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More about Regression*

Day 3, Afternoon

*Some of these power point slides are courtesy of Brooks-
Cole, accompanying Mind On Statistics by Utts & Heckard.
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Making Inferences
1. Does the observed relationship in a sample 

also occur in the population? 
2. For a linear relationship, what is the slope of the 

regression line in the population?
3. What is the mean value of the response

variable (y) for cases with a specific value of the 
explanatory variable (x)? 

4. What interval of values predicts an individual 
value of the response variable (y) for a case with 
a specific value of the explanatory variable (x)?

3

Sample and Population 
Regression Models
• If the sample represents a larger population, 

we need to distinguish between the 
regression line for the sample and the 
regression line for the population.

• The observed data can be used to determine 
the regression line for the sample, but the 
regression line for the population can 
only be imagined.
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Regression Line for the Sample

is spoken as “y-hat,” and it is also referred to either 
as predicted y or estimated y.

b0 is the intercept of the straight line. The intercept is 
the value of y when x = 0.

b1 is the slope of the straight line. The slope tells us 
how much of an increase (or decrease) there is for the 
y variable when the x variable increases by one unit. 
The sign of the slope tells us whether y increases or 
decreases when x increases.
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Deviations from the Regression 
Line in the Sample

For an observation yi in the sample, 
the residual is:

= value of response variable for ith obs.
, where xi is the value of the 

explanatory variable for the observation.
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Example: Height and handspans of students
Data: Heights (in inches) and Handspans 

(in centimeters) of 167 college students. 

Regression equation: Handspan = -3 + 0.35 Height

Slope = 0.35 => 
Handspan increases 
by 0.35 cm, 
on average, 
for each increase 
of 1 inch in height.
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Example, continued
Consider a person 70 inches tall 

whose handspan is 23 centimeters. 
xy 35.03ˆ +−=The sample regression line is  

so                                         cm for this person. 

The residual =
observed y – predicted y 
= 23 – 21.5 = 1.5 cm.

5.21)70(35.03ˆ =+−=y
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Regression Line for the Population

E(Y) represents the mean or expected value of y for cases 
in the population that all have the same x. 

β0 is the intercept of the straight line in the population.
β1 is the slope of the straight line in the population. 

Note that if the population slope were 0, there is no 
linear relationship in the population.

These population parameters are estimated using the 
corresponding statistics.
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Assumptions about Deviations

1. Assume the general size of the deviations of y 
values from the line is the same for all values of 
the explanatory variable (x) – called the constant 
variance assumption.  

2.   For any x, the distribution 
of y values is normal 

=> Deviations from the     
population regression line 
have a normal distribution.
(This can be relaxed if n is 
large)
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Simple Regression Model 
for a Population

y = Mean + Deviation

1. Mean in the population is the line 
E(Y ) = β0 + β1x  if the relationship is linear.  

2. Individual case’s deviation = y − mean, which is 
what is left unexplained after accounting for 
the mean y value at that case’s x value.
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Estimating the Standard 
Deviation around the Line
The standard deviation for regression measures …
• roughly, the average deviation of y values from 

the mean (the regression line). 
• the general size of the residuals. 

( )
2

ˆ
2

2
Residuals Squared of Sum

2

−
−

=
−

=

−
=

∑
n

yy
n
SSE

n
s

ii

12

Example: Height and Weight
Data: 
x = heights (in inches)
y = weight (pounds) 
of n = 43 male students. 

Standard deviation  
s = 24.00 (pounds): 
Roughly measures, for 
any given height, the 
general size of the 
deviations of individual 
weights from the mean 
weight for the height.
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Proportion of Variation Explained
Squared correlation r2 is between 0 and 1 
and indicates the proportion of variation in 
the response explained by x.
SSTO = sum of squares total = sum of squared 
differences between observed y values and    .

SSE = sum of squared errors (residuals) = sum 
of squared differences between observed y values 
and predicted values based on least squares line.
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Example: Height and Weight, continued

R-Sq = 32.3% =>
The variable height 
explains 32.3% of the 
variation in the weights 
of college men.
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Example: Driver Age and Maximum
Legibility Distance of Highway Signs
Study to examine relationship between age and maximum 
distance at which drivers can read a newly designed sign.

Average Distance = 577 – 3.01 × Age
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Example: Age and Distance, continued
s = 49.76 and R-sq = 64.2% => Average distance from 
regression line is about 50 feet, and 64.2% of the variation 
in sign reading distances is explained by age.
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Hands-On Activity: 
To be given in class

Applet to try to find least squares line 
(maximize R2 and minimize MSE = 

SSE/n – 2)
http://onlinestatbook.com/stat_sim/reg

_by_eye/index.html
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Inference About Linear   
Regression Relationship

The statistical significance of a linear relationship can 
be evaluated by testing whether or not the slope is 0. 

H0: β1 = 0 (the population slope is 0, 
so y and x are not linearly related.)

Ha: β1 ≠ 0 (the population slope is not 0, 
so y and x are linearly related.)

Alternative may be one-sided or two-sided.
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Test for Zero Slope

Under the null hypothesis, this t statistic 
follows a t-distribution with df = n – 2.
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Example: Is pH in Davis rainfall 
changing over time?
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R Commander
Statistics → Fit model → Linear regression
Specify x (explanatory) and y (response = pH)

Residuals:
Min       1Q   Median       3Q      Max 

-0.39811 -0.09337  0.00545  0.11777  0.27777 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -25.701060   6.719198  -3.825  0.00067 ***
Year          0.015880   0.003369   4.714 6.06e-05 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Residual standard error: 0.1597 on 28 degrees of freedom
Multiple R-squared: 0.4424, Adjusted R-squared: 0.4225
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Example Year and pH for Davis

H0: β1 = 0 (y and x are not linearly related.)

Ha: β1 ≠ 0 (y and x are linearly related.)

Probability is close to 0 that observed slope could be as far 
from 0 or farther if there is no linear relationship in population 
(p-value shown in box) => Appears the relationship in the 
sample represents a real relationship in the population. So 
conclude that pH actually is increasing over time.

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept) -25.701060   6.719198  -3.825  0.00067 ***
Year          0.015880   0.003369   4.714 6.06e-05 ***
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Confidence Interval for the Slope

A Confidence Interval for a Population Slope

where the multiplier t* is the value in a t-distribution 
with degrees of freedom = df = n - 2 such that the area 
between -t* and t* equals the desired confidence level.
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Testing Hypotheses about 
the Correlation Coefficient

The statistical significance of a linear relationship 
can be evaluated by testing whether or not the
correlation between x and y in the population is 0. 

H0: ρ = 0 (x and y are not correlated.)

Ha: ρ ≠ 0 (x and y are correlated.)

where ρ represents the population correlation

Results for this test will be the same as for the 
test of whether or not the population slope is 0.
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Effect of Sample Size on Significance

With very large sample sizes, weak relationships 
with low correlation values 

can be statistically significant.

Moral: With a large sample size, saying two 
variables are significantly related may only 
mean the correlation is not precisely 0. 

We should carefully examine the observed 
strength of the relationship, the value of r.
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Predicting for an Individual

A 95% prediction interval estimates the value of y
for an individual case with a particular value of x. 
This interval can be interpreted in two equivalent ways:

1. It estimates the central 95% of the values of y for 
cases in a population with specified value of x.

2. Probability is .95 that a randomly selected case 
from population with a specified value of x falls 
into the 95% prediction interval.
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R Commander: Storing residuals and 
predicted values

Models → Add 
observation 
statistics to data →
Check “fitted 
values” and 
“residuals” to store 
these in the data set.
Histogram of 
residuals for pH 
example:
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Prediction Interval

Note:
• t* found from t-distribution with df = n – 2. 

• Width of interval depends upon how far the specified x value 
is from      (the further, the wider).

• When n is large, s.e.(fit) will be small, and prediction interval 
will be approximately …
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Estimating the Mean at given x

A 95% confidence interval for the mean 
estimates the  mean value of the response variable y, 
E(Y), for (all) cases with a particular value of x. 
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Checking Conditions 
for Regression Inference

Conditions:
1. Form of the equation that links the mean value of y to x 

must be correct.
2. No extreme outliers that influence the results unduly.
3. Standard deviation of values of y from the mean y is same

regardless of value of x.  
4. For cases in the population with same value of x, the 

distribution of y is a normal distribution. Equivalently, the 
distribution of deviations from the mean value of y is a 
normal distribution. This can be relaxed if the n is large.

5. Observations in the sample are independent of each other.
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Hands-On Activity: 
To be given in class

How outliers influence regression 
http://illuminations.nctm.org/Lesson

Detail.aspx?ID=L455
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Checking Conditions with Plots
Conditions 1, 2 and 3 checked using two plots:

Scatterplot of y versus x for the sample
Scatterplot of the residuals versus x for the sample

If Condition 1 holds for a linear relationship, then:
Plot of y versus x should show points randomly 
scattered around an imaginary straight line. 
Plot of residuals versus x should show points randomly 
scattered around a horizontal line at residual  0.

If Condition 2 holds, extreme outliers should not be 
evident in either plot.

If Condition 3 holds, neither plot should show increasing 
or decreasing spread in the points as x increases.
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Example: Residuals vs Year for pH 

Residual plot:
Is a somewhat random-
looking blob of points 
=> linear model ok.
A few possible outliers?
Spread looks somewhat 
constant across years.
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Conditions 4 and 5

Condition 4: 
examine histogram or 
normal probability plot 
of the residuals

Histogram:
Residuals are approximately 
normally distributed

Condition 5: follows from the data collection process. 
Units must be measured independently. Is pH of rainfall 
across years independent?? Perhaps consider time series 
models.
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When Conditions Are Not Met
Condition 1 not met: use a more complicated model

Based on this residual plot, a curvilinear model, 
such as the quadratic model, may be more appropriate.
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When Conditions Are Not Met
Condition 2 not met: if outlier(s), correction depends 

on the reason for the outlier(s)

Outlier is legitimate. Relationship appears to change for 
body weights over 210 pounds. Could remove outlier 
and use the linear regression relationship only for body 
weights under about 210 pounds.
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When Conditions Are Not Met

Either Condition 1 or 3 not met:
A transformation may be required. 
(Equivalent to using a different model.)  
Often the same transformation will help 
correct more than one condition.

Common transformation is the 
natural log of y.
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Example from Jim Tischler

• Trend analysis for monitoring cleanup of TPH 
(total petroleum hydrocarbons) gasoline 

• Data (log of TPHg concentration) used to 
predict a 7.7 year time frame to achieve water 
quality objectives

• However, there is one non-detect that was 
replaced with a 0.

• See plots on next few slides.
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Attenuation Graph
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Appears to be a decreasing trend across 
time; DL = log(50) = 3.91, non-detect 
replaced with 0.
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Plot with the non-detect removed – increasing trend!
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Regression results (not a significant 
trend in either case)

With 0 included:
Coefficients:

Estimate Std. Error t value Pr(>|t|)    
(Intercept)   5.9336117  0.7308107   8.119 7.17e-07 
Running.Time -0.0007261  0.0008939  -0.812    0.429

Without 0 included:
Estimate Std. Error t value Pr(>|t|)    
(Intercept)  5.6417630  0.1834230   30.76 2.96e-14
Running.Time 0.0001593  0.0002307    0.69    0.501
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Cautions about Regression

• Always look at plots of: 
x (horizontal axis) versus y (vertical axis)
x versus residuals
other possible explanatory variables versus 
residuals

• Methods that take dependence over time 
into account may be more appropriate when 
the explanatory variables is time.
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Debriefing: Suggestions for 
future offerings of the course


