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Overview

> I'he sediment system (with an eye towards
hillslope processes in SCA)

> A few key concepts in understanding the
role of sediment supply in channel
response

> A few concluding thoughts and
Implications for management



The Sediment System

Fluvial Geomorphology is:

“the study of sediment sources, fluxes and storage within the
river catchment (watershed) and channel over short, medium and
longer timescales and of the resultant channel and floodplain

morphology.” (Newson and Sear 1993)

Mountain headwater streams
flow swiftly down steep
slopes and cut a deep

V-shaped valley. Low-elevation streams

Rapids and merge and flow down
waterfalls are gentler slopes. The
common. valley broadens and
the river begins to
meander.

At an even lower
elevation a river wanders
and meanders slowly
across a broad, nearly flat
valley. At its mouth it may
divide into many separate
channels as it flows across
a delta built up of river-
borne sediments and into
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Fig. 1.27 = Three longitudinal profile zones.

In Stream Corridor Restoration: Principles, Processes, and Practices, 10/98.
Interagency Stream Restoration Working Group (15 Federal Agencies of the US).
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Hillslope Coupling

> Whether sediment reaches the channel or is
stored on the hillslopes vs. the valley floor or
delivered to the channel depends on coupling
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Interaction within
the fluvial system
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Hillslope sources of sediment

> Creep

> Rainsplash
> Sheetwash
> Rilling

> Gullying

> Landslides
> Debris flows




Some Key Controls on Sediment Supply

> Climate — precipitation, ENSO cycles, etc.
> Geologic context / rock types / uplift

> Slope / topography
> Solls

> VVegetation

> Fire

> Land use

> Base level
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Climate
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F1G. 4. Vanation 1n the ratio of geometric mean El Nino flood to
geometric mean non—E]l Nino flood vs gauge station latitude.

The sediment flux of the rivers during the three major flood years
averages 27 times greater than the annual flux during the previous
dry climate (Inman and Lenkins 1999)
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Fig. 2a. Portion of west side of Monroe Canyon, Ban Dimas Experimental Forest, California,
after the 1966 storm. An unconverted drainage is in the upper part of the figure, and & converted
drainage is in the lower part.

Rice and Foggin (1971) Hellmers et al. (1955)



A, Sage B. Grassland

Landslides Landslides (28%)
(13%)

Landslide frequency

Average soil depth TDFs
in hollows : (57%)

Time

-

—
-
-

e
|

Shrub to grass
Net increase of ~ 40%

=
1

=
B
4
E
=
=
=
<
e
L
=
e
=
=
5
E
2]

Gabet and Dunne (2003)




Fire

*5x —100+x increases in sed. yield
«Sediment residence times of

centuries
Affects sediment system by acting
" as a new set of initial conditions for
* 4 subsequent wildfire and flood
; sequences

San Gabriel mountains catchments

Photo by USGS

Fires followed by intense
storms typically generate
the largest sediment
fluxes
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Landslides

> Significant source of coarse sediment

> Shallow landsliding on soil-mantled slopes may
account half of the hillslope erosion, deep-
seated (bedrock) landsliding commonly
contributes a third of the total flux (Lave and
Burbank 2004 in San Gabriel mountalns)




Sediment input is pulse-like
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Coarse Sediment Connectivity

> T'he coarse fraction of the sediment supply is a
particularly important influence on channel
morphology.

> Primary sources:
« Valley wall/colluvial erosion
o Landslides/mass movements
o Hillslope erosion
» [lributary streams / bank erosion



Coarse Sediment Connectivity

> Whether coarse sediment reaches downstream
channels depends on in-channel infrastructure

Figure 2-18. Recent scour of Santa Paula Creek associated with bedload-
transport-restricting structures and presumably expressing an imbalance
between transport capacity and sediment supply (a) relow the lower ITighway
150 crossing: and (b) below the Harvey Diversion Dam.

Stillwater Sciences (2007)

Figure I-10. View of Santa Faula Creek a) just upstream of the major
sandstone-delivery zone of Figure 2-0 (note the bedrock expoesures in the banks
and bed of the channel): and b) downstream of sandstone delivery zone.




Geologic Context / Slope / Land Cover

fine sed vs. coarse sed source areas
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Figure 2-12. Fine grained sediment production in Santa Paula Creek watershed. Figure 2-16. Sandstone production in Santa Paula Creek watershed.




Time Lags and Complexity

> Sediments can be stored for centuries —
channel flux may not reflect upland
erosion rates

> Rapid changes in sediment loads can
occur as stores of sediment become
unstable

> Iravel distances of sed (Bunte and MacDonald, 1995)

o Gravel ~100 m/yr
o Sand ~ 1000 m/yr
o Fines ~ 10,000+ m/yr




Sediment Dynamics in S. California
Streams

mass movements or colluvium, vertical accretion
small fluvial events

/\\

+——— flushing ——

High-energy instability, mountain and arid streams. (adapted from Trimble,
S.W.,1995. Changing River Channels. John Wiley & Sons, Chichester. pp. 212.)




A few key concepts In
understanding the role of sediment
supply in channel response



Independent and Dependent

Driving
variables

Boundary
characteristics

Controls

Inflow Discharge Hydrograph + Inflow Sediment Hydrograph

Qs
M/\\/\ Wash load

Bed matenal load

Time

Valley, slope and topography Bed and bank rnala'lals Riparian vegetation

—

Cross-sectional geomety Long profile Flanform
{width, depth, maximum depth}  (channel slope)

Thorne (1997)



Sediment supply > sediment transport = sediment storage
(or. creation/maintenance of depositional morphology)

Sediment supply < sediment transport = sediment removal
(scour)
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Episodic sediment input
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Temporal Dynamics (Schumm, 1979)
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Channel Attribute

Temporal Dynamics (Schumm, 1979)

Flood, fire, landslides, climate variability (e.g. El Nifo), tectonics

Time >



Channel Attribute

Temporal Dynamics (Schumm, 1979)

Flood, fire, landslides, climate variability (e.g. El Nifio), tectonics

+
Urbanization (water 1 sed | ), coarse sed. bottlenecks
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Sensitivity to sediment supply varies among channel types

Suspended

Geomorphic Limits
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Adapted from (Haines, in prep)
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State Diagrams

Response of S*to projected Qs* and Q*




Channel Type
Suspended Load Mixed Load Bed Load
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Source: Schumm, The Fluvial System. © 1977. Reprinted by permission of John Wiley and Sons, Inc.

Fig. 7.10 -- Classification of alluvial channels, per Schumm's classification system.
In Stream Corridor Restoration: Principles, Processes, and Practices, 10/98.
Interagency Stream Restoration Working Group (FISRWG)(15 Federal agencies of the US).




Channel evolution stages —
downstream sequence and “recovery’
time depends on sediment supply
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SCA Channel Evolution Model (Hawley et al., in prep)
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Channel sensitivity

> Ratio of disturbing to resisting forces
> Proximity to thresholds

> Ability for recovery

> I'ime for recovery

All depend on sediment supply!

adapted from Downs and Gregory (1995)



A few concluding thoughts and
Implications for management



The Basic Idea

> River channel morphology and response
are the results of the processes of erosion
and deposition operating both locally to
produce scour and fill, and more generally
within the watershed to define long term
channel evolution

> Not possible to understand and effectively
manage streams without understanding
the Interplay of flow regime, watershed
sediment supply, and channel response



Sediment Supply

> Alterations may affect the amplitude of
aggradation / degradation trends, and frequency
of crossing geomorphic thresholds

> Can maintain pre-development flow but still
perturb the stream

> Channel types differ in their sensitivity to altered
supply:
> Controls the downstream sequence of channel

types — e.g., single thread vs. braided,
transitional vs. labile



Sediment Supply

> Coarse load vs. fine load: different source
areas, somewhat different geomorphic
Implications

> Coarse sediment connectivity IS a key
control on downstream channel response

— avold Instream Iinfrastructure that creates
bottlenecks

> Must combine a historical perspective with
analysis of present (and future)



QUESTIONS ?



A potential first step

> Considerable capabillity exists to model
watershed hydrology, but no comparable
capacity exists for modeling the sediment
system to produce absolute values of yield
on an event basis; however, we can
readily answer this question with
straightforward models and existing data:
\What are the types and locations of the
major natural'’and management-related
sources ofisediment?



Geomorphic Landscape Units (GRU)

> What are the primary determinants of sediment
production from hillslopes? How can they be

identified and grouped in a watershed in a GIS
environment?

> Unlike the state-of-the-science for hydrologic
changes, there is no simple, established
methodology; so we have to develop one

> Presumptive controls on sediment production
o Slope
o Geology

o Land cover



Predicting changes
in sediment production 10

HILLSLOPE GRADIENT
0-10%
10-20%
>20%

Slope categories “

Booth et al. 2010



Quaternary deposits
Shale bedrock

GGOlOgy Categories - Sandstone bedrock

Booth et al. 201



- Agriculture/herb/bare
- Bare/water/wetlland

- Developed
- Forest

Scrub

Land cover
categories

Booth et al. 201



“Geomorphic
Landscape Units’
(slope + geology +
land cover)

)

BootH et al. 2010
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GIS Mapping of Transition from
Threshold to Labile Channels
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1.

Five Guiding Principles

Remove as many artificial constraints as
possible to allow river to respond to
perturbations through mutual adjustments
to all dimensions of channel form.

Provide additional space for
morphological adjustment to lower risks

to habitats, people and property along the
watercourse.

Thorne (pers. comm.)



Five Guiding Principles

3. Redesign remaining artificial constraints
(culverts, bridges, weirs, grade controls, bank
protection) allowing for changes in flow and
sediment regimes.

4. Consider nested scales of time and space — not
things In space but processes in time

5. Design in monitoring and post project appraisal
to support adaptive management of watershed
alterations as they occur.

Thorne (pers. comm.)
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