                                             | 10 ppm                                                                                       | (STEL)          |
| Conversion Factor                                                                             | 1.4 (mg/m <sup>3</sup> )/                                                                    | (ppm)           |
| OSHA Permissible Exposure Limit<br>ACGIH Threshold Limit<br>NOISH Recommended Exposure Limits | 28 mg/m <sup>3</sup><br>14 mg/m <sup>3</sup><br>21 mg/m <sup>3</sup><br>14 mg/m <sup>3</sup> |                 |
| Discharge Screening Level                                                                     |                                                                                              |                 |
| = Exposure Limit / Henry's                                                                    | s Law Constant                                                                               |                 |
| Henry's Law Constant                                                                          | 414.4 (mg/m <sup>3</sup> )/                                                                  | (mg/L)          |
| Lowest Acute Toxicity Data                                                                    | 14 mg/m <sup>3</sup>                                                                         |                 |
| Discharge Screening Level for Hydrogen Sulfide                                                | 0.034 mg/L                                                                                   |                 |