

California Regional Water Quality Control Board

Central Coast Region

Arnold Schwarzenegger

Governor

Secretary for Environmental Protection

895 Aerovista Place, Suite 101, San Luis Obispo, California 93401-7906 Phone (805) 549-3147 • FAX (805) 543-0397 http://www.waterboards.ca.gov/centralcoast

December 6, 2006

CERTIFIED MAIL 7004 1350 0003 9804 4086

Mr. Craig Murray General Manager Carpinteria Sanitary District 5300 Sixth Street Carpinteria, CA 93013

Dear Mr. Murray:

ADOPTED REVISED WASTE DISCHARGE REQUIREMENTS ORDER NO. R3-2005-0110, NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT NO. CA0047364 - CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT FACILITY, SANTA BARBARA COUNTY, WDID 3 420101001

Enclosed is Revised Waste Discharge Requirements Order No. R3-2006-0110 (National Pollutant Discharge Elimination System Permit No. CA0047364) for Carpinteria` Sanitary District Wastewater Treatment Facility. Order No. R3-2006-0110 was adopted by the Regional Water Quality Control Board December 1, 2006, and is effective on January 20, 2007.

If you have questions, please contact **David LaCaro at (805) 549-3892** or dlacaro@waterboards.ca.gov or Harvey Packard at (805) 542-4639.

Sincerely,

Roger W. Briggs Executive Officer

Milliones

Enclosure:

- 1. Revised Waste Discharge Requirements Order No. R3-2006-0110
- 2. Revised Order Attachment G-Regional Board Contact Information
- 3. Revised Order Attachment H—Self Monitoring Report Transmittal Form

cc: Carpinteria Sanitary District IPL and NPDES IPL (EPA, State Water Board, and Tetra Tech)

California Environmental Protection Agency

102-01
S:\NPDES\NPDES Facilities\Santa Barbara Co\CarpInteria SD\Final Reopened Order\Adopted Order Trans Ltr.doc
File: Montecito Sanitary District

California Environmental Protection Agency

California Regional Water Quality Control Board

Central Coast Region

895 Aerovista Place, Suite 101
(805) 549-3147 • Fax (805) 543-0397
http://www.waterboards.ca.gov/centralcoast

ORDER NO. R3-2005-0110 NPDES NO. CA0047364 WASTE DISCHARGER IDENTIFICATION NO. 3 42 010 1001

The following Discharger is authorized to discharge in accordance with the conditions set forth in this Order:

Discharger	Carpinteria Sanitary District
Name of Facility	Carpinteria Sanitary District Wastewater Treatment Facility
	5351 Sixth Street
Facility Address	Carpinteria, CA 93013
	Santa Barbara County

The Discharger is authorized to discharge from the following discharge points as set forth below:

Discharge	Effluent	Discharge Point	Discharge Point	Receiving Water
Point	Description	Latitude	Longitude	
001	Secondary Treated Municipal Effluent	34°23′18″N	119°31'18" W	Pacific Ocean

This Order was adopted by the Central Coast Water Board on:	October 21, 2005
This Order shall become effective on:	January 20, 2007 (or 50 days after adoption)
This Order shall expire on:	October 21, 2010, unless administratively extended by the Executive Officer pursuant to 40 CFR 122.6(d)
The U.S. Environmental Protection Agency (U.S. EPA) and the Cendischarge as a major discharge.	ntral Coast Water Board have classified this
The Discharger shall file a Report of Waste Discharge in accordance wont later than 180 days in advance of the Order expiration dat	

IT IS HEREBY ORDERED, that Order No. 00-001 is rescinded upon the effective date of this Order except for enforcement purposes, and, in order to meet the provisions contained in Division 7 of the California Water Code (CWC) and regulations adopted thereunder, and the provisions of the federal Clean Water Act (CWA), and regulations and guidelines adopted thereunder, the Discharger shall comply with the requirements in this Order.

I, Roger W. Briggs, Executive Officer, do hereby certify the following is a full, true, and correct copy of an Order adopted by the California Regional Water Quality Control Board, Central Coast Region, on December 1, 2006.

Roger W. Briggs, Executive Officer

S:\NPDES\NPDES Facilities\Santa Barbara Co\Carpinteria SD\Final Reopened Order\Carp SD NPDES Permit 05-0110.doc

discharge requirements.

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD REGION 3, CENTRAL COAST REGION

ORDER NO. R3-2005-0110 NPDES NO. CA0047364

TABLE OF CONTENTS

1.	Facility Ir	iformation	
II.	Findings		
III.		Prohibitions	
IV.		imitations and Discharge Specifications	
		ent Limitations – Discharge Point 001	
V.	Receiving	Water Limitations	14
	A. Surfa	ace Water Limitations	14
VI.	Provision		
	A. Stan	dard Provisions	16
	B. Mon	itoring and Reporting Program Requirements	16
	C. Spec	ial Provisions	17
	1. Spe	cial Provisions for Municipal Facilities (POTWs Only)	
		Biosolids Requirements	
VII.		ce Determination	
Attac	hment A	Definitions	
Attac	hment B	Topographic Map	B-1
Attac	hment C	Flow Schematic	C-1
Attac	hment D	Federal Standard Provisions	
Attac	hment D-1	* * * *	
Attac	hment E	Monitoring and Reporting Program (MRP)	E-1
Attac	hment F	Fact Sheet	F-1
Attac	hment G	Regional Board Contact Information	G-1
Attac	hment H	Self-Monitoring Report Cover / Transmittal Form	H-1

I. FACILITY INFORMATION

The following Discharger is authorized to discharge in accordance with the conditions set forth in this Order:

Discharger	Carpinteria Sanitary District	
Name of Facility	Carpinteria Sanitary District Wastewater Treatment Facility	
	5351 Sixth Street	
Facility Address	Carpinteria, CA 93013	
	Santa Barbara County	
Facility Contact, Title, and Phone	Craig Murray, General Manager, (805) 684-7214	
Mailing Address	5300 Sixth Street, Carpinteria, CA 93013	
Type of Facility	Publicly Owned Treatment Works (POTW)	
Facility Design Flow	2.5 million gallons per day	

II. FINDINGS

The California Regional Water Quality Control Board, Central Coast Region (hereinafter Central Coast Water Board), finds:

- A. Background. The Carpinteria Sanitary District (hereinafter Discharger) is currently discharging under Order No. 01-001 and National Pollutant Discharge Elimination System (NPDES) Permit No. CA0047364. The Discharger submitted a Report of Waste Discharge dated January 13, 2004, with additional requested data submitted February 16, 2005, and applied for a NPDES permit renewal to discharge up to 2.5 MGD of treated wastewater from the Carpinteria Sanitary District Wastewater Treatment Facility (hereinafter Facility). Staff deemed the application complete on March 30, 2005 by telephone, and in writing on April 4, 2005.
- B. Facility Description. The Discharger owns and operates a wastewater collection, treatment, and disposal system to provide sewerage service to the City of Carpinteria and portions of Santa Barbara County. The treatment system consists of pretreatment, screening, grit removal, primary sedimentation, aerated activated sludge tanks, secondary sedimentation, chlorination, and dechlorination. Wastewater is discharged from Discharge 001 (see table on cover page) to the Pacific Ocean, a water of the United States within the South Coast Hydrologic Unit. Attachment B provides a topographic map of the area around the facility. Attachment C provides a flow schematic of the facility.
- C. Legal Authorities. This Order is issued pursuant to section 402 of the Federal Clean Water Act (CWA) implementing regulations adopted by the U.S. Environmental Protection Agency (U.S. EPA) and Chapter 5.5, Division 7 of the California Water Code (CWC). It shall serve as a NPDES permit for point source discharges from this facility to surface waters. This Order also serves as Waste Discharge Requirements (WDRs) pursuant to Article 4, Chapter 4 of the CWC for discharges that are not subject to regulation under CWA section 402.
- D. Background and Rationale for Requirements. The Central Coast Water Board developed the requirements in this Order based on information submitted as part of the application, through monitoring and reporting programs, and through special studies. Attachments A through G, which contain background information and rationale for Order requirements, are hereby incorporated into this Order and, thus, constitute part of the Findings for this Order.
- E. California Environmental Quality Act (CEQA). This action to adopt an NPDES permit is exempt from the provisions of the California Environmental Quality Act (Public Resources Code Section 21100, et seq.) in accordance with Section 13389 of the CWC.
- F. Technology-based Effluent Limitations. The Code of Federal Regulations (CFR) at 40 CFR §122.44(a) requires that permits include applicable technology-based limitations and standards. This Order includes technology-based effluent limitations based on Secondary Treatment Standards at 40 CFR Part 133. The Central Coast Water Board has considered the factors listed in CWC §13241 in establishing these requirements, Best Professional Judgment (BPJ) in accordance with 40 CFR §125.3. A detailed discussion of the technology-based effluent limitations development is included in the Fact Sheet (Attachment F).
- G. Water Quality-based Effluent Limitations. Section 122.44(d) of 40 CFR requires that permits include water quality-based effluent limitations (WQBELs) to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water. Where numeric water quality objectives have not been established, 40 CFR §122.44(d) specifies that WQBELs may be established using U.S. EPA criteria guidance under CWA section 304(a), proposed State criteria or a State

policy interpreting narrative criteria supplemented with other relevant information, or an indicator parameter.

H. Water Quality Control Plans. The Central Coast Water Board adopted a Water Quality Control Plan for the Central Coast Region (hereinafter Basin Plan) in 1994 that designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed by the Basin Plan. In addition, State Water Resources Control Board (State Water Board) Resolution No. 88-63 requires that, with certain exceptions, the Central Coast Water Board assign the municipal and domestic supply use to water bodies that do not have beneficial uses listed in the Basin Plan. Beneficial uses applicable to the Pacific Ocean are as follows:

Discharge Point	Receiving Water Name	Beneficial Use(s)
001	Pacific Ocean	Existing:
		water contact recreation (REC-1);
	•	non-contact water recreation (REC-2);
		industrial service supply (IND);
		navigation (NAV);
		marine habitat (MAR);
		shellfish harvesting (SHELL);
		commercial and sport fishing (COMM);
		rare, threatened, or endangered species (RARE);
		wildlife habitat (WILD);
		migration of aquatic organisms (MIGR);
		spawning, reproduction, and/or early development (SPWN).

The Basin Plan relies primarily on the requirements of the Water Quality Control Plan for Ocean Waters of California (Ocean Plan) for protection of the beneficial uses of the State ocean waters. The Basin Plan, however, may contain additional water quality objectives applicable to the discharger.

Requirements of this Order specifically implement the applicable Water Quality Control Plans.

- I. Antidegradation Policy. Section 131.12 of 40 CFR requires that State water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California's antidegradation policy in State Water Board Resolution No. 68-16, which incorporates the requirements of the federal antidegradation policy. Resolution No. 68-16 requires that existing quality of waters be maintained unless degradation is justified based on specific findings. The permitted discharge is consistent with the antidegradation provision of 40 CFR §131.12 and State Water Board Resolution No. 68-16.
- J. Anti-Backsliding Requirements. Sections 402(o)(2) and 303(d)(4) of the CWA and federal regulations at 40 CFR § 122.44(l) prohibit backsliding in NPDES permits. These anti-backsliding provisions require effluent limitations in a reissued permit to be as stringent as those in the previous permit, with some exceptions where limitations may be relaxed. All effluent limitations in this Order are at least as stringent as the effluent limitations in the previous Order, with some minor exceptions due only to the appropriate use of rounding the results of effluent limit calculations for this Order.
- K. Monitoring and Reporting. Section 122.48 of 40 CFR requires that all NPDES permits specify requirements for recording and reporting monitoring results. Sections 13267 and 13383 of the CWC authorize the Regional Water Boards to require technical and monitoring reports. The Monitoring and Reporting Program establishes monitoring and reporting requirements to implement federal and State requirements. This Monitoring and Reporting Program is provided in Attachment E.

- L. Standard and Special Provisions. Standard Provisions, which in accordance with 40 CFR §§122.41 and 122.42, apply to all NPDES discharges and must be included in every NPDES permit, are provided in Attachment D. The Central Coast Water Board has also included in this Order special provisions applicable to the Discharger. A rationale for the special provisions contained in this Order is provided in the attached Fact Sheet (Attachment F).
- M. Notification of Interested Parties. The Central Coast Water Board has notified the Discharger and interested agencies and persons of its intent to prescribe Waste Discharge Requirements for the discharge and has provided them with an opportunity to submit their written comments and recommendations. Details of notification are provided in the Fact Sheet (Attachment F) of this Order.
- N. Consideration of Public Comment. The Central Coast Water Board, in a public meeting, heard and considered all comments pertaining to the discharge. Details of the Public Hearing are provided in the Fact Sheet (Attachment F) of this Order.
- O. **Privilege to Discharge.** A permit and the privilege to discharge waste into waters of the State is conditional upon the discharge complying with provisions of Division 7 of the California Water Code and of the Clean Water Act (as amended or as supplemented by implementing guidelines and regulations); and with any more stringent effluent limitations necessary to implement water quality control plans, to protect beneficial uses, and to prevent nuisance.
- P. California Water Code Section 13241. This Order contains restrictions on individual pollutants that are no more stringent than required by the federal Clean Water Act. Individual pollutant restrictions consist of technology-based restrictions and water quality-based effluent limitations. The technology-based effluent limitations are specified in federal regulations as discussed in Attachment F, Section IV.B, and the permit's technology-based pollutant restrictions are no more stringent than required by the Clean Water Act. Water quality-based effluent limitations have been scientifically derived to implement water quality objectives that protect beneficial uses. Both the beneficial uses and the water quality objectives have been approved pursuant to federal law and are the applicable federal water quality standards. To the extent that toxic pollutant water quality-based effluent limitations were derived from the California Toxics Rule, the California Toxics Rule is the applicable standard pursuant to 40 C.F.R. 131.38. The scientific procedures for calculating the individual water quality-based effluent limitations are based on the California Ocean Plan, which has been approved by USEPA on December 3, 2001. All beneficial uses and water quality objectives contained in the Basin Plan were approved under state law and submitted to and approved by USEPA prior to May 30, 2000. Any water quality objectives and beneficial uses submitted to USEPA prior to May 30, 2000, but not approved by USEPA before that date, are nonetheless "applicable water quality standards for purposes of the [Clean Water] Act" pursuant to 40 C.F.R. 131.21(c)(1). As stated in Attachment F, certain water quality objectives and beneficial uses implemented by this Order are contained in the Ocean Plan which was approved by USEPA, and are applicable water quality standards pursuant to 40 C.F.R. 131.21(c)(2). Collectively, this Order's restrictions on individual pollutants are no more stringent than required to implement the technologybased requirements of the Clean Water Act and the applicable water quality standards for purposes of the Clean Water Act.
- Q. Statewide General Waste Discharge Requirements for Sanitary Sewer Systems (General Permit). The General Permit, Order No. 2006-0003-DWQ, adopted May 2, 2006, applies to publicly owned sanitary sewer systems (collection systems) that are one mile or greater in length. The General Permit requires collection system entities to develop a Sanitary Sewer Management Plan (SSMP). SSMPs are required to include goals; an organizational descritption; legal authority; an operations and maintenance program; design and performance provisions; an overflow emergency response plan; a fats, oils, and greases (FOG) control program; a systems evaluations and capacity assurance program; monitoring,

measures, and program modifications; and an SSMP Program audit. Additionally, the General Permit requires the collection system entities to report sanitary sewer overflows (SSOs). Collection system entities are required to report SSOs that are greater than 1,000 gallons. Furthermore, some entities must also report SSOs less than 1,000 gallons discharging to surface waters or storm drains or that threaten public health. Reporting provisions are set forth in the General Permit. Reporting shall occur through the Statewide Online SSO database. Reporting times vary depending on discharge amount and destination.

III. DISCHARGE PROHIBITIONS

- A. Discharge of treated wastewater at a location other than 34°23'18" N Latitude, 119°31'18" W Longitude is prohibited.
- B. The bypass or overflow of untreated wastewater or wastes to surface waters or surface water drainage courses is prohibited, except, in the case of bypasses, as allowed in Standard Provision I.G of Attachment D, Federal Standard Provisions.

IV. EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

A. Effluent Limitations - Discharge Point 001

[NOTE: Throughout this Order, staff used the following references to indicate the general origin of various requirements. Please refer to the Fact Sheet (Attachment F) for detailed information.

- Title 40, Code of Federal Regulations
- OP California Ocean Plan
- Central Coast Water Quality Control Plan (Basin Plan)
- CCR California Code of Regulations, Title 17, Sections 7957 and 7958

The definitions of terms in quotation marks throughout this Order are located in the attached Central Coast Water Board Standard Provisions (Attachment D-1), or the Ocean Plan.]

1. Final Effluent Limitations – Discharge Point 001

a. The discharge of secondary treated effluent shall maintain compliance with the following effluent limitations at Discharge Point 001, with compliance measured at Monitoring Location 001 as described in the attached Monitoring and Reporting Program (Attachment E):

Table IV-1 - Effluent Limitations for Major Constituents and Properties of Wastewater

Parameter	Units	30-day Average	7-day Average	Maximum Daily
Displantial O	mg/L	30	45	90
Biochemical Oxygen Demand, 5-day (BOD ₅)	% removal	Not less than 85%	N/A	N/A
Domana, 3-any (DODs)	lbs/day	630	940	1,900
T-410 110 21	mg/L	30	45	90
Total Suspended Solids (TSS)	% removal	Not less than 85%	N/A	N/A
(155)	lbs/day	630	940	1,900
pН	pH units	6 to 9 at all times		
Grease & Oil	mg/L	25	40	75
Grease & On	lbs/day	520	830	1,600

Table IV-1 – Effluent Limitations for Major Constituents and Properties of Wastewater

Parameter	Units	30-day Average	7-day Average	Maximum Daily
Settleable Solids	mL/L	1.0	1.5	3.0
Turbidity	NTU	75	100	225

Table IV-2 – Effluent Limitations for the Protection of Marine Aquatic Life – Derived from Ocean Plan Table B

	Units of	6-Month	Daily	Instantaneous
	Measurement	Median 4	Maximum ⁵	Maximum ⁶
Arsenic	ug/L	470	2,700	7,200
	lbs/Day	9.9	57	150
Cadmium	ug/L	94	380	940
	lbs/Day	2.0	7.8	20
Chromium (Hexavalent) 1	ug/L	190	750	1,900
	lbs/Day	3.9	16	39
Copper	ug/L	96	940	2,600
	lbs/Day	2.0	20	55
Lead	ug/L	190	750	1,900
	lbs/Day	3.9	16	39
Mercury	· ug/L	3.7	15	38
	lbs/Day	0.77	0.31	0.78
Nickel	ug/L	470	1,900	4,700
	lbs/Day	9.8	39	98
Selenium	ug/L	1,400	5,600	14,000
	lbs/Day	29	120	290
Silver	ug/L	51	250	640
·	lbs/Day	1.1	5.2	13
Zinc	ug/L	1,100	6,800	18,000
	lbs/Day	24	140	380
Cyanide ²	ug/L	94	380	940
	lbs/Day	2.0	7.8	20
Total Chlorine Residual 3	ug/L	190	750	5,600
	lbs/Day	. 3.9	16	120
Ammonia (expressed as N)	ug/L	56,000	230,000	560,000
	lbs/Day	1,200	4,700	12,000
Acute Toxicity	TUa		3.1	2277
Chronic Toxicity	TUc		94	
Phenolic Compounds (non-	ug/L	2,800	11,000	28,000
chlorinated)				·
	lbs/Day	59	240	590
Chlorinated Phenolics	ug/L	94	380	940
	lbs/Day	2.0	7.8	20
Endosulfan	ug/L	0.85	1.7	2.5
	lbs/Day	0.018	0.035	0.0530

Table IV-2 – Effluent Limitations for the Protection of Marine Aquatic Life – Derived from Ocean Plan Table B

	Units of Measurement	6-Month Median ⁴	Daily Maximum ⁵	Instantaneous Maximum ⁶
Endrin	ug/L	0.19	0.38	0.56
	lbs/Day	0.0039	0.0078	0.012
HCH	ug/L	0.38	0.75	1.1
	lbs/Day	0.0078	0.016	0.024
Radioactivity	Subchapter 4, Groof Regulations. I	Not to exceed limits specified in Title 17, Division 1, Chapter 5, Subchapter 4, Group 3, Article 3, Section 30253 of the California Code of Regulations. Reference to Section 30253 is prospective, including future changes to any incorporated provisions of federal law, as the		

Dischargers may, at their option, meet this limitation as a total chromium limitation.

Water quality objectives for total chlorine residual applying to <u>intermittent discharges</u> not exceeding two hours shall be determined using the following equation:

$$\log y = -0.43 (\log x) + 1.8$$

where: y = the water quality objective (in ug/L) to apply when chlorine is **being discharged**; and x = the duration of uninterrupted chlorine discharge in minutes.

The applicable effluent limitation must then be determined using Equation No. 1 from the Ocean Plan. OP

- The six-month median shall apply as a moving median of daily values for any 180-day period in which daily values represent flow weighted average concentrations within a 24-hour period. For intermittent discharges, the daily value shall be considered to equal zero for days on which no discharge occurred. The six-month median limit on daily mass emissions shall be determined using the six-month median effluent concentration as Ce and the observed flow rate Q in millions of gallons per day (each variable referring to Equation 3 of the Ocean Plan). OP Also see Order Section VII, Compliance Determination, below.
- The daily maximum shall apply to flow weighted 24-hour composite samples. The daily maximum mass emission shall be determined using the daily maximum effluent concentration limit as Ce and the observed flow rate Q in millions of gallons per day (each variable referring to Equation 3 of the Ocean Plan). OP Also see Order Section VII, Compliance Determination, below.
- The instantaneous maximum shall apply to grab sample determinations. OP Also see Order Section VII, Compliance Determination, below.

If a Discharger can demonstrate to the satisfaction of the Central Coast Water Board (subject to U.S. EPA approval) that an analytical method is available to reliably distinguish between strongly and weakly complexed cyanide, effluent limitations for cyanide may be met by the combined measurement of free cyanide, simple alkali metal cyanides, and weakly complexed organometallic cyanide complexes. In order for the analytical method to be acceptable, the recovery of free cyanide from metal complexes must be comparable to that achieved by the approved method in 40 CFR PART 136, as revised July 1, 2003, or later. OP

Table IV-3 – Effluent Limitations for the Protection Of Human Health – Non-Carcinogens – Derived from Ocean Plan Table B

Acrolein Ug/L 2.1 x 10 ⁴ Ibs/Day 430 Antimony Ug/L 1.1 x 10 ⁵ Ibs/Day 2,400 Bis(2-chloroethoxy) methane Ug/L 410 Bis(2-chloroisopropyl) ether Ug/L 1.1 x 10 ⁵ Ibs/Day 2,400 Chlorobenzene Ug/L 5.4 x 10 ⁴ Ibs/Day 1,100 Chromium (III) Ug/L 1.8 x 10 ⁷ Ibs/Day 370,000 din-butyl phthalate Ug/L 3.3 x 10 ⁵ Ibs/Day 6,900 Dichlorobenzenes Ug/L 4.8 x 10 ⁵ Ibs/Day 10,000 Diethyl phthalate Ug/L 3.1 x 10 ⁶ Ibs/Day 65,000 Dimethyl phthalate Ug/L 7.7 x 10 ⁷ Ibs/Day 1.6 x 10 ⁶ 4,6-dinitro-2-methylphenol Ug/L 2.1 x 10 ⁴ Ibs/Day 430 2,4-dinitrophenol Ug/L 3.8 x 10 ⁵ Ibs/Day 7.8 Ethylbenzene Ug/L 3.8 x 10 ⁵ Ibs/Day 7.8 Ethylbenzene Ug/L 3.8 x 10 ⁵ Ibs/Day 9.6 Ibs/Day 9.6 Thallium Ug/L 1.90 Thallium Ug/L 1.90 Tributyltin Ug/L 0.13 Tributyltin Ug/L 5.1 x 10 ⁷	Chemical	Units of Measurement	30-day average
Antimony	Acrolein	ug/L	2.1×10^4
Bis(2-chloroethoxy) methane ug/L 410			
Bis(2-chloroethoxy) methane ug/L	Antimony	ug/L	1.1×10^5
Bis(2-chloroisopropyl) ether		lbs/Day	2,400
Bis(2-chloroisopropyl) ether ug/L 1.1 x 10 ³ chlorobenzene ug/L 5.4 x 10 ⁴ dis/Day 1,100 chromium (III) ug/L 1.8 x 10 ⁷ dis/Day 370,000 di-n-butyl phthalate ug/L 3.3 x 10 ⁵ lbs/Day 6,900 Dichlorobenzenes ug/L 4.8 x 10 ⁵ dis/Day 10,000 Diethyl phthalate ug/L 3.1 x 10 ⁶ dis/Day 65,000 Diethyl phthalate ug/L 3.1 x 10 ⁶ dis/Day 65,000 Dimethyl phthalate ug/L 7.7 x 10 ⁷ dis/Day 16,6 x 10 ⁶ dy/L 2.1 x 10 ⁴ dy/L 2.1 x 10 ⁴ dy/L 380 dy/L 380 dy/L 380 dy/L 3.8 x 10 ⁵ dy/L 3.8 x 10 ⁵ dy/L 3.8 x 10 ⁵ dy/L 1.4 x 10 ³ dy/L 1.5 x 10 ⁶ dy/L 1.7 x 10 ⁵ dy/L 1.7 x 10 ⁵	Bis(2-chloroethoxy) methane	. ug/L	410
Dis/Day		lbs/Day	8.6
Chlorobenzene ug/L 5.4 x 10 ⁴ lbs/Day 1,100 Chromium (III) ug/L 1.8 x 10 ⁷ lbs/Day 370,000 di-n-butyl phthalate ug/L 3.3 x 10 ⁵ lbs/Day 6,900 Dichlorobenzenes ug/L 4.8 x 10 ⁵ lbs/Day 10,000 Diethyl phthalate ug/L 3.1 x 10 ⁶ lbs/Day 65,000 Dimethyl phthalate ug/L 7.7 x 10 ⁷ lbs/Day 1.6 x 10 ⁶ 4,6-dinitro-2-methylphenol ug/L 2.1 x 10 ⁴ 4,6-dinitro-2-methylphenol ug/L 380 lbs/Day 430 2.4-dinitro-2-methylphenol ug/L 3.8 x 10 ⁵ Lbs/Day 430 2.1 x 10 ⁴ 440 2,4-dinitro-2-methylphenol ug/L 3.8 x 10 ⁵ 380 1bs/Day 7.8 Ethylbenzene ug/L 3.8 x 10 ⁵ Ethylbenzene ug/L 3.8 x 10 ⁵ 3.8 x 10 ⁵ Fluoranthene ug/L 5.4 x 10 ³ <td< td=""><td>Bis(2-chloroisopropyl) ether</td><td>ug/L</td><td>1.1×10^5</td></td<>	Bis(2-chloroisopropyl) ether	ug/L	1.1×10^5
Ibs/Day	4	lbs/Day	
Chromium (III)	Chlorobenzene	ug/L	5.4×10^4
Ibs/Day 370,000		lbs/Day	1,100
di-n-butyl phthalate ug/L 3.3 x 10 ³ Dichlorobenzenes ug/L 4.8 x 10 ⁵ Diethyl phthalate ug/L 3.1 x 10 ⁶ Diethyl phthalate ug/L 3.1 x 10 ⁶ Dimethyl phthalate ug/L 7.7 x 10 ⁷ Ibs/Day 1.6 x 10 ⁶ 4,6-dinitro-2-methylphenol ug/L 2.1 x 10 ⁴ 4,6-dinitrophenol ug/L 380 2,4-dinitrophenol ug/L 380 Bbs/Day 7.8 5 Ethylbenzene ug/L 3.8 x 10 ⁵ Ibs/Day 8.0 x 10 ³ 1 Fluoranthene ug/L 1.4 x 10 ³ Ibs/Day 29 1 Hexachlorocyclopentadiene ug/L 5.4 x 10 ³ Ibs/Day 110 10 Nitrobenzene ug/L 460 Ibs/Day 9.6 1 Thallium ug/L 8.0 x 10 ⁶ Toluene ug/L 8.0 x 10 ⁶ Ibs/Day 1.7 x 10 ⁵ Tributyltin	Chromium (III)	ug/L	1.8×10^7
Ibs/Day 6,900		lbs/Day	370,000
Dichlorobenzenes ug/L 4.8 x 10 ⁵ Ibs/Day 10,000 Diethyl phthalate ug/L 3.1 x 10 ⁶ Ibs/Day 65,000 Dimethyl phthalate ug/L 7.7 x 10 ⁷ Ibs/Day 1.6 x 10 ⁶ 4,6-dinitro-2-methylphenol ug/L 2.1 x 10 ⁴ 4,6-dinitro-2-methylphenol ug/L 380 2,4-dinitrophenol ug/L 380 2,4-dinitrophenol ug/L 38 x 10 ⁵ Ethylbenzene ug/L 3.8 x 10 ⁵ Ethylbenzene ug/L 3.8 x 10 ⁵ Fluoranthene ug/L 1.4 x 10 ³ Fluoranthene ug/L 1.4 x 10 ³ Hexachlorocyclopentadiene ug/L 5.4 x 10 ³ Ibs/Day 110 Nitrobenzene ug/L 460 Ibs/Day 9.6 Thallium ug/L 1.7 x 10 ⁵ Toluene ug/L 8.0 x 10 ⁶ Ibs/Day 1.7 x 10 ⁵ Tributyltin ug/L 0.13	di-n-butyl phthalate	ug/L	3.3×10^5
Ibs/Day		lbs/Day	6,900
Ibs/Day	Dichlorobenzenes	ug/L	4.8×10^{5}
Diethyl phthalate ug/L 3.1 x 106 lbs/Day 65,000 Dimethyl phthalate ug/L 7.7 x 107 lbs/Day 1.6 x 106 4,6-dinitro-2-methylphenol ug/L 2.1 x 104 lbs/Day 430 2,4-dinitrophenol ug/L 380 lbs/Day 7.8 Ethylbenzene ug/L 3.8 x 105 lbs/Day 8.0 x 103 Fluoranthene ug/L 1.4 x 103 lbs/Day 29 Hexachlorocyclopentadiene ug/L 5.4 x 103 lbs/Day 110 Nitrobenzene ug/L 460 lbs/Day 9.6 Thallium ug/L 190 lbs/Day 3.9 Toluene ug/L 8.0 x 106 lbs/Day 1.7 x 105 Tributyltin ug/L 0.13 lbs/Day 0.0027 1,1,1-trichloroethane ug/L 5.1 x 107			
Dimethyl phthalate	Diethyl phthalate		3.1×10^6
Dimethyl phthalate ug/L 7.7 x 107 4,6-dinitro-2-methylphenol ug/L 2.1 x 104 4,6-dinitro-2-methylphenol ug/L 2.1 x 104 lbs/Day 430 2,4-dinitrophenol ug/L 380 Ethylbenzene ug/L 3.8 x 105 Ethylbenzene ug/L 3.8 x 105 Fluoranthene ug/L 1.4 x 103 Fluoranthene ug/L 5.4 x 103 Hexachlorocyclopentadiene ug/L 5.4 x 103 Nitrobenzene ug/L 460 lbs/Day 110 Nitrobenzene ug/L 460 lbs/Day 3.9 Toluene ug/L 8.0 x 106 lbs/Day 3.9 Toluene ug/L 8.0 x 106 lbs/Day 1.7 x 105 Tributyltin ug/L 0.13 lbs/Day 0.0027 1,1,1-trichloroethane ug/L 5.1 x 107			65,000
Ibs/Day	Dimethyl phthalate		
Ibs/Day			
Ibs/Day	4,6-dinitro-2-methylphenol	ug/L	2.1×10^4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	430
Ethylbenzene ug/L 3.8 x 10 ⁵ Ibs/Day 8.0 x 10 ³ Fluoranthene ug/L 1.4 x 10 ³ Fluoranthene ug/L 1.4 x 10 ³ Hexachlorocyclopentadiene ug/L 5.4 x 10 ³ Ibs/Day 110 Nitrobenzene ug/L 460 Ibs/Day 9.6 Thallium ug/L 190 Ibs/Day 3.9 Toluene ug/L 8.0 x 10 ⁶ Ibs/Day 1.7 x 10 ⁵ Tributyltin ug/L 0.13 Ibs/Day 0.0027 1,1,1-trichloroethane ug/L 5.1 x 10 ⁷	2,4-dinitrophenol	ug/L	380
Ethylbenzene ug/L 3.8×10^5 Ibs/Day 8.0×10^3 Fluoranthene ug/L 1.4×10^3 Ibs/Day 29 Hexachlorocyclopentadiene ug/L 5.4×10^3 Ibs/Day 110 Nitrobenzene ug/L 460 Ibs/Day 9.6 Thallium ug/L 190 Ibs/Day 3.9 Toluene ug/L 8.0×10^6 Ibs/Day 1.7×10^5 Tributyltin ug/L 0.13 Ibs/Day 0.0027 $1,1,1$ -trichloroethane ug/L 5.1×10^7		lbs/Day	7.8
Ibs/Day 8.0×10^3 Fluoranthene ug/L 1.4×10^3 Ibs/Day 29 Hexachlorocyclopentadiene ug/L 5.4×10^3 Ibs/Day 110 Nitrobenzene ug/L 460 Ibs/Day 9.6 Thallium ug/L 190 Ibs/Day 3.9 Toluene ug/L 8.0×10^6 Ibs/Day 1.7×10^5 Tributyltin ug/L 0.13 Ibs/Day 0.0027 $1,1,1$ -trichloroethane ug/L 5.1×10^7	Ethylbenzene	ug/L	3.8×10^5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8.0×10^3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fluoranthene	ug/L	1.4×10^3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			29
Ibs/Day 110 Nitrobenzene ug/L 460 Ibs/Day 9.6 Thallium ug/L 190 Ibs/Day 3.9 Toluene ug/L 8.0×10^6 Ibs/Day 1.7×10^5 Tributyltin ug/L 0.13 Ibs/Day 0.0027 1,1,1-trichloroethane ug/L 5.1×10^7	Hexachlorocyclopentadiene	ug/L	5.4×10^3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrobenzene	ug/L	460
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thallium	ug/L	190
Toluene ug/L 8.0×10^6 lbs/Day 1.7×10^5 Tributyltin ug/L 0.13 lbs/Day 0.0027 1,1,1-trichloroethane ug/L 5.1×10^7			10.00 0 1 20.00 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Toluene		8.0 x 10 ⁶
Tributyltinug/L 0.13 lbs/Day 0.0027 $1,1,1$ -trichloroethaneug/L 5.1×10^7			
$\begin{array}{ccc} & & \text{lbs/Day} & & 0.0027 \\ 1,1,1-\text{trichloroethane} & & \text{ug/L} & & 5.1 \times 10^7 \end{array}$	Tributyltin		
1,1,1-trichloroethane ug/L 5.1×10^7			0.0027
11 75	1,1,1-trichloroethane		5.1×10^7
lbs/Day 1.1 x 10°		lbs/Day	1.1 x 10 ⁶

Table IV-4 – Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average
Acrylonitrile	ug/L	9.4
	lbs/Day	0.20
Aldrin	ug/L	2.1×10^{-3}
	lbs/Day	4.3 x 10 ⁻⁵
Benzene	ug/L	550
	lbs/Day	12
Benzidine	ug/L	6.5×10^{-3}
	lbs/Day	1.4 x 10 ⁻⁴
Beryllium	ug/L	3.1
<u> </u>	lbs/Day	0.065
Bis(2-chloroethyl) ether	ug/L	4.2
<u> </u>	lbs/Day	0.088
Bis(2-ethylhexyl) phthalate	ug/L	330
	lbs/Day	6.9
Carbon tetrachloride	ug/L	85
	lbs/Day	1.8
Chlordane	ug/L	2.2 x 10 ⁻³
	lbs/Day	4.5 x 10 ⁻⁵
Chlorodibromomethane	ug/L	810
	lbs/Day	17
Chloroform	ug/L	1.2×10^4
	lbs/Day	260
DDT	ug/L	0.016
	lbs/Day	3.3 x 10 ⁻⁴
1,4-dichlorobenzene	ug/L	1.7×10^3
	lbs/Day	35
3,3'-dichlorobenzidine	ug/L	0.76
	lbs/Day	0.016
1,2-dichloroethane	ug/L	2.6×10^3
	lbs/Day	55
1,1-dichloroethylene	ug/L	85
	lbs/Day	1.8
Dichlorobromomethane	ug/L	580
	lbs/Day	12
Dichloromethane	ug/L	4.2 x 10 ⁴
	lbs/Day	880
1,3-dichloropropene	ug/L	840
* * * * * * * * * * * * * * * * * * * *	lbs/Day	17
Dieldrin	ug/L	3.8 x 10 ⁻³
The second secon	lbs/Day	7.8 x 10 ⁻⁵
2,4-dinitrotoluene	ug/L	240
	lbs/Day	5.1
1,2-diphenylhydrazine	ug/L	15
-,,,-,,	lbs/Day	0.31
	100 Day	V-U I

Table IV-4 – Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average
Halomethanes	ug/L	1.2 x 10 ⁴
	lbs/Day	260
Heptachlor	ug/L	4.7 x 10 ⁻³
	lbs/Day	9.8 x 10 ⁻⁵
Heptachlor epoxide	ug/L	1.9 x 10 ⁻³
	lbs/Day	3.9 x 10 ⁻⁵
Hexachlorobenzene	ug/L	0.020
	lbs/Day	4.1 x 10 ⁻⁴
Hexachlorobutadiene	ug/L	1.3×10^3
	lbs/Day	27
Hexachloroethane	ug/L	240
	lbs/Day	4.9
Isophorone	ug/L	6.9 x 10 ⁴
	lbs/Day	1.4×10^3
N-nitrosodimethylamine	ug/L	690
	lbs/Day	14
N-nitrosodi-N-propylamine	ug/L	36
	lbs/Day	0.74
N-nitrosodiphenylamine	ug/L	240
	lbs/Day	4.9
PAHs	ug/L	0.83
	lbs/Day	0.017
PCBs	ug/L	1.8 x 10 ⁻³
	lbs/Day	3.7 x 10 ⁻⁵
TCDD equivalents	ug/L	3.7 x 10 ⁻⁷
	lbs/Day	7.6 x 10 ⁻⁹
1,1,2,2-tetrachloroethane	ug/L	220
	lbs/Day	4.5
Tetrachloroethylene	ug/L	190
	lbs/Day	3.9
Toxaphene	ug/L	0.020
	lbs/Day	4.1 x 10 ⁻⁴
Trichloroethylene	ug/L	2.5×10^3
	lbs/Day	53
1,1,2-trichloroethane	u g /L	880
	lbs/Day	18
2,4,6-trichlorophenol	ug/L	27
	lbs/Day	0.57
Vinyl chloride	ug/L	3.4×10^3
	lbs/Day	70

- b. Effluent daily dry weather flow shall not exceed a monthly average of 2.5 MGD.
- c. No effluent mass emission rate (lbs/day) shall exceed the "Maximum Allowable Mass Emission Rate," as defined in Attachment D-1, Central Coast Water Board Standard Provisions, Definition F.11.
- d. The median number of total coliform organisms in effluent shall not exceed 23 MPN per 100 milliliters (mL), as determined by the bacteriological results for the last seven days for which analyses have been completed, and the number of total coliform organisms in any sample shall not exceed 2,300 MPN per 100 mL.
- e. Effluent shall be essentially free of materials and substances that OP:
 - i. Float or become floatable upon discharge.
 - ii. May form sediments which degrade benthic communities or other aquatic life.
 - iii. Accumulate to toxic levels in marine waters, sediments or biota.
 - iv. Decrease the natural light to benthic communities and other marine life.
 - v. Result in aesthetically undesirable discoloration of the ocean surface.
- f. Effluent limitations derived from Ocean Plan Tables A and B (provided in the tables in Section A.1.a, above) shall apply to the Discharger's total effluent, of whatever origin (i.e., gross, not net, discharge), except where otherwise specified in the Ocean Plan OP.
- g. The discharge of waste shall not cause water quality objectives established in the California Ocean Plan, Table B, to be exceeded in the receiving water upon completion of initial dilution, except that objectives indicated for radioactivity shall apply directly to the undiluted waste effluent OP.
- h. The effluent limitations of this Order are based on California Ocean Plan criteria and equations as applicable therein, using a minimum initial dilution of 93:1 (seawater:effluent). If the actual dilution ratio is found to be different, then the ratio will be recalculated and this Order revised when and as appropriate.
- i. The minimum initial dilution is the lowest average initial dilution within any single month of the year. Dilution estimates shall be based on observed waste flow characteristics, observed receiving water density structure, and the assumption that no currents (of sufficient strength to influence the initial dilution process) flow across the discharge structure OP.
- j. The State Board shall identify standard dilution models for use in determining the minimum initial dilution, and shall assist the Central Coast Water Board in its evaluation for specific waste discharges. Dischargers may propose alternative methods of calculating minimum initial dilution, and the Central Coast Water Board may accept such methods upon verification of its accuracy and applicability OP.
- k. If only one sample is collected during the time period associated with an effluent limitation or water quality objective (e.g., 30-day average or 6-month median), the single measurement shall be used to determine compliance with the effluent limitation for the entire time period OP.

1. Any significant change in waste flow shall be cause for reevaluating effluent limitations OP.

V. RECEIVING WATER LIMITATIONS OF

A. Surface Water Limitations

Receiving water limitations are based on water quality objectives contained in the Ocean Plan and Basin Plan and are a required part of this Order. The discharge shall comply with the following in the Pacific Ocean:

1. Bacterial Characteristics

The discharge shall not cause the following water quality objectives to be violated in ocean waters upon completion of "initial dilution":

- a. Body-Contact Standards Within a zone bounded by the shoreline and a distance of 1,000 feet from the shoreline or the 30-foot depth contour, whichever is further from the shoreline, and in areas outside this zone used for body-contact sports, as determined by the Central Coast Water Board, but including all kelp beds, the following bacteriological objectives shall be maintained throughout the water column:
 - 1) Samples of water from each sampling station shall have a density of total coliform organisms less than 1,000 per 100 mL (10 per mL); provided that not more than 20 percent of samples at any sampling station, in any 30-day period, may exceed 1,000 per 100 mL (10 per mL), and provided further that no single sample when verified by a repeat sample taken within 48 hours shall exceed 10,000 per 100 mL (100 per mL) OP. Furthermore, if the ratio of fecal to total coliform in a single sample exceeds 0.1, the density of total coliform organisms shall not exceed 1,000 per 100 mL OCCR.
 - 2) The fecal coliform density, based on a minimum of not less than five samples for any 30-day period, shall not exceed a "geometric mean" of 200 per 100 mL, nor shall more than ten percent of the total samples during any 60-day period exceed 400 per 100 mL.
 - 3) The enterococcus density, based on a single sample, shall not exceed 104 per 100 mL, nor shall the geometric mean, based on a minimum of at least five samples from a single sampling station for any 30-day period, exceed 35 per 100 mL ^{CCR}.
- b. Shellfish Harvesting Standards At all areas where "shellfish" may be harvested for human consumption, as determined by the Central Coast Water Board, the following bacteriological objectives shall be maintained throughout the water column:
 - 1) In any 60-day period, the "median" total coliform density shall not exceed 70 per 100 mL, and not more than ten percent of the samples shall exceed 230 per 100 mL.

2. Implementation Provisions for Bacterial Assessment and Remedial Action Requirements

The requirements listed below shall be used to determine the occurrence and extent of any impairment of a beneficial use due to bacterial contamination, generate information which can be used in the development of an enterococcus standard, and provide the basis for remedial actions necessary to minimize or eliminate any impairment of a beneficial use.

a. Measurement of enterococcus density shall be conducted at all stations where measurement of total and fecal coliforms is required. In addition to the requirements of Receiving Water

Limitation A.1, above, if a shore or 30-foot contour sampling station consistently exceeds a coliform objective or exceeds a geometric mean enterococcus density of 24 organisms per 100 ml for a 30-day period, or 12 organisms per 100 ml for a six-month period, the Discharger shall conduct a survey to determine if the discharge is the source of the contamination. The geometric mean shall be a moving average based on no less than five samples per month, spaced evenly over the time interval. When a sanitary survey identifies a controllable source of indicator organisms associated with a discharge of sewage, the Discharger shall take action to control the source.

b. The Discharger shall conduct sanitary surveys when so directed by the Central Coast Water Board or its Executive Officer. The Discharger shall control any controllable discharges within its jurisdiction identified in a sanitary survey.

3. Physical Characteristics

- a. Floating particulates and grease and oil shall not be visible.
- b. The discharge of "waste" shall not cause aesthetically undesirable discoloration of the ocean surface.
- c. "Natural light" shall not be "significantly" reduced at any point outside the "zone of initial dilution" as the result of the discharge of "waste".
- d. The rate of deposition of inert solids and the characteristics of inert solids in ocean sediments shall not be changed such that benthic communities are degraded.

4. Chemical Characteristics

- a. The dissolved oxygen concentration shall not at any time be depressed more than 10 percent from that which occurs naturally ^{OP}, or fall below 5.0 mg/L ^{BP}, as the result of the discharge of oxygen demanding "waste" materials. The mean annual dissolved oxygen concentration shall not be less than 7.0 mg/L ^{BP}.
- b. The pH shall not be changed at any time more than 0.2 units from that which occurs naturally, and shall be within the range of 7.0 to 8.5 at all times.
- c. The dissolved sulfide concentrations of waters in and near sediments shall not be "significantly" increased above that present under natural conditions.
- d. The concentrations of substances set forth in Table B of the Ocean Plan shall not be increased in marine sediments to levels which would "degrade" indigenous biota.
- e. The concentration of organic materials in marine sediments shall not be increased to levels which would "degrade" marine life.
- f. Nutrient materials shall not cause objectionable aquatic growth or "degrade" indigenous biota.

5. Biological Characteristics

a. Marine communities, including vertebrate, invertebrate, and plant species, shall not be "degraded."

CARPINTERIA SANITARY DISTRICT
CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT
ORDER NO. R3-2005-0110
NPDES NO. CA0047364

- b. The natural taste, odor, and color of fish, "shellfish," or other marine resources used for human consumption shall not be altered.
- c. The concentration of organic materials in fish, "shellfish", or other marine resources used for human consumption shall not bioaccumulate to levels that are harmful to human health.

6. Radioactivity

- a. Discharge of radioactive "waste" shall not "degrade" marine life. OP
- b. Radionuclides shall not be present in concentrations that are deleterious to human, plant, animal, or aquatic life; or result in the accumulation of radionuclides in the food web to an extent which presents a hazard to human, plant, animal, or aquatic life. BP

7. General Standards

- a. Waste management systems that discharge to the ocean must be designed and operated in a manner that will maintain the indigenous marine life and a healthy and diverse marine community OP
- b. Waste effluents shall be discharged in a manner which provides sufficient initial dilution to minimize the concentrations of substances not removed in the treatment OP.
- c. Waste that contains pathogenic organisms or viruses should be discharged a sufficient distance from shellfishing and water-contact sports areas to maintain applicable bacterial standards without disinfection. Where conditions are such that an adequate distance cannot be attained, reliable disinfection in conjunction with a reasonable separation of the discharge point from the area of use must be provided. Disinfection procedures that do not increase effluent toxicity and that constitute the least environmental and human hazard should be used OP.

VI. PROVISIONS

A. Standard Provisions

- 1. Federal Standard Provisions. The Discharger shall comply with all Federal Standard Provisions included in Attachment D of this Order.
- 2. Central Coast Water Board Standard Provisions. The Discharger shall comply with all Central Coast Water Board Standard Provisions included in Attachment D-1 of this Order.

B. Monitoring and Reporting Program Requirements

The discharger shall comply with the Monitoring and Reporting Program, and future revisions thereto, in Attachment E of this Order.

C. Special Provisions

1. Special Provisions for Municipal Facilities (POTWs Only)

- a. Biosolids Requirements. Language in this section was provided by the U.S. EPA Region IX Biosolids Coordinator as standard language for use in NPDES permits. "Biosolids" refers to non-hazardous sewage sludge as defined in 40 CFR 503.9. Sewage sludge that is hazardous as defined in 40 CFR 261 must be disposed in accordance with the Resource Conservation and Recovery Act (RCRA). Sludge with PCB levels greater than 50 mg/kg must be disposed in accordance with 40 CFR 761.
 - Management of all solids and sludge must comply with all requirements of CFR Parts 257, 258, 501, and 503, including all monitoring, record-keeping, and reporting requirements. Since the State of California, hence the Regional and State Boards, has not been delegated the authority by the U.S. EPA to implement the biosolids program, enforcement of biosolids requirements of CFR Part 503 will occur under U.S. EPA's jurisdiction at this time.
 - (2) All biosolids generated by the Discharger shall be used or disposed of in compliance with the applicable portions of:
 - 40 CFR 503: for biosolids which are land applied (placed on the land for the purpose
 of providing nutrients or conditioning the soil for crops or vegetation), placed in
 surface disposal sites (placed on the land at dedicated land disposal sites or monofills
 for the purpose of disposal), stored, or incinerated;
 - ii. 40 CFR 258: for biosolids disposed in municipal solid waste landfills; and,
 - iii. 40 CFR 257: for all biosolids use and disposal practices not covered under 40 CFR 258 or 503.

40 CFR 503 Subpart B (land application) applies to biosolids applied for the purpose of enhancing plant growth or for land reclamation. 40 CFR 503 Subpart C (surface disposal) applies to biosolids placed on the land for the purpose of disposal.

The Discharger is responsible for ensuring that all biosolids produced at its facility are used or disposed of in compliance with these regulations, whether the Discharger uses or disposes of the biosolids itself or transfers them to another party for further treatment, use, or disposal. The Discharger is responsible for informing subsequent preparers, appliers, and disposers of the requirements that they must meet under 40 CFR 257, 258, and 503.

- Outy to mitigate: The Discharger shall take all reasonable steps to prevent or minimize any biosolids use or disposal in violation of applicable regulations and/or which has a likelihood of adversely affecting human health or the environment.
- (4) No biosolids shall be allowed to enter wetlands or other waters of the United States.
- (5) Biosolids treatment, storage, use, or disposal shall not contaminate groundwater.

- (6) Biosolids treatment, storage, use, or disposal shall not create a nuisance such as objectionable odors or flies.
- (7) The Discharger shall assure that haulers transporting biosolids off site for treatment, storage, use, or disposal take all necessary measures to keep the biosolids contained.
- (8) If biosolids are stored for over two years from the time they are generated, the Discharger must ensure compliance with all the requirements for surface disposal under 40 CFR 503 Subpart C, or must submit a written notification to U.S. EPA with the information in Section 503.20(b), demonstrating the need for longer temporary storage.
- (9) Any biosolids treatment, disposal, or storage site shall have facilities adequate to divert surface runoff from adjacent areas, to protect the site boundaries from erosion, and to prevent any conditions that would cause drainage from the materials at the site to escape from the site. Adequate protection is defined as protection from at least a 100-year storm and from the highest tidal stage that may occur.
- (10) The discharge of biosolids shall not cause waste material to be in a position where it is, or can be, conveyed from the treatment and storage sites and deposited in the waters of the State.
- (11) The Discharger shall design its pretreatment program local discharge limitations to achieve the metals concentration limits in 40 CFR 503.13 Table 3.
- (12) Inspection and Entry: The U.S. EPA, Central Coast Water Board, or an authorized representative thereof, upon the presentation of credentials, shall be allowed by the Discharger, directly or through contractual arrangements with their biosolids management contractors, to:
 - i. Enter upon all premises where biosolids produced by the Discharger are treated, stored, used, or disposed, either by the Discharger or by another party to whom the Discharger transfers the biosolids for treatment, storage, use, or disposal;
 - ii. Have access to and copy any records that must be kept under the conditions of this permit or of 40 CFR 503, by the Discharger or by another party to whom the Discharger transfers the biosolids for further treatment, storage, use, or disposal, and;
 - iii. Inspect any facilities, equipment (including monitoring and control equipment), practices, or operations used in the biosolids treatment, storage, use, or disposal by the Discharger or by another party to whom the Discharger transfers the biosolids for treatment, storage, use, or disposal.
- (13) Monitoring shall be conducted in accordance with the Monitoring and Reporting Program (MRP) of this Order (see Attachment E, MRP Section VI.B, *Biosolids Monitoring, Reporting, and Notification*):
- (14) All the requirements of 40 CFR 503 and 23 CCR, Division 3, Chapter 15, and 27 CCR, Division 2 are enforceable by the U.S. EPA and this Central Coast Water Board whether or not the requirements are stated in an NPDES permit or any other permit issued to the Discharger.

VII. COMPLIANCE DETERMINATION

Compliance with the effluent limitations contained in Section IV of this Order will be determined as specified below:

A. Average Monthly Effluent Limitation (AMEL).

If the average of daily discharges over a calendar month exceeds the AMEL for a given parameter, an alleged violation will be flagged and the discharger will be considered out of compliance for each day of that month for that parameter (e.g., resulting in 31 days of non-compliance in a 31-day month). The average of daily discharges over the calendar month that exceeds the AMEL for a parameter will be considered out of compliance for that month only. If only a single sample is taken during the calendar month and the analytical result for that sample exceeds the AMEL, the discharger will be considered out of compliance for that calendar month. For any one calendar month during which no sample (daily discharge) is taken, no compliance determination can be made for that calendar month.

B. Average Weekly Effluent Limitation (AWEL).

If the average of daily discharges over a calendar week exceeds the AWEL for a given parameter, an alleged violation will be flagged and the discharger will be considered out of compliance for each day of that week for that parameter, resulting in 7 days of non-compliance. The average of daily discharges over the calendar week that exceeds the AWEL for a parameter will be considered out of compliance for that week only. If only a single sample is taken during the calendar week and the analytical result for that sample exceeds the AWEL, the discharger will be considered out of compliance for that calendar week. For any one calendar week during which no sample (daily discharge) is taken, no compliance determination can be made for that calendar week.

C. Maximum Daily Effluent Limitation (MDEL).

If a daily discharge exceeds the MDEL for a given parameter, an alleged violation will be flagged and the discharger will be considered out of compliance for that parameter for that one day only within the reporting period. For any one day during which no sample is taken, no compliance determination can be made for that day.

D. Instantaneous Minimum Effluent Limitation.

If the analytical result of a single grab sample is lower than the instantaneous minimum effluent limitation for a parameter, a violation will be flagged and the discharger will be considered out of compliance for that parameter for that single sample. Non-compliance for each sample will be considered separately (e.g., the results of two grab samples taken within a calendar day that both are lower than the instantaneous minimum effluent limitation would result in two instances of non-compliance with the instantaneous minimum effluent limitation).

E. Instantaneous Maximum Effluent Limitation.

If the analytical result of a single grab sample is higher than the instantaneous maximum effluent limitation for a parameter, a violation will be flagged and the discharger will be considered out of compliance for that parameter for that single sample. Non-compliance for each sample will be considered separately (e.g., the results of two grab samples taken within a calendar day that both exceed the instantaneous maximum effluent limitation would result in two instances of non-compliance with the instantaneous maximum effluent limitation).

F. Six-month Median Effluent Limitation.

If the median of daily discharges over any 180-day period exceeds the six-month median effluent limitation for a given parameter, an alleged violation will be flagged and the discharger will be considered out of compliance for each day of that 180-day period for that parameter. The next assessment of

CARPINTERIA SANITARY DISTRICT CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT ORDER NO. R3-2005-0110 NPDES NO. CA0047364

compliance will occur after the next sample is taken. If only a single sample is taken during a given 180-day period and the analytical result for that sample exceeds the six-month median, the discharger will be considered out of compliance for the 180-day period. For any 180-period during which no sample is taken, no compliance determination can be made for the six-month median limitation.

CARPINTERIA SANITARY DISTRICT CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT ORDER NO. R3-2005-0110 NPDES NO. CA0047364

ATTACHMENT A – DEFINITIONS

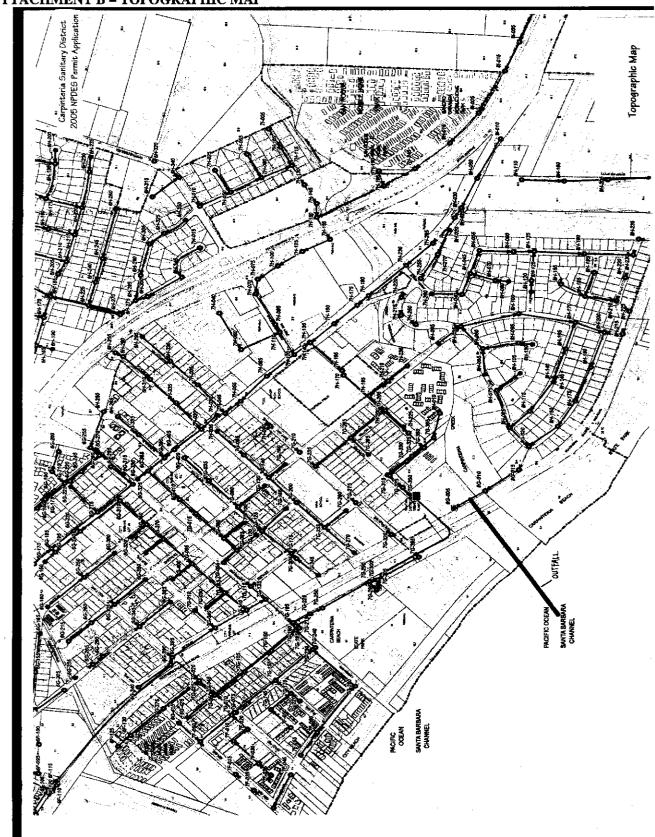
Average Monthly Effluent Limitation (AMEL): the highest allowable average of daily discharges over a calendar month, calculated as the sum of all daily discharges measured during a calendar month divided by the number of daily discharges measured during that month.

Average Weekly Effluent Limitation (AWEL): the highest allowable average of daily discharges over a calendar week (Sunday through Saturday), calculated as the sum of all daily discharges measured during a calendar week divided by the number of daily discharges measured during that week.

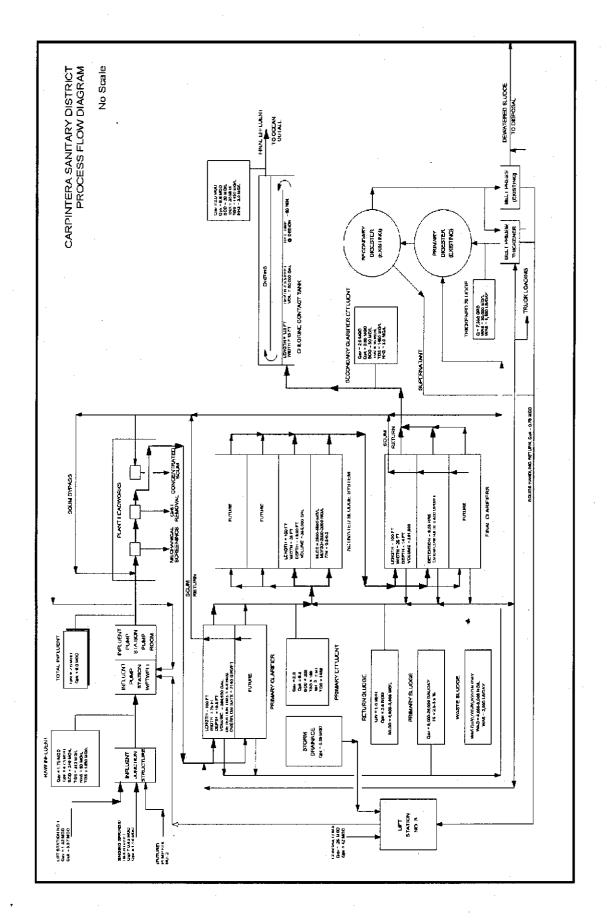
Daily Discharge: Daily Discharge is defined as either: (1) the total mass of the constituent discharged over the calendar day (12:00 am through 11:59 pm) or any 24-hour period that reasonably represents a calendar day for purposes of sampling (as specified in the permit), for a constituent with limitations expressed in units of mass or; (2) the unweighted arithmetic mean measurement of the constituent over the day for a constituent with limitations expressed in other units of measurement (e.g., concentration).

The daily discharge may be determined by the analytical results of a composite sample taken over the course of one day (a calendar day or other 24-hour period defined as a day) or by the arithmetic mean of analytical results from one or more grab samples taken over the course of the day.

For composite sampling, if 1 day is defined as a 24-hour period other than a calendar day, the analytical result for the 24-hour period will be considered as the result for the calendar day in which the 24-hour period ends.


Instantaneous Maximum Effluent Limitation: the highest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous maximum limitation).

Instantaneous Minimum Effluent Limitation: the lowest allowable value for any single grab sample or aliquot (i.e., each grab sample or aliquot is independently compared to the instantaneous minimum limitation).


Maximum Daily Effluent Limitation (MDEL): the highest allowable daily discharge of a pollutant.

Six-month Median Effluent Limitation: the highest allowable moving median of all daily discharges for any 180-day period.

ATTACHMENT B - TOPOGRAPHIC MAP

ATTACHMENT C - FLOW SCHEMATIC

ATTACHMENT D – FEDERAL STANDARD PROVISIONS

I. STANDARD PROVISIONS - PERMIT COMPLIANCE

A. Duty to Comply

- 1. The Discharger must comply with all of the conditions of this Order. Any noncompliance constitutes a violation of the Clean Water Act (CWA) and the California Water Code (CWC) and is grounds for enforcement action, for permit termination, revocation and reissuance, or denial of a permit renewal application [40 CFR §122.41(a)].
- 2. The Discharger shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants and with standards for sewage sludge use or disposal established under Section 405(d) of the CWA within the time provided in the regulations that establish these standards or prohibitions, even if this Order has not been modified to incorporate the requirement $[40 \ CFR \ \S 122.41(a)(1)]$.

B. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for a Discharger in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this Order [40 CFR §122.41(c)].

C. Duty to Mitigate

The Discharger shall take all reasonable steps to minimize or prevent any discharge or sludge use or disposal in violation of this Order that has a reasonable likelihood of adversely affecting human health or the environment [40 CFR §122.41(d)].

D. Proper Operation and Maintenance

The Discharger shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Discharger to achieve compliance with the conditions of this Order. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems that are installed by a Discharger only when necessary to achieve compliance with the conditions of this Order [40 CFR §122.41(e)].

E. Property Rights

- 1. This Order does not convey any property rights of any sort or any exclusive privileges [40 CFR §122.41(g)].
- 2. The issuance of this Order does not authorize any injury to persons or property or invasion of other private rights, or any infringement of State or local law or regulations [40 CFR §122.5(c)].

F. Inspection and Entry

The Discharger shall allow the Central Coast Water Board, State Water Resources Control Board (SWRCB), United States Environmental Protection Agency (U.S. EPA), and/or their authorized representatives (including an authorized contractor acting as their representative), upon the presentation of credentials and other documents, as may be required by law, to [40 CFR §122.41(i)] [CWC 13383(c)]:

- 1. Enter upon the Discharger's premises where a regulated facility or activity is located or conducted, or where records are kept under the conditions of this Order [40 CFR §122.41(i)(1)];
- 2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of this Order [40 CFR §122.41(i)(2)];
- 3. Inspect and photograph, at reasonable times, any facilities, equipment (including monitoring and control equipment), practices, or operations regulated or required under this Order [40 CFR §122.41(i)(3)];
- 4. Sample or monitor, at reasonable times, for the purposes of assuring Order compliance or as otherwise authorized by the CWA or the CWC, any substances or parameters at any location [40 CFR §122.41(i)(4)].

G. Bypass

1. Definitions

- a. "Bypass" means the intentional diversion of waste streams from any portion of a treatment facility $[40 \ CFR \ \S 122.41(m)(1)(i)]$.
- b. "Severe property damage" means substantial physical damage to property, damage to the treatment facilities, which causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production [40 CFR §122.41(m)(1)(ii)].
- 2. Bypass not exceeding limitations The Discharger may allow any bypass to occur which does not cause exceedances of effluent limitations, but only if it is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions listed in Standard Provisions Permit Compliance I.G.3 and I.G.5 below [40 CFR §122.41(m)(2)].
- 3. Prohibition of bypass Bypass is prohibited, and the Central Coast Water Board may take enforcement action against a Discharger for bypass, unless [40 CFR §122.41(m)(4)(i)]:
 - a. Bypass was unavoidable to prevent loss of life, personal injury, or severe property damage $[40 \ CFR \ \S 122.41(m)(4)(A)];$
 - b. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate back-up equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass that occurred during normal periods of equipment downtime or preventive maintenance [40 CFR §122.41(m)(4)(B)]; and
 - c. The Discharger submitted notice to the Central Coast Water Board as required under Standard Provision Permit Compliance I.G.5 below [40 CFR §122.41(m)(4)(C)].
- 4. The Central Coast Water Board may approve an anticipated bypass, after considering its adverse effects, if the Central Coast Water Board determines that it will meet the three conditions listed in Standard Provisions Permit Compliance I.G.3 above [40 CFR §122.41(m)(4)(ii)].

5. Notice

- a. Anticipated bypass. If the Discharger knows in advance of the need for a bypass, it shall submit a notice, if possible at least 10 days before the date of the bypass [40 CFR §122.41(m)(3)(i)].
- b. Unanticipated bypass. The Discharger shall submit notice of an unanticipated bypass as required in Standard Provisions Reporting V.E below [40 CFR §122.41(m)(3)(ii)].

H. Upset

Upset means an exceptional incident in which there is unintentional and temporary noncompliance with technology based permit effluent limitations because of factors beyond the reasonable control of the Discharger. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventive maintenance, or careless or improper operation [40 CFR §122.41(n)(1)].

- 1. Effect of an upset. An upset constitutes an affirmative defense to an action brought for noncompliance with such technology based permit effluent limitations if the requirements of paragraph H.2 of this section are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review [40 CFR §122.41(n)(2)].
- 2. Conditions necessary for a demonstration of upset. A Discharger who wishes to establish the affirmative defense of upset shall demonstrate, through properly signed, contemporaneous operating logs or other relevant evidence that [40 CFR §122.41(n)(3)]:
 - a. An upset occurred and that the Discharger can identify the cause(s) of the upset $[40 \ CFR \ \S 122.41(n)(3)(i)]$;
 - b. The permitted facility was, at the time, being properly operated [40 CFR §122.41(n)(3)(i)];
 - c. The Discharger submitted notice of the upset as required in Standard Provisions Reporting V.E.2.b [40 CFR §122.41(n)(3)(iii)]; and
 - d. The Discharger complied with any remedial measures required under Standard Provisions Permit Compliance I.C above [40 CFR §122.41(n)(3)(iv)].
- 3. Burden of proof. In any enforcement proceeding, the Discharger seeking to establish the occurrence of an upset has the burden of proof [40 CFR §122.41(n)(4)].

II. STANDARD PROVISIONS - PERMIT ACTION

A. General

This Order may be modified, revoked and reissued, or terminated for cause. The filing of a request by the Discharger for modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any Order condition [40 CFR §122.41(f)].

B. Duty to Reapply

If the Discharger wishes to continue an activity regulated by this Order after the expiration date of this Order, the Discharger must apply for and obtain a new permit [40 CFR §122.41(b)].

C. Transfers

This Order is not transferable to any person except after notice to the Central Coast Water Board. The Central Coast Water Board may require modification or revocation and reissuance of the Order to change the name of the Discharger and incorporate such other requirements as may be necessary under the CWA and the CWC [40 CFR §122.41(l)(3)] [40 CFR §122.61]. Please also see Attachment D-1, Central Coast Water Board Standard Provision C.6.

III. STANDARD PROVISIONS - MONITORING

- A. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity [40 CFR §122,41(i)(1)].
- B. Monitoring results must be conducted according to test procedures under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503 unless other test procedures have been specified in this Order [40 CFR §122.41(j)(4)] [40 CFR §122.44(i)(1)(iv)].

IV. STANDARD PROVISIONS - RECORDS

A. Except for records of monitoring information required by this Order related to the Discharger's sewage sludge use and disposal activities, which shall be retained for a period of at least five years (or longer as required by 40 CFR Part 503), the Discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this Order, and records of all data used to complete the application for this Order, for a period of at least three (3) years from the date of the sample, measurement, report or application. This period may be extended by request of the Central Coast Water Board Executive Officer at any time [40 CFR §122.41(j)(2)].

B. Records of monitoring information shall include:

- 1. The date, exact place, and time of sampling or measurements [40 CFR §122.41(j)(3)(i)];
- 2. The individual(s) who performed the sampling or measurements [40 CFR §122.41(i)(3)(ii)];
- 3. The date(s) analyses were performed [40 CFR §122.41(j)(3)(iii)];
- 4. The individual(s) who performed the analyses $[40 \ CFR \ \S 122.41(j)(3)(iv)];$
- 5. The analytical techniques or methods used $[40 \ CFR \ \S 122.41(j)(3)(v)]$; and
- 6. The results of such analyses $[40 \ CFR \ \S 122.41(j)(3)(vi)]$.

C. Claims of confidentiality for the following information will be denied [40 CFR §122.7(b)]:

- 1. The name and address of any permit applicant or Discharger [40 CFR $\S 122.7(b)(1)$]; and
- 2. Permit applications and attachments, permits and effluent data [40 CFR §122.7(b)(2)].

Please also see Attachment D-1, Central Coast Water Board Standard Provision C.7.

V. STANDARD PROVISIONS – REPORTING

A. Duty to Provide Information

The Discharger shall furnish to the Central Coast Water Board, SWRCB, or U.S. EPA within a reasonable time, any information which the Central Coast Water Board, SWRCB, or U.S. EPA may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this Order or to determine compliance with this Order. Upon request, the Discharger shall also furnish to the Central Coast Water Board, SWRCB, or U.S. EPA copies of records required to be kept by this Order [40 CFR §122.41(h)] [CWC 13267].

B. Signatory and Certification Requirements

- 1. All applications, reports, or information submitted to the Central Coast Water Board, SWRCB, and/or U.S. EPA shall be signed and certified in accordance with paragraph (2.) and (3.) of this provision [40 CFR §122.41(k)].
- 2. All permit applications shall be signed as follows:
 - a. For a corporation: By a responsible corporate officer. For the purpose of this section, a responsible corporate officer means: (i) A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures [40 CFR §122.22(a)(1)];
 - b. For a partnership or sole proprietorship: by a general partner or the proprietor, respectively [40 CFR §122.22(a)(2)]; or
 - c. For a municipality, State, federal, or other public agency: by either a principal executive officer or ranking elected official. For purposes of this provision, a principal executive officer of a federal agency includes: (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of U.S. EPA) [40 CFR §122.22(a)(3)].
- 3. All reports required by this Order and other information requested by the Central Coast Water Board, SWRCB, or U.S. EPA shall be signed by a person described in paragraph (b) of this provision, or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described in paragraph (2.) of this provision [40 CFR §122.22(b)(1)];
 - b. The authorization specified either an individual or a position having responsibility for the overall operation of the regulated facility or activity such as the position of plant manager, operator of a well or a well field, superintendent, position of equivalent responsibility, or an individual or position having overall responsibility for environmental matters for the company (a duly

authorized representative may thus be either a named individual or any individual occupying a named position) [40 CFR §122.22(b)(2)]; and

- c. The written authorization is submitted to the Central Coast Water Board, SWRCB, or U.S. EPA [40 CFR §122.22(b)(3)].
- 4. If an authorization under paragraph (3.) of this provision is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization satisfying the requirements of paragraph (3.) of this provision must be submitted to the Central Coast Water Board, SWRCB or U.S. EPA prior to or together with any reports, information, or applications, to be signed by an authorized representative [40 CFR §122.22(c)].
- 5. Any person signing a document under paragraph (2.) or (3.) of this provision shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations" [40 CFR §122.22(d)].

· C. Monitoring Reports

- 1. Monitoring results shall be reported at the intervals specified in the Monitoring and Reporting Program in this Order [40 CFR §122.41(l)(4)].
- 2. Monitoring results must be reported on a Discharge Monitoring Report (DMR) form or forms provided or specified by the Central Coast Water Board or SWRCB for reporting results of monitoring of sludge use or disposal practices [40 CFR §122.41(l)(4)(i)].
- 3. If the Discharger monitors any pollutant more frequently than required by this Order using test procedures approved under 40 CFR Part 136 or, in the case of sludge use or disposal, approved under 40 CFR Part 136 unless otherwise specified in 40 CFR Part 503, or as specified in this Order, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the DMR or sludge reporting form specified by the Central Coast Water Board [40 CFR §122.41(l)(4)(ii)].
- 4. Calculations for all limitations, which require averaging of measurements, shall utilize an arithmetic mean unless otherwise specified in this Order [40 CFR §122.41(l)(4)(iii)].

D. Compliance Schedules

Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this Order, shall be submitted no later than 14 days following each schedule date [40 CFR §122.41(1)(5)].

E. Twenty-Four Hour Reporting

1. The Discharger shall report any noncompliance that may endanger health or the environment. Any information shall be provided orally within 24 hours from the time the Discharger becomes aware of

the circumstances. A written submission shall also be provided within five (5) days of the time the Discharger becomes aware of the circumstances. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance [40 CFR $\S122.41(l)(6)(i)$].

- 2. The following shall be included as information that must be reported within 24 hours under this paragraph [40 CFR §122.41(l)(6)(ii)]:
 - a. Any unanticipated bypass that exceeds any effluent limitation in this Order [40 CFR §122.41(l)(6)(ii)(A)].
 - b. Any upset that exceeds any effluent limitation in this Order [40 CFR §122.41(l)(6)(ii)(B)].
 - c. Violation of a maximum daily discharge limitation for any of the pollutants listed in this Order to be reported within 24 hours [40 CFR §122.41(l)(6)(ii)(C)].
 - d. Violation of a discharge prohibition [Central Coast Water Board NPDES Standard Provisions, January 1985].
- 3. The Central Coast Water Board may waive the above-required written report under this provision on a case-by-case basis if an oral report has been received within 24 hours [40 CFR §122.41(l)(6)(iii)].

F. Planned Changes

The Discharger shall give notice to the Central Coast Water Board as soon as possible of any planned physical alterations or additions to the permitted facility. Notice is required under this provision only when $[40 \ CFR \ \S 122.41(l)(l)]$:

- 1. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR §122.29(b) [40 CFR §122.41(l)(1)(i)]; or
- 2. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in this Order nor to notification requirements under 40 CFR Part 122.42(a)(1) (see Additional Provisions—Notification Levels VII.A.1) [40 CFR §122.41(l)(1)(ii)].
- 3. The alteration or addition results in a significant change in the Discharger's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan [40 CFR §122.41(l)(l)(iii)].

G. Anticipated Noncompliance

The Discharger shall give advance notice to the Central Coast Water Board or SWRCB of any planned changes in the permitted facility or activity that may result in noncompliance with General Order requirements [40 CFR §122.41(l)(2)].

H. Other Noncompliance

The Discharger shall report all instances of noncompliance not reported under Standard Provisions – Reporting E.3, E.4, and E.5 at the time monitoring reports are submitted. The reports shall contain the information listed in Standard Provision – Reporting V.E [40 CFR §122.41(1)(7)].

I. Other Information

When the Discharger becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to the Central Coast Water Board, SWRCB, or U.S. EPA, the Discharger shall promptly submit such facts or information [40 CFR §122.41(1)(8)].

VI. STANDARD PROVISIONS - ENFORCEMENT

- A. The CWA provides that any person who violates section 301, 302, 306, 307, 308, 318 or 405 of the Act, or any permit condition or limitation implementing any such sections in a permit issued under section 402, or any requirement imposed in a pretreatment program approved under sections 402(a)(3) or 402(b)(8) of the Act, is subject to a civil penalty not to exceed \$25,000 per day for each violation. The CWA provides that any person who negligently violates sections 301, 302, 306, 307, 308, 318, or 405 of the Act, or any condition or limitation implementing any of such sections in a permit issued under section 402 of the Act, or any requirement imposed in a pretreatment program approved under section 402(a)(3) or 402(b)(8) of the Act, is subject to criminal penalties of \$2,500 to \$25,000 per day of violation, or imprisonment of not more than one (1) year, or both. In the case of a second or subsequent conviction for a negligent violation, a person shall be subject to criminal penalties of not more than \$50,000 per day of violation, or by imprisonment of not more than two (2) years, or both. Any person who knowingly violates such sections, or such conditions or limitations is subject to criminal penalties of \$5,000 to \$50,000 per day of violation, or imprisonment for not more than three (3) years, or both. In the case of a second or subsequent conviction for a knowing violation, a person shall be subject to criminal penalties of not more than \$100,000 per day of violation, or imprisonment of not more than six (6) years, or both. Any person who knowingly violates section 301, 302, 303, 306, 307, 308, 318 or 405 of the Act, or any permit condition or limitation implementing any of such sections in a permit issued under section 402 of the Act, and who knows at that time that he thereby places another person in imminent danger of death or serious bodily injury, shall, upon conviction, be subject to a fine of not more than \$250,000 or imprisonment of not more than 15 years, or both. In the case of a second or subsequent conviction for a knowing endangerment violation, a person shall be subject to a fine of not more than \$500,000 or by imprisonment of not more than 30 years, or both. An organization, as defined in section 309(c)(3)(B)(iii) of the Clean Water Act, shall, upon conviction of violating the imminent danger provision, be subject to a fine of not more than \$1,000,000 and can be fined up to \$2,000,000 for second or subsequent convictions [40 CFR $\{122.41(a)(2)\}\ [CWC\ 13385\ and\ 13387].$
- B. Any person may be assessed an administrative penalty by the Central Coast Water Board for violating section 301, 302, 306, 307, 308, 318 or 405 of this Act, or any permit condition or limitation implementing any of such sections in a permit issued under section 402 of this Act. Administrative penalties for Class I violations are not to exceed \$10,000 per violation, with the maximum amount of any Class I penalty assessed not to exceed \$25,000. Penalties for Class II violations are not to exceed \$10,000 per day for each day during which the violation continues, with the maximum amount of any Class II penalty not to exceed \$125,000 [40 CFR §122.41(a)(3)].
- C. The CWA provides that any person who falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit shall, upon conviction, be punished by a fine of not more than \$10,000, or by imprisonment for not more than 2 years, or both. If a

conviction of a person is for a violation committed after a first conviction of such person under this paragraph, punishment is a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or both $[40 \ CFR \ \S 122.41(i)(5)]$.

D. The CWA provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this Order, including monitoring reports or reports of compliance or noncompliance shall, upon conviction, be punished by a fine of not more than \$10,000 per violation, or by imprisonment for not more than six months per violation, or by both [40 CFR §122.41(k)(2)].

VII. ADDITIONAL PROVISIONS – NOTIFICATION LEVELS

A. Non-Municipal Facilities

Existing manufacturing, commercial, mining, and silvicultural dischargers shall notify the Central Coast Water Board as soon as they know or have reason to believe [40 CFR §122.42(a)]:

- 1. That any activity has occurred or will occur that would result in the discharge, on a routine or frequent basis, of any toxic pollutant that is not limited in this Order, if that discharge will exceed the highest of the following "notification levels" [40 CFR §122.42(a)(1)]:
 - a. 100 micrograms per liter ($\mu g/L$) [40 CFR §122.42(a)(1)(i)];
 - b. 200 μg/L for acrolein and acrylonitrile; 500 μg/L for 2,4-dinitrophenol and 2-methyl-4,6-dinitrophenol; and 1 milligram per liter (mg/L) for antimony [40 CFR §122.42(a)(1)(ii)];
 - c. Five (5) times the maximum concentration value reported for that pollutant in the Report of Waste Discharge [40 CFR §122.42(a)(1)(iii)]; or
 - d. The level established by the Central Coast Water Board in accordance with 40 CFR §122.44(f) [40 CFR §122.42(a)(1)(iv)].
- 2. That any activity has occurred or will occur that would result in the discharge, on a non-routine or infrequent basis, of any toxic pollutant that is not limited in this Order, if that discharge will exceed the highest of the following "notification levels" [40 CFR §122.42(a)(2)]:
 - a. 500 micrograms per liter ($\mu g/L$) [40 CFR §122.42(a)(2)(i)];
 - b. 1 milligram per liter (mg/L) for antimony [40 CFR §122.42(a)(2)(ii)];
 - c. Ten (10) times the maximum concentration value reported for that pollutant in the Report of Waste Discharge [40 CFR §122.42(a)(2)(iii)]; or
 - d. The level established by the Central Coast Water Board in accordance with 40 CFR §122.44(f) [40 CFR §122.42(a)(2)(iv)].

B. Publicly-Owned Treatment Works (POTWs)

All POTWs shall provide adequate notice to the Central Coast Water Board of the following [40 CFR §122.42(b)]:

CARPINTERIA SANITARY DISTRICT CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT ORDER NO. R3-2005-0110 NPDES NO. CA0047364

- 1. Any new introduction of pollutants into the POTW from an indirect discharger that would be subject to Sections 301 or 306 of the CWA if it were directly discharging those pollutants [40 CFR §122.42(b)(1)]; and
- 2. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the POTW at the time of adoption of the Order [40 CFR §122.42(b)(2)].

Adequate notice shall include information on the quality and quantity of effluent introduced into the POTW as well as any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW [$40 \ CFR \ \S 122.42(b)(3)$].

ATTACHMENT D-1 – CENTRAL COAST WATER BOARD STANDARD PROVISIONS (JANUARY 1985)

A. General Permit Conditions:

Prohibitions:

- 1. Introduction of "incompatible wastes" to the treatment system is prohibited.
- 2. Discharge of high-level radiological waste and of radiological, chemical, and biological warfare agents is prohibited.
- 3. Discharge of "toxic pollutants" in violation of effluent standards and prohibitions established under Section 307(a) of the Clean Water Act is prohibited.
- 4. "Bypass" and "overflow" of untreated and partially treated waste is prohibited.
- 5. Discharge of sludge, sludge digester or thickener supernatant, and sludge drying bed leachate to drainageways, surface waters, or the ocean is prohibited.
- 6. Introduction of pollutants into the collection, treatment, or disposal system by an "indirect discharger" that:
 - a) inhibit or disrupt the treatment process, system operation, or the eventual use or disposal of sludge; or,
 - b) flow through the system to the receiving water untreated; and,
 - c) cause or "significantly contribute" to a violation of any requirement of this Order, is prohibited.
- 7. Introduction of "pollutant free" wastewater to the collection, treatment, and disposal system in amounts that threaten compliance with this order is prohibited.

Provisions:

- 8. Collection, treatment, and discharge of waste shall not create a nuisance or pollution, as defined by Section 13050 of the California Water Code.
- 9. All facilities used for transport or treatment of wastes shall be adequately protected from inundation and washout as the result of a 100-year frequency flood.
- 10. Operation of collection, treatment, and disposal systems shall be in a manner that precludes public contact with wastewater.
- 11. Collected screenings, sludges, and other solids removed from liquid wastes shall be disposed in a manner approved by the Executive Officer.
- 12. Publicly owned wastewater treatment plants shall be supervised and operated by persons possessing certificates of appropriate grade pursuant to Title 23 of the California Administrative Code.
- 13. After notice and opportunity for a hearing, this order may be terminated for cause, including, but not limited to:
 - a) violation of any term or condition contained in this order;

- b) obtaining this order by misrepresentation, or by failure to disclose fully all relevant facts;
- c) a change in any condition or endangerment to human health or environment that requires a temporary or permanent reduction or elimination of the authorized discharge; and,
- d) a substantial change in character, location, or volume of the discharge.
- 14. Provisions of this permit are severable. If any provision of the permit is found invalid, the remainder of the permit shall not be affected.
- 15. After notice and opportunity for hearing, this order may be modified or revoked and reissued for cause, including:
 - a) Promulgation of a new or revised effluent standard or limitation;
 - b) A material change in character, location, or volume of the discharge;
 - c) Access to new information that affects the terms of the permit, including applicable schedules;
 - d) Correction of technical mistakes or mistaken interpretations of law; and,
 - e) Other causes set forth under Sub-part D of 40 CFR Part 122.
- 16. Safeguards shall be provided to assure maximal compliance with all terms and conditions of this permit. Safeguards shall include preventative and contingency plans and may also include alternative power sources, stand-by generators, retention capacity, operating procedures, or other precautions. Preventative and contingency plans for controlling and minimizing the affect of accidental discharges shall:
 - a) identify possible situations that could cause "upset", "overflow" or "bypass", or other noncompliance. (Loading and storage areas, power outage, waste treatment unit outage, and failure of process equipment, tanks and pipes should be considered.)
 - b) evaluate the effectiveness of present facilities and procedures and describe procedures and steps to minimize or correct any adverse environmental impact resulting from noncompliance with the permit.
- 17. If more stringent applicable water quality standards are promulgated or approved pursuant to Section 303 of the Clean Water Act, or amendments thereto, the Board will revise and modify this Order in accordance with such more stringent standards.
- 18. Physical Facilities shall be designed and constructed according to accepted engineering practice and shall be capable of full compliance with this order when properly operated and maintained. Proper operation and maintenance shall be described in an Operation and Maintenance Manual. Facilities shall be accessible during the wet-weather season.
- 19. Production and use of reclaimed water is subject to the approval of the Board. Production and use of reclaimed water shall be in conformance with reclamation criteria established in Chapter 3, Title 22, of the California Administrative Code and Chapter 7, Division 7, of the California Water Code. An engineering report pursuant to section 60323, Title 22, of the California Administrative Code is required and a waiver or water reclamation requirements from the Board is required before reclaimed water is supplied for any use, or to any user, not specifically identified and approved either in this Order or another order issued by this Board.

B. General Monitoring Requirements:

- 1. Monitoring location, minimum sampling frequency, and sampling method for each parameter shall comply with the Monitoring and Reporting Program of this Order.
- 2. If results of monitoring a pollutant appear to violate effluent limitations based on a weekly, monthly, 30-day, or six-month period, but compliance or non-compliance cannot be validated because sampling is too infrequent, the frequency of sampling shall be increased to validate the test within the next monitoring period. The increased frequency shall be maintained until the Executive Officer agrees the original monitoring frequency may be resumed.

For example, if copper is monitored annually and results exceed the six-month median numerical effluent limitation in the permit, monitoring of copper must be increased to a frequency of at least once every two months (ref. paragraph F.13.). If suspended solids are monitored weekly and results exceed the weekly average numerical limit in the permit, monitoring of suspended solids must be increased to at least four (4) samples every week (ref. paragraph F.14.).

- 3. Water quality analyses performed in order to monitor compliance with this permit shall be by a laboratory certified by the State Department of Health Services for the constituent(s) being analyzed. Bioassay(s) performed in order to monitor compliance with this permit shall be in accord with guidelines approved by the State Water Resources Control Board and the State Department of Fish and Game. If the laboratory used or proposed for use by the discharger is not certified by the California Department of Health Services or, where appropriate, the Department of Fish and Game due to restrictions in the State's laboratory certification program, the discharger shall be considered in compliance with this provision provided:
 - a) Data results remain consistent with results of samples analyzed by the Central Coast Water Board;
 - b) A quality assurance program is used at the laboratory, including a manual containing steps followed in this program that is available for inspections by the staff of the Central Coast Water Board; and,
 - c) Certification is pursued in good faith and obtained as soon as possible after the program is reinstated.
- 4. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. Samples shall be taken during periods of peak loading conditions. Influent samples shall be samples collected from the combined flows of all incoming wastes, excluding recycled wastes. Effluent samples shall be samples collected downstream of the last treatment unit and tributary flow and upstream of any mixing with receiving waters.
- 5. All monitoring instruments and devices used by the discharger to fulfill the prescribed monitoring program shall be properly maintained and calibrated as necessary to ensure their continued accuracy.

C. General Reporting Requirements:

- 1. Reports of marine monitoring surveys conducted to meet receiving water monitoring requirements of the Monitoring and Reporting Program shall include at least the following information:
 - a) A description of climatic and receiving water characteristics at the time of sampling (weather observations, floating debris, discoloration, wind speed and direction, swell or wave action, time of sampling, tide height, etc.).
 - b) A description of sampling stations, including differences unique to each station (e.g., station location, grain size, rocks, shell litter, calcareous worm tubes, evident life, etc.).

- c) A description of the sampling procedures and preservation sequence used in the survey.
- d) A description of the exact method used for laboratory analysis. In general, analysis shall be conducted according to paragraph B.1 above, and Attachment D, Federal Standard Provision III.B. However, variations in procedure are acceptable to accommodate the special requirements of sediment analysis. All such variations must be reported with the test results.
- e) A brief discussion of the results of the survey. The discussion shall compare data from the control station with data from the outfall stations. All tabulations and computations shall be explained.
- 2. Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule shall be submitted within 14 days following each scheduled date unless otherwise specified within the permit. If reporting noncompliance, the report shall include a description of the reason, a description and schedule of tasks necessary to achieve compliance, and an estimated date for achieving full compliance. A second report shall be submitted within 14 days of full compliance.
- 3. The "Discharger" shall file a report of waste discharge or secure a waiver from the Executive Officer at least 180 days before making any material change or proposed change in the character, location, or plume of the discharge.
- 4. Within 120 days after the discharger discovers, or is notified by the Central Coast Water Board, that monthly average daily flow will or may reach design capacity of waste treatment and/or disposal facilities within four (4) years, the discharger shall file a written report with the Central Coast Water Board. The report shall include:
 - a) the best estimate of when the monthly average daily dry weather flow rate will equal or exceed design capacity; and,
 - b) a schedule for studies, design, and other steps needed to provide additional capacity for waste treatment and/or disposal facilities before the waste flow rate equals the capacity of present units.

In addition to complying with Attachment D, Federal Standard Provision V.B, the required technical report shall be prepared with public participation and reviewed, approved and jointly submitted by all planning and building departments having jurisdiction in the area served by the waste collection, treatment, or disposal facilities.

5. All "Dischargers" shall submit reports to the:

California Regional Water Quality Control Board Central Coast Region 895 Aerovista Place, Suite 101 San Luis Obispo, CA 93401-7906

In addition, "Dischargers" with designated major discharges shall submit a copy of each document to:

Regional Administrator US Environmental Protection Agency, Region 9 Attention: CWA Standards and Permits Office (WTR-5) 75 Hawthorne Street San Francisco, California 94105

- 6. Transfer of control or ownership of a waste discharge facility must be preceded by a notice to the Central Coast Water Board at least 30 days in advance of the proposed transfer date. The notice must include a written agreement between the existing "Discharger" and proposed "Discharger" containing specific date for transfer of responsibility, coverage, and liability between them. Whether a permit may be transferred without modification or revocation and reissuance is at the discretion of the Board. If permit modification or revocation and reissuance is necessary, transfer may be delayed 180 days after the Central Coast Water Board's receipt of a complete permit application. Please also see Attachment D, Federal Standard Provision II.C.
- 7. Except for data determined to be confidential under Section 308 of the Clean Water Act (excludes effluent data and permit applications), all reports prepared in accordance with this permit shall be available for public inspection at the office of the Central Coast Water Board or Regional Administrator of EPA. Please also see Attachment D, Federal Standard Provision IV.C.
- 8. By February 1st of each year, the discharger shall submit an annual report to the Central Coast Water Board. The report shall contain both tabular and graphical summaries of the monitoring data obtained during the previous year. The discharger shall discuss the compliance record and corrective actions taken, or which may be needed, to bring the discharge into full compliance. The report shall address operator certification and provide a list of current operating personnel and their grade of certification. The report shall inform the Board of the date of the Facility's Operation and Maintenance Manual (including contingency plans as described in Provision A.16.), of the date the manual was last reviewed, and whether the manual is complete and valid for the current facility. The report shall restate, for the record, the laboratories used by the discharger to monitor compliance with effluent limits and provide a summary of performance relative to Section B above, *General Monitoring Requirements*.

If the facility treats industrial or domestic wastewater and there is no provision for periodic sludge monitoring in the Monitoring and Reporting Program, the report shall include a summary of sludge quantities, analyses of its chemical and moisture content, and its ultimate destination.

If applicable, the report shall also evaluate the effectiveness of the local source control or pretreatment program using the State Water Resources Control Board's "Guidelines for Determining the Effectiveness of Local Pretreatment Programs."

D. General Pretreatment Provisions

- 1. Discharge of pollutants by "indirect dischargers" in specific industrial sub-categories (appendix C, 40 CFR Part 403), where categorical pretreatment standards have been established, or are to be established, (according to 40 CFR Chapter 1, Subchapter N), shall comply with the appropriate pretreatment standards:
 - a) By the date specified therein;
 - b) Within three (3) years of the effective date specified therein, but in no case later than July 1, 1984; or,
 - c) If a new indirect discharger, upon commencement of discharge.

E. Enforcement:

1. Any person failing to file a report of waste discharge or other report as required by this permit shall be subject to a civil penalty not to exceed \$5,000 per day.

2. Upon reduction, loss, or failure of the treatment facility, the "Discharger" shall, to the extent necessary to maintain compliance with this permit, control production or all discharges, or both, until the facility is restored or an alternative method of treatment is provided.

F. Definitions [Not otherwise included in Attachment A to this Order]:

- 1. "Bypass" means the diversion of waste streams from any portion of a treatment facility.
- 2. A "composite sample" is a combination of no fewer than eight (8) individual samples obtained at equal time intervals (usually hourly) over the specified sampling (composite) period. The volume of each individual sample is proportional to the flow rate at the time of sampling. The period shall be specified in the Monitoring and Reporting Program ordered by the Executive Officer.
- 3. "Daily Maximum" limit means the maximum acceptable concentration or mass emission rate of a pollutant measured during a calendar day or during any 24-hour period reasonably representative of the calendar day for purposes of sampling. It is normally compared with results based on "composite samples" except for ammonia, total chlorine, phenolic compounds, and toxicity concentration. For all exceptions, comparisons will be made with results from a "grab sample".
- 4. "Duly Authorized Representative" is one where:
 - a) the authorization is made in writing by a person described in the signatory paragraph of Attachment D, Federal Standard Provision V.B;
 - b) the authorization specifies either an individual or the occupant of a position having either responsibility for the overall operation of the regulated facility, such as the plant manager, or overall responsibility for environmental matters of the company; and,
 - c) the written authorization was submitted to the Central Coast Water Board.
- 5. A "grab sample" is defined as any individual sample collected in less than 15 minutes. "Grab samples" shall be collected during peak loading conditions, which may or may not be during hydraulic peaks. It is used primarily in determining compliance with the daily maximum limits identified in paragraph F.4 and instantaneous maximum limits.
- 6. "Hazardous substance" means any substance designated under 40 CFR Part 116 pursuant to Section 311 of the Clean Water Act.

7. "Incompatible wastes" are:

- a) Wastes which create a fire or explosion hazard in the treatment works;
- b) Wastes which will cause corrosive structural damage to treatment works, but in no case wastes with a pH lower than 5.0 unless the works is specifically designed to accommodate such wastes;
- c) Solid or viscous wastes in amounts which cause obstruction to flow in sewers, or which cause other interference with proper operation of treatment works;
- d) Any waste, including oxygen demanding pollutants (BOD, etc), released in such volume or strength as to cause inhibition or disruption in the treatment works and subsequent treatment process upset and loss of treatment efficiency; and,

CARPINTERIA SANITARY DISTRICT CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT ORDER NO. R3-2005-0110 NPDES NO. CA0047364

- e) Heat in amounts that inhibit or disrupt biological activity in the treatment works or that raise influent temperatures above 40°C (104°F) unless the treatment works is designed to accommodate such heat.
- 8. "Indirect Discharger" means a non-domestic discharger introducing pollutants into a publicly owned treatment and disposal system.
- 9. "Log Mean" is the geometric mean. Used for determining compliance of fecal or total coliform populations, it is calculated with the following equation:

Log Mean =
$$(C_1 \times C_2 \times ... \times C_n)^{1/n}$$

in which "n" is the number of days samples were analyzed during the period and any "C" is the concentration of bacteria (MPN/100 ml) found on each day of sampling. "n" should be five or more.

10. "Mass emission rate" is a daily rate defined by the following equations:

mass emission rate (lbs/day) = $8.34 \times Q \times C$; and,

mass emission rate $(kg/day) = 3.79 \times Q \times C$,

where "C" (in mg/l) is the measured daily constituent concentration or the average of measured daily constituent concentrations and "Q" (in MGD) is the measured daily flow rate or the average of measured daily flow rates over the period of interest.

- 11. The "Maximum Allowable Mass Emission Rate," whether for a month, week, day, or six-month period, is a daily rate determined with the formulas in paragraph F.10, above, using the effluent concentration limit specified in the period and the average of measured daily flows (up to the allowable flow) over the period.
- 12. "Maximum Allowable Six-Month Median Mass Emission Rate" is a daily rate determined with the formulas in paragraph F.10, above, using the "six-month Median" effluent limit specified in the permit, and the average of measured daily flows (up to the allowable flow) over a 180-day period.
- 13. "Median" is the value below which half the samples (ranked progressively by increasing value) fall. It may be considered the middle value, or the average of two middle values.
- 14. "Monthly Average" (or "Weekly Average", as the case may be) is the arithmetic mean of daily concentrations or of daily mass emission rates over the specified 30-day (or 7-day) period

Average =
$$(X_1 + X_2 + ... + X_n) / n$$

in which "n" is the number of days samples were analyzed during the period and "X" is either the constituent concentration (mg/l) or mass emission rate (kg/day or lbs/day) for each sampled day. "n" should be four or greater.

- 15. "Municipality" means a city, town, borough, county, district, association, or other public body created by or under state law and having jurisdiction over disposal of sewage, industrial waste, or other waste.
- 16. "Overflow" means the intentional or unintentional diversion of flow from the collection and transport systems, including pumping facilities.

CARPINTERIA SANITARY DISTRICT CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT ORDER NO. R3-2005-0110 NPDES NO. CA0047364

- 17. "Discharger", as used herein, means, as appropriate: (l) the Discharger, (2) the local sewering entity (when the collection system is not owned and operated by the Discharger), or (3) "indirect discharger" (where "Discharger" appears in the same paragraph as "indirect discharger", it refers to the discharger.)
- 18. "Pollutant-free wastewater" means inflow and infiltration, storm waters, and cooling waters and condensates which are essentially free of pollutants.
- 19. "Primary Industry Category" means any industry category listed in 40 CFR Part 122, Appendix A.
- 20. "Removal Efficiency" is the ratio of pollutants removed by the treatment unit to pollutants entering the treatment unit. Removal efficiencies of a treatment plant shall be determined using "Monthly averages" of pollutant concentrations (C, in mg/l) of influent and effluent samples collected about the same time and the following equation (or its equivalent):

 C_{Effluent} Removal Efficiency (%) = 100 x (1 - C_{effluent} / C_{influent})

- 21. "Severe property damage" means substantial physical damage to property, damage to treatment facilities which causes them to become inoperable, or substantial and permanent loss to natural resources which can reasonably be expected to occur in the absence of a "bypass". It does not mean economic loss caused by delays in production.
- 22. "Sludge" means the solids, residues, and precipitates separated from, or created in, wastewater by the unit processes of a treatment system.
- 23. To "significantly contribute" to a permit violation means an "indirect discharger" must:
 - a) Discharge a daily pollutant loading in excess of that allowed by contract with the "Discharger" or by Federal, State, or Local law;
 - b) Discharge wastewater which substantially differs in nature or constituents from its average discharge;
 - c) Discharge pollutants, either alone or in conjunction with discharges from other sources, which results in a permit violation or prevents sewage sludge use or disposal; or
 - d) Discharge pollutants, either alone or in conjunction with pollutants from other sources, that increase the magnitude or duration of permit violations.
- 24. "Toxic Pollutant" means any pollutant listed as toxic under Section 307 (a) (1) of the Clean Water Act or under 40 CFR Part 122, Appendix D. Violation of maximum daily discharge limitations are subject to 24-hour reporting (Attachment D, Federal Standard Provision V.E.).
- 25. "Upset" means an exceptional incident causing noncompliance with technology-based permit effluent limitations because of factors beyond the reasonable control of the Discharger. It does not include noncompliance caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventative maintenance, or careless or improper operation.
- 26. "Zone of Initial Dilution" means the region surrounding or adjacent to the end of an outfall pipe or diffuser ports whose boundaries are defined through calculation of a plume model verified by the State Water Resources Control Board.

Attachment E - Monitoring and Reporting Program - Table of Contents

Attac	chment E – Monitoring and Reporting Program (MRP)	E-2
I.	General Monitoring Provisions	
II.	Monitoring Locations	E-2
III.	Influent Monitoring Requirements	E-3
IV.	Effluent Monitoring Requirements	
V.	Whole Effluent Toxicity Testing Requirements	
	A. Acute Toxicity Testing	
	B. Chronic Toxicity Testing	
	C. Toxicity Identification / Reduction Evaluations	E-10
VI.	Receiving Water Monitoring Requirements	
	A. Monitoring Location – Shore Sampling Stations	E-11
	B. Monitoring Location - Ocean Sampling Stations (Bottom Sediment)	E-12
	C. Monitoring Location - Ocean Sampling Stations (Benthic Biota)	
VII.		E-14
	A. Ocean Outfall Inspection	E-14
	B. Biosolids Monitoring, Reporting, and Notification	E-14
VIII.	. 1.11111111111111111111111111111111111	
IX.	Sample Reporting Protocols	
X.	Compliance Determination	
	A. Compliance with Single-Constituent Effluent Limitations	
	B. Compliance with Effluent Limitations Expressed as a Sum of Several Constitue	ntsE-27
	C. Multiple Sample Data Reduction	
XI.	Pollutant Minimization Program	E-28
	A. Pollutant Minimization Program Goal	E-28
	B. Determining the Need for a Pollutant Minimization Program	E-28
	C. Special Provision for Evidence of Pollutant Presence	E-28
	D. Elements of a Pollutant Minimization Program	E-29
XII.	Wastewater Collection System Overflows - Reporting	E-30
	A. Reporting Overflows to the Central Coast Water Board	
XIII.	. Reporting Requirements	E-31
	A. General Monitoring and Reporting Requirements	E-31
	B. Self Monitoring Reports	E-31
	C. Discharge Monitoring Reports	
	D. Notification and Monitoring Procedure in Case of Disinfection Failure	E-34

ATTACHMENT E – MONITORING AND REPORTING PROGRAM (MRP)

The Code of Federal Regulations (CFR) at 40 CFR §122.48 requires that all NPDES permits specify monitoring and reporting requirements. CWC sections 13267 and 13383 also authorize the Central Coast Water Board to require technical and monitoring reports. This MRP establishes monitoring and reporting requirements which implement the federal and California regulations. See Attachments D and D-1 for additional monitoring requirements.

I. GENERAL MONITORING PROVISIONS

A. **Rainfall.** Daily rainfall totals (in inches) shall be tabulated on the monitoring report forms next to daily influent flow. The Discharger shall collect rainfall data from a representative gauge station or information source of its choice, subject to the Executive Officer's approval.

II. MONITORING LOCATIONS

The Discharger shall establish the following monitoring locations to demonstrate compliance with the effluent limitations, discharge specifications, and other requirements in this Order:

Discharge Point Name	Monitoring Location Name	Monitoring Location Description (include Latitude and Longitude when available)				
	M-INF	Influent at Headworks				
001	M-001A	Effluent Discharge to Outfall				
Ocean Sa	ampling Stations (located at the depth of the diffuser midpoint) - See MRP Section VI				
	R-1	500 feet downcoast (eastward along the coastline) from the outfall terminus				
 .	R-2E	25 feet downcoast (eastward along the coastline) from the outfall terminus				
	R-2W	25 feet upcoast (westward along the coastline) from the outfall terminus				
	R-3	500 feet upcoast (westward along the coastline) from the outfall terminus				
	R-4	2,000 feet downcoast (eastward along the coastline) from the outfall terminus				
	Shore Sampli	ng Stations (located in the surf) – See MRP Section VI				
	R-A	1,000 feet downcoast (eastward along the coastline) from the outfall				
	R-B	500 feet downcoast (eastward along the coastline) from the outfall				
	R-C	At the outfall in the surf				
	R-D	500 feet upcoast (westward along the coastline) from the outfall				
	R-E	1,000 feet upcoast (westward along the coastline) from the outfall				
	Disinfection Failure Monitoring Stations – See MRP Section XIV.D					
	R-F Directly upcoast of the point of discharge					
R-G Directly downcoast of the point of discharge		Directly downcoast of the point of discharge				

The Discharger shall provide latitude and longitude coordinates for all ocean and shore stations when reporting. Stations may be added, deleted, or relocated by the Central Coast Water Board, with EPA concurrence.

III. INFLUENT MONITORING REQUIREMENTS

A. Monitoring Location - Headworks

Sampling stations shall be established at each point of inflow to the treatment plant, and shall be
isolated from and/or corrected for any in-plant return flows in order to obtain representative
samples of the influent. Composite samples may be taken by a proportional-sampling device
approved by the Executive Officer, or by grab samples composited in proportion to the flow. In
compositing grab samples, the sampling interval shall not exceed one hour. The Discharger may
otherwise employ grab samples.

The Discharger shall monitor influent to the facility at the Headworks as follows:

TABLE III-1: Influent Monitoring					
Parameter	Units	Sample Type	Minimum Sampling Frequency		
Daily Flow	Million Gallons per Day (MGD)	Metered	Daily		
Instantaneous Flow	MGD	Metered	Continuous		
Maximum Daily Flow	MGD	Metered	Monthly		
Mean Daily Flow	MGD	Calculated	Monthly		
BOD, 5-day	mg/L	24-hr Composite	Monthly		
Total Suspended Solids	mg/L	24-hr Composite	Monthly		

IV. EFFLUENT MONITORING REQUIREMENTS

A. Monitoring Location M-001A

1. Representative samples of the effluent shall be collected at the specified frequencies after the last point of treatment.

Composite samples may be taken by a proportional-sampling device approved by the Executive Officer or by grab samples composited in proportion to the flow. In compositing grab samples, the sampling interval shall not exceed one hour. Where specified in Table IV-2, IV-3, IV-4, and IV-5, 24-hour composite samples shall be collected when appropriate for the constituent and the applicable approved laboratory analytical methods. The Discharger may otherwise employ grab samples.

The measurement of Ocean Plan Table B constituents and the remaining priority toxic pollutants, except asbestos, in the effluent will be required under dry-weather conditions. The effluent monitoring program shall be in accordance with Tables IV-2, IV-3, IV-4, and IV-5 below.

Annual effluent sampling per Tables IV-2, IV-3, IV-4, and IV-5 shall be collected during dryweather conditions according to the following schedule: July 2006, June 2007, May 2008, April 2009, and March 2010.

If any constituents as listed in Tables IV-2, IV-3, IV-4, and IV-5 of this MRP are detected at levels exceeding the limits of Order No. R3-2005-0110, a new sample shall be collected and analyzed within one month for those constituents exceeding the applicable limit. Samples shall

continue to be collected and analyzed monthly until the constituents no longer exceed the limit for two consecutive months.

The Discharger shall monitor effluent discharged to the outfall at M-001A as follows:

Parameter	Iajor Constituents and Pa Units	Sample Type	Minimum Sampling and Analysis
			Frequency.
Daily Flow	Million Gallons per Day (MGD)	Metered	Daily
Instantaneous Flow	MGD	Metered	Daily
Maximum Daily Flow	MGD	Metered	Monthly
Mean Daily Flow	MGD	Calculated	Monthly
BOD, 5-Day	mg/L	24-hr Composite	Once Every 6 Days
Total Suspended Solids	mg/L	24-hr Composite	Once Every 6 Days
Settleable Solids	mL/L	Grab	Daily
Temperature	°F	Grab .	Once Every 6 Days
Total Coliform Organisms 1, 2, 3	#/100 mL	Grab	Once Every 2 Days
Fecal Coliform Organisms 1,2	#/100 mL	Grab	Once Every 2 Days
Total Chlorine Residual 3, 4	mg/L	Metered (after dechlorination)	Continuous
Total Chlorine Used	Lbs/Day	Recorded	Daily
pH .	pH units	Grab	Daily
Oil & Grease	mg/L	Grab	Once Every 6 Days
Turbidity	NTU	Grab	Once Every 6 Days
Ammonia (as N)	mg/L	Grab	Monthly
Phenolic Compounds (non-chlorinated)	ug/L	Grab	Quarterly (Mar, June, Sept, Dec)
Chlorinated Phenolic Compounds	ug/L	Grab	Quarterly (Mar, June, Sept, Dec)
Acute Toxicity 5	TUa	24-hr Composite	Quarterly (Mar, June, Sept, Dec)
Chronic Toxicity 5	TUc	24-hr Composite	Semi-annually (June, Dec)

For all bacterial analyses, sample dilutions should be performed so the range of bacterial density values extends from 2 to 16,000 /100 mL. The detection methods used for each analysis shall be reported with the results of the analysis.

Detection methods used for coliforms (total and fecal) shall be those presented in Table 1A of 40 CFR PART 136 (revised edition of July 1, 2003, or later), unless alternate methods have been approved in advance by US EPA pursuant to 40 CFR PART 136.

Discharger shall notify the Central Coast Water Board (telephone: 805-549-3147), Department of Health Services (telephone: 805-681-4900, and 510-412-4635), and any Mariculture Grower as soon as possible when there is a loss of disinfection or if three consecutive total effluent coliform bacteria tests exceed 2,300 per 100 mL.

The District shall review continuous monitoring data and submit a summary (chlorine residual daily minimum, maximum, mean) to the Central Coast Water Board with monthly monitoring reports. Grab samples for compliance with effluent limits may be collected at the last accessible measurement location before discharge to the ocean.

⁵ See MRP Section V, Whole Effluent Toxicity Testing Requirements, below.

TABLE IV-2: Ocean Plan Table B Pollutants – Protection of Marine Aquatic Life ²

(For applicable effluent limitations, see Table IV-2 of Order No. R3-200
--

Parameter	Units	Sample Type	Min. Analysis Frequency
Arsenic	ug/L	24-hr Composite	Annually*
Cadmium	ug/L	24-hr Composite	Annually*
Chromium Total	ug/L	24-hr Composite	Annually*
Chromium (Hexavalent)	ug/L	24-hr Composite	Annually*
Copper	ug/L	24-hr Composite	Annually*
Iron	ug/L	24-hr Composite	Annually*
Lead	ug/L	24-hr Composite	Annually*
Mercury	ug/L	24-hr Composite	Annually*
Nickel	ug/L	24-hr Composite	Annually*
Selenium	ug/L	24-hr Composite	Annually*
Silver	ug/L	24-hr Composite	Annually*
Zinc	ug/L	24-hr Composite	Annually*
Cyanide	ug/L	24-hr Composite	Annually*
Endosulfan ^T	ug/L	24-hr Composite	Annually*
Endrin	ug/L	24-hr Composite	Annually*
HCH ¹	ug/L	24-hr Composite	Annually*
Radioactivity	pci/L	24-hr Composite	Annually*

^{*} Annual effluent sampling shall be conducted during dry-weather conditions according the following schedule: July 2006, June 2007, May 2008, April 2009, and March 2010.

TABLE IV-3: Ocean Plan Table B Pollutants – Protection of Human Health – Non-Carcinogens

(For applicable effluent limitations, see Table IV-3 of Order No. R3-2005-0110)

Parameter	Units	Sample Type	Min. Analysis Frequency
Acrolein	ug/L	24-hr Composite	Annually*
Antimony	ug/L	24-hr Composite	Annually*
Bis (2-chloroethoxy) methane	ug/L	24-hr Composite	Annually*
Bis (2-chloroisopropyl) ether	ug/L	24-hr Composite	Annually*
Chlorobenzene	ug/L	24-hr Composite	Annually*
Chromium (III)	ug/L	24-hr Composite	Annually*
Di-n-butyl phthalate	ug/L	24-hr Composite	Annually*
Dichlorobenzenes ¹	ug/L	24-hr Composite	Annually*
Diethyl phthalate	ug/L	24-hr Composite	Annually*
Dimethyl phthalate	ug/L	24-hr Composite	Annually*
4,6-Dinitro-2-methylphenol	ug/L	24-hr Composite	Annually*
2,4-Dinitrophenol	ug/L	24-hr Composite	Annually*
Ethylbenzene	ug/L	24-hr Composite	Annually*
Fluoranthene	ug/L	24-hr Composite	Annually*

Refer to Appendix I of the Ocean Plan, *Definition of Terms*. Report: 1) the sum of the components, and; 2) the individual component concentrations.

² Please note that Total Chlorine Residual, Ammonia (as nitrogen), acute toxicity, and chronic toxicity are listed in Table IV-1 of this MRP due to their increased frequency of monitoring.

TABLE IV-3: Ocean Plan Table B Pollutants – Protection of Human Health – Non-Carcinogens

(For applicable effluent limitations, see Table IV-3 of Order No. R3-2005-0110)

Parameter	Units	Sample Type	Min. Analysis Frequency
Hexachlorocyclopentadiene	ug/L	24-hr Composite	Annually*
Nitrobenzene	ug/L	24-hr Composite	Annually*
Thallium	ug/L	24-hr Composite	Annually*
Toluene	ug/L	24-hr Composite	Annually*
Tributyltin	ug/L	24-hr Composite	Annually*
1,1,1-Trichloroethane	ug/L	24-hr Composite	Annually*

^{*} Annual effluent sampling shall be conducted during dry-weather conditions according the following schedule: July 2006, June 2007, May 2008, April 2009, and March 2010.

TABLE IV-4: Ocean Plan Table B Pollutants – Protection of Human Health – Carcinogens

(For applicable effluent limitations, see Table IV-4 of Order No. R3-2005-0110)

Parameter	Units	Sample Type	Min. Analysis Frequency
Acrylonitrile	ug/L	24-hr Composite	Annually*
Aldrin	ug/L	24-hr Composite	Annually*
Benzene	ug/L	24-hr Composite	Annually*
Benzidine	ug/L	24-hr Composite	Annually*
Beryllium	ug/L	24-hr Composite	Annually*
Bis (2-Chloroethyl) ether	ug/L	24-hr Composite	Annually*
Bis (2-ethylhexyl) phthalate	ug/L	24-hr Composite	Annually*
Carbon tetrachloride	ug/L	24-hr Composite	Annually*
Chlordane 1	ug/L	24-hr Composite	Annually*
Chlorodibromomethane	ug/L	24-hr Composite	Annually*
Chloroform	ug/L	24-hr Composite	Annually*
DDT ¹	ug/L	24-hr Composite	Annually*
1,4-Dichlorobenzene	ug/L	24-hr Composite	Annually*
3,3'-Dichlorobenzidine	ug/L	24-hr Composite	Annually*
1,2-Dichloroethane	ug/L	24-hr Composite	Annually*
1,1,-Dichloroethylene	ug/L	24-hr Composite	Annually*
Dichlorobromomethane	ug/L	24-hr Composite	Annually*
Dichloromethane	ug/L	24-hr Composite	Annually*
1,3-Dichloropropene	ug/L	24-hr Composite	Annually*
Dieldrin	ug/L	24-hr Composite	Annually*
2,4-Dinitrotoluene	ug/L	24-hr Composite	Annually*
1,2-Diphenylhydrazine	ug/L	24-hr Composite	Annually*
Halomethanes [[]	ug/L	24-hr Composite	Annually*
Heptachlor	ug/L	24-hr Composite	Annually*
Heptachlor Epoxide	ug/L	24-hr Composite	Annually*
Hexachlorobenzene	ug/L	24-hr Composite	Annually*
Hexachlorobutadiene	ug/L	24-hr Composite	Annually*
Hexachloroethane	ug/L	24-hr Composite	Annually*

Refer to Appendix I of the Ocean Plan, *Definition of Terms*. Report: 1) the sum of the components, and; 2) the individual component concentrations.

TABLE IV-4: Ocean Plan Table B Pollutants – Protection of Human Health – Carcinogens

(For applicable effluent limitations, see Table IV-4 of Order No. R3-2005-0110)

Parameter	Units	Sample Type	Min. Analysis Frequency
Isophorone	ug/L	24-hr Composite	Annually*
N-Nitrosodimethylamine	ug/L	24-hr Composite	Annually*
N-nitrosodi-N-propylamine	ug/L	24-hr Composite	Annually*
N-Nitrosodiphenylamine	ug/L	24-hr Composite	Annually*
Polynuclear Aromatic Hydrocarbons (PAHs) ¹	ug/L	24-hr Composite	Annually*
Polychlorinated Biphenyls (PCBs) ¹	ug/L	24-hr Composite	Annually*
TCDD Equivalents 1	ug/L	24-hr Composite	Annually*
1,1,2,2,-Tetrachloroethane	ug/L	24-hr Composite	Annually*
Tetrachloroethylene	ug/L	24-hr Composite	Annually*
Toxaphene	ug/L	24-hr Composite	Annually*
Trichloroethylene	ug/L	24-hr Composite	Annually*
1,1,2-Trichloroethane	ug/L	24-hr Composite	Annually*
2,4,6-Trichlorophenol	ug/L	24-hr Composite	Annually*
Vinyl chloride	ug/L	24-hr Composite	Annually*

^{*} Annual effluent sampling shall be conducted during dry-weather conditions according the following schedule: July 2006, June 2007, May 2008, April 2009, and March 2010.

TABLE IV-5: Remaining Priority Toxic Pollutants

Parameter	Units	Sample Type	Min. Analysis Frequency
Acenapthene	ug/L	24-hr Composite	Annually*
1,2,4,-Trichlorobenzene	ug/L	24-hr Composite	Annually*
2-Chloronapthalene	ug/L	24-hr Composite	Annually*
2,6-Dinitrotoluene	ug/L	24-hr Composite	Annually*
4-Chlorophenyl Phenyl Ether	ug/L	24-hr Composite	Annually*
4-Bromophenyl Phenyl Ether	ug/L	24-hr Composite	Annually*
Naphthalene	ug/L	24-hr Composite	Annually*
Butylbenzyl Phthalate	ug/L	24-hr Composite	Annually*
Di-N-Octyl Phthalate	ug/L	24-hr Composite	Annually*
Benzo(a)Anthracene	ug/L	24-hr Composite	Annually*
Benzo(ghi)Perylene	ug/L	24-hr Composite	Annually*
P-Chloro-M-Cresol	ug/L	24-hr Composite	Annually*
2-Chlorophenol	ug/L	24-hr Composite	Annually*
2,4-Dichlorophenol	ug/L	24-hr Composite	Annually*
2,4-Dimethylphenol	ug/L	24-hr Composite	Annually*
4,6-Dinitro-O-Cresol	ug/L	24-hr Composite	Annually*
2-Nitrophenol	ug/L	24-hr Composite	Annually*
4-Nitrophenol	ug/L	24-hr Composite	Annually*
Pentachlorophenol	ug/L	24-hr Composite	Annually*

Refer to Appendix I of the Ocean Plan, *Definition of Terms*. Report: 1) the sum of the components, and; 2) the individual component concentrations.

TABLE IV-5: Remaining Priority Toxic Pollutants

From 40 CFR 131.36 (7-1-03 Edition), and EPA Application Form 3510-2A (Rev. 1-99)

Parameter	Units	Sample Type	Min. Analysis Frequency
Phenol	ug/L	24-hr Composite	Annually*
1,1-Dichloroethane	ug/L	24-hr Composite	Annually*
Chloroethane	ug/L	24-hr Composite	Annually*
Endrin Aldehyde	ug/L	24-hr Composite	Annually*
Trans-1,2-Dichloroethylene	ug/L	24-hr Composite	Annually*
1,2-Dichloropropane	ug/L	24-hr Composite	Annually*
1,3-Dichloropropylene	ug/L	24-hr Composite	Annually*
Methylene Chloride	ug/L	24-hr Composite	Annually*
2-Chloroethyl Vinyl Ether	ug/L	24-hr Composite	Annually*

^{*} Annual effluent sampling shall be conducted during dry-weather conditions according the following schedule: July 2006, June 2007, May 2008, April 2009, and March 2010.

V. WHOLE EFFLUENT TOXICITY TESTING REQUIREMENTS

A. Acute Toxicity Testing

Compliance with acute toxicity objective (TUa) shall be determined using a U.S. EPA approved protocol as provided in 40 CFR PART 136 (U.S. EPA's *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, EPA-821-R-02-012, or subsequent editions). Acute toxicity monitoring shall be conducted using marine test species instead of freshwater species when measuring compliance (Ocean Plan, Appendix III, *Standard Monitoring Procedures*).

Acute Toxicity (TUa) = 100/96-hr LC 50. LC 50 (percent waste giving 50% survival of test organisms) shall be determined by 96-hour static renewal tests. The Discharger shall use one of the approved marine test species identified in EPA-821-R-02-012, preferably using Silversides (Menidia beryllina); however, other approved marine test species in EPA-821-R-02-012 may be used with sufficient justification by the Discharger and approval by the Executive Officer.

Reference toxicant tests shall be conducted concurrently with the effluent sample tests. Both tests must satisfy the test acceptability criteria specified in the reference cited above. If the test acceptability criteria are not achieved or if toxicity is detected, the sample shall be retaken and retested within 14 days of the failed sampling event. The retest results shall be reported in accordance with the chapter on report preparation and in the reference cited above, and the results shall be attached to the next monitoring report.

When it is not possible to measure the 96-hour LC 50 due to greater than 50 percent survival of the test species in 100 percent waste, the toxicity concentration shall be calculated by the expression:

$$TUa = [log(100 - S)]/1.7$$

where S = percentage survival in 100% waste. If S > 99, TUa shall be reported as zero.

B. Chronic Toxicity Testing

Chronic Toxicity (TUc) = 100/NOEL. The No Observed Effect Level (NOEL) is expressed as the maximum percent effluent or receiving water that causes no observable effect on a test organism, as

determined by the result of a critical life stage toxicity test to measure TUc. In accordance with the Ocean Plan, Appendix III, Standard Monitoring Procedures, the Discharger shall use the critical life stage toxicity tests specified in the table below to measure TUc. Other species or protocols will be added to the list after State Water Resources Control Board review and approval. A minimum of three test species with approved test protocols shall be used to measure compliance with the toxicity objective. If possible, the test species shall include a fish, an invertebrate, and an aquatic plant. After a screening period of no fewer than three tests, monitoring can be reduced to the most sensitive species. Dilution and control water should be obtained from an unaffected area of the receiving waters. The sensitivity of the test organisms to a reference toxicant shall be determined concurrently with each bioassay test and reported with the test results.

	proved Tests – Chronic Toxi om Appendix III of the Ocea		
Species	<u>Effect</u>	<u>Tier</u>	Reference
giant kelp, Macrocystis pyrifera	percent germination; germ tube length	1	1,3
red abalone, Haliotis rufescens	Abnormal shell development	1	1,3
oyster, Crassostrea gigas; mussels, Mytilus spp.	Abnormal shell development; percent survival	1	1,3
urchin, Strongylocentrotus purpuratus; sand dollar, Dendraster excentricus	Percent normal development	1	1,3
urchin, Strongylocentrotus purpuratus; sand dollar, Dendraster excentricus	Percent fertilization	1	1,3
shrimp, Holmesimysis costata	Percent survival; growth	. 1	1,3
shrimp, Mysidopsis bahia	Percent survival; growth; fecundity	2	2,4
topsmelt, Atherinops affinis	Larval growth rate; percent survival	1	1,3
Silversides, Menidia beryllina	Larval growth rate; percent survival	2	2,4

Approved Tests - Chronic Toxicity TUc Table Notes:

The first tier test methods are the preferred toxicity tests for compliance monitoring. A Regional Board can approve the use of a second tier test method for waste discharges if first tier organisms are not available.

Protocol References from the Approved Tests - Chronic Toxicity TUc Table

- 1. Chapman, G.A., D.L. Denton, and J.M. Lazorchak. 1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. U.S. EPA Report No. EPA/600/R-95/136.
- 2. Klemm, D.J., G.E. Morrison, T.J. Norberg-King, W.J. Peltier, and M.A. Heber. 1994. Short-term methods for estimating the chronic toxicity of effluents and receiving water to marine and estuarine organisms. U.S. EPA Report No. EPA-600-4-91-003.
- 3. SWRCB 1996. Procedures Manual for Conducting Toxicity Tests Developed by the Marine Bioassay Project. 96-1WQ.
- 4. Weber, C.I., W.B. Horning, I.I., D.J. Klemm, T.W. Nieheisel, P.A. Lewis, E.L. Robinson, J. Menkedick and F. Kessler (eds). 1988. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. EPA/600/4-87/028. National Information Service, Springfield, VA.

C. Toxicity Identification / Reduction Evaluations.

If toxicity monitoring shows a violation of toxicity limitations of this Order or a toxicity objective in Table B of the Ocean Plan, the Discharger shall increase the frequency of toxicity testing to once per week and submit the results within 15 days of the conclusion of each test to the Central Coast Water Board Executive Officer. The Executive Officer will determine whether to initiate enforcement action and/or whether to require the Discharger to conduct a Toxicity Reduction Evaluation (TRE). The TRE shall include all reasonable steps to identify the source(s) of toxicity. Once sources of toxicity are identified, the Discharger shall take all reasonable steps necessary to reduce toxicity to the required level.

The basis of the TRE shall be the following (or later revised editions):

- EPA's Methods for Aquatic Toxicity Identification Evaluations: Phase I, Toxicity Characterization Procedures, 2nd Edition, 1991b (EPA 600-6-91-003)
- EPA's Methods for Aquatic Toxicity Identification Evaluations: Phase II, Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity, 1993a (EPA 600-R-92-080)
- EPA's Methods for Aquatic Toxicity Identification Evaluations: Phase III, Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity, 1993b (EPA 600-R-92-081)
- EPA's Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants (EPA 833-B-99-002), August 1999

The Discharger shall initiate a TRE according to the following schedule:

	TASK	TIME SCHEDULE
a.	Take all reasonable measures necessary to immediately reduce toxicity, where source is known.	Within 24 hours of identification of non-compliance
b.	Submit to the Executive Officer a TRE study plan describing the toxicity reduction procedures to be employed.	Within 60 days of identification of non- compliance

	TASK	TIME SCHEDULE
c.	Initiate the TRE (includes Toxicity Identification Evaluation or TIE according to the above EPA methods)	To be determined by the Executive Officer
d.	Conduct the TRE following the procedures in the plan.	To be determined by the Executive Officer
e.	Submit the results of the TRE, including summary of findings, required corrective action, and all results and data.	Within 60 days of completion of the TRE
f.	Implement corrective actions to meet permit limits and conditions.	Within 7 days of notification by the Executive Officer
g.	Return to regular monitoring after implementing corrective measures and approval by the EO.	One-year period or as specified in the plan

VI. RECEIVING WATER MONITORING REQUIREMENTS

A. Monitoring Location - Shore Sampling Stations

1. The Discharger shall monitor the ocean at Shore Sampling Stations R-A, R-B, R-C, R-D, and R-E, as identified in MRP Section II above, according to the following:

If three consecutive effluent total coliform bacteria tests exceed 2,300 per 100 mL, the Discharger shall promptly begin collecting shore station samples for total and fecal coliform analysis. The Discharger shall collect no fewer than five samples from each station over any 30-day period, with the sampling frequency evenly spaced throughout the period. Sampling will continue until effluent bacteria concentrations return to compliance. The sampling results shall be submitted to the Central Coast Water Board within 14 days of each sampling event.

The Discharger shall to the best of its ability conduct the above receiving water sampling during dry weather or at least three days after a significant rain event. The Executive Officer may grant a discretionary exception to this sampling requirement during extreme rain events where receiving water sampling is unlikely to provide data representative of the Discharger's Discharge. The Discharger shall conduct effluent total <u>and</u> fecal coliform sampling daily during such events or the subsequent period of its influence on receiving waters. Once shore station sampling can resume, effluent sampling may return to its regular schedule according the Order.

Monitoring shall also include observations of wind (direction and speed), weather (e.g., cloudy, sunny, rainy), whether rainfall occurred over the preceding seven days, sea conditions, longshore currents (e.g., direction), and tidal conditions (e.g., high, slack, or low tide). Observations of water discoloration, floating oil and grease, turbidity, odor, materials of sewage origin in the water or on the beach, and temperature (°C) shall be recorded and reported.

For all bacterial analyses, sample dilutions shall be performed so the range of values extends from 20 to 16,000 / 100 mL. The detection methods used for each analysis shall be reported with the results of the analysis.

Detection methods used for total and fecal coliform shall be those presented in the most recent edition of *Standard Methods for the Examination of Water and Wastewater*, or any improved method determined appropriate by the Central Coast Water Board (and approved by EPA).

B. Monitoring Location - Ocean Sampling Stations (Bottom Sediment)

1. In 2008, the Discharger shall monitor ocean sediments at ocean sampling stations R-1, R-2E, R-2W, R-3, and R-4, as identified in MRP Section II above, as follows:

TABLE VI-1: Botton	n Sediment S	ampling
Parameter	Units	Ocean Sampling Stations
Sulfides (at pH 7)	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Particle size distribution (incl. % retained on #200 sieve)		R-1, R-2E, R2-W, R-3, R-4
Organic Matter (volatile solids or TOC)	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Total Coliform Organisms	#/100 g	R-1, R-2E, R2-W, R-3, R-4
Fecal Coliform Organisms	#/100 g	R-1, R-2E, R2-W, R-3, R-4
BOD	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Total Kjeldahl Nitrogen	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Arsenic	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Cadmium	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Total Chromium	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Hexavalent Chromium	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Copper	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Lead	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Mercury	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Nickel	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Iron	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Silver	mg/kg	R-1, R-2E, R2-W, R-3, R-4
Zinc	mg/kg	R-1, R-2E, R2-W, R-3, R-4

The following procedure shall be carried out for sampling and analyzing ocean bottom sediments:

- a. Duplicate samples shall be taken at each station and shall be analyzed and reported separately. Samples may be taken either by divers using non-contaminating samplers or by a surface-operated grab sampler which will obtain a relatively undisturbed sample. If the surface-operated grab sampler is used, a sub-sample (uncontaminated by the sampler) should be taken from the grab. In either case, the top five centimeters of material shall be used for analyses. Enough cores shall be taken at each station to provide sufficient sediment material for the required duplicate analyses.
- b. The contractor shall locate and mark the outfall terminus before beginning station locations and sampling. Reliance on charts or as-built plans will not suffice.
- c. Control stations have been selected in areas that should provide similar sediments at similar depths to the outfall stations. If the contractor encounters rocks or gravel at a station, he shall reposition the station, as necessary, to obtain a usable sediment sample. Station location changes shall be described in the final report.

- d. Samples shall be placed in airtight polyethylene containers. Care shall be taken to ensure the containers are completely filled by the samples and air bubbles are not trapped in the containers. A separate sub-sample for sulfide analysis shall be placed in small (100-200 mL), wide-mouth bottle and preserved with zinc acetate. The preservative must be carefully mixed with the sediment sample. The samples shall be stored immediately at 2 to 4 °C and not frozen or dried. Total sample storage time shall not exceed two weeks. For bacterial analysis, storage time should not exceed 6 to 8 hours. Bacterial analysis should be performed prior to preservation.
- e. When processing for analyses, macrofauna and remnants should be removed, taking care to avoid contamination.
- f. Chemical extractions are to be run for 24 hours with dilute HCL (0.5N) using guidelines recommended by the State Water Resources Control Board. Subsequent analyses shall be conducted in accordance with the current edition of *Guidelines Establishing Test Procedures for Analysis of Pollutants*, promulgated by the United States Environmental Protection Agency. Any variations must be reported with the test results.
- g. Results shall be expressed on a dry-weight basis.
- h. Results shall be compared between outfall and reference areas using standard statistical techniques. Data shall be compared in its raw form, and chemical results are to be normalized to the clay fraction, which is the percent by weight passing the No. 200 sieve, as follows:

Normalized Result = [raw result \div the % of clay as a decimal]

C. Monitoring Location - Ocean Sampling Stations (Benthic Biota)

- 1. At the same time as the ocean bottom sediment sampling in 2008 (per Section B above), the Discharger shall monitor benthic biota at ocean sampling stations R-1, R-2E, R-2W, and R-4, as identified in MRP Section II above. At least four (4) samples will be taken at each of the three ocean sampling stations. The samples shall be taken by mechanical grab or qualified diver biologists utilizing three-pound coffee cans (or similar) with both ends cut out. The cans are to be pushed into the sediment full length, the top capped, surrounding sediment dug away, and the bottom capped. During collection, water temperature shall be recorded at three-meter depth intervals, and at the surface and bottom.
- 2. The sample shall be processed by washing it through a one-millimeter (1 mm) sieve.
- 3. The sample should then be preserved in 75 percent alcohol or other applicable preservative. The material may be stained with Rose Bengal.
- 4. Coelenterates, polychaetes, macrocrustaceans, mollusks, ectoprocts, echinoderms, and algae shall be identified to species or at least to genus. All others shall be identified to the lowest taxon possible. All specimens shall be counted to provide information on abundance. Species abundance lists shall be presented with data reduced to standard area (sq. meter) and standard volume (liter).

- 5. For data from each sampling period, the following basic statistical analyses shall, as a minimum, be performed and reported:
 - a. The mean, median, range, standard deviation, and 95 percent confidence limits of the species abundance data reduced to standard area and volume.
 - b. Information theory species diversity index value:

$$H = -\sum_{i=1}^{n} (n_i / N) \log (n_i / N)$$

for each replicate sample at each station and for the station as a whole (i.e., pooling data from all replicates for the station during one survey). In addition, the station mean, range, and standard deviation shall be calculated from the replicate index values.

- c. The infaunal index, dominance index, and distributional statistics on "dominant" species as developed by the Southern California Coastal Water Research Project (SCCWRP) shall be calculated for each station. SCCWRP should be contacted for the latest species list and formula required.
- 6. The names and qualifications of persons identifying this material shall be indicated in all data reports. Furthermore, type collections shall be established for the various groups. All material shall be saved and stored for future reference. Material may be discharged after four years.
- 7. The final report on community analyses shall include a complete discussion of survey results and possible influence of the outfall on the marine communities in the study area. The discussion should be based on statistical evidence developed in Item 5, above, and on similarity analysis and cluster analysis of the data. It should include an analysis of natural community variation including the effects of different oceanic seasons and water temperatures, which could influence the validity of study results.

VII. OTHER MONITORING REQUIREMENTS

A. Ocean Outfall Inspection

At least once per year (in the same month annually) the Discharger shall visually inspect the entire outfall and diffuser structure (e.g., divers, dye study) to note its structural integrity and any cracks, breaks, leaks, plugged ports, or other actual or potential malfunctions. The outfall inspection will also check for possible external blockage of ports by sand and/or silt deposition. The Discharger shall report all finding and actions, including any observed cracks, breaks, or malfunctions to the Executive Officer in the applicable annual report. The month for inspection specified by the Discharger shall be a month of good underwater visibility.

B. Biosolids Monitoring, Reporting, and Notification

1. A representative sample of residual biosolids as obtained from the last point in the handling process shall be analyzed for the constituents and at the frequencies discussed below. The biosolids analyzed shall be a composite sample of a minimum of twelve discrete sub-samples (grab samples) taken at equal time intervals over a typical dewatering operational period up to 24

hours, and from the last representative point in the solids handling process before disposal (e.g., from the dewatered biosolids conveyor belt). The sample shall be documented to show it is representative of biosolids from the facility.

Biosolids shall be tested for the metals required in 40 CFR 503.16 (for land application) or Section 503.26 (for surface disposal), using the methods in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (EPA Publication SW-846, all applicable editions and updates), as required in 503.8(b)(4), at the minimum frequencies established in those 40 CFR sections (current frequencies shown below).

Amount 1 (dry metric tons per 365-day period)	Frequency 2
Greater than zero but less than 290	once per year
Equal to or greater than 290 but less than 1,500	once per quarter (four times per year)
Equal to or greater than 1,500 but less than 15,000	once per 60 days (six times per year)
Greater than 15,000	once per month (twelve times per year)

For Land Application: Either the amount of bulk biosolids applied to the land or the amount prepared for sale or give-away in a bag or other container for application to the land (dry weight basis). If the District's biosolids are directly land applied without further treatment by another preparer, biosolids shall also be tested for organic-N, ammonium-N, and nitrate-N at the frequencies required above.

For Surface Disposal: Amount of biosolids placed on an active sewage sludge unit (dry weight basis).

Test results shall be expressed in mg pollutant per kg biosolids on a 100% dry weight basis.

According to data presented in the Discharger's January 13, 2005 Report of Waste Discharge / Application, 266 dry metric tons of biosolids are generated per 365-day period. The Discharger will therefore conduct biosolids sampling once per year. The Discharger shall maintain this minimum biosolids sampling schedule at least until data collected over a 365-day period establishes a new basis for monitoring frequency pursuant to 40 CFR 503. Biosolids monitoring requirements are summarized in Table 15 below.

For accumulated, previously untested biosolids, the Discharger shall develop a representative sampling plan, including number and location of sampling points, and collect representative samples.

All constituents shall be analyzed for total concentrations for comparison with Total Threshold Limit Concentration (TTLC) criteria. The Waste Extraction Test shall be performed on any constituent when the total concentration of the waste exceeds ten times the Soluble Threshold Limit Concentration (STLC) limit for that substance. [California Code of Regulations, Title 22, Division 4.5, Chapter 11, Article 3]

T	ABLE IX-1: M	inimum Biosolids M	Ionitoring
Parameter	Units	Sample Type	Min. Analysis Frequency
Quantity	Tons (and yd³)	Measured	As Transported
Disposal Location			As Transported
Moisture	%	Composite Sample	October each year
pН	pH Units	44	
Arsenic	mg/kg (dry	46	64

Parameter	LE IX-1: M Units	Sample Type	Min. Analysis Frequency
	weight)	Sample Type	1. Ams Pinary Sid all equency
Cadmium		66	
Copper	66	er en enemen i en	66
Lead	66	66	66
Molybdenum	46	46	64
Mercury	46	46	66
Nickel	46	66	
Selenium	46	66	66
Zinc	64	44	44
Silver	44		66
Chromium	44	66	66
Total Kjeldahl nitrogen 1	66	tt.	
Ammonia (as N) 1	66	"	66
Nitrate (as N) 1	66	46	66
Total Phosphorus ¹	44	"	. "
Paint Filter Test (As per		46	££
SW-846, Method 9095 -			
Required only if sludge			
is disposed in a landfill)			
Grease & Oil	£6	44	October 2006 ²
"Priority Pollutants" 3	£6	(October 2006 ²

Once per year if the District's biosolids are directly land applied without further treatment by another preparer; otherwise, once in October 2006.

2. Prior to land application, the Discharger shall demonstrate that the biosolids meet Class A or Class B pathogen reduction levels by one of the methods listed in 40 CFR 503.32 (unless transferred to another preparer who demonstrates pathogen reduction).

Prior to disposal in a surface disposal site, the Discharger shall demonstrate that the biosolids meet Class B levels or shall ensure that the site is covered at the end of each operating day.

If pathogen reduction is demonstrated using a "Process to Significantly/Further Reduce Pathogens" (PFRP), the Discharger shall maintain daily records of the operating parameters used to achieve this reduction.

The following applies when biosolids from the Discharger are directly land applied as Class B, without further treatment by a second preparer: If the Discharger demonstrates pathogen reduction by direct testing for fecal coliforms and/or pathogens, samples must be drawn at the frequency in the Amount/Frequency table above in No. 1. If the Discharger demonstrates Class B pathogen reduction by testing for fecal coliform, at least seven grab samples must be drawn and analyzed during each monitoring event, and a geometric mean calculated from these seven samples. If the Discharger demonstrates Class A pathogen reduction by testing for fecal coliform

Coordinated with effluent sampling

Listed in MRP Tables IV-2, IV-3, IV-4, and IV-5

and/or salmonella, plus one of the PFRP processes or testing for enteric viruses and helminth ova, at least four samples of fecal coliform or salmonella must be drawn during each monitoring event. All four samples must meet the limits specified in 503.32(a).

- 3. For biosolids that are land applied or placed in a surface disposal site, the Discharger shall track and keep records of the operational parameters used to achieve Vector Attraction Reduction requirements in 40 CFR 503.33(b).
- 4. Class 1 facilities (facilities with pretreatment programs or others designated as Class 1 by the Regional Administrator) and Federal facilities with greater than five million gallons per day (MGD) influent flow shall sample biosolids for pollutants listed under Section 307(a) of the Clean Water Act (as required in the pretreatment section of the permit for POTWs with pretreatment programs). Class 1 facilities and Federal facilities greater than five MGD shall test dioxins/dibenzofurans using a detection limit of less than one pg/g at the time of their next priority pollutant scan if they have not done so within the past five years, and once per five years thereafter.
- 5. The biosolids shall be tested annually, or more frequently if necessary, to determine hazardousness. All constituents regulated under CA Title 22, Division 4.5, Chapter 11, Article 3 shall be analyzed for comparison with Total Threshold Limit Concentration (TTLC) criteria. The Waste Extraction Test shall be performed on any constituent when the total concentration of the waste exceeds ten times the Soluble Threshold Limit Concentration (STLC) limit for that substance.
- 6. If biosolids are placed in a surface disposal site (dedicated land disposal site or monofill), a qualified groundwater scientist shall develop a groundwater monitoring program for the site, or shall certify that the placement of biosolids on the site will not contaminate an aquifer.
- 7. Biosolids placed in a municipal landfill shall be tested by the Paint Filter Liquids Test (EPA Method 9095) at the frequency in the Volume/Frequency table above in No. 1., or more often if necessary to demonstrate that there are no free liquids.

Biosolids Notification

- 8. The Discharger, either directly or through contractual arrangements with their biosolids management contractors, shall comply with the following notification requirements:
 - a. Notification of non-compliance: The Discharger shall notify EPA Region 9, the Central Coast Water Board, and the Regional Board located in the region where the biosolids are used or disposed, of any non-compliance within 24 hours if the non-compliance may seriously endanger health or the environment. For other instances of non-compliance, the Discharger shall notify EPA Region 9 and the affected Regional Boards of the non-compliance in writing within five working days of becoming aware of the non-compliance. The Discharger shall require their biosolids management contractors to notify EPA Region 9 and the affected Regional Boards of any non-compliance within the same time frames. See Attachment I of this Order for California Regional Board contact information.
 - b. If biosolids are shipped to another State or to Indian Lands, the Discharger must send notice at least 60 days prior to the shipment to the permitting authorities in the receiving State or

Indian Land (the EPA Regional Office for that area and the State/Indian authorities).

c. For land application (These notification requirements are intended for cases where Class B biosolids from the District are directly applied without further treatment): Prior to reuse of any biosolids from the Discharger's facility to a new or previously unreported site, the Discharger shall notify EPA, the Central Coast Water Board, and any other affected Regional Board. The notification shall include a description and topographic map of the proposed site(s), names and addresses of the applier, and site owner and a listing of any state or local permits which must be obtained. The notice shall include a description of the crops or vegetation to be grown, proposed loading rates and determination of agronomic rates.

If any biosolids within a given monitoring period do not meet 40 CFR 503.13 metals concentration limits, the Discharger (or its contractor) must pre-notify EPA, and determine the cumulative metals loading at that site to date, as required in 40 CFR 503.12.

The Discharger shall notify the applier of all the applier's requirements under 40 CFR 503, including the requirement that the applier certify that the management practices, site restrictions, and any applicable vector attraction reduction requirements have been met. The Discharger shall require the applier to certify at the end of 38 months following application of Class B biosolids that the harvesting restrictions in effect for up to 38 months have been met.

d. For surface disposal: Prior to disposal to a new or previously unreported site, the Discharger shall notify EPA and the Central Coast Water Board. The notice shall include description and topographic map of the proposed site, depth to groundwater, whether the site is lined or unlined, site operator, site owner, and any state or local permits. The notice shall describe procedures for ensuring public access and grazing restrictions for three years following site closure. The notice shall include a groundwater monitoring plan or description of why groundwater monitoring is not required.

Biosolids Reporting

- 9. The Discharger shall submit an annual biosolids report to the EPA Region 9 Biosolids Coordinator and Central Coast Water Board by February 19th of each year (per U.S. EPA guidance and 40 CFR 503) for the period covering the previous calendar year. The report shall include:
 - a. The amount of biosolids generated during the reporting period, in dry metric tons, and its percent solids, and the amount accumulated from previous years;
 - b. Results of all pollutant and pathogen monitoring required in this Order and Monitoring and Reporting Program, whether directly stated or included by reference. Results must be reported on a 100% dry weight basis for comparison with 40 CFR 503 limits;
 - c. Descriptions of pathogen reduction methods and vector attraction reduction methods, including supporting time and temperature data, and certifications, as required in 40 CFR 503.17 and 503.27;

- d. Names, mailing addresses, and street addresses of persons who received biosolids for storage, further treatment, disposal in a municipal waste landfill, or for other use or disposal methods not covered above, and amounts delivered to each.
- e. For land application sites (These reporting requirements are for cases where Class B biosolids from the District are directly applied without further treatment): The following information must be submitted by the Discharger, unless the Discharger requires its biosolids management contractors to report this information directly to the EPA Region 9 Biosolids Coordinator:
 - Locations of land application sites (with field names and numbers) used that calendar year, size of each field applied to, applier, and site owner;
 - Amounts applied to each field (in wet tons and dry metric tons), nitrogen applied, calculated plant available nitrogen;
 - The application rate in lbs/acre/year (specify wet or dry);
 - The Regional Board Waste Discharge Requirements Order numbers that regulate the site(s) (including those in other regions which may receive biosolids from your facility);
 - Crop planted, dates of planting and harvesting;
 - For any biosolids exceeding 40 CFR 503.13 Table 3 metals concentrations: the locations of sites where applied and cumulative metals loading at that site to date;
 - Subsequent uses of the land;
 - Certifications of management practices in Section 503.14; and
 - Certifications of site restrictions in Section 503(b)(5);

f. For surface disposal sites:

- The names and locations of the facilities receiving biosolids, site operator, site owner, size of parcel on which disposed;
- Results of any required groundwater monitoring;
- The Regional Board Waste Discharge Requirements Order numbers that regulate the landfills used (including those in other regions which may receive biosolids from your facility);
- The present classifications of the landfills used;
- Certifications of management practices in Section 503.24; and
- For closed sites, date of site closure and certifications of management practices for the three years following site closure.

- g. For all biosolids used or disposed at the Discharger's facilities, the site and management practice information and certification required in Sections 503.17 and 503.27; and
- h. For all biosolids temporarily stored, the information required in Section 503.20 required to demonstrate temporary storage;
- i. A schematic diagram showing biosolids handling facilities (e.g., digesters, lagoons, drying beds, and incinerators) and a solids flow diagram;
- j. A narrative description of biosolids dewatering and other treatment processes, including process parameters. For example, if biosolids are digested, report average temperature and retention time of the digesters. If drying beds are used, report depth of application and drying time. If composting is used, report the temperature achieved and duration.
- k. Reports shall be submitted to:

Regional Biosolids Coordinator US EPA (WTR-7) 75 Hawthorne St. San Francisco, CA 94105-3901

Executive Officer Central Coast Regional Water Quality Control Board 895 Aerovista Place, Suite 101 San Luis Obispo, CA 93401-7906

VIII. MINIMUM LEVELS

The Minimum Levels identified in the Ocean Plan represent the lowest concentration of a pollutant that can be quantitatively measured in a sample given the current state of performance in analytical chemistry methods in California. These Minimum Levels were derived from data provided by state-certified analytical laboratories in 1997 and 1998 for pollutants regulated by the California Ocean Plan, and shall be used until new values are adopted by the State Water Resources Control Board.

The 2001 California Ocean Plan (Ocean Plan) establishes Minimum Levels (and their associated analytical methods) for discharger reporting. Minimum Levels represent the lowest quantifiable concentration in a sample based on the proper application of method-specific analytical procedures and the absence of matrix interferences. Minimum Levels also represent the lowest standard concentration in the calibration curve for a specific analytical technique after the application of appropriate method-specific factors*.

* Common analytical practices may require different treatment of the sample relative to the calibration standard. Some examples are given below:

Substance or Grouping	Method-Specific Treatment	Most Common
Volatile Organics	No differential treatment	<u>Factor</u> 1
Semi-Volatile Organics	Samples concentrated by extraction	1000
Metals	Samples diluted or concentrated	$\frac{1}{2}$, 2, and 4
Pesticides	Samples concentrated by extraction	100

Other factors may be applied to the Minimum Level depending on the specific sample preparation steps employed. For example, the treatment typically applied when there are matrix effects is to dilute the sample or sample aliquot by a factor of ten (10). In such cases, this additional factor must be applied during the computation of the reporting limit. Application of such factors will alter the reported Minimum Level.

In accordance with the Ocean Plan, all Minimum Levels that are <u>below</u> the effluent limitations of Order No. R3-2005-0110 are included herein (see Tables VIII-1 through VIII-4 of this MRP). In instances where effluent limitations were lower than all of the Ocean Plan Minimum Levels, the lowest Minimum Level was included. In the latter case, the Minimum Levels above the lowest level were omitted to prevent their mistaken application (indicated by "N/A" in the shaded areas within Tables VIII-1 through VIII-4 of this MRP). The Minimum Levels prescribed herein were transcribed from Appendix II of the Ocean Plan. The reported Minimum Level is the Minimum Level (and its associated analytical method) chosen by the Discharger for reporting and compliance determination from the Minimum Levels included below.

Dischargers are to instruct their laboratories to establish calibration standards so that the Minimum Level (or its equivalent if there is differential treatment of samples relative to calibration standards) is the lowest calibration standard. At no time is the Discharger to use analytical data derived from extrapolation beyond the lowest point of the calibration curve. The Discharger's laboratory may employ a calibration standard lower than the Minimum Level in accordance with the Ocean Plan, Section C.4.b, *Deviations from Minimum Levels in Appendix II* (included below).

Deviations from Minimum Levels in Appendix II of the Ocean Plan

The Central Coast Water Board, in consultation with the State Water Board's Quality Assurance Program, must establish a Minimum Level to be included in the permit in any of the following situations:

- 1. A pollutant is not listed in Appendix II of the Ocean Plan.
- 2. The Discharger agrees to use a test method that is more sensitive than those described in 40 CFR 136 (revised May 14, 1999).
- 3. The Discharger agrees to use a Minimum Level lower than those listed in Appendix II of the Ocean Plan.
- 4. The Discharger demonstrates that their calibration standard matrix is sufficiently different from that used to establish the Minimum Level in Appendix II of the Ocean Plan and proposes an appropriate Minimum Level for their matrix.
- 5. A Discharger uses an analytical method having a quantification practice that is not consistent with the definition of Minimum Level (e.g., U.S. EPA methods 1613, 1624, 1625).

Tables VIII-1 through VIII-4 of this MRP list the applicable Minimum Levels in four major chemical groupings: volatile chemicals, semi-volatile chemicals, inorganics, pesticides & PCB's. "No Data" is indicated by "--".

TABLE VIII-1: Minimum Levels – Volatile Chemicals (Table II-1 from Appendix II of the Ocean Plan)

(Table II-1 from Appe			Level (ug/L)
Volatile Chemicals	CAS Number	GC Method *, *	GCMS Method ^{(b,} *
Acrolein	107028	2	5
Acrylonitrile	107131	2	2
Benzene	71432	0.5	2
Bromoform	75252	0.5	2
Carbon Tetrachloride	56235	0.5	2
Chlorobenzene	108907	0.5	2
Chlorodibromomethane	124481	0.5	2
Chloroform	67663	0.5	2
1,2-Dichlorobenzene (volatile)	95501	0.5	2
1,3-Dichlorobenzene (volatile)	541731	0.5	2
1,4-Dichlorobenzene (volatile)	106467	0.5	2
Dichlorobromomethane	75274	0.5	2
1,1-Dichloroethane	75343	0.5	1
1,2-Dichloroethane	107062	0.5	2
1,1-Dichloroethylene	75354	0.5	2
Dichloromethane	75092	0.5	2
1,3-Dichloropropene (volatile)	542756	0.5	2
Ethyl benzene	100414	0.5	2
Methyl Bromide	74839	1	2
Methyl Chloride	74873	0.5	2
1,1,2,2-Tetrachloroethane	79345	0.5	2
Tetrachloroethylene	127184	0.5	2
Toluene	108883	0.5	2
1,1,1-Trichloroethane	71556	0.5	2
1,1,2-Trichloroethane	79005	0.5	2
Trichloroethylene	79016	0.5	2
Vinyl Chloride	75014	0.5	2

Table VIII-1 Notes:

a) GC Method = Gas Chromatography

b) GCMS Method = Gas Chromatography / Mass Spectrometry

^{*} To determine the lowest standard concentration in an instrument calibration curve for these techniques, use the given ML (see Ocean Plan, Chapter III, Section C.5, *Use of Minimum Levels*).

TABLE VIII-2: Minimum Levels – Semi Volatile Chemicals (Table II-2 from Appendix II of the Ocean Plan)

			Minimum GCMS		
	CAS	GC	GCMS Method ^{b,}	HPLC	COLOR
Semi-Volatile Chemicals	Number	Method *, *	*	Method ^{c,} *	Method d
Acenapthylene	208968		10	0.2	 .
Anthracene	120127		10	2	
Benzidine	92875		5		
Benzo(a)anthracene	56553		10	2	
Benzo(a)pyrene	50328		10	2	
Benzo(b)fluoranthene	205992		10	10	
Benzo(g,h,i)perylene	191242		5	0.1	==
Benzo(k)floranthene	207089		10	2	
Bis 2-(1-Chloroethoxy) methane	111911		5		
Bis(2-Chloroethyl)ether	111444	N/A	1		
Bis(2-Chloroisopropyl)ether	39638329	10	2		
Bis(2-Ethylhexyl) phthalate	117817	10	5		
2-Chlorophenol	95578	2	5	••	
Chrysene	218019		10	5	<u> </u>
Di-n-butyl phthalate	84742		10		
Dibenzo(a,h)anthracene	53703	:	10	0.1	
1,2-Dichlorobenzene (semivolatile)	95504	2	2		
1,3-Dichlorobenzene (semivolatile)	541731	2	1		
1,4-Dichlorobenzene (semivolatile)	106467	2	1		
3,3-Dichlorobenzidine	91941	***	5	*	
2,4-Dichlorophenol	120832	1	5		
1,3-Dichloropropene	542756		5		
Diethyl phthalate	84662	10	2		
Dimethyl phthalate	131113	10	2	· 	
2,4-Dimethylphenol	105679	1	2 .		
2,4-Dinitrophenol	51285	5	5		
2,4-Dinitrotoluene	121142	10	5		
1,2-Diphenylhydrazine	122667		1		
Fluoranthene	206440	10	1	0.05	
Fluorene	86737		10	0.1	

TABLE VIII-2: Minimum Levels – Semi Volatile Chemicals
(Table II-2 from Appendix II of the Ocean Plan)

		والسلامية		Level (ug/L)	Hidawill I I I I I I I I I I I I I I I I I I
Semi-Volatile Chemicals	CAS Number	GC Method ^{a,} *	GCMS Method b,	HPLC Method c.*	COLOR Method d
Hexachlorobenzene	118741	N/A	1		
Hexachlorobutadiene	87683	5	1		
Hexachlorocyclopentadiene	77474	5	5		
Hexachloroethane	67721	5	1	==	
Indeno(1,2,3-cd)pyrene	193395		10	0.05	
Isophorone	78591	10	1		
2-methyl-4,6-dinitrophenol	534521	10	5		
3-methyl-4-chlorophenol	59507	5	1		
N-nitrosodi-n-propylamine	621647	10	5		
N-nitrosodimethylamine	62759	10	5		
N-nitrosodiphenylamine	86306	10	1 .		
Nitrobenzene	98953	10	1		·
2-Nitrophenol	88755		10		
4-Nitrophenol	100027	5	10		
Pentachlorophenol	87865	1	5	-	
Phenanthrene	85018		5	0.05	
Phenol	108952	1	1		50
Pyrene	129000	— — · · · · · · · · · · · · · · · · · ·	10	0.05	100 to
2,4,6-Trichlorophenol	88062	10	10	**	

Table VIII-2 Notes:

- a) GC Method = Gas Chromatography
- b) GCMS Method = Gas Chromatography / Mass Spectrometry
- c) HPLC Method = High Pressure Liquid Chromatography
- d) COLOR Method = Colorimetric
- * To determine the lowest standard concentration in an instrument calibration curve for this technique, multiply the given ML by 1000 (see Ocean Plan, Chapter III, Section C.5, *Use of Minimum Levels*).

TABLE VIII-3: Minimum Levels - Inorganics (Table II-3 from Appendix II of the Ocean Plan)

					uuiv .	Minimum Level (ug/L				
Inorganic	CAS	COLOR	DCP	FAA	GFAA	HYDRIDE	ICP	ICPMS	SPGFAA	CVAA
Substances	Number	Method a	Method b	Method c	Method ^d	Method e	Method f	Method g	Method h	Method i
Antimony	7440360	1	1000	10	5		50	0.5	S	
Arsenic	7440382	20	Y.Y	-	2	i	10	2	2	•
Beryllium	7440417	1	N/A	N.A	0.5	1	Z	0.5	- manazarita	
Cadmium	7440439	1	NA	10	0.5	}	10	0.2	0.5	
Chromium (total)		1	N/A	20	2	1	10	0.5	П	
Chromium (VI)	18540299	10	1	9	-	The Advance remonencement and the second sec	of the statement comments of the statement of the stateme	1000 A 6000 & 51 per (* 1511 annount annount annount A) . 11		· And Christian and the state of the second
Copper	7440508	1		20	2	. W. Mukhaman un mannan	10	0.5		. 1/4 at 11/4 to 11/4
Cyanide	57125	5	-	\$ T	Commonwear			**************************************	-	Withhead Commence of the Comme
Lead	7439921			20	5		\$	0.5	2	
Mercury	7439976	1	•	-		•	of VINNA AMERICAN AME	0.5		0.2
Nickel	7440020	•	NA.	50	\$	an a conformation of the c	20	-	5	The constituted described the description of the constitution of t
Selenium	7782492	•	1000		2		10	7	5	: :
Silver	7440224		N/A	10	-		10	0.2	2	1
Thallium	7440280	1	N/A	10	2		10	Phianessanians a	\$	
Zinc	7440666	1	1000	20	•	. !	20		10	

Table VIII-3 Notes:

- a) COLOR Method = Colorimetric
- b) DCP Method = Direct Current Plasma
- c) FAA Method = Flame Atomic Absorption
- d) GFAA Method = Graphite Furnace Atomic Absorption
- e) HYDRIDE Method = Gaseous Hydride Atomic Absorption
 - ICP Method = Inductively Coupled Plasma
- g) ICPMS Method = Inductively Coupled Plasma / Mass Spectrometry h) SPGFAA Method = Stabilized District.
- SPGFAA Method = Stabilized Platform Graphite Furnace Atomic Absorption (i.e., US EPA 200.9)
 - CVAA Method = Cold Vapor Atomic Absorption
- To determine the lowest standard concentration in an instrument calibration curve for these techniques, use the given ML (see Ocean Plan, Chapter III, Section C.5, Use of Minimum Levels).

TABLE VIII-4: Minimum Levels – Pesticides and PCB's (Table II-4 from Appendix II of the Ocean Plan)

Pesticides – PCB's	CAS Number	Minimum Level (ug/L) GC Method ***
	200002	
Aldrin	309002	0.005
Chlordane	57749	0.1
4,4'-DDD	72548	0.05
4,4'-DDE	72559	0.05
4,4'-DDT	50293	0.01
Dieldrin	60571	0.01
a-Endosulfan	959988	0.02
b-Endosulfan	33213659	0.01
Endosulfan Sulfate	1031078	0.05
Endrin	72208	0.01
Heptachlor	76448	0.01
Heptachlor Epoxide	1024573	0.01
a-Hexachlorocyclohexane	319846	0.01
b-Hexachlorocyclohexane	319857	0.005
d-Hexachlorocyclohexane	319868	0.005
g-Hexachlorocyclohexane (Lindane)	58899	0.02
PCB 1016		0.5
PCB 1221	<u></u>	0.5
PCB 1232	==	0.5
PCB 1242		0.5
PCB 1248		0.5
PCB 1254		0.5
PCB 1260		0.5
Toxaphene	8001352	0.5

Table VIII-4 Notes:

Procedures, calibration techniques, and instrument/reagent specifications used to determine compliance with Ocean Plan Table B shall conform to the requirements of federal regulations (40 CFR PART 136, revised edition of July 1, 2003, or later). All methods are specified in Tables VIII-1 through VIII-4 of this MRP.

a) GC Method = Gas Chromatography

^{*} To determine the lowest standard concentration in an instrument calibration curve for this technique, multiply the given ML by 100 (see Ocean Plan, Chapter III, Section C.5, Use of Minimum Levels).

CARPINTERIA SANITARY DISTRICT
CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT
ORDER NO. R3-2005-0110
NPDES NO. CA0047364

Laboratories analyzing monitoring data shall be certified by the California Department of Health Services, in accordance with the provisions of California Water Code, Section 13176, and must include quality assurance / quality control data with their reports.

IX. SAMPLE REPORTING PROTOCOLS

Dischargers must report with each sample result the reported Minimum Level (selected by the Discharger in accordance with MRP Section VIII, *Minimum Levels*, above, and Section III.C.4 of the Ocean Plan) and the laboratory's current Method Detection Limit (MDL).

Dischargers must also report the results of analytical determinations for the presence of chemical constituents in a sample using the following reporting protocols:

- A. Sample results greater than or equal to the reported Minimum Level must be reported "as measured" by the laboratory (i.e., the measured chemical concentration in the sample).
- B. Sample results less than the reported Minimum Level, but greater than or equal to the laboratory's MDL, must be reported as "Detected, but Not Quantified", or DNQ. The laboratory must write the estimated chemical concentration of the sample next to DNQ as well as the words "Estimated Concentration" (may be shortened to "Est. Conc.").
- C. Sample results less than the laboratory's MDL must be reported as "Not Detected", or ND.

X. COMPLIANCE DETERMINATION

Sufficient sampling and analysis is required to determine compliance with the effluent limitations.

A. Compliance with Single-Constituent Effluent Limitations

Dischargers are out of compliance with the effluent limitation if the concentration of the pollutant (see Section X.C below) in the monitoring sample is greater than the effluent limitation and greater than or equal to the reported Minimum Level.

B. Compliance with Effluent Limitations expressed as a Sum of Several Constituents

Dischargers are out of compliance with an effluent limitation which applies to the sum of a group of chemicals (e.g., PCB's) if the sum of the individual pollutant concentrations is greater than the effluent limitation. Individual pollutants of the group will be considered to have a concentration of zero if the constituent is reported as ND or DNQ.

C. Multiple Sample Data Reduction

The concentration of the pollutant in the effluent may be estimated from the result of a single sample analysis or by a measure of central tendency (arithmetic mean, geometric mean, median, etc.) of multiple sample analyses when all sample results are quantifiable (i.e., greater than or equal to the reported Minimum Level). When one or more sample results are reported as ND or DNQ, the central tendency concentration of the pollutant shall be the median (middle) value of the multiple samples. If, in an even number of samples, one or both of the middle values is ND or DNQ, the median will be the lower of the two middle values.

XI. POLLUTANT MINIMIZATION PROGRAM

The 2001 California Ocean Plan establishes guidelines for the Pollutant Minimization Program (PMP). At the time of the proposed adoption of Order No. R3-2005-0110, no known evidence was available that would require the Discharger to immediately develop and conduct a PMP. The Central Coast Water Board will notify the Discharger in writing if such a program becomes necessary. The Ocean Plan PMP language is included herein to provide guidance in the event that a PMP must be developed and implemented by the Discharger. The Discharger must notify the Central Coast Water Board in writing within 30 days of its awareness that a PMP is necessary.

A. Pollutant Minimization Program Goal

The goal of the Pollutant Minimization Program is to reduce all potential sources of a pollutant through pollutant minimization (control) strategies, including pollution prevention measures, in order to maintain the effluent concentration at or below the effluent limitation.

Pollution prevention measures may be particularly appropriate for persistent bioaccumulative priority pollutants where there is evidence that beneficial uses are being impacted. The completion and implementation of a Pollution Prevention Plan, required in accordance with California Water Code Section 13263.3 (d), will fulfill the Pollution Minimization Program requirements.

B. Determining the Need for a Pollutant Minimization Program

- 1. The Discharger must develop and conduct a Pollutant Minimization Program if all of the following conditions are true:
 - (a) The calculated effluent limitation is less than the reported Minimum Level.
 - (b) The concentration of the pollutant is reported as DNQ.
 - (c) There is evidence showing that the pollutant is present in the effluent above the calculated effluent limitation.
- 2. Alternatively, the Discharger must develop and conduct a Pollutant Minimization Program if all of the following conditions are true:
 - (a) The calculated effluent limitation is less than the Method Detection Limit (MDL).
 - (b) The concentration of the pollutant is reported as ND.
 - (c) There is evidence showing that the pollutant is present in the effluent above the calculated effluent limitation.

C. Special Provision for Evidence of Pollutant Presence

Regional Boards may include special provisions in the discharge requirements to require the gathering of evidence to determine whether the pollutant is present in the effluent at levels above the calculated effluent limitation. Examples of evidence may include:

- 1. Health advisories for fish consumption;
- 2. Presence of whole effluent toxicity;
- 3. Results of benthic or aquatic organism tissue sampling;
- 4. Sample results from analytical methods more sensitive than methods included in the permit (in accordance with the Ocean Plan, Chapter III, Section C.4.b, *Deviations from Minimum Levels in Appendix II* [included above in Section III, *Minimum Levels*]); or
- 5. The concentration of the pollutant is reported as DNQ and the effluent limitation is less than the MDL.

D. Elements of a Pollutant Minimization Program

The Central Coast Water Board may consider cost-effectiveness when establishing the requirements of a Pollutant Minimization Program. The program shall include actions and submittals acceptable to the Central Coast Water Board including, but not limited to, the following:

- 1. An annual review and semi-annual monitoring of potential sources of the reportable pollutant, which may include fish tissue monitoring and other bio-uptake sampling;
- 2. Quarterly monitoring for the reportable pollutant in the influent to the wastewater treatment system;
- 3. Submittal of a control strategy designed to proceed toward the goal of maintaining concentrations of the reportable pollutant in the effluent at or below the calculated effluent limitation;
- 4. Implementation of appropriate cost-effective control measures for the pollutant, consistent with the control strategy; and,
- 5. An annual status report that shall be sent to the Central Coast Water Board including:
 - (a) All Pollutant Minimization Program monitoring results for the previous year;
 - (b) A list of potential sources of the reportable pollutant;
 - (c) A summary of all action taken in accordance with the control strategy; and,
 - (d) A description of actions to be taken in the following year.

XII. WASTEWATER COLLECTION SYSTEM OVERFLOWS – REPORTING

A. Reporting Overflows to the Central Coast Water Board and the California Department of Health Services

- 1. Sewage spills greater than 1,000 gallons and/or all sewage spills that enter a waterbody of the State, or occur where public contact is likely, regardless of the size, shall be reported to the Central Coast Water Board by telephone as soon as notification is possible and can be provided without substantially impeding cleanup or other emergency measures, and no later than 24 hours from the time that the Discharger has knowledge of the overflow. The Discharger shall also provide this notification to the California Department of Health Services (DHS) where the overflow discharges to surface waters.
- 2. Unless fully contained, overflows to storm drains or other conveyances tributary to waters of the State shall be reported as discharges to surface waters.

XIII. REPORTING REQUIREMENTS

A. General Monitoring and Reporting Requirements

1. The Discharger shall comply with all Standard Provisions (Attachment D) related to monitoring, reporting, and recordkeeping.

B. Self Monitoring Reports (SMRs)

1. At any time during the term of this permit, the State or Central Coast Water Board may notify the Discharger to electronically submit self-monitoring reports. Until such notification is given, the Discharger shall submit self-monitoring reports in accordance with the requirements described below.

- 2. The Discharger shall submit monthly, quarterly, semiannual, and annual Self Monitoring Reports including the results of all required monitoring using U.S. EPA-approved test methods or other test methods specified in this Order. Monthly reports shall be due on the 1st day of the second month following the end of each calendar month; Quarterly reports shall be due on May 1st, August 1st, November 1st, and February 1st following each calendar quarter; Semi-annual reports shall be due on August 1st and February 1st following each calendar semi-annual period; Annual reports shall be due on February 1st following each calendar year. The Discharger may collectively submit reports due on the same day, but must indicate each report on the Self Monitoring Report Transmittal Form (Attachment J) or similar, as approved by the Executive Officer.
- 3. Monitoring periods and reporting for all required monitoring shall be completed according to Table XIV-1 below. Table XIV-2 provides a summary of the reports required by this Order, to be confirmed by the Discharger. Table XIV-2 is for reference only, and does not supercede the reporting requirements of this Order.

Sampling	Table XIII-1 – Monitoring Period Definitions Sampling					
Frequency	Monitoring Period Begins On	Monitoring Period SMR Due D				
Continuous	The day after permit effective date	All	First day of second calendar month following month of sampling			
X / hour	The day after permit effective date		First day of second calendar month following month of sampling			
X / day	The day after permit effective date	(Midnight through 11:59 PM) or any 24-hour period that reasonably represents a calendar day for purposes of sampling.	First day of second calendar month following month of sampling			
X / week	The Sunday following permit effective date or on permit effective date if on a Sunday	Sunday through Saturday	First day of second calendar month following month of sampling			
X / month	The first day of calendar month following permit effective date or on permit effective date if that date is first day of the month	1 st day of calendar month through last day of calendar month	First day of second calendar month following month of sampling			
X / quarter	The closest of January 1 st , April 1 st , July 1 st , or October 1 st following (or on) permit effective date	January 1 st through March 31 st April 1 st through June 30 th July 1 st through September 30 th October 1 st through December 31 st	May 1 st August 1 st November 1 st February 1 st			
X / semi- annual period	The closest of January 1 st or July 1 st following (or on) permit effective date	January 1 st through June 30 th July 1 st through December 31 st	August 1 st February 1 st			
X/year	January 1 st following (or on) permit effective date	January 1 st through December 31 st	February 1st			

TABLE XIII-2: Reporting Schedule Summary				
Monitoring Report	Order / MRP Section	Report Due No Later Than		
Daily, Every 2 Days, Every 6 Days, or Monthly influent / effluent monitoring data (monthly report)	MRP Tables III-1 and IV-1	The first day of the second calendar month following the month of sampling (e.g., reports for monitoring conducted in January are due no later than March 1 st)		
Quarterly influent / effluent monitoring data	MRP Table IV-1	May 1 st , for January – March August 1 st , for April – June November 1 st , for July – September February 1 st , for October – December		
Annual influent / effluent monitoring data	MRP Tables IV-2, IV-3, IV-4, and IV-5	September 1, 2006; August 1, 2007; July 1, 2008; June 1, 2009; and May 1, 2010		
Annual Summary Report	Order Attachment D- 1, General Monitoring Requirement C.8	February 1 st		
Receiving Water bacterial monitoring data	MRP Section VI.A	14 days after each sampling event		
Annual Ocean Outfall and Diffuser inspection	MRP Section VII.A	60 days following the inspection, and; February 1 st (as summary in the Annual Summary Report)		
2008 Bottom Sediment and Benthic Biota Sampling	MRP Sections VI.B and C	February 1, 2009		
Annual Biosolids Report	MRP Section VII.B	February 19 th		
**************************************	TOTAL AUGUST TO THE AUGUSTA AUGUSTA			
Report of Waste Discharge / Application for authorization to continue waste discharge	Page 1 of Order	April 22, 2010		

- 4. The Discharger shall report with each sample result the applicable Minimum Level (ML) and the current Method Detection Limit (MDL), as determined by the procedure in 40 CFR Part 136.
- 5. The Discharger shall arrange all reported data in a tabular format. The data shall be summarized to clearly illustrate whether the facility is operating in compliance with interim and/or final effluent limitations.
- 6. The Discharger shall attach a cover letter to the SMR. The information contained in the cover letter shall clearly identify violations of the WDRs; discuss corrective actions taken or planned; and the proposed time schedule for corrective actions. Identified violations must include a description of the requirement that was violated and a description of the violation.
- 7. SMRs must be submitted to the Central Coast Water Board, signed and certified as required by the standard provisions (Attachment D), to the address listed below:

Central Coast Regional Water Quality Control Board

895 Aerovista Place, Suite 101 San Luis Obispo, CA 93401-7906

C. Discharge Monitoring Reports (DMRs)

- 1. As described in Section XIV.B.1 above, at any time during the term of this permit, the State or Central Coast Water Board may notify the Discharger to electronically submit self-monitoring reports. Until such notification is given, the Discharger shall submit discharge monitoring reports (DMRs) in accordance with the requirements described below.
- 2. DMRs must be signed and certified as required by the standard provisions (Attachment D). The Discharger shall submit the original DMR and one copy of the DMR to the address listed below:

State Water Resources Control Board Discharge Monitoring Report Processing Center Post Office Box 671 Sacramento, CA 95812

3. All discharge monitoring results must be reported on the official U.S. EPA pre-printed DMR forms (EPA Form 3320-1). Forms that are self-generated or modified cannot be accepted.

D. Notification and Monitoring Procedure in Case of Disinfection Failure

1. The Discharger shall notify: (i) the State Department of Health Services (DHS); (ii) Santa Barbara County Environmental Health Services Department; (iii) the Central Coast Water Board; and (iv) each certified commercial shellfish grower located offshore of the Santa Barbara Coast as set forth in a list to be provided and updated by DHS, in the event of a malfunction of the Discharger's wastewater treatment facility's disinfection process, which results in a potential or actual discharge of inadequately disinfected effluent into the Santa Barbara Channel (an "Event"). The Discharger shall determine in its sole discretion whether an Event has occurred. Such notification by the Discharger shall be by telephone and facsimile transmission to the numbers provided to the Discharger by DHS. If the Discharger becomes aware of an Event between the weekday hours of 6:00 a.m. and 5:00 p.m., notification shall be given within four (4) hours of the time that the Discharger becomes aware of the Event. If the Discharger becomes aware of the Event after 5:00 p.m. or on a weekend, notification shall be given by 10:00 a.m. the next business day.

By providing notification of an Event as specified above, the Discharger shall not be deemed to have admitted any liability or concluded that the Event will or may impact any approved commercial shellfish growing areas ("growing area") or require the closure of any growing areas. Any decision or recommendation to close a growing area in response to a notification of an Event by the Discharger shall be made by DHS and/or the affected or potentially affected certified commercial shellfish grower(s). The Discharger shall have no liability (including but not limited to liability for lost sales, profits or interruption of business operations) arising from a decision by DHS or a shellfish grower to close a growing area in response to a notification of an Event.

The Discharger shall monitor for total coliforms, fecal coliforms, and enterococcus at receiving water sampling stations R-F and R-G as identified in MRP Section II above, in addition to three shore sampling stations approved by the Executive Officer, for seven days after loss of disinfection, and report the results to the Executive Officer within 24 hours after receiving them from the laboratory.

Attachment F - Fact Sheet - Table of Contents

Atta	chment F – Fact Sheet	F-2
I.	Permit Information	
II.	Facility Description	F-3
	A. Description of Wastewater Treatment or Controls	
	B. Discharge Points and Receiving Waters	
	C. Compliance Summary	
	D. Planned Changes	F-4
III.	Applicable Plans, Policies, and Regulations	F-4
	A. Legal Authorities	
	B. California Environmental Quality Act (CEQA)	
	C. State and Federal Regulations, Policies, and Plans	
	D. Other Plans, Policies, and Regulations	
IV.	Rationale For Effluent Limitations and Discharge Specifications	
	A. Discharge Prohibitions	
	B. Technology-Based Effluent Limitations	
	1. Scope and Authority	
	2. Applicable Technology-Based Effluent Limitations	F-7
	C. Water Quality-Based Effluent Limitations (WQBELs)	
	1. Scope and Authority	
	2. Applicable Beneficial Uses and Water Quality Criteria and Objectives	
	3. Determining the Need for WQBELs	
	4. WQBEL Calculations	
	5. Whole Effluent Toxicity (WET)	
	D. Final Effluent Limitations	
V.	Rationale for Receiving Water Limitations	
	A. Surface Water	
VI.	Rationale for Monitoring and Reporting Requirements	
	A. Influent Monitoring	
	B. Effluent Monitoring	
	C. Whole Effluent Toxicity Testing Requirements	
	D. Receiving Water Monitoring	
	E. Other Monitoring Requirements	
VII.	Rationale for Provisions	
	A. Standard Provisions	
	B. Special Provisions	
	Special Provisions for Municipal Facilities (POTWs Only)	F-30
VIII.	Public Participation	F-33
	A. Notification of Interested Parties	F-33
	B. Written Comments	
	C. Public Hearing	
	D. Waste Discharge Requirements Petitions.	
	E. Information and Copying	
	F. Register of Interested Persons.	
	G. Additional Information.	

ATTACHMENT F - FACT SHEET

As described in Section II of this Order, this Fact Sheet includes the legal requirements and technical rationale that serve as the basis for the requirements of this Order.

I. PERMIT INFORMATION

The following table summarizes administrative information related to the facility.

WDID	3 42 010 1001			
Discharger	Carpinteria Sanitary District			
Name of Facility	Carpinteria Sanitary District Wastewater Treatment Facility			
1,11110 01 1 001111	5351 Sixth Street			
Facility Address	Carpinteria, CA 93013			
,	Santa Barbara County			
Facility Contact, Title and Phone	Craig Murray, General Manager, (805) 684-7214			
Authorized Person to Sign and Submit Reports	Craig Murray, General Manager, (805) 684-7214			
Mailing Address	5300 Sixth Street, Carpinteria, CA 93013			
Billing Address	5300 Sixth Street, Carpinteria, CA 93013			
Type of Facility	POTW			
Major or Minor Facility	Major			
Threat to Water Quality	2			
Complexity	A			
Pretreatment Program	Yes, though not formally required			
Reclamation Requirements	None			
Facility Permitted Flow	2.5 Million Gallons per Day (MGD)			
Facility Design Flow	2.5 Million Gallons per Day (MGD)			
Watershed	South Coast Hydrologic Unit			
Receiving Water	Pacific Ocean			
Receiving Water Type	Saltwater			

- A. Carpinteria Sanitary District (hereinafter Discharger) is the owner and operator of the Carpinteria Sanitary District Wastewater Treatment Facility (hereinafter Facility), a Publicly Owned Treatment Works (POTW), as shown on Attachment A (T4N, R25W, Sections 29 and 32, SB B&M). The Facility serves a population of 16,500 persons.
- B. The Facility discharges wastewater to the Pacific Ocean, a water of the United States, and is currently regulated by Order No. 00-001, which was adopted on July 14, 2000 and was scheduled to expire on July 14, 2005. By letter dated April 4, 2005, the Executive Officer administratively extended the Order until the Central Coast Water Board adopted a new Order.
- C. The Discharger filed a report of waste discharge and submitted an application for renewal of its Waste Discharge Requirements (WDRs) and National Pollutant Discharge Elimination System (NPDES) permit on January 14, 2005. Supplemental Information was requested on February 9, 2005, and received on February 17, 2005. Staff conducted a routine facility inspection on June 8, 2005.

II. FACILITY DESCRIPTION

- A. Description of Wastewater and Biosolids Treatment or Controls The treatment system consists of pretreatment, screening, grit removal, primary sedimentation, aerated activated sludge tanks, secondary sedimentation, chlorination, and dechlorination. The design average dry weather flow rate is 2.5 MGD. The average daily flow rate over the last three years was 1.4 MGD. Biosolids are managed via thickening, aerobic digestion, and belt presses. Biosolids are composted and applied to land for agricultural purposes within the Central Valley in accordance with Waste Discharge Requirements Order No. R5-2002-0172 issued by the Central Valley Regional Water Quality Control Board to San Joaquin Composting, Inc., and McCarthy Family Farms, Inc., Operation Lost Hills Composting Facility.
- B. Discharge Points and Receiving Waters Wastewater is discharged to the Pacific Ocean through a 1,000-foot outfall/diffuser system. The outfall (Discharge Point 001) terminates in the Santa Barbara Channel / Pacific Ocean (34°23'18" N. Latitude, 119° 31'18" W. Longitude) in approximately 25 feet of water. The hydraulic capacity of the outfall is 5.5 MGD. The minimum initial dilution ratio of seawater to effluent is 93:1.
- C. Compliance Summary Central Coast Water Board records indicate the Discharger complied with Order No. 00-001 with the exceptions shown in the following tables. The Discharger responded appropriately to each incident.

Table C.1 - Effluent Violations

Date	Violation	Effluent Limit Violated	Reported Value and Cause (if known)	Staff Enforcement Action
11/04/2000	Settleable Solids Daily Maximum	3.0 mL/L	4.3 mL/L; caused by equipment failure	Mandatory Minimum Complaint R3-2001- 0064 issued 4/6/2001
11/5/2001	Settleable Solids Daily Maximum	3.0 mL/L	9.0 mL/L	Mandatory Minimum Complaint R3-2004- 0007 issued 3/10/2004
11/11/2001	Settleable Solids 7- day average	1.5 mL/L	1.6 mL/L; caused by equipment failure	None recommended

Table C.2 - Sanitary Sewer Overflows

Date	Volume (gallons)	Discharge to Waterbody (Y/N)	Reported Cause	Staff Enforcement Action
11/13/2001	1,600	N	Power outage and alarm failure	Verbal
12/24/2001	4,500	Y	Root blockage	Verbal
01/03/2002	400	N	Alarm failure	Verbal
04/11/2002	5,000	N	Grease blockage	None recommended
05/19/2003	850	Y	Grease blockage	None recommended
07/10/2004	100	Y	Grease blockage	None recommended
01/10/2005	300	Y	Severe rainfall	None recommended

Central Coast Water Board records also indicate several minor reporting violations, resulting in staff's informal verbal or written enforcement actions. The Discharger responded appropriately by submitting the information or modifying monitoring practices to include the data in future reports.

In June, 2002, U.S. EPA conducted a compliance evaluation of the Discharger's sanitary sewer collection system, and determined that from December 6, 1997 to April 11, 2002 (4-1/3 years), the

Discharger suffered 30 sanitary sewer overflows ranging in volume from 10 to 46,000 gallons. The overflows were caused by heavy rain, blockages due to grease or roots, force main breaks, equipment failure, operator error, and vandalism.

On September 30, 2002, U.S. EPA issued Docket No. CWA-402-9-02-64, Findings of Violation and Order for Compliance, which required the Discharger to take remedial actions to reduce the number of sewage spills from its collection system. The U.S. EPA Administrative Order set forth a series of actions and plans for preparation and implementation according to required timelines, including the following:

- Immediate reduction of collection system spills
- Sanitary sewer overflow response planning
- Compliance with State and County emergency notification procedures
- Collection system capacity assessment
- Collection system assurance planning
- Collection system condition assessment and rehabilitation planning
- Pump station and force main maintenance, repair, and upgrades
- Fats, oils, and grease blockage control planning
- Plan review and approval by U.S. EPA
- Quarterly and annual reporting to U.S. EPA and the Central Coast Water Board

The most recent history of sanitary sewer overflows (shown in Table C.2 above) shows that seven overflows have occurred from November 13, 2001 through July 12, 2005 (3 years, 8 months), ranging in volume from 100 to 5,000 gallons. Though this range of dates overlaps with that of U.S. EPA's evaluation period, the Discharger's recent spill history compares favorably with U.S. EPA's findings in that spill frequency and volume appear reduced.

The U.S. EPA Order remains in effect until terminated by the Director of the Water Division for U.S. EPA, Region 9. Termination will not occur before December 31, 2005, unless the Director determines otherwise. Central Coast Water Board records do not indicate that the Discharger has failed to comply with the U.S. EPA Order. The Wastewater Collection System Management Plan required by this Order should facilitate the continuation and further development of the above actions and plans to assure the continued improvement of the Discharger's collection system.

D. Planned Changes – The Discharger proposes no planned changes to the facility during the next Order term that may impact the development of this Order.

III. APPLICABLE PLANS, POLICIES, AND REGULATIONS

The requirements contained in the proposed Order are based on the requirements and authorities described in this section.

A. Legal Authorities

This Order is issued pursuant to section 402 of the Federal Clean Water Act (CWA) and implementing regulations adopted by the U.S. Environmental Protection Agency (U.S. EPA) and Chapter 5.5, Division 7 of the California Water Code (CWC). It shall serve as a NPDES permit for point source discharges from this facility to surface waters. This Order also serves as Waste Discharge Requirements (WDRs) pursuant to Article 4, Chapter 4 of the CWC for discharges that are not subject to regulation under CWA section 402.

B. California Environmental Quality Act (CEQA)

This action to adopt an NPDES permit is exempt from the provisions of the California Environmental Quality Act (Public Resources Code Section 21100, et seq.) in accordance with Section 13389 of the CWC.

C. State and Federal Regulations, Policies, and Plans

1. Water Quality Control Plans. In 1994, the Central Coast Water Board adopted a Water Quality Control Plan for the Central Coast Region (hereinafter Basin Plan) that designates beneficial uses, establishes water quality objectives, and contains implementation programs and policies to achieve those objectives for all waters addressed through the plan. In addition, State Water Resources Control Board (State Water Board) Resolution No. 88-63 requires that, with certain exceptions, the Central Coast Water Board assign the municipal and domestic supply use to water bodies that do not have beneficial uses listed in the Basin Plan.

The State Water Board revised the Water Quality Control Plan, Ocean Waters of California (Ocean Plan) on December 3, 2001, and updates it periodically. The Ocean Plan contains water quality objectives and other requirements governing discharges to the Pacific Ocean.

Beneficial uses applicable to the Pacific Ocean are as follows:

Discharge Point	Receiving Water Name	Beneficial Use(s)
001	Pacific Ocean	Existing:
		Water contact recreation (REC-1);
		non-contact water recreation (REC-2);
		industrial service supply (IND);
		navigation (NAV);
		marine habitat (MAR);
		shellfish harvesting (SHELL);
		commercial and sport fishing (COMM);
		rare, threatened, or endangered species (RARE);
,		wildlife habitat (WILD);
		migration of aquatic organisms (MIGR);
		spawning, reproduction, and/or early development (SPWN).

- 2. Antidegradation Policy. Section 131.12 of 40 CFR requires that State water quality standards include an antidegradation policy consistent with the federal policy. The State Water Board established California's antidegradation policy in State Water Board Resolution No. 68-16, which incorporates the requirements of the federal antidegradation policy. Resolution No. 68-16 requires that existing water quality is maintained unless degradation is justified based on specific findings. The permitted discharge is consistent with the antidegradation provision of 40 CFR §131.12 and State Water Board Resolution No. 68-16.
- 3. Anti-Backsliding Requirements. Sections 402(o)(2) and 303(d)(4) of the CWA and 40 CFR §122.44(l) prohibit backsliding in NPDES permits. These anti-backsliding provisions require that effluent limitations in a reissued permit must be as stringent as those in the previous permit, with some exceptions in which limitations may be relaxed. All effluent limitations in the Order are at least as stringent as the effluent limitations in the previous Order.

4. Monitoring and Reporting Requirements. Section 122.48 of 40 CFR requires that all NPDES permits specify requirements for recording and reporting monitoring results. Sections 13267 and 13383 of the CWC authorize the Regional Water Boards to require technical and monitoring reports. The Monitoring and Reporting Program (MRP) establishes monitoring and reporting requirements to implement federal and State requirements. This MRP is provided in Attachment E.

D. Other Plans, Polices and Regulations

- 1. Stormwater Management. Storm water runoff due to rainfall which falls upon the wastewater treatment facility and which may be exposed to on-site pollutant sources is routed to the facility's headworks for treatment. This permit regulates all storm water discharges at this facility and complies with Federal regulations for storm water management [Title 40, Code of Federal Regulations (CFR), Parts 122, 123, and 124], and therefore this facility is exempt from coverage under the State's Water Quality Order No. 97-03-DWQ, NPDES General Permit for Discharges of Stormwater Associated with Industrial Activities.
- 2. Statewide General Waste Discharge Requirements for Sanitary Sewer Systems (General Permit). The General Permit, Order No. 2006-0003-DWQ, adopted May 2, 2006, applies to publicly owned sanitary sewer systems (collection systems) that are one mile or greater in length. The General Permit requires collection system entities to develop a Sanitary Sewer Management Plan (SSMP). SSMPs are required to include goals; an organizational descritption; legal authority; an operations and maintenance program; design and performance provisions; an overflow emergency response plan; a fats, oils, and greases (FOG) control program; a systems evaluations and capacity assurance program; monitoring, measures, and program modifications; and an SSMP Program audit. Additionally, the General Permit requires the collection system entities to report sanitary sewer overflows (SSOs). Collection system entities are required to report SSOs that are greater than 1,000 gallons. Furthermore, some entities must also report SSOs less than 1,000 gallons discharging to surface waters or storm drains or that threaten public health. Reporting provisions are set forth in the General Permit. Reporting shall occur through the Statewide Online SSO database. Reporting times vary depending on discharge amount and destination.

Carpinteria Sanitary District filed a complete application package to the State Water Board dated July 11, 2006, and obtained full enrollment status on August 18, 2006 (Waste Discharge Identification No. 3 SSO 10245).

IV. RATIONALE FOR EFFLUENT LIMITATIONS AND DISCHARGE SPECIFICATIONS

The CWA requires point source discharges to control the amount of conventional, non-conventional, and toxic pollutants that are discharged into the waters of the United States. The control of pollutants discharged is established through effluent limitations and other requirements in NPDES permits. There are two principal bases for effluent limitations: 40 CFR §122.44(a) requires that permits include applicable technology-based limitations and standards; and 40 CFR §122.44(d) requires that permits include water quality-based effluent limitations to attain and maintain applicable numeric and narrative water quality criteria to protect the beneficial uses of the receiving water. Where numeric water quality objectives have not been established, three options exist to protect water quality: 1) 40 CFR §122.44(d) specifies that WQBELs may be established using U.S. EPA criteria guidance under CWA section 304(a); 2) proposed State criteria or a State policy interpreting narrative criteria supplemented with other relevant information may be used; or 3) an indicator parameter may be established.

A. Discharge Prohibitions – To effectively regulate this waste discharge, including protecting public and environmental health and facilitating compliance monitoring, it is necessary to know the discharge

location and that the discharge is properly treated. Order Section III specifies the authorized discharge location, and prohibits the discharge of untreated wastes to surface waters or conveyances thereto.

B. Technology-Based Effluent Limitations

1. Scope and Authority - Regulations promulgated in 40 CFR §125.3(a)(1) require technology-based effluent limitations for municipal dischargers to be placed in NPDES permits based on Secondary Treatment Standards or Equivalent to Secondary Treatment Standards.

The Federal Water Pollution Control Act Amendments of 1972 (PL 92-500) established the minimum performance requirements for POTWs [defined in Section 304(d)(1)]. Section 301(b)(1)(B) of that Act requires that such treatment works must, as a minimum, meet effluent limitations based on secondary treatment as defined by the U.S. EPA Administrator.

Based on this statutory requirement, U.S. EPA developed secondary treatment regulations, which are specified in 40 CFR 133. These technology-based regulations apply to all municipal wastewater treatment plants and identify the minimum level of effluent quality attainable by secondary treatment in terms of biochemical oxygen demand (BOD₅), total suspended solids (TSS), and pH.

2. Applicable Technology-Based Effluent Limitations – Staff applied effluent BOD₅, TSS concentrations and removal efficiencies directly from 40 CFR 133.102. While pH limitations are also provided in 40 CFR, staff used water quality based effluent limits from the Ocean Plan. Please see Fact Sheet Section C.4 for more detail regarding pH effluent limits.

Where applicable, the above technology-based limits are also expressed in terms of mass loading, with units of pounds/day. 40 CFR 122.45(f)(2) provides that, "Pollutants limited in terms of mass additionally may be limited in terms of other units of measurement, and the permit shall require the Discharger to comply with both limitations."

Ocean Plan Section III.C.3.j states that, "Discharge requirements shall also specify effluent limitations in terms of mass emission rate limits utilizing [Ocean Plan Equation No. 3]."

The preceding Permit also contained mass loading limits, so including them in the renewed Permit is consistent with anti-backsliding requirements.

Staff calculated mass loading limits using the following equation (based on Equation No. 3 of the 2001 Ocean Plan):

mass loading in lbs/day = $8.34 \times Ce \times Q$

where:

Ce = the effluent concentration limit, in mg/L;

Q = the flow rate observed over the concentration limit's period (e.g., daily, weekly/7-day, monthly/30-day), in millions of gallons per day (MGD), and;

The conversion factor of 8.34 has units of [(lbs/Million Gallons) / (mg/L)].

For example, the effluent BOD₅ 30-day average concentration limit is 30 mg/L (Ce). Using the permitted flow rate of 2.5 MGD and the conversion factor 8.34:

 BOD_5 effluent mass loading = 8.34 x 30 x 2.5

 BOD_5 effluent mass loading = 625.50 lbs/day

Because the significant figures are limited to two by the concentration and flow rate, the calculated mass loading is rounded to 630 lbs/day. Staff followed this rounding convention for all calculated effluent limits in the Permit.

Staff established the maximum daily effluent limits for BOD₅ and TSS based on Best Professional Judgement in previous permits. In accordance with anti-backsliding provisions, staff recommends maintaining these limits.

Summary of Technology-based Effluent Limitations
Discharge Point 001

Davamestan	TT!4	Effluent Limitations		
Parameter	Units	30-day Average	7-day Average	Maximum Daily
Biochemical Oxygen	mg/L	30	45	90
Demand, 5-day	% removal	Not less than 85%	N/A	N/A
(BOD ₅)	lbs/day	630	940	1,900
T . 10 1 1	mg/L	30	45	90
Total Suspended Solids (TSS)	% removal	Not less than 85%	N/A	N/A
50Hd8 (155)	lbs/day	630	940	1,900

C. Water Quality-Based Effluent Limitations (WQBELs)

1. Scope and Authority

The Ocean Plan is applicable, in its entirety, to point source discharges to the ocean (2001 Ocean Plan, *Introduction*, C.1). Ocean Plan Section III.C.3 establishes that water quality-based effluent limitations (WQBELs) for water quality objectives listed in Ocean Plan Table B, with the exception of acute toxicity and radioactivity, shall be determined using Ocean Plan Equation No. 1. Staff discusses the use of Equation No. 1 in the next section of this Fact Sheet.

As specified in 40 CFR §122.44(d)(1)(i), permits are required to include WQBELs for pollutants (including toxicity) that are or may be discharged at levels that cause, have reasonable potential to cause, or contribute to an excursion above any state water quality standard. The process for determining reasonable potential and calculating WQBELs when necessary is intended to protect the designated uses of the receiving water as specified in the Basin Plan, and achieve applicable water quality objectives and criteria that are contained in other state plans and policies. Staff may conduct statistical or non-statistical reasonable potential analyses to determine the need for WQBELs.

2. Applicable Beneficial Uses and Water Quality Criteria and Objectives

Applicable beneficial uses are discussed on Permit Section II, Finding H, or Fact Sheet Section III.C.1.

Ocean Plan and Basin Plan numeric and narrative water quality criteria and objectives apply to the discharge. Narrative criteria are transcribed in the permit and include footnotes to indicate their source.

The discharge must meet Ocean Plan requirements outside a "zone of initial dilution" (dilution zone) around the outfall diffuser. The Ocean Plan defines the dilution zone as the region in which the rapid, initial mixing occurs.

Computer models are employed to estimate the minimum initial dilution ratio (dilution ratio) of seawater to effluent achieved during the initial mixing phase in the dilution zone. The dilution ratio is used to determine the maximum concentrations of the specified Ocean Plan constituents allowed in the wastewater before it is discharged. The proposed Order applies a dilution ratio of 93:1 to the discharge to determine effluent limitations derived from Ocean Plan water quality objectives.

3. Determining the Need for WQBELs

During the July 14, 2000 Central Coast Water Board public hearing for the adoption of Order No. 00-001, the Board rejected the use of limited data sets to statistically determine reasonable potential for municipal dischargers. The Central Coast Water Board found that the pollutant loading to publicly owned, domestic wastewater treatment facilities varies greatly, and potential always exists for pollutants to be discharged at a level that may cause, have reasonable potential to cause, or contribute to an excursion above effluent limitations (and therefore above state water quality objectives/standards). Intermittent disposal of household pesticides, detergents, and other toxics may not be captured by infrequent monitoring (and thus not be accounted for in the statistical reasonable potential analysis), but may cause, have reasonable potential to cause, or contribute to an excursion above effluent limitations. The Central Coast Water Board retained the entirety of the effluent limits based on Ocean Plan Table B, as contained in Order No. 94-95.

This rationale and approach was documented in staff's report to the Central Coast Water Board on February 1, 2002 (Agenda Item No. 22).

The Discharger continues to collect, treat, and dispose of domestic/municipal wastewater. Based on the inherent variability of such wastewater, as discussed above, staff continues to recommend findings of reasonable potential and the application of effluent limits according to the entirety of Ocean Plan Table B.

4. WQBEL Calculations

Ocean Plan Section III.B, Table A establishes POTW effluent limitations for Grease and Oil, Suspended Solids, Settleable Solids, Turbidity, and pH. Staff did not use the Ocean Plan Suspended Solids limit because it is not as stringent as the technology-based limits in 40 CFR 133.102 or Order No. 00-001 (the preceding Permit). Staff applied the Ocean Plan's pH limit because, although equal to 40 CFR in range (6 to 9), it lacks the conditional applicability of 40 CFR and is therefore the more stringent standard. The Ocean Plan's effluent pH limit is also equal to the preceding Order, so applying this standard is consistent with anti-backsliding requirements.

Ocean Plan Section III.C.3 establishes that water quality-based concentration effluent limitations (WQBELs) for water quality objectives listed in Ocean Plan Table B, with the exception of acute toxicity and radioactivity, shall be determined using Ocean Plan Equation No. 1, as follows:

$$Ce = Co + Dm (Co - Cs)$$

where:

Ce = the effluent concentration limit, in ug/L

Co = the concentration (water quality objective) to be met at the completion of initial dilution, in ug/L

Cs = background seawater concentration (see table below), in ug/L

Dm = minimum probable initial dilution expressed as parts seawater per part wastewater. The minimum probable initial dilution applying to the discharger 93:1, therefore <math>Dm = 93.

BACKGROUND SEAWATER CON	CENTRATIONS (CS
Waste Constituent	Cs (ug/L)
Arsenic	3.
Copper	2.
Mercury	0.0005
Silver	0.16
Zinc	8.

Where applicable, water quality-based limits are also expressed in terms of mass loading, with units of pounds/day. 40 CFR 122.45(f)(2) provides that, "Pollutants limited in terms of mass additionally may be limited in terms of other units of measurement, and the permit shall require the Discharger to comply with both limitations."

Ocean Plan Section III.C.3.j states that, "Discharge requirements shall also specify effluent limitations in terms of mass emission rate limits utilizing [Ocean Plan Equation No. 3]." Staff calculated maximum allowable mass-based effluent limits, where the mass loading in pounds per day = $8.34 \times Ce \times Q$.

where:

Ce = the effluent concentration limit, in mg/L;

Q = the flow rate observed over the concentration limit's period (e.g., daily, weekly/7-day, monthly/30-day), in millions of gallons per day (MGD), and;

The conversion factor of 8.34 has units of [(lbs/Million Gallons) / (mg/L)].

Example Calculation of WQBEL Concentration (Using Arsenic as an example):

From Ocean Plan Table B:

Co (the daily maximum water quality objective for Arsenic) = 32 ug/L;

Cs (according to the table of background seawater concentrations for Arsenic) = 3 ug/L, and;

Dm (the minimum probable initial dilution) = 93.

Therefore:

The calculated daily maximum WQBEL for Arsenic (Ce) = 32 + 93(32 - 3), or Ce = 2,729 ug/L, or 2.7 mg/L using two significant figures.

Example Calculation of WQBEL Maximum Allowable Mass Loading (Using the Arsenic effluent limits calculated above as an example):

CARPINTERIA SANITARY DISTRICT CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT ORDER NO. R3-2005-0110 NPDES NO. CA0047364

Q (the maximum permitted flow) = 2.5 million gallons per day.

Ce = 2.729 mg/L

Therefore:

The mass loading limit for Arsenic = $8.34 \times 2.729 \times 2.5 = \frac{57 \text{ lbs/day}}{1000 \text{ lbs/day}}$, using two significant figures.

Summary of Water Quality-Based Effluent Limitations Discharge Point 001

Effluent Limitations Derived from Ocean Plan Table A

Donameter	Units	Effluent Limitations			
Parameter		30-day Average	7-day Average	Maximum Daily	
pН	pH units	6 to 9 at all times			
0 001	mg/L	-25	40	75	
Grease & Oil	lbs/day	520	830	1,600	
Settleable Solids	mL/L	1.0	1.5	3.0	
Turbidity	NTU	75	100	225	

Effluent Limitations for the Protection of Marine Aquatic Life - Derived from Ocean Plan Table B

	Units of	6-Month	Daily	Instantaneous
	Measurement	Median	Maximum	Maximum
Arsenic	ug/L	470	2,700	7,200
	lbs/Day	9.9	57	150
Cadmium	ug/L	94	380	940
	lbs/Day	2.0	7.8	20
Chromium (Hexavalent)	ug/L	190	750	1,900
·	lbs/Day	3.9	16	39
Copper	ug/L	96	940	2,600
	lbs/Day	2.0	20	55
Lead	ug/L	. 190	750	1,900
	lbs/Day	3.9	16	39
Mercury	ug/L	3.7	15	38
	lbs/Day	0.77	0.31	0.78
Nickel	ug/L	470	1,900	4,700
	lbs/Day	9.8	39	98
Selenium	ug/L	1,400	5,600	14,000
	lbs/Day	29	120	290
Silver	ug/L	51	250	640
	lbs/Day	1.1	5.2	13
Zinc	ug/L	1,100	6,800	18,000
	lbs/Day	24	140	380
Cyanide	ug/L	94	380	940
	lbs/Day	2.0	7.8	20
Total Chlorine Residual	ug/L	190	750	5,600
	lbs/Day	3.9	16	120
Ammonia (expressed as N)	ug/L	56,000	230,000	560,000
	lbs/Day	1,200	4,700	12,000
Acute Toxicity	TUa		3.1	
Chronic Toxicity	TUc		94	====
Phenolic Compounds (non- chlorinated)	ug/L	2,800	11,000	28,000
	lbs/Day	59	240	590

Effluent Limitations for the Protection of Marine Aquatic Life - Derived from Ocean Plan Table B

	Units of Measurement	6-Month Median	Daily Maximum	Instantaneous Maximum		
Chlorinated Phenolics	ug/L	94	380	940		
	lbs/Day	2.0	7.8	20		
Endosulfan	ug/L	0.85	1.7	2.5		
	lbs/Day	0.018	0.035	0.0530		
Endrin	ug/L	0.19	0.38	0.56		
	lbs/Day	0.0039	0.0078	0.012		
HCH	ug/L	0.38	0.75	1.1		
	lbs/Day	0.0078	0.016	0.024		
Radioactivity	Subchapter 4, Groof Regulations. future changes to	Not to exceed limits specified in Title 17, Division 1, Chapter 5, Subchapter 4, Group 3, Article 3, Section 30253 of the California Code of Regulations. Reference to Section 30253 is prospective, including future changes to any incorporated provisions of federal law, as the changes take effect.				

Effluent Limitations for the Protection Of Human Health – Non-Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average
Acrolein	ug/L	2.1×10^4
	lbs/Day	430
Antimony	ug/L	1.1 x 10 ⁵
	lbs/Day	2,400
Bis(2-chloroethoxy) methane	ug/L	410
	lbs/Day	8.6
Bis(2-chloroisopropyl) ether	ug/L	1.1×10^5
	lbs/Day	2,400
Chlorobenzene	ug/L	5.4 x 10 ⁴
	lbs/Day	1,100
Chromium (III)	ug/L	1.8×10^7
	lbs/Day	370,000
di-n-butyl phthalate	ug/L	3.3×10^5
	lbs/Day	6,900
Dichlorobenzenes	ug/L	4.8×10^5
	lbs/Day	10,000
Diethyl phthalate	ug/L	3.1×10^6
	lbs/Day	65,000
Dimethyl phthalate	ug/L	7.7×10^7
	lbs/Day	1.6×10^6
4,6-dinitro-2-methylphenol	ug/L	2.1×10^4
	lbs/Day	430

Effluent Limitations for the Protection Of Human Health – Non-Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average
2,4-dinitrophenol	ug/L	380
•	lbs/Day	7.8
Ethylbenzene	ug/L	3.8×10^5
	lbs/Day	8.0×10^3
Fluoranthene	ug/L	1.4×10^3
	lbs/Day	29
Hexachlorocyclopentadiene	ug/L	5.4×10^3
	lbs/Day	110
Nitrobenzene	ug/L	460
	lbs/Day	9.6
Thallium	ug/L	190
	lbs/Day	3.9
Toluene	ug/L	8.0×10^6
	lbs/Day	1.7×10^{5}
Tributyltin	ug/L	0.13
	lbs/Day	0.0027
1,1,1-trichloroethane	ug/L	5.1×10^7
	lbs/Day	1.1 x 10 ⁶

Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average
Acrylonitrile	ug/L	9.4
	lbs/Day	0.20
Aldrin	ug/L	2.1×10^{-3}
	lbs/Day	4.3 x 10 ⁻⁵
Benzene	ug/L	550
	lbs/Day	12
Benzidine	ug/L	6.5 x 10 ⁻³
	lbs/Day	1.4×10^{-4}
Beryllium	ug/L	3.1
	lbs/Day	0.065
Bis(2-chloroethyl) ether	ug/L	4.2
	lbs/Day	0.088
Bis(2-ethylhexyl) phthalate	ug/L	330
	lbs/Day	6.9
Carbon tetrachloride	ug/L	. 85
	lbs/Day	1.8
Chlordane	ug/L	2.2 x 10 ⁻³
	lbs/Day	4.5 x 10 ⁻⁵
Chlorodibromomethane	ug/L	810
·	lbs/Day	17

Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average
Chloroform	ug/L	1.2 x 10 ⁴
	lbs/Day	260
DDT	ug/L	0.016
	lbs/Day	3.3 x 10 ⁻⁴
1,4-dichlorobenzene	ug/L	1.7×10^3
	lbs/Day	.35
3,3'-dichlorobenzidine	ug/L	0.76
	lbs/Day	0.016
1,2-dichloroethane	ug/L	2.6×10^3
	lbs/Day	55
1,1-dichloroethylene	ug/L	85
	lbs/Day	1.8
Dichlorobromomethane	ug/L	580
	lbs/Day	12
Dichloromethane	ug/L	4.2×10^4
	lbs/Day	880
1,3-dichloropropene	ug/L	840
	lbs/Day	17
Dieldrin	ug/L	3.8 x 10 ⁻³
	lbs/Day	7.8 x 10 ⁻⁵
2,4-dinitrotoluene	ug/L	240
	lbs/Day	5.1
1,2-diphenylhydrazine	ug/L	15
	lbs/Day	0.31
Halomethanes	ug/L	1.2×10^4
	lbs/Day	260
Heptachlor	ug/L	4.7×10^{-3}
	lbs/Day	9.8 x 10 ⁻⁵
Heptachlor epoxide	ug/L	1.9 x 10 ⁻³
*	lbs/Day	3.9 x 10 ⁻⁵
Hexachlorobenzene	ug/L	0.020
	lbs/Day	4.1 x 10 ⁻⁴
Hexachlorobutadiene	ug/L	1.3×10^3
	lbs/Day	27
Hexachloroethane	ug/L	240
	lbs/Day	4.9
Isophorone	ug/L	6.9×10^4
	lbs/Day	1.4×10^3
N-nitrosodimethylamine	ug/L	. 690
,	lbs/Day	14
N-nitrosodi-N-propylamine	ug/L	36
	lbs/Day	0.74
N-nitrosodiphenylamine	ug/L	240
	lbs/Day	4.9
	100/17ay	111/

Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average
PAHs-	ug/L	0.83
	lbs/Day	0.017
PCBs	ug/L	1.8 x 10 ⁻³
	lbs/Day	3.7×10^{-5}
TCDD equivalents	ug/L	3.7×10^{-7}
	lbs/Day	, 7.6 x 10 ⁻⁹
1,1,2,2-tetrachloroethane	ug/L	220
	lbs/Day	4.5
Tetrachloroethylene	ug/L	190
	lbs/Day	3.9
Toxaphene	ug/L	0.020
	lbs/Day	4.1 x 10 ⁻⁴
Trichloroethylene	ug/L	2.5×10^3
	lbs/Day	53
1,1,2-trichloroethane	ug/L	880
	lbs/Day	18
2,4,6-trichlorophenol	ug/L	27
	lbs/Day	0.57
Vinyl chloride	ug/L	3.4×10^3
	lbs/Day	70

5. Whole Effluent Toxicity (WET)

Ocean Plan Table B includes daily maximum water quality objectives for acute and chronic toxicity.

Acute Toxicity

According to Ocean Plan Section III.C.3.b, the mixing zone for the acute toxicity objective shall be ten percent (10%) of the distance from the edge of the outfall structure to the edge of the chronic mixing zone (zone of initial dilution). There is no vertical limitation on this zone. The effluent limitation for the acute toxicity objective listed in Ocean Plan Table B shall be determined through the use of the following equation:

$$Ce = Ca + (0.1) Dm (Ca)$$

where:

Ca = the concentration (water quality objective) to be met at the edge of the acute mixing zone, and;

Dm = minimum probable initial dilution expressed as parts seawater per part wastewater (This equation applies only when <math>Dm > 24).

so,

Ca = 0.3 acute toxicity units, or TUa, and;

CARPINTERIA SANITARY DISTRICT
CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT
ORDER NO. R3-2005-0110
NPDES NO. CA0047364

Dm = 93

Therefore,

 $Ce = 0.3 + [0.1 \times 93 \times 0.3]$

Ce = 3.1 TUa (this value is also shown in the above tables in Fact Sheet Section C.4)

Chronic Toxicity

Ocean Plan Section III.C.3.c(4) states that, "Dischargers shall conduct chronic toxicity testing if the minimum initial dilution of the effluent falls below 100:1 at the edge of the mixing zone." The Discharger's minimum initial dilution is 93:1.

The daily maximum chronic toxicity effluent limit is based on the Ocean Plan Table B chronic toxicity water quality objective. The effluent limit is calculated as discussed above in Fact Sheet Section C.4.

Toxicity Identification / Reduction Evaluations

Ocean Plan Section III.C.9 states:

If a discharge consistently exceeds an effluent limitation based on a toxicity objective in Table B, a toxicity reduction evaluation (TRE) is required. The TRE shall include all reasonable steps to identify the source of toxicity. Once the source(s) of toxicity is identified, the discharger shall take all reasonable steps necessary to reduce toxicity to the required level. The following shall be incorporated into waste discharge requirements: (1) a requirement to conduct a TRE if the discharge consistently exceeds its toxicity effluent limitation, and (2) a provision requiring a discharger to take all reasonable steps to reduce toxicity once the source of toxicity is identified.

Based on the above, where toxicity monitoring shows a violation of the permit's toxicity limitations, the Discharger shall increase the frequency of toxicity testing to once per week and submit the data within 15 days of the conclusion of each weekly test to the Central Coast Water Board's Executive Officer. The Executive Officer will determine whether to initiate enforcement action or whether the Discharger will be required to implement a Toxicity Reduction Evaluation (TRE) requirements, which include conducting a Toxicity Identification Evaluation (TIE).

The basis of the TRE shall be EPA's Methods for Aquatic Toxicity Identification Evaluations: Phase I, Toxicity Characterization Procedures, 2nd Edition, 1991b (EPA 600-6-91-003), Methods for Aquatic Toxicity Identification Evaluations: Phase II, Toxicity Identification Procedures for Samples Exhibiting Acute and Chronic Toxicity, 1993a (EPA 600-R-92-080), Methods for Aquatic Toxicity Identification Evaluations: Phase III, Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity, 1993b (EPA 600-R-92-081), and Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants (EPA 833-B-99-002), August 1999, or revised editions.

6. Total Coliform Effluent Limitations

The seven-day median effluent total coliform limitation (23/100 mL) and the maximum total coliform limitation (2,300/100 mL) were established in Order No. 94-95 based on the California

Department of Health Services' Uniform Guidelines for Wastewater Disinfection. This Order maintains these limits.

D. Final Effluent Limitations

Summary of Final Effluent Limitations Discharge Point 001

Effluent Limitations Derived from Ocean Plan Table A

Parameter	Units	30-day Average	7-day Average	Maximum Daily	Basis
Biochemical Oxygen	mg/L	30	45	90	40 CFR 133.102, BPJ and anti-backsliding
Demand, 5-day (BOD ₅)	% removal	Not less than 85%	N/A	N/A	for max. daily 40 CFR 133.102
•	lbs/day	630	940	1,900	40 CFR 122.45(f)(2)
Total Suspended Solids (TSS)	mg/L	30	45	90	40 CFR 133.102, BPJ and anti-backsliding for max. daily
	% removal	Not less than 85%	N/A	N/A	40 CFR 133.102
	lbs/day	630	940	1,900	40 CFR 122.45(f)(2)
pН	pH units	N/A	N/A	N/A	Ocean Plan Table A
Grease & Oil -	mg/L	25	40	75	Ocean Plan Table A
Grease & On	lbs/day	520	830	1,600	40 CFR 122.45(f)(2)
Settleable Solids	mL/L	1.0	1.5	3.0	Ocean Plan Table A
Turbidity	NTU	75	100	225	Ocean Plan Table A

Effluent Limitations for the Protection of Marine Aquatic Life – Derived from Ocean Plan Table B

Constituent	Units of Measurement	6-Month Median	Daily Maximum	Instantaneous Maximum	Basis
Arsenic	ug/L	470	2,700	7,200	Ocean Plan Table B
	lbs/Day	9.9	57	150	40 CFR 122.45(f)(2), Ocean
			4		Plan Section III.C.3.j
Cadmium	ug/L	94	380	940	Ocean Plan Table B
	lbs/Day	2.0	7.8	20	40 CFR 122.45(f)(2), Ocean
					Plan Section III.C.3.j
Chromium (Hexavalent)	ug/L	190	750	1,900	Ocean Plan Table B
	lbs/Day	3.9	16	39	40 CFR 122.45(f)(2), Ocean
				•	Plan Section III.C.3.j
Copper	ug/L	96	940	2,600	Ocean Plan Table B
	lbs/Day	2.0	20	55	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j

Effluent Limitations for the Protection of Marine Aquatic Life – Derived from Ocean Plan Table B

Constituent	Units of Measurement	6-Month Median	Daily Maximum	Instantaneous Maximum	Basis
Lead	ug/L	190	750	1,900	Ocean Plan Table B
	lbs/Day	3.9	16	39	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Mercury	ug/L	3.7	15	38	Ocean Plan Table B
	lbs/Day	0.77	0.31	0.78	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Nickel	ug/L	470	1,900	4,700	Ocean Plan Table B
	lbs/Day	9.8	39	98	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Selenium	ug/L	1,400	5,600	14,000	Ocean Plan Table B
	lbs/Day	29	120	290	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Silver	ug/L	51	250	640	Ocean Plan Table B
	lbs/Day	1.1	5.2	13	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Zinc	ug/L	1,100	6,800	18,000	Ocean Plan Table B
	lbs/Day	24	140	380	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Cyanide	ug/L	94	380	940	Ocean Plan Table B
	lbs/Day	2.0	7.8	20	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Total Chlorine Residual	ug/L	190	750	5,600	Ocean Plan Table B
	lbs/Day	3.9	16	120	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Ammonia (expressed as N)	ug/L	56,000	230,000	560,000	Ocean Plan Table B
	lbs/Day	1,200	4,700	12,000	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Acute Toxicity	TUa		3.1		Ocean Plan Table B
Chronic Toxicity	TUc		94		Ocean Plan Table B
Phenolic Compounds (non- chlorinated)	ug/L	2,800	11,000	28,000	Ocean Plan Table B
	lbs/Day	59	240	590	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Chlorinated Phenolics	ug/L	94	380	940	Ocean Plan Table B
	lbs/Day	2.0	7.8	20	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j

Effluent Limitations for the Protection of Marine Aquatic Life – Derived from Ocean Plan Table B

Constituent	Units of Measurement	6-Month Median	Daily Maximum	Instantaneous Maximum	Basis
Endosulfan	ug/L	0.85	1.7	2.5	Ocean Plan Table B
	lbs/Day	0.018	0.035	0.0530	40 CFR 122.45(f)(2), Ocean
					Plan Section III.C.3.j
Endrin	ug/L	0.19	0.38	0.56	Ocean Plan Table B
	lbs/Day	0.0039	0.0078	0.012	40 CFR 122.45(f)(2), Ocean
	<u></u>				Plan Section III.C.3.j
HCH	ug/L	0.38	0.75	1.1	Ocean Plan Table B
	lbs/Day	0.0078	0.016	0.024	40 CFR 122.45(f)(2), Ocean
					Plan Section III.C.3.j
Radioactivity	Not to exceed	limits speci	fied in Title	17, Division 1,	Ocean Plan Table B
	Chapter 5, Subcl	hapter 4, Gre	oup 3, Article	3, Section 30253	
	of the California Code of Regulations. Reference to Section				
	30253 is prospective, including future changes to any				
	incorporated provisions of federal law, as the changes take				
	effect.		,		

Effluent Limitations for the Protection Of Human Health – Non-Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of	30-day average	Basis
	Measurement		a de la companya de l
Acrolein	ug/L	2.1×10^4	Ocean Plan Table B
	lbs/Day	430	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Antimony	ug/L	1.1×10^{5}	Ocean Plan Table B
	lbs/Day	2,400	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Bis(2-chloroethoxy) methane	ug/L	410	Ocean Plan Table B
	lbs/Day	8.6	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Bis(2-chloroisopropyl) ether	ug/L	1.1 x 10 ⁵	Ocean Plan Table B
	lbs/Day	2,400	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Chlorobenzene	ug/L	5.4×10^4	Ocean Plan Table B
	lbs/Day	1,100	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Chromium (III)	ug/L	1.8×10^{7}	Ocean Plan Table B
	lbs/Day	370,000	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
di-n-butyl phthalate	ug/L	3.3×10^{5}	Ocean Plan Table B
	lbs/Day	6,900	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j

Effluent Limitations for the Protection Of Human Health – Non-Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average	Basis
Dichlorobenzenes	ug/L	4.8×10^{5}	Ocean Plan Table B
	lbs/Day	10,000	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Diethyl phthalate	ug/L	3.1×10^6	Ocean Plan Table B
	lbs/Day	65,000	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Dimethyl phthalate	ug/L	7.7×10^{7}	Ocean Plan Table B
	lbs/Day	1.6 x 10 ⁶	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
4,6-dinitro-2-methylphenol	ug/L	2.1×10^4	Ocean Plan Table B
	lbs/Day	430	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
2,4-dinitrophenol	ug/L	380	Ocean Plan Table B
	lbs/Day	7.8	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Ethylbenzene	ug/L	3.8×10^{5}	Ocean Plan Table B
	lbs/Day	8.0×10^3	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Fluoranthene	ug/L	1.4×10^3	Ocean Plan Table B
	lbs/Day	29	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Hexachlorocyclopentadiene	ug/L	5.4×10^3	Ocean Plan Table B
	lbs/Day	110	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Nitrobenzene	ug/L	460	Ocean Plan Table B
	lbs/Day	9.6	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Thallium	ug/L	190	Ocean Plan Table B
	lbs/Day	3.9	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Toluene	ug/L	8.0×10^6	Ocean Plan Table B
	lbs/Day	1.7×10^5	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
Tributyltin	ug/L	0.13	Ocean Plan Table B
· .	lbs/Day	0.0027	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j
1,1,1-trichloroethane	ug/L	5.1×10^7	Ocean Plan Table B
	lbs/Day	1.1 x 10 ⁶	40 CFR 122.45(f)(2), Ocean Plan Section III.C.3.j

Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average	Bass
Acrylonitrile	ug/L	9.4	Ocean Plan Table B
•	lbs/Day	0.20	40 CFR 122.45(f)(2), Ocean
	·		Plan Section III.C.3.j
Aldrin	ug/L	2.1 x 10 ⁻³	Ocean Plan Table B
	lbs/Day	4.3 x 10 ⁻⁵	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
Benzene	ug/L	550	Ocean Plan Table B
	lbs/Day	12	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
Benzidine	ug/L	6.5 x 10 ⁻³	Ocean Plan Table B
	lbs/Day	1.4 x 10 ⁻⁴	40 CFR 122.45(f)(2), Ocean
·	•		Plan Section III.C.3.j
Beryllium	ug/L	3.1	Ocean Plan Table B
	lbs/Day	0.065	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Bis(2-chloroethyl) ether	ug/L	4.2	Ocean Plan Table B
	lbs/Day	0.088	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
Bis(2-ethylhexyl) phthalate	ug/L	330	Ocean Plan Table B
• • • • • • • • • • • • • • • • • • • •	lbs/Day	6.9	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
Carbon tetrachloride	ug/L	85	Ocean Plan Table B
	lbs/Day	1.8	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
Chlordane	ug/L	2.2 x 10 ⁻³	Ocean Plan Table B
	lbs/Day	4.5 x 10 ⁻⁵	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Chlorodibromomethane	ug/L	810	Ocean Plan Table B
	lbs/Day	17	40 CFR 122.45(f)(2), Ocean
	-		Plan Section III.C.3.j
Chloroform	ug/L	1.2×10^4	Ocean Plan Table B
	lbs/Day	260	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
DDT	ug/L	0.016	Ocean Plan Table B
	lbs/Day	3.3 x 10 ⁻⁴	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
1,4-dichlorobenzene	ug/L	1.7×10^3	Ocean Plan Table B
	lbs/Day	35	40 CFR 122.45(f)(2), Ocean
	_		Plan Section III.C.3.j
3,3'-dichlorobenzidine	ug/L	0.76	Ocean Plan Table B
	lbs/Day	0.016	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
1,2-dichloroethane	ug/L	2.6×10^3	Ocean Plan Table B
	lbs/Day	55	40 CFR 122.45(f)(2), Ocean
·			Plan Section III.C.3.j

Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average	Basis
1,1-dichloroethylene	ug/L	85	Ocean Plan Table B
	lbs/Day	1.8	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Dichlorobromomethane	ug/L	580	Ocean Plan Table B
	lbs/Day	12	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Dichloromethane	ug/L	4.2×10^4	Ocean Plan Table B
	lbs/Day	880	40 CFR 122.45(f)(2), Ocean
		·	Plan Section III.C.3.j
1,3-dichloropropene	ug/L	840	Ocean Plan Table B
	lbs/Day	17	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Dieldrin	ug/L	3.8×10^{-3}	Ocean Plan Table B
	lbs/Day	7.8×10^{-5}	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
2,4-dinitrotoluene	ug/L	240	Ocean Plan Table B
	lbs/Day	5.1	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
1,2-diphenylhydrazine	ug/L	15	Ocean Plan Table B
	lbs/Day	0.31	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Halomethanes	ug/L	1.2×10^4	Ocean Plan Table B
	lbs/Day	260	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Heptachlor	ug/L	4.7×10^{-3}	Ocean Plan Table B
	lbs/Day	9.8 x 10 ⁻⁵	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Heptachlor epoxide	ug/L	1.9×10^{-3}	Ocean Plan Table B
	lbs/Day	3.9 x 10 ⁻⁵	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Hexachlorobenzene	ug/L	0.020	Ocean Plan Table B
	lbs/Day	4.1 x 10 ⁻⁴	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Hexachlorobutadiene	ug/L	1.3×10^3	Ocean Plan Table B
	lbs/Day	27	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Hexachloroethane	ug/L	240	Ocean Plan Table B
	lbs/Day	4.9	40 CFR 122.45(f)(2), Ocean
		4	Plan Section III.C.3.j
Isophorone	ug/L	6.9×10^4	Ocean Plan Table B
	lbs/Day	1.4×10^3	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j

Effluent Limitations for the Protection Of Human Health – Carcinogens – Derived from Ocean Plan Table B

Chemical	Units of Measurement	30-day average	Basis
N-nitrosodimethylamine	ug/L	690	Ocean Plan Table B
	lbs/Day	14	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
N-nitrosodi-N-propylamine	ug/L	36	Ocean Plan Table B
	lbs/Day	0.74	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
N-nitrosodiphenylamine	ug/L	240	Ocean Plan Table B
	lbs/Day	4.9	40 CFR 122.45(f)(2), Ocean
	-		Plan Section III.C.3.j
PAHs	ug/L	0.83	Ocean Plan Table B
	lbs/Day	0.017	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
PCBs	ug/L	1.8 x 10 ⁻³	Ocean Plan Table B
	lbs/Day	3.7 x 10 ⁻⁵	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
TCDD equivalents	ug/L	3.7 x 10 ⁻⁷	Ocean Plan Table B
•	lbs/Day	7.6 x 10 ⁻⁹	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
1,1,2,2-tetrachloroethane	ug/L	220	Ocean Plan Table B
	lbs/Day	4.5	40 CFR 122.45(f)(2), Ocean
	·		Plan Section III.C.3.j
Tetrachloroethylene	ug/L	190	Ocean Plan Table B
	lbs/Day	3.9	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j
Toxaphene	ug/L	0.020	Ocean Plan Table B
<u> </u>	lbs/Day	4.1 x 10 ⁻⁴	40 CFR 122.45(f)(2), Ocean
	Ť		Plan Section III.C.3.j
Trichloroethylene	ug/L	2.5×10^3	Ocean Plan Table B
	lbs/Day	53	40 CFR 122.45(f)(2), Ocean
	•		Plan Section III.C.3.j
1,1,2-trichloroethane	ug/L	880	Ocean Plan Table B
	lbs/Day	18	40 CFR 122.45(f)(2), Ocean
	·		Plan Section III.C.3.j
2,4,6-trichlorophenol	ug/L	27	Ocean Plan Table B
	lbs/Day	0.57	40 CFR 122.45(f)(2), Ocean
	*		Plan Section III.C.3.j
Vinyl chloride	ug/L	3.4×10^3	Ocean Plan Table B
	lbs/Day	70	40 CFR 122.45(f)(2), Ocean
			Plan Section III.C.3.j

The maximum daily acute toxicity limit shown above (3.1 TUa) is higher than the limit in Order No. 00-001 (2.5 TUa) because of the State Water Board's modification of the Ocean Plan in 2001. With regard to anti-backsliding, according to the State Water Board's Final Functional Equivalent Document – Amendment of the Water Quality Control Plan for Ocean Waters of California (California Ocean Plan), September 1, 2000, page 27, Comment/Response No. 1.34,

The Clean Water Act's antibacksliding provisions would not apply. The relevant provisions are in Section 402(o)(1) of the Clean Water Act (Act). The section prohibits, with certain exceptions, a permit issuer from replacing existing permit limits with less stringent limits in two types of cases. First, technology-based limits based on best professional judgment cannot be revised to reflect subsequently EPA-promulgated effluent limitation guidelines which are less stringent. Second, the Act prohibits backsliding from water quality-based effluent limitations. In this case, the SWRCB is proposing to replace technology-based acute toxicity limitations based on best professional judgment with, assuming reasonable potential, water quality-based limits. This approach is not subject to antibacksliding restrictions.

Other minor increases and decreases in effluent limits are due to staff's use of two significant figures in calculations, based on the Ocean Plan water quality objectives.

V. RATIONALE FOR RECEIVING WATER LIMITATIONS

A. Surface Water

Staff transcribed receiving water limitations from the Ocean Plan Section II, Basin Plan Chapter III, and California Code of Regulations, Title 17, Sections 7957 and 7958. Staff used footnotes within the permit to indicate the source of each limit.

The California Code of Regulations (CCR), Title 17, Section 7958, establishes the minimum protective bacteriological standards for waters adjacent to public beaches and public water-contact sports areas. The State Water Board amended the Ocean Plan on January 20, 2005 to make the bacteriological standards identical to Title 17, Section 7958. EPA approval of the amendment is pending. However, on December 16, 2004, EPA promulgated coastal recreation standards that include the same requirements. Staff's review of the 2001 Ocean Plan standards and 17 CCR resulted in the addition of the receiving water enterococcus limits. Total and fecal coliform receiving water limitations were found to be practically equivalent between the two sets of standards.

Receiving water quality is a result of many factors, some unrelated to the discharge, such as non point source wastewater. This Order considers these factors and is designed to minimize the influence of the discharge to the receiving water. Compliance with Receiving Water Limitations shall be determined from samples collected at stations representative of the area of potential influence but outside the zone of initial dilution.

VI. RATIONALE FOR MONITORING AND REPORTING REQUIREMENTS

Section 122.48 of 40 CFR requires all NPDES permits to specify recording and reporting of monitoring results. Sections 13267 and 13383 of the California Water Code authorize the Water Boards to require technical and monitoring reports. The Monitoring and Reporting Program, Attachment E of this Order, establishes monitoring and reporting requirements to implement federal and state requirements. The following provides the rationale for the monitoring and reporting requirements contained in the Monitoring and Reporting Program for this facility.

Ocean Plan Section III.G requires that Regional Boards shall require dischargers to conduct self-monitoring programs and submit reports necessary to determine compliance with the waste discharge requirements, and may require dischargers to contract with agencies or persons acceptable to the Regional Board to provide monitoring reports. Monitoring provisions contained in waste discharge requirements shall be in accordance with the Monitoring Procedures provided in Ocean Plan Appendix III.

The Monitoring and Reporting Program (MRP) is required to: 1) Document short and long term effects of the discharge on receiving waters, sediments, biota, and on beneficial uses of the receiving water; 2) Assess

compliance with the Ocean Plan, and; 3) Determine compliance with National Pollutant Discharge Elimination System (NPDES) terms and conditions.

A. Influent Monitoring

Influent monitoring is intended to: 1) Determine compliance with NPDES permit conditions and water quality standards; 2) Assess treatment plant performance, and; 3) Assess the effectiveness of the pretreatment program or source control ordinances.

B. Effluent Monitoring

1. Intent of Effluent Monitoring – Effluent monitoring is intended to: 1) Determine compliance with NPDES permit conditions and water quality standards; 2) Identify operational problems in order to improve plant performance, and; 3) Provide information on waste characteristics and flows for use in interpreting water quality and biological data.

2. Changes in Monitoring Requirements -

- a. Addition of Fecal Coliform Monitoring Staff added effluent fecal coliform monitoring to the preexisting effluent total coliform monitoring contained in the previous MRP. The Ocean Plan's bacterial water quality objectives are expressed in terms of total and fecal coliforms. Effluent coliform monitoring substitutes for regular receiving water monitoring, so effluent monitoring should provide representative data for both total and fecal coliforms. Receiving water sampling is triggered by the exceedance of the maximum effluent total coliform limit, and includes the analysis of total and fecal coliforms in the receiving water. Effluent fecal coliform data will also provide a basis for comparing effluent and receiving water fecal coliform levels when the Discharger conducts receiving water sampling.
- b. Addition of Monitoring to Evaluate Compliance with Effluent Limits Staff added selenium, endosulfan, endrin, HCH (the sum of alpha, beta, gamma (lindane) and delta isomers of hexachlorocyclohexane), and radioactivity effluent monitoring requirements in MRP Table IV-2. The existing Order No. 00-001 is based on the 1997 version of the Ocean Plan, and included water quality objectives for each of these added parameters. Though the previous Order included effluent limits for each parameter (except radioactivity), it did not include monitoring requirements. Central Coast Water Board staff and State Water Board staff recommend that Orders include monitoring provisions for parameters with effluent limits.

In addition, Appendix III of the Ocean Plan requires at least one complete scan of Ocean Plan Table B parameters annually for discharges in the range of one to ten MGD, which includes this Discharger. These added parameters are part of Ocean Plan Table B, and therefore should be analyzed at least annually.

c. Change in Ocean Plan Table B Sampling Frequency – Staff changed the minimum sampling frequency for constituents in MRP Tables IV-2, IV-3, and IV-4 (representing Ocean Plan Table B parameters) from twice every other year, to once per year. Appendix III of the Ocean Plan requires at least one complete scan of Ocean Plan Table B parameters annually for discharges in the range of one to ten MGD, which includes the Discharger. The Discharger's compliance history does not indicate a need for continued monitoring above the Ocean Plan's minimum requirements.

Effluent sampling frequency for Ocean Plan Table B parameters in MRP No. 00-001 was required once in 2000, and conditionally thereafter in June and December of 2002 and 2004. If the Discharger did not find the constituents in significant quantities in the December 2000 sampling, in

lieu of sampling they were allowed to provide quarterly certification that the constituents were not added to the waste stream. Although this option was available, the Discharger sampled effluent for Ocean Plan Table B parameters every June and December.

Section G.2 of the 2001 Ocean Plan, *Monitoring Program*, contains language apparently allowing such certification. According to the State Water Board, however, the language was not intended for application to municipal waste dischargers such as the District (See the State Water Board's August 2004 Draft Functional Equivalent Document, *Amendment of the Water Quality Control Plan, Ocean Waters of California (California Ocean Plan)*, page 28, Section III.A). In light of this and other inadvertent misapplications of the certification clause throughout the state, State Water Board staff is currently proceeding with an Ocean Plan amendment to eliminate the certification clause. Changes to MRP No. R3-2005-0110 eliminate the certification clause.

Appendix III of the Ocean Plan, *Standard Monitoring Procedures*, establishes minimum effluent sampling requirements for Table B parameters depending on wastewater flow rate. For discharges between one and ten million gallons per day, the minimum monitoring frequency is one complete scan of Table B parameters annually. The Discharger's average daily wastewater flow rate is 1.4 MGD. The Ocean Plan does not specify whether to base monitoring on actual flows or permitted flows, but either basis results in the same minimum sampling frequency for this case.

The monitoring frequencies listed in Ocean Plan Appendix III represent the State Water Board's direction for what constitutes an adequate monitoring program for compliance with Table B water quality objectives or, equivalently, with effluent limitations derived from Table B objectives.

Based on the above, MRP No. R3-2005-0110, Tables IV-2, IV-3, and IV-4 require annual effluent sampling for all Ocean Plan Table B parameters, without the option of providing certification in lieu of monitoring. The timing of sampling is varied each year to represent different months of the year during typically dry-weather conditions.

The proposed sampling will continue to ensure an adequate data set is available before the next permit renewal, and may serve the State Water Board to assess the attainability of new or revised water quality objectives.

- d. Sampling Type Regarding sample type (i.e., grab vs. 24-hour composite), staff added the following language to MRP Section IV, "Where specified in Table IV-2, IV-3, and IV-4, 24-hour composite samples shall be collected when appropriate for the constituent and the applicable approved laboratory analytical methods. The Discharger may otherwise employ grab samples". 24-hour composite samples provide data that are more representative because they are collected over a longer period and can better account for the variability of domestic and municipal wastewater. Wherever feasible for a given parameter, it is therefore desirable to utilize this sample type. Staff recognizes that it is not practical to use 24-hour composite samples for some constituents due to characteristics such as volatility or degradation. The tables list the 24-hour composite sample as the preferred sample type. This above language, however, allows the Discharger to work with its certified laboratory to determine the most appropriate sample type.
- e. Addition of Constituents Introduced in the 2001 Ocean Plan Staff added monitoring requirements for chlorodibromomethane, dichlorobromomethane, heptachlor epoxide, and N-nitrosodi-N-propylamine. These constituents were introduced in the 2001 Ocean Plan.
- f. Addition of Remaining Priority Pollutant Monitoring MRP Table IV-5 lists the priority pollutants which are not included in Ocean Plan Table B, but for which monitoring data is required pursuant to 40 CFR 131.36 (7-1-03 Edition), and EPA Application Form 3510-2A (Rev. 1-99).

U.S. EPA Application Form 3510-2A (Rev. 1-99), which is a required part of the Discharger's Report of Waste Discharge every five years, requires a minimum of three pollutant scans within four and one-half years of the date of the application. The toxic pollutants listed in the application include Ocean Plan Table B parameters as well as other toxic pollutants not listed in the Ocean Plan. 40 CFR 131.36 (July 1, 2003 Edition) contains a similar priority toxic pollutant listing. MRP Table IV-5 lists these remaining priority toxic pollutants and requires annual sampling.

Of the toxic pollutants listed in MRP Table IV-5, all are common to U.S. EPA's application and 40 CFR 131.36, with the following exceptions: 1) Endrin Aldehyde is listed only in 40 CFR, and; 2) P-Chloro-M-Cresol and 4,6-Dinitro-O-Cresol are listed only in U.S. EPA's application.

Annual sampling of these remaining toxic pollutants will assure that a complete pollutant scan is available to meet U.S. EPA's minimum application requirements upon the expiration of Order No. R3-2005-0110.

C. Whole Effluent Toxicity Testing Requirements

In accordance with the Ocean Plan, Appendix III, Standard Monitoring Procedures, compliance monitoring for acute toxicity shall be determined using an EPA approved protocol as provided in 40 CFR PART 136. The presence of acute toxicity will be determined as specified in Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms (EPA-821-R-02-012, or subsequent editions). Acute toxicity monitoring shall be conducted using marine test species instead of freshwater species when measuring compliance. The Discharger shall use one of the approved marine test species identified in EPA-821-R-02-012, or subsequent editions.

In accordance with the Ocean Plan, Appendix III, Standard Monitoring Procedures, the Discharger shall use the critical life stage toxicity tests specified in Ocean Plan Table III-1, Approved Tests – Chronic Toxicity (TUc) to measure chronic toxicity.

D. Receiving Water Monitoring

1. Surface Water

Receiving water monitoring is conducted to verify compliance with the Ocean Plan. Monitoring in the vicinity of the Discharger's Ocean Outfall must document water and sediment quality and biological communities at the "Zone of Initial Dilution" (ZID) boundary, at reference stations, and at areas beyond the ZID where discharge impacts might reasonably be expected.

a. Receiving Water Monitoring Exception During Extreme Rain Events – Staff added the following paragraph to MRP Section VI.A.1 regarding shore station sampling triggered by effluent bacterial violations:

The Discharger shall to the best of its ability conduct the above receiving water sampling during dry weather or at least three days after a significant rain event. The Executive Officer may grant a discretionary exception to this sampling requirement during extreme rain events where receiving water sampling is unlikely to provide data representative of the Discharger's Discharge. The Discharger shall conduct effluent total and fecal coliform sampling daily during such events or the subsequent period of its influence on receiving waters. Once shore station sampling can resume, effluent sampling may return to its regular schedule according the Order.

This language is based on staff's Best Professional Judgement and recent experience during the extreme rainfall events that occurred along the Santa Barbara County coast during January 2005.

b. Increase in Receiving Water Monitoring Frequency, when Required – Receiving water sampling is conditionally required at shore stations R-A, R-B, R-C, R-D, and R-E when three consecutive effluent total coliform limit violations occur. MRP No. 00-001 required this sampling once a week from June through September and monthly from October through May. Pursuant to Ocean Plan Section II.B, MRP No. R3-2005-0110 requires that, once receiving water is triggered, the Discharger shall collect no fewer than five samples for any 30-day period.

E. Other Monitoring Requirements

1. Biosolids/Sludge Monitoring

See Section VII.B.1.d below, *Biosolids Requirements*. Staff changed MRP biosolids language according to the recommendations of U.S. EPA's Region IX Biosolids Coordinator.

2. 2001 Ocean Plan Monitoring Provisions

Staff added the following monitoring sections according to provisions introduced in the 2001 Ocean Plan:

- a. MRP Section VIII Minimum Levels
- b. MRP Section IX Sample Reporting Protocols
- c. MRP Section X Compliance Determination
- d. MRP Section XI Pollutant Minimization Program

These sections are taken directly from the Ocean Plan for the Discharger's reference. Staff modified the language where applicable for the Discharger.

3. Wastewater Collection System Overflows - Recordkeeping and Reporting

Staff removed Section XII (Wastewater Collection System Overflow Recordkeeping) requirements as they duplicate the Statewide General Permit requirements or sanitary sewer systems recordkeeping. In Order to eliminate the potential for redundant requirements between this Order and the General Permit, staff removed this Section from the Order.

Section XIII (now Section XII – Wastewater Collection Systems Overflow Reporting) was modified to remove language referring to the notification from spills under 1,000 gallons as well as other reporting obligations. However, language addressing 24-hour notification for spills equal to or greater than 1,000 gallons remains.

4. Rainfall

Staff added reporting of daily rainfall totals alongside facility flow measurement to facilitate the evaluation of the influence of inflow and infiltration on wastewater flows received at the facility.

VII. RATIONALE FOR PROVISIONS

A. Standard Provisions

Standard Provisions, which in accordance with 40 CFR §§122.41 and 122.42 apply to all NPDES discharges and must be included in every NPDES permit, are provided in Attachment D to the Order.

B. Special Provisions

- 1. Special Provisions for Municipal Facilities (POTWs Only)
 - a. <u>Sanitary Sewer Overflow Reporting</u>: Staff derived the Central Coast Water Board sanitary sewer overflow reporting requirements from the Board's letter to all mailing list recipients dated July 26, 1995, and the Governor of California's Office of Emergency Services. This information is required to appropriately characterize the nature of a given spill, its impacts or potential impacts to public health and/or water quality, and the Discharger's corrective actions.
 - b. Wastewater Collection System Management Plan: Section VI.C.1.b of Order R3-2005-0110 allows Carpentaria Sanitary District to request a reopener of the Wastewater Collection System Requirements Provision based on new information, including the State Water Resources Control Board's (State Water Board) adoption of a General Order regulating sanitary sewer collection systems. Carpinteria Sanitary District staff made a formal request in writing on September 13, 2006.

Since the adoption of Order No. R3-2005-0110 (October 21, 2005), the State Water Board adopted the Statewide General Waste Discharge Requirements for Sanitary Sewer Systems Order No. 2006-0003-DWQ (General Permit), May 2, 2006. This General Permit provides regulatory oversight for the management, implementation, and reporting of Sanitary Sewer Management Programs. Carpinteria Sanitary District filed a complete application package to the State Water Board dated July 11, 2006, and obtained full enrollment status on August 18, 2006 (Waste Discharge Identification No. 3 SSO 10245).

Based on 40 CFR Section 122.62 (a)(2) (Anti-backsliding Requirements) and the adoption of the General Permit, staff proposes to remove requirements addressing wastewater collection system management, implementation, and reporting in the draft revised Order. Staff does not propose any changes to prohibitions, provisions, numeric and narrative effluent limitations or monitoring requirements identified in the existing Order. Order No. R3-2005-0110 establishes NPDES waste discharge requirements (WDRs) for the discharge of waste from the Carpinteria Sanitary District Wastewater Treatment Facility to the Pacific Ocean through the District's Ocean Outfall. As a result of removing this language, the following sections of the Order, MRP, and fact sheets were removed or modified.

- Section II.P (Findings) of the Order Staff removed language addressing wastewater collection systems.
- Section II.Q (Findings) of the Order Staff added language addressing the Statewide General Permit and the Districts enrollment under that program.
- Section VI.C.1.b (Special provisions) of the Order Staff removed this section to eliminate duplication of the Statewide General Permit requirements.
- Section XII (Wastewater Collection System Overflow Recordkeeping) of the MRP Staff removed this section as it duplicates the Statewide general Permit.
- Section XIII (Wastewater Collection System Overflow Reporting) of the MRP Staff removed a majority of the language addressing spill/overflow notification and reporting. However, language addressing, 24-hour notification for spills of 1,000 gallons or more, remains.

- Section XIV, Table XIV-2 (Reporting Requirements) of the MRP Staff removed language addressing wastewater collection system overflow cleanup protocol monitoring program and the final wastewater collection systems management plan.
- Section III.2 (Other Plans, Policies, and Regulations) of the Fact Sheet Staff added language regarding the Statewide General Permit and the district enrollment under the program.
- Section VI.E (Other Monitoring Requirements) of the Fact Sheet Staff modified the language to address recordkeeping and reporting requirements.
- Section VII.B.1 (Special provisions of Municipal Facilities) of the Fact Sheet Staff modified the language to address the removal of wastewater collection systems management plan language throughout the Order, MRP, and the Fact Sheet.
- Attachment G (Elements of the Wastewater Collection System Management Plan) Staff removed this attachment to eliminate duplication of the Statewide General Permit.

U.S. EPA Administrative Order – In June, 2002, U.S. EPA conducted a compliance evaluation of the Discharger's sanitary sewer collection system. On September 30, 2002, U.S. EPA issued Docket No. CWA-402-9-02-64, *Findings of Violation and Order for Compliance*, which required the Discharger to take remedial actions to reduce the number of sewage spills from its collection system. The U.S. EPA Administrative Order set forth a series of actions and plans for preparation and implementation according to required timelines, including the following:

- Immediate reduction of collection system spills
- Sanitary sewer overflow response planning
- Compliance with State and County emergency notification procedures
- Collection system capacity assessment
- Collection system assurance planning
- Collection system condition assessment and rehabilitation planning
- Pump station and force main maintenance, repair, and upgrades
- Fats, oils, and grease blockage control planning
- Plan review and approval by U.S. EPA
- Quarterly and annual reporting to U.S. EPA and the Central Coast Water Board

The U.S. EPA Order remains in effect until terminated by the Director of the Water Division for U.S. EPA, Region 9. Termination will not occur before December 31, 2005, unless the Director determines otherwise (Please note that U.S. EPA's Order is not a permit under the Clean Water Act). The development and implementation of the Wastewater Collection System Management Plan required by this Order is consistent with the above actions and plans required by U.S. EPA. The Management Plan should facilitate the continuation and further development of the above actions and plans to assure the continued improvement of the Discharger's collection system, which is also a condition of termination for U.S. EPA's Order. The Discharger should use actions and plans developed as a result of the U.S. EPA Order to comply with the Management Plan requirements wherever appropriate.

The U.S. EPA terminated the *Findings of Violation and Order for Compliance* Docket No. CWA-402-9-02-64 in a letter dated August 17, 2006. The District had requested termination of the Order in its August 7, 2006 annual report. Termination was based on the fact that the

District fulfilled the requirements of the Order and that they have made a significant progress to reduce the number of sewage spills from its collection system. The termination relieved the District of their reporting obligation under the Order.

CEQA – Pursuant to CEQA Guidelines, Section 15301, the proposed WDRs are exempt from CEQA because they are for existing facilities. The permit is also exempt from CEQA pursuant to Water Code section 13389.

c. <u>Pretreatment Program</u>: According to 40 CFR 403.8, *Pretreatment Program Requirements:* Development and Implementation by POTW, any POTW with a total design flow greater than five million gallons per day (MGD) and receiving from Industrial Users pollutants which Pass Through or Interfere with the operation of the POTW or are otherwise subject to Pretreatment Standards will be required to establish a POTW Pretreatment Program. The Discharger is not required to develop a Pretreatment Program at this time because its design flow is less than five MGD (design flow = 2.5 MGD).

The Central Coast Water Board, State Water Board, Regional Administrator, or Director may require that a POTW with a design flow of five MGD or less develop a POTW Pretreatment Program if he or she finds that the nature or volume of the industrial influent, treatment process upsets, violations of POTW effluent limitations, contamination of municipal sludge, or other circumstances warrant in order to prevent Interference with the POTW or Pass Through. The Central Coast Water Board has no information indicating these conditions exist, and therefore does not require the Discharger to develop a Pretreatment Program at this time.

The Discharger's Ordinance No. 7 (June 21, 1994) implements a Pretreatment Program which provides rules and regulations for the quality of wastewater discharged to the Discharger's facilities.

d. Biosolids Requirements: 40 CFR 122.44(b)(2) states that each NPDES permit shall include standards for sewage sludge use or disposal.

Section 13377 of the Porter-Cologne Water Quality Control Act requires waste discharge requirements to include all provisions necessary to protect beneficial uses and prevent nuisance, whether or not specified by Division 7 of that Act.

Management of all biosolids and sludge must comply with all requirements of 40 CFR Parts 257, 258, 501, and 503, including all monitoring, record-keeping, and reporting requirements. Waste discharge requirements (WDRs) issued by Regional Water Boards in California also serve as federal NPDES permits, and so are issued with full authorization from the U.S. Environmental Protection Agency. While the Central Coast Water Board has not been delegated the authority to enforce the biosolids program, as federal NPDES permits, WDRs include state and federal regulatory language applicable to a waste discharge. U.S. EPA supplied and recommends the standard language in this permit, and offered the following commentary during a NPDES permit renewal adopted by the Central Coast Water Board on October 22, 2004 (for the City of Santa Barbara).

According to the U.S. EPA Region 9 Biosolids Coordinator, it was the original intent of the Clean Water Act that biosolids conditions be placed in all NPDES permits. The intent of permit language is also to go above and beyond the minimum reporting and notification requirements contained in the 40 CFR 503 rule itself, as additional mechanisms beyond the 503 requirements are needed to require notice of violations, reporting of all use and disposal

practices, interstate notification for all use and disposal practices, handling of biosolids at the plant site and prior to final use or disposal, etc.

Because dischargers may change practices within the five-year span of a permit, the standard language recommended for NPDES permits is intended to place conditions for specific use or disposal practices, which become applicable if the Discharger selects that specific use or disposal option.

The 503 rule is very clear that the preparer of the biosolids is responsible for the use or disposal. After several court cases where POTWs contracted with composters and then continued to send their biosolids to the compost sites even after it became blatently evident that the "composters" were not composting and/or distributing the finished compost, U.S. EPA decided it was desirable to put a clause in permits clarifying that the POTW still retains responsibility for the biosolids through final use or disposal. This is a necessary incentive for POTWs to terminate a contract with composters who are not performing, and to clean up if a composter leaves the country and leaves behind the biosolids.

Where a Discharger transfers biosolids to a composter (which must test the pollutant levels of the final compost), testing of the biosolids by the Discharger prior to being blended with other biosolids is desirable from a pretreatment standpoint. Many Dischargers are required to test priority pollutants as part of the pretreatment program; however, the pretreatment requirements do not cover all the metals regulated under 40 CFR 503, or require use of the solid waste methods and conversion to 100% dry weight basis. Therefore, in some cases the 503 tests are more indicative of any source control problems. The composter typically also requires this data from a Discharger, so that the composter can identify any biosolids feedstocks with high metal concentrations.

Central Coast Water Board staff agrees with U.S. EPA that the permit should properly disclose the Discharger's responsibilities regarding biosolids disposal, and so recommends the biosolids language provided by U.S. EPA for the Order and MRP.

VIII. PUBLIC PARTICIPATION

The California Regional Water Quality Control Board, Central Coast Region (Central Coast Water Board) is considering the issuance of waste discharge requirements (WDRs) that will serve as a National Pollutant Discharge Elimination System (NPDES) permit for the Carpinteria Sanitary District Wastewater Treatment Facility. As a step in the WDR adoption process, the Central Coast Water Board staff has developed tentative WDRs. The Central Coast Water Board encourages public participation in the WDR adoption process.

A. Notification of Interested Parties

Staff notified the Dischargerand interested parties that the Central Coast Water Board proposed to revise Order R3-2005-0110 by a letter dated September 14, 2006. The letter included *Instructions to Applicant for Reissuance of Waste Discharge Requirements*, which required posting and publication no later than September 20, 2006. The Discharger provided public notification by posting and publishing in the Santa Barbara News Press on September 20, 2006, and through direct mailing of the Revised NPDES permt to the known interested parties list. Written comments were due no later than October 20, 2006. Staff did not receive written comments on the reopened permit.

For the October 21, 2005 adopted permit, the Central Coast Water Board notified the Discharger and interested agencies and persons of its intent to prescribe waste discharge requirements for the discharge and provided them with an opportunity to submit their written comments and recommendations. The

Discharger provided public notification by posting and publishing notice according to the Central Coast Water Board's *Instructions to Applicant for Reissuance of Waste Discharge Requirements*, which staff provided by letter dated July 12, 2005. The instructions required posting and publication no later than July 27, 2005, the details of which will be noted in this section upon completion.

B. Written Comments

The staff determinations are tentative. Interested persons are invited to submit written comments concerning these tentative WDRs. Comments should be submitted either in person or by mail to the Executive Office of the Central Coast Water Board at the address above (please see the cover page of this Order).

To be fully responded to by staff and considered by the Central Coast Water Board, written comments should be received at the Central Coast Water Board offices by 5:00 p.m. on August 26, 2005.

Staff responses to written comments received are provided below.

- 1. <u>Staff Responses to Comments from the Carpinteria Sanitary District</u>. Some of staff's recommended changes are indicated in double-underline and strikeout.
 - a. Order Tables IV-3 and IV-4

It is understood that effluent limitations prescribed in these tables are based on Ocean Plan Table B criteria. The District is concerned that a future Reasonable Potential Analysis (RPA) may show that no potential exists to discharge one or more of the listed constituents and that subsequent removal of numerical limits would be prohibited by anti-backsliding provisions in Paragraph II.J of the Tentative Order.

Staff Response: Paragraph II.J of the Tentative Order notes that exceptions may allow for relaxing limitations. If future analyses indicate that reasonable potential does not exist for particular constituents, then staff may recommend revisions to limitations based on that new information [Title 40 Code of Federal Regulations (CFR) Part 122.44(1)(2)(i)(B)(1)] as long as the revisions do not allow degradation.

b. Order Paragraph V.A.2.b

This provision requires the District, when directed by the RWQCB or its Executive Officer, to conduct a "sanitary survey" and to control any controllable discharges identified therein. This paragraph is ambiguous and could subject the District and its ratepayers to significant investigative and remedial costs to address water quality issues wholly unrelated to its discharge. It is recommended that this paragraph be deleted from the Tentative Order.

Staff Response: The California Ocean Plan, Section III.D.1.b, states, "Waste discharge requirements shall require the discharger to conduct sanitary surveys when so directed by the Regional Board. Waste discharge requirements shall contain provisions requiring the discharger to control any controllable discharges identified in a sanitary survey." Sanitary surveys which the District may conduct would necessarily be targeted at waste discharges within the District's jurisdiction.

Staff Revision: Staff changed the second sentence to "The Discharger shall control any controllable discharges within its jurisdiction identified in a sanitary survey."

c. Order Paragraph VI.C.1.a. – Biosolids Requirements

Subparagraph (1) of this section states that the SWRCB or RWQCB has not been delegated the authority to implement a biosolids program pursuant to regulations promulgated under 40 CFR Part 503. Including detailed provisions related to biosolids management in the Tentative Order is contrary to this statement. While it is clearly the District's responsibility to comply with the Federal requirements, we do not believe it is appropriate to include these provisions in the Tentative Order. The District's biosolids management practices, which involve off-site co-composting to achieve Class A, Exceptional Quality standards, make most of the detailed provisions set forth in this section inapplicable to our operations. For the sake of clarity and permit streamlining, it is recommended that this section be deleted in its entirety. The District will continue to maintain 100% compliance with biosolids management, monitoring, processing and reuse requirements of 40 CFR Part 503 throughout the permit cycle.

Staff Response: It was the original intent of the Clean Water Act that biosolids conditions be placed in all National Pollutant Discharge Elimination System (NPDES) permits. The Porter-Cologne Water Quality Control Act requires waste discharge requirements to include all provisions necessary to protect beneficial uses and prevent nuisance, whether or not required by Chapter 5.5 (NPDES requirements). Furthermore, 40 CFR 122.44(b)(2) states that each NPDES permit shall include standards for sewage sludge use or disposal.

Waste discharge requirements (WDR) issued by Regional Boards in California also serve as federal NPDES permits, and so are issued with full authorization from the U.S. Environmental Protection Agency (EPA). While the Regional Board has not been delegated the authority to enforce the biosolids program, as federal NPDES permits, WDR include state and federal regulatory language applicable to a waste discharge. Since the U.S. EPA Region IX Biosolids Coordinator has supplied and recommended the language for the tentative Order, and because of its applicability to the District, staff continues to recommend its cooperative inclusion in NPDES permits.

Staff agree with U.S. EPA that the permit should properly disclose the District's responsibilities regarding biosolids disposal. Since the District must comply with the biosolids program regardless of whether the permit contains biosolids language, staff does not agree that removing the language improves disclosure or clarifies the District's responsibilities to comply with biosolids requirements.

Although it may not be the District's intent at this time, other biosolids disposal or reuse methods may become necessary during the five-year life of the tentative Order. The language in the Order is intended to place conditions for specific use or disposal practices, which become applicable if the District selects that specific use or disposal option.

d. Order Paragraph VI.C.1.b. - Wastewater Collection System Requirements

The District currently implements a comprehensive, proactive collection system management program. In response to a series of wet-weather sanitary sewer overflows that occurred in the late 1990's, the District embarked on a strategic plan to fully assess and remedy deficiencies throughout its collection system. This substantial, ongoing effort has included major commitments of capital improvement dollars to upgrade pump stations and buried infrastructure within our service area. In 2000, the US Environmental Protection Agency issues the District an Administrative Compliance Order (ACO) which directed implementation of the already planned response measures according to a fixed schedule. The District has maintained strict compliance with the ACO. All reporting and documentation has been copied to the RWQCB. To date, the improvements have dramatically reduced the frequency and severity of sanitary sewer overflows (SSOs) experienced here.

The District is fully committed to responsible management of its collection system. We understand and support the concept of a regulatory framework for collection systems that is intended to reduce SSOs and protect water quality. However, the District does not believe that prescriptive collection system management requirements should be included as NPDES Permit provisions. We recommend that this entire section, as well as Attachment G, be removed from the Tentative Order. The basis for this recommendation is outlined below:

(1) The SWRCB is in the final development stage of Statewide General Waste Discharge Requirements for Sewage Collection System Agencies (General WDRs). A copy of the most recent public review draft of this document (dated 8/1/2005) is provided as Attachment A.

Staff Response: Comment noted.

(2) Attachment B is an implementation timeline for the General WDRs. It is anticipated that adoption by the SWRCB will occur in October 2005. This timing basically coincides with adoption of the District's final NPDES Permit.

Staff Response: It is uncertain when and if the State Board will adopt WDRs for collection systems. As of September 27, 2005, State Board's consideration of such WDRs was delayed until at least January 2006.

(3) The General WDRs are, in fact, more comprehensive than the Wastewater Collection System Requirements set forth in the Tentative Order. Compliance with the WDRs will provide for equivalent water quality protection.

Staff Response: Staff cannot compare the tentative Order's proposed language to the State's until State Board adopts a WDR.

(4) The General WDRs will provide a level playing field for all collection system operators in California. Implementation will be uniform and in accordance with reasonable time schedules.

Staff Response: Comment noted.

(5) The General WDRs, in their current form, have been developed with extensive stakeholder input. Attachment C provides a list of Guidance Committee members, which includes large and small collection agencies, consultants, non-governmental organizations, federal agencies, RWQCB staff and SWRCB staff. Contrarily, the Wastewater Collection System Requirements set forth in the Tentative Order were developed without any input from the regulated community.

Staff Response: The language in the tentative Order was first developed by U.S. EPA in the mid 1990's with extensive stakeholder input. When the federal collection system regulatory efforts were postponed, the Santa Ana Regional Water Board used U.S. EPA's language to prepare a collection system general WDR for approximately 20 agencies, again, with extensive input from those agencies. The Central Coast Water Board first used Santa Ana's language to implement collection system WDRs in the Monterey area, meeting with the multiple agencies involved. It is notable that the language changed very little throughout these different phases of development, indicating the broad applicability incorporated into the language through working with the regulated community.

Collectively, extensive resources were dedicated to developing the guidelines proposed in the tentative Order.

The regional boards have subsequently provided all affected agencies with opportunities to provide recommendations during the comment periods (typically four to six weeks) for numerous permit renewals over the last three years. As an indication of the effectiveness of the earlier collaborative efforts of U.S. EPA, the Santa Ana Water Board, and the Central Coast Water Board, the comments from multiple agencies over the last three years have not resulted in the Central Coast Water Board making any significant refinements to the language.

(6) A key element of the statewide General WDR program is a standardized online (web-based) reporting system. This application will streamline SSO reporting at all levels. If the collection system provisions of the Tentative Order are retained, the District will be subject to duplicative and burdensome reporting requirements.

Staff Response: Staff agrees that the State's tentatively proposed electronic reporting system has great potential. Once such a system is operational, staff intends to utilize it for all SSO reporting. At that time, any duplicative reporting requirements can be revised by the Executive Officer during the transition to a new system. It is important to maintain the proposed reporting requirements until any online reporting system is fully functional.

(7) Including collection system management requirements and absolute SSO prohibitions in the Tentative Order will expose the District and its ratepayers to expensive, third party citizen lawsuits for any instance of noncompliance, regardless of circumstances. This is a real threat that must be considered by the RWQCB. The statewide General WDR regulatory process will provide an equivalent level of water quality protection and enhancement, without the same level of exposure to litigation.

Staff Response: The District's current Order already includes the prohibition of overflows (Order No. 00-001, Discharge Prohibition A.3), as is standard practice for this and other regional boards. The Clean Water Act provides for third-party lawsuits for discharges to surface waters regardless of whether a permit covers the responsible party. The conditions of the tentative Order are the same as the previous Order.

Though the State Water Board may not include such a prohibition in a statewide collection system WDR, Regional Board staff will recommend its continued implementation in the Order.

(8) US EPA supports the statewide General WDR approach for collection system management. EPA staff has indicated that inclusion of three Standard Provisions in NPDES permits – duty to report; duty to mitigate; and duty to operate and maintain – is satisfactory from a regulatory perspective to control SSOs.

Staff Response: The Central Coast Water Board is not limited to adopting only the minimal federal provisions. Such an approach may suffice in terms of general enforcement, but it does little to promote a consistently thorough approach to managing and operating sewage collection systems.

U.S. EPA has, in fact, spearheaded the development of the collection system language proposed in the tentative Order, as discussed above.

- (9) The SWRCB will not exclude the District from the General WDR on the basis that its operations are covered by specific NPDES Permit provisions. Strict compliance with both regulatory programs will result in duplication of effort and poor use of limited resources.
 - **Staff Response:** The Central Coast Water Board retains discretion in deciding which regulatory approach to apply in its region. Coverage under two Orders for the same purpose will not occur.
- e. Order Attachment G. Elements of the Wastewater Collection System Management Plan
 The wastewater collection system provisions of the Tentative Order require the District to
 prepare a Wastewater Collection System Management Plan in accordance with Attachment G.
 The District's comments on Attachment G are provided below:
 - (1) In the District's opinion, the comprehensive and detailed requirements set forth in Attachment G (Elements of the Wastewater Collection System Management Plan) are overly prescriptive and, in essence, they dictate the manner of compliance with the Tentative Order. This is inconsistent with Water Code Section 13360(a).
 - **Staff Response:** The measure to be achieved is the development and implementation of a Management Plan. According to the proposed language, it is the District's responsibility to describe the manner in which it will address the areas of collection system management described in Attachment G. Providing an organizational structure in the permit which a permittee will use to develop its own plan and manner of implementation is consistent with Water Code Section 13360.
 - (2) The District has already prepared and implemented many of the required Wastewater Collection System Management Plan (WCSMP). Redevelopment, repackaging, and related compilation efforts to satisfy the Attachment G requirements will require substantial outlay of resources and funding that could be better used to maintain and/or improve the District's collection system.
 - **Staff Response:** In cases where a program element already exists, it may be referenced to or incorporated within the Management Plan. Staff agrees that duplication of plan elements is a waste of resources.
 - (3) The District also questions the annual update requirements for many of the plan elements. For example, a very limited number of new connections are made within the District's service area each year. Annual updates of a Capacity Assurance Plan are not appropriate and would merely be an exercise. This and similar efforts would divert staff time from critical maintenance and rehabilitation activities.
 - Staff Response: Tentative Order Attachment G, Section X requires annual Management Plan audits appropriate to the collection system and its compliance status. The District will assess where deficiencies exist and what corrective actions are necessary. Attachment G does not mandate that the District update Management Plan sections unless the audit reveals that a change is necessary to meet collection system needs or to maintain or achieve compliance.
 - (4) Paragraph IV.I of Attachment G requires the District to develop a plan for responding to and preventing SSOs from private property. The District must take exception to this requirement because it lacks jurisdiction to respond to overflows on private property in most cases. We have and will continue to take necessary actions to protect water quality,

however, this requirement is not appropriate and should be removed from the WCSMP requirements.

Staff Response: This plan element states, "Establish a plan for responding to overflows from private property that <u>discharge to public right of ways and storm drains</u>, to prevent <u>discharges from overflows to surface waters and storm drains</u>."

Any person who discharges sewage is responsible and liable for that spill. The proposed Order does not assign responsibility of privately owned systems to the District, nor does the proposed Order indicate that the District owns or maintains private sewer laterals. However, once a spill reaches public property, the local public agency becomes responsible to notify the public and direct cleanup. In addition, sewering entities and other local authorities have some ability to prevent overflows from laterals by, for example, imposing requirements in sewer hook-up permits, building ordinances, or ordinances that require inspection and maintenance of laterals upon property transfer.

In some cases, the local sewering agency may be the only capable response option. The Management Plan does not discount the role that private companies may play in responding to private sewage spills, nor does it preclude the District from billing responsible parties for any services rendered.

This Management Plan element does not require the District to respond to all private spills. It requires the District to develop a plan of response for those spills which become a threat to public health and the environment.

Staff Revision: Staff made the following changes to Attachment G, Section IV.I: "Establish a plan for responding to overflows from private property that discharge to public right-of-ways and storm drains, to prevent discharges from overflows to surface waters and storm drains, to the extent the District has jurisdiction to do so. For example, where the District has no jurisdiction over the public right-of-way or storm drain toward which an overflow is migrating or to which it is discharging, the plan may consist of reporting overflows to the appropriate authority for corrective action, directing property owners to the appropriate authorities, and advising property owners of the need to hire a private plumber.

(5) There is no discussion of the RWQCB review and approval process. Conforming our current collection system management process and its structural elements to satisfy the Attachment G requirements will require significant effort. The District would appreciate some assurance that there will be meaningful review and approval of the WCSMP by the RWQCB.

Staff Response: Staff welcomes the opportunity to review completed management plans and offer comments when needed. Regional Board formal approval is not currently required. It is the District's responsibility to assure its Management Plan is appropriate for its collection system needs and state of compliance.

f. Monitoring and Reporting Program Paragraph III.A.1

The hydraulic design of the District's treatment facility directs certain intermittent in-plant return flows to the influent wet well downstream of the influent (headworks) monitoring location. These return flows include filtrate from solids dewatering activities and wash water from periodic cleaning and maintenance activities within the plant. Flow measurements,

particularly instantaneous flow values, reflect these in-plant return flows. Flow measurements are continuously recorded on a circular chart.

Collection of monthly samples for BOD and Total Suspended Solids (TSS) analysis is coordinated with plant O&M activities so that no return in-plant flows are diverted to the influent wetwell during the 24-hour monitoring period. Costs to physically modify the WWTF or the influent sampling location are significant. It is requested that this paragraph be modified to indicate the presences of intermittent in-plant return flows as described and to allow sampling at the existing confluent sampling location.

Staff Response: Staff agrees.

Staff Revision: Staff changed the first sentence of this paragraph as follows:

"Sampling stations shall be established at each point of inflow to the treatment plant, and shall be located upstream of isolated from and/or corrected for any in-plant return flows in order to obtain and where representative samples of influent can be obtained."

g. Monitoring and Reporting Program Paragraph III.A.1 / Paragraph IV.A.1

These paragraphs state that composite samples (influent/effluent) shall be collected using a proportional sampling device approved by the Executive Officer. Please describe the requirements and/or process for approval. The District currently uses refrigerated composite samplers manufactured by American Sigma or ISCO.

Staff Response: The Executive Officer recognizes these manufacturers as common providers of appropriate sampling equipment. Use of sampling devices is subject to Executive Officer's approval, however, it is the District's responsibility to demonstrate that selected sampling devices are capable of accurately and consistently evaluating compliance. The District may notify and/or inquire about proposed devices as the need arises, however, there is no formal process of approval.

h. Monitoring and Reporting Program Table IV-1

Chronic toxicity monitoring is required semi-annually in the months of March and December. Please verify that these are the desired months for monitoring. Historically, semi-annual samples would be required with six-months separation instead of the four month period set forth in the MRP.

Staff Response: The District is correct. Staff intended sampling in June and December.

Staff Revision: Staff corrected the semi-annual chronic toxicity testing to June and December, instead of March and December.

Monitoring and Reporting Program Table VI-1
 This table indicates ocean sampling stations "1 through 8" in column 3. The MRP only sets forth five (5) ocean monitoring locations. The table should be modified to read "1 through 5" where appropriate.

Staff Response: Monitoring and Reporting Program (MRP) Section II identifies the five ocean sampling stations as R-1, R-2E, R2-W, R-3, and R-4.

Staff Revision: Staff corrected the ocean sampling station column of MRP Table VI-1, *Bottom Sediment Sampling*, to "R-1, R-2E, R2-W, R-3, R-4".

j. Monitoring and Reporting Program Section XII: Wastewater Collection System Overflows - Recordkeeping

As previously discussed, the District recommends that specific or explicit requirements for collection system record keeping be excluded from the Permit and MRP. Record retention requirements proposed for inclusion in the Statewide General WDR are very similar to those outlined in the Tentative Order. A standard provision requiring compliance with the General WDR would achieve the same objective and would streamline the permit process.

Staff Response: Because of the uncertainty of the final form of a State Water Board General WDR for collection systems, and whether the Central Coast Water Board will elect to utilize such a WDR, staff does not recommend any changes.

k. Monitoring and Reporting Program Section XIII: Wastewater Collection System Overflows - Reporting

The District further recommends that specific or explicit requirements for collection system reporting be excluded from the Permit and MRP. Comprehensive collection system overflow reporting requirements are proposed for inclusion in the Statewide General WDR. Spill classification and reporting criteria are similar to that outlined in the Tentative Order. The SWRCB has developed a web-based online reporting system and SSO database that is intended to streamline and standardize the SSO reporting process. This online reporting system is expected to be more significant and more efficient than the current written reporting procedures. A standard provision requiring compliance with the General WDR would achieve the same objective and would streamline the permit process.

Staff Response: The final form of a State Water Board General WDR for collection systems, the availability of a planned web-based reporting system, and whether the Central Coast Water Board will elect to utilize a statewide WDR are all uncertain at this time. The Executive Officer can revise reporting elements once these questions are answered, so staff recommends no changes.

1. Monitoring and Reporting Program Paragraph XIII.A.4

The requirement to collect "upstream and downstream" samples subsequent to a SSO is ambiguous for several reasons. In the opinion of the District, upstream monitoring should only be required when the discharge is to a creek, stream, or similar open, accessible channel with continuous background flow. If the SSO is to a non-flowing waterbody, such as an estuary, pond or the Pacific Ocean, "upstream" sampling is not possible. In the case of a discharge to a stormdrain, upstream and downstream sampling may be difficult or impossible. The District does not have jurisdiction to access storm drain manholes owned by the City of Carpinteria or the County of Santa Barbara. Furthermore, entering a stormdrain for the purpose of sample collection could expose District staff to unsafe conditions, particularly during rainfall events. It is recommended that this paragraph be modified to clarify SSO monitoring requirements and to fully define "upstream" and "downstream" sampling locations and protocols.

Staff Response: The District's interpretation is correct. The paragraph states, "When samples are collected, sampling points <u>upstream and downstream of the point of discharge to a receiving water..." The paragraph acknowledges the District's discretion is determining when sampling is appropriate, directs any sampling to the evaluation of receiving waters, and does not express the need to sample within storm drains nor to unduly endanger District staff.</u>

m. Monitoring and Reporting Program Paragraph XIV.B.1

The District is actively pursuing implementation of electronic on-line reporting through the SWRCB CIWQS eSMR system. This electronic reporting system is expected to be functional in October or November 2005. It is requested that formal notification to submit reports electronically, pursuant to this paragraph, be provided by the SWRCB or the RWQCB as soon as possible. There are significant costs and resource requirements associated with updating the District's SMR preparation software to be consistent with the Tentative Order, particularly for annual and semi-annual reporting.

Staff Response: Comment noted.

n. Monitoring and Reporting Program Paragraph XIV.C.1

The District is actively pursuing implementation of electronic on-line reporting through the SWRCB CIWQS eSMR system. This electronic reporting system is expected to be functional in October or November 2005. It is requested that formal notification to submit DMRs electronically, pursuant to this paragraph, be provided by the SWRCB or the RWQCB as soon as possible. There are significant costs and resource requirements associated with updating the District's DMR preparation software to be consistent with the Tentative Order, particularly for annual and semi-annual reporting.

Staff Response: Comment noted.

o. Monitoring and Reporting Program Paragraph XIV.D.1

The District takes no exception to the notification requirements set forth in this paragraph in the event of a disinfection process malfunction. Facsimile notification has been and will continue to be provided to those entities and individuals prescribed by the Department of Health Services. With respect to the requirement to monitor receiving water at sampling stations R-F, R-G and three other shore sampling stations for seven days after loss of disinfection, no parameters have been identified for analysis. Furthermore, no thresholds have been set forth to assess the level of impairment, if any, nor to differentiate between background receiving water quality and quality of receiving water potentially affected by the discharge. Also, while the District understands that it is responsible to determine when an "Event" has occurred, the language regarding a potential or actual discharge of inadequately disinfected effluent is unclear and ambiguous. It may not be consistent with the "loss of disinfection" language in the fourth paragraph of this section. Specific criteria or clarification of this requirement would be helpful to the District.

Staff Response: The sampling conducted should include total and fecal coliforms, and enterococcus. The data will be compared to existing receiving water objectives and standards for the protection of beneficial uses and public health to assess any potentially adverse impacts.

The monitoring stations are located in the immediate vicinity of the discharge and include three shore stations already designated as appropriate for recreational areas nearest the discharge. Therefore, the stations are presumed to be within waters potentially affected by the discharge.

Staff interprets the "loss of disinfection" to describe the operational malfunction included in the definition of "Event", which causes the potential discharge of inadequately disinfected effluent. The phrase "potential or actual" is appropriate because the notification times (within four hours) do not allow for a definite determination of whether the effluent bacteria concentrations are a threat to the receiving waters (which takes at least 24 hours).

Staff Revision: Staff changed the first sentence of the last paragraph of this section to indicate that monitoring shall be conducted for total coliforms, fecal coliforms, and entercoccus.

2. Staff Responses to Comments from the California Department of Health Services

- a. The following comments are provided to the Tentative Order No. R3-2005-0110 to better improve the interaction between the Carpinteria Sanitary District and the commercial shellfish activities in the Santa Barbara area:
 - (1) Page 13, paragraph V.A.1.b.1) this paragraph, under the main heading of "Receiving Water Limitations", provides the bacterial standards for any shellfish growing area. It states that, "In any 60-day period, the 'median' total coliform density shall not exceed 70 (MPN) per 100 mL, and not more than ten percent of the samples shall exceed 230 (MPN) per 100 mL.

The bacteriological standard provided in the National Shellfish Sanitation Program (NSSP) Model Ordinance (2003) requires that for approved shellfish growing areas, the fecal coliform medium or geometric mean shall not exceed 14 MPN per 100 mL, and the estimated 90th percentile for the most recent 30 samples shall not exceed 43 MPN per 100 mL. It is requested that this standard be used in lieu of the requirements stated above. (Note: the NSSP Model Ordinance indicates that these fecal coliform limits are equivalent to the total coliform numbers provided in the proposed WDR).

Staff Response: The shellfish harvesting standards in the tentative Order are from the California Ocean Plan, which is subject to change only by the State Water Board. Please contact the Ocean Standards Unit if you would like to recommend the incorporation of NSSP standards into the Ocean Plan. In addition, since you note that the NSSP fecal coliform standards are equivalent to the total coliform standards already in the tentative Order, staff recommends no changes at this time.

(2) Page E-4, Note 3 – the phone number for the Department of Health Services should be 510-412-4635.

Staff Response: Comment noted.

Staff Revision: Staff corrected the DHS phone number.

(3) Page E-33, paragraph XIII. – this section deals with the notifications required for sewage spills. Sewage spills involve raw sewage and often are more of a threat to shellfish growing waters than a treatment plant malfunction. It is requested that DHS be notified of such occurrences, similar to the Central Coast Regional Water Quality Control Board.

Staff Response: Staff agrees.

Staff Revision: Staff added DHS contact information to Monitoring and Reporting Program Section XIII

(4) Page E-34, paragraph XIV.D.1. – this paragraph discusses the "Notification and Monitoring Procedure in Case of Disinfection Failure. Prompt notification requirements are an integral part of the Management Plan for shellfish growing areas, and the RWQCB is to be commended for including it in the WDRs.

In the top paragraph, the term "Santa Barbara Nearshore Aquaculture Area" is used as a term for the general locations of the shellfish growing areas in the Santa Barbara area.

Actually, "Nearshore" refers to one specific growing area leased by one specific grower. A better general term would be "offshore of the Santa Barbara coast". This paragraph also states that the notification shall be by facsimile transmission. It is requested that a telephone notification (by direct conversation or voice mail message (Note: all commercial growers are required to have a 24-hour voice mail service)) be required, in addition to the facsimile transmission. A phone call will provide a more prompt notification in most cases, and therefore is more protective of public health. Additionally, a phone message can be accessed remotely, unlike a fax. A facsimile notification does not provide adequate public health protection since it might not get picked up for a considerable length of time.

Staff Response: Staff agrees.

Staff Revision: Staff changed the phrase "Santa Barbara Nearshore Aquaculture Area" to "offshore of the Santa Barbara Coast."

Staff added the requirement to notify shellfish growers by telephone as well as facsimile.

C. Public Hearing

The Central Coast Water Board will hold a public hearing on the tentative WDRs during its regular Board meeting on the following date and time and at the following location:

Date:

October 21, 2005

Time:

The meeting is scheduled to begin at 8:30 a.m. This public hearing is not currently scheduled for a particular time during the meeting, and the Board may take up the issue at any time. Please see the meeting agenda upon publication (approximately two weeks before the hearing date).

Location:

Santa Barbara County Supervisors Board Hearing Room

105 East Anapamu Street – 4th Floor

Santa Barbara, CA 93101

Interested persons are invited to attend. At the public hearing, the Central Coast Water Board will hear testimony, if any, pertinent to the discharge, WDRs, and permit. Oral testimony will be heard; however, for accuracy of the record, important testimony should be in writing.

Please be aware that dates and venues may change. Our web address is www.waterboards.ca.gov/centralcoast, where you can access the current agenda for changes in dates and locations.

D. Waste Discharge Requirements Petitions

Any aggrieved person may petition the State Water Resources Control Board to review the decision of the Central Coast Water Board regarding the final WDRs in accordance with Section 13320 of the California Water Code and Title 23, California Code of Regulations, Section 2050. The petition must be submitted within 30 days of the Central Coast Water Board's action to the following address:

State Water Resources Control Board Office of Chief Counsel P.O. Box 100, 1001 I Street Sacramento, CA 95812-0100 CARPINTERIA SANITARY DISTRICT
CARPINTERIA SANITARY DISTRICT WASTEWATER TREATMENT PLANT
ORDER NO. R3-2005-0110
NPDES NO. CA0047364

Persons may find additional instructions for filing petitions at: http://www.waterboards.ca.gov/html/petitions.html, or may request them from Central Coast Water Board staff shown below in Fact Sheet Section VIII.G.

E. Information and Copying

The Report of Waste Discharge (RWD), related documents, tentative effluent limitations and special provisions, comments received, and other information are on file and may be inspected at the address above at any time between 8:30 a.m. and 4:45 p.m., Monday through Friday. Copying of documents may be arranged through the Central Coast Water Board by calling or faxing Sue Gerdsen at (805) 549-3465 (phone) or (805) 788-3521 (fax).

F. Register of Interested Persons

Any person interested in being placed on the mailing list for information regarding the WDRs and NPDES permit should contact the Central Coast Water Board, reference this facility, and provide a name, address, phone number, fax number, and email address.

G. Additional Information

Requests for additional information or questions regarding this order should be directed to Todd Stanley at (805)542-4769 or tstanley@waterboards.ca.gov, or Gerhardt Hubner at (805) 542-4647 or ghubner@waterboards.ca.gov.

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CONTACT INFORMATION

Executive Officer	Executive Officer		
North Coast Regional Water	San Francisco Bay Regional Water		
Quality Control Board (1)	Quality Control Board (2)		
5550 Skylane Boulevard, Suite A	1515 Clay Street, Suite 1400		
Santa Rosa, CA 95403	Oakland, CA 94612		
Ph (707) 576-2220, FAX (707) 523-0135	Ph (510) 622-2300, FAX (510) 622-2460		
Executive Officer	Executive Officer		
Central Coast Regional Water Quality Control Board (3)	Los Angeles Regional Water		
895 Aerovista Place, Suite 101	Quality Control Board (4)		
San Luis Obispo, CA 93401	320 West 4 th Street, Suite 200		
Ph (805) 549-3147, FAX (805) 543-0397	Los Angeles, CA 90013		
Til (805) 545-5147, PAX (805) 545-0597	Ph (213) 576-6600, FAX (213) 576-6640		
Executive Officer	Assistant Executive Officer		
Central Valley Regional Water Quality	Central Valley Regional Water Quality		
Control Board, Sacramento Branch Office (5S)	Control Board, Fresno Branch Office (5F)		
11020 Sun Center Drive, Suite 200	1685 E Street		
Rancho Cordova, CA 95670-6114	Fresno, CA 93706		
Ph (916) 464-3291, FAX (916) 464-4645	Ph (559) 445-5116, FAX (559) 445-5910		
Assistant Executive Officer	Executive Officer		
Central Valley Regional Water Quality	Lahontan Regional Water Quality		
Control Board, Redding Branch Office (5R)	Control Board, South Lake Tahoe Office (6SLT)		
415 Knollcrest Drive	2501 Lake Tahoe Boulevard		
Redding, CA 96002	South Lake Tahoe, CA 96150		
Ph (530) 224-4845, FAX (530) 224-4857	Ph (530) 542-5400, FAX (530) 544-2271		
Executive Officer	Executive Officer		
Lahontan Regional Water Quality	Colorado River Basin Regional Water		
Control Board, Victorville Office (6V)	Quality Control Board (7)		
15428 Civic Drive, Suite 100	73-720 Fred Waring Drive, Suite 100		
Victorville, CA 92392	Palm Desert, CA 92260		
Ph (760) 241-6583, FAX (760) 241-7308	Ph (760) 346-7491, FAX (760) 341-6820		
111 (100) 241-0303, 111x (100) 241-1300	111 (700) 510 7 (51,1751 (700) 511 5020		
Executive Officer	Executive Officer		
Santa Ana Regional Water Quality	San Diego Regional Water Quality		
Control Board (8)	Control Board (9)		
3737 Main Street, Suite 500	9174 Sky Park Court, Suite 100		
Riverside, CA 92501-3339	San Diego, CA 92124-1324		
Ph (909) 782-4130, FAX (909) 781-6288	Ph (858) 467-2952, FAX (858) 571-6972		

Date ____

						-
California Regional Water Quality Con Central Coast Region Attn: Monitoring and Reporting Reviews 895 Aerovista Place, Suite 101 San Luis Obispo, CA 93401						
Dear Mr. Briggs:	Monit	oring	Report '	<u> Transı</u>	mittal F	<u>orm</u>
Facility Name:	····					
Address:	· · · · · · · · · · · · · · · · · · ·					
Contact Person: Job Title: Phone Number:						
WDR/NPDES Order Number:			· 100 · 100 · 1			
Types of Report (circle all):	Monthly	,	Quarterly	Sei	mi-Annual	Annual
Month(s) (circle applicable months*):	JAN JUL	FEB AUG	MAR SEP	APR OCT	MAY NOV	JUN DEC
	*Annual	Reports	(circle the fire	st month o	f the reportir	ng period)
Year:						
Violation(s) (Place an X by the appropriate choice):	No (there are no violations to report)					Yes
If Yes is marked (complete a-g):						
a) Parameter(s) in Violation:						
					· · · · · · · · · · · · · · · · · · ·	
b) Section(s) of WDR/NPDES Violated:						
					<u>:</u>	

Order No. R3-2005-0110	Attachment H	December 1, 2006
c) Reported Value(s)		
d) WDR/NPDES Limit/Condition:		
	•	
e) Dates of Violation(s) (reference page of report/data sheet):		· :
f) Explanation of Cause(s): (attach additional information as needed)		
g) Corrective Action(s): (attach additional information as needed)		
In accordance with the Standard Provi of law that this document and all atta following a system designed to assure information submitted. Based on my those directly responsible for data ga knowledge and belief, true, accurate penalties for submitting false informati	chments were prepared under that qualified personnel pro knowledge of the person(s) thering, the information sub and complete. I am awa	r my direction or supervision perly gather and evaluate the who manage the system, or mitted is, to the best of my are that there are significant
If you have any questions or require provided above.	additional information, plea	se contact me at the number
Sincerely,		
Signature		
Printed Name		
Title		